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Image Codec by Noncausal Prediction, Residual
- Mean Removal, and Cascaded VQ

Amir Asif and José M. F. Moura, Fellow, IEEE

Abstract—We describe a technique for still image compression
that combines i) noncausal optimal recursive prediction, ii) resid-
ual quadtree mean removal, and iii) a modification of cascaded
vector quantization. We refer to this image codec as noncausal
prediction with residual mean removal, and cascaded vector
quantization (NRQ/CVQ). We provide examples that illustrate
the performance of NRQ/CVQ up to compression ratios of
42.5:1. We show that NRQ/CVQ outperforms alternative algo-
rithms that we tested including the conventional causal prediction
differential pulse code modulation (DPCM) with quadtree mean
removal cascaded vector quantization and the Joint Photographic
Experts Group (JPEG) baseline standard algorithm.

1. INTRODUCTION

IGITAL representation of images allows visual informa-

tion to be easily manipulated on a computer,-stored on a
compact disc, or communicated over a digital channel. These
advantages, however, are at the expense of the large volume of
data required to represent raw digital images. Images contain a
high degree of spatial redundancy, with the pixel values being
highly correlated. Image compression exploits this redundancy
to reduce the number of bits required to represent the image,
providing significant savings in resources for storage and
transmission.

Compression image techniques may be divided into two
classes: lossless (or noiseless) and lossy (or noisy) com-
pression. Lossless compression allows perfect reconstruction
of the original image from the compressed image. Perfect
reconstruction is ideal since no information is lost but it
limits the achievable compression ratio. In contrast, lossy
compression provides higher levels of compression, with a
trade-off between compression ratio and reconstruction error.
Lossy compression usually consists of three basic components:

« Decomposition or transformation of the original image to

find an equivalent representation which, for example, has
a reduced dynamic range or leads to an otherwise more
concise description -of the image.

* Quantization to reduce the bit rate.

» Lossless coding to achieve rates close to the entropy of

the quantized symbol source.

Reconstruction of the image from the coded data strearn
consists of applying the inverse of each of the operations in
reverse order. )
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This paper describes a lossy compression scheme that we
refer to as noncausal codec with residual quadtree mean
removal and cascaded vector quantization (NRQ/CVQ). The
method uses noncausal prediction with residual quadtree mean
removal and cascaded vector quantization (QCVQ). Noncausal
prediction has also been used by Gray ef al. [1], in which
they subsample a vector, code the downsampled vector, and
then predict the remaining samples. They call the -scheme
a “Checkerboard Tile.” In our case, noncausal prediction is
based on modeling the image as a Gauss Markov random field
(GMRF) and is used to generate an error image considerably
less correlated than the original image. QCVQ is then used to .
compress the error image. QCVQ is composed of two steps.
The first step removes the means of each block by a quadtree
technique applied to the error image that was obtained in the
noncausal prediction stage. On the second step of QCVQ,
the residuals are vector quantized by a multiple stage vector
quantizer—cascaded VQ. In our implementation of QCVQ,
we introduce in between the stages of the vector quantizer a
selector that discards from further stages of quantization those
residuals that have been adequately quantized by the previous
stages of quantization. QCVQ offers several advantages over
conventional vector quantization, namely, lower storage re-
quirements for storing and transmitting the codebooks, reduced
search, hence, lesser complexity, and faster speed for the
generation of the codebook and quantization. We stress that
even though QCVQ is explained in terms of NRQ/CVQ and
of the error image resulting from the noncausal prediction step,
the ideas are fairly general and applicable to different types
of vector quantizers.

The paper is structured in eight sections. Section II reviews
the noncausal prediction algorithm based on Gauss Markov

random fields (GMRF) which is used to generate the error

image. Section II summarizes the standard algorithm for
vector quantization and discusses some of the associated
limitations. Section IV introduces quadtree mean removal,
while Section V describes a modification to cascaded vector
quantization. Section VI combines quadtree mean removal and
cascaded vector quantization. Section VII designs in detail the
full codec and compares its performance with. that of other
competing algorithms, namely other versions of vector quan-
tization alone, conventional predictive coding, and transform
coding. Finally Section VIII concludes the paper.

In comparing the reconstructed picture quality, we make
use of the mean square error (MSE) and peak signal to
reconstruction noise ratio (PSNR) which for an (N x V) 8-bit
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image are defined as follows:

1 N N
MSE =~ > | > (a(i, ) ~ (i, 7))’

i=1 j=1

2 2
PSNR =10log;, (%)

where the original image is denoted by x(%, j) and the recon-
structed image by £(%, 7). A higher PSNR does not necessarily
imply a higher quality reconstructed image, because the per-
ceived picture quality is highly dependent upon the human
visual system (HVS). To enable subjective comparison of the
different techniques, we include in the paper examples of
images as reconstructed by the several methods considered.

¢))

@

II. NONCAUSAL PREDICTION

In the following sections, a new approach to image com-
pression based on Gauss Markov random fields (GMRF), [2],
[3], is discussed. The approach resembles differential pulse
code modulation (DPCM), [4], with one major difference—the
prediction is based on pixels from along all directions, rather

than pixels on one side of the pixel of concern. Before -

discussing the main algorithm, the required background is
briefly presented. We assume that the field is zero mean.

In noncausal prediction, we use a noncausal neighborhood
of pixels to make a linear prediction of the current pixel value.
Fig. 1 illustrates the noncausal neighborhood sets of order up
to six for the pixel labeled ‘o’. The first order neighborhood set
involves pixels marked ‘1°, the second order set involves the
pixels marked ‘1’ and ‘2,” and similarly for the higher order
sets. For a first order prediction model, the prediction of the
image intensity value at pixel (z,7) (say the pixel represented
by ‘o’ in Fig. 1) given the image intensity values at all other
pixels is, [5]

‘%(17]) :ﬁvx(i - 17j) + ,th'(i,j - 1) +/8hx(2.aj + 1)
+ Buz(i + 1, 5) 3

where 3, and (3, are the vertical and the horizontal field
interactions, z(i — 1, 7) represents. the intensity value of the
pixel in the row above the reference pixel, row i —1, and in the
same column as the reference pixel, column j, and likewise
for the remaining quantities in (3). The error (4, j) involved
in the prediction is given by

e(i, j) = z(i,J) — &4, 5). 4)
For simplicity, consider the image to be square, say N X N.
Following standard procedure, we collect the intensity values
for the pixels of row 4 into the N x 1 random vector X; =
[Ti1 To z;n]T, and stack the vectors corresponding
to all rows of the image ¢ = 1,---, N to form the N2 x 1
vector X = [XT X7 XET. Equation (4), after
substituting for £(i, 7) as given by (3), is expressed in a matrix
form by stacking the field values z(¢,7), and the input noise
e(i,5), into N2 x 1 column vectors X and €, respectively.
Taking into consideration appropriate boundary conditions, we
obtain

AX =¢. )

(=2
S O W O,
N =N A,
W O = WO
N = N
Ol Wb O
(=]

. - . . .

Fig. 1. . First to sixth order neighborhood noncausal prediction models.

The matrix A is a N2 x N2 matrix containing the field
interactions 3, and 3, and is referred to as the potential matrix
or potential operator. For first order fields, A has the following
structure

B, C; 0 0 0
¢t B ¢ o o
o ¢©¥ BC o . .
A= . . . . . . . (6)
o 0 ¢ B
0 0 o Cf B

where B1,C1,B, and C are N x N blocks. The blocks By
and C are slight modifications of blocks B and C accounting
for the boundary conditions, and B and C have the special
structure

1-06, =06 0 0 0
—Bn 1 —Bh 0 0
0 B 1 —Bn O
B= . . .
0 0 B 1 —Bn
0 0 0 -0 1-06n
and
C= '—/B'UIN @)

where Iy is the identity matrix of order N. The parameters
B, and (3, satisfy a constraint such that A is symmetric and
positive definite.

For the experiments in Section VII, we use an asymmetric
Neumann boundary condition [2], i.e., we assume that the off
lattice neighbors of a boundary pixel have the same value as
the boundary pixel. Then, the blocks B; and C; are

Bi=B+C and C;=C. 8)

The structure of the potential matrix A includes both past
(left and up) and future (right and down) pixels for prediction
of a pixel value. Such a representation precludes recursive
computations as Kalman—Bucy filtering. We derive one-sided-
backward representations by upper Cholesky factorization of
A

A=UTU. )
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The matrix U is an upper triangular N? x N? sparse block
matrix

mw, & 0 0 0 7
0 Uy, 6, 0 0O
0 0 Us 65 0
U=1. . . . (10)
. . 0 0 0 UN_1 GN_1
L - . 6 0 © 0 Un |

where U; and ©; are N X N upper and lower triangular
blocks, respectively: Substituting in (5), and left multiplying

throughout by U~7, we get
UX;+6,X; = for 1<i<N-1 (1)
UnXn =dn (12)
where @ = U~Té. The vector & = [wf @f ... %7

is white; see [2].

The backward regressors, U; and 6;, required for generating
the error signal o, are evaluated by solving a Riccati type
equation that follows by equatmg the diagonal block entries
of (9) :

S, =B, (13)
- Se=B-CTB{!C, (14)
S;=B-CTSLC for 3<i<N-1 (15
Sy =JBJ-CTsL_ cy (16)
where
_ 1
0
S, =UTU; and J= 17

1

The regressor block coefficient ; follows by equating the
off-diagonal entries of the matrices in (9), for example,

Ure,=C for 2<i<N-2. 18)
With real data fields and in actual applications, evaluation of
the regressors U; and @, for all 1 <4 < N is not required. In
fact, the regressors converge asymptotically to a steady state
solution at a geometric rate, see [3]; hence, only a few of the
regressors need to be computed. For a first order field, the
steady state solution is given by

=B/2++/(B/2)? — p21

(19)
ULU, =S, and 6., =UTC. (20)

To save on the computational complexity, the regressors
{U}Y, and {6}, were approximated by their respective
steady state values {U}, and {©}.,. See [3] for details. To
use the above model, we need estimates of 3, and Gj,.

The evaluation of f, and § is based on maximizing the
likelihood function; see [3]. We may use instead the following
approximate parameter estimates for 3, and £y,

Exw
y = —————— 21
Bo = Tl ¥ Tl @D
Exn .
= 22
IBh |Xh| + |X7)| @2)

where xj, and ¥, are the horizontal and vertical sample
correlations given by

; NN
Xo =373 Z:c(z PNzt +1,7) (23)
i:l =1
;] NN »‘
w5 2 2w f)e(i, g +1) @4)
=1 j=1

and ¢ is a positive tolerance Wh1ch for an N x N image is
bounded by

gc— !

(25)
2 cos ‘

T
N+1.

Summarizing the above results, Fig. 2 shows how to com-
press and reconstruct an image based on noncausal prediction.
Prior to VQ, the compression procedure requires three stages to

generate the uncorrelated error field. The main steps involved
are:

1) Parameter Estimation: After subtracting the global
mean, the horizontal field interaction By, the vertical
field interaction g,, and the driving noise power o2 are
estimated for the zero mean image. These parameters
are needed for reconstruction and are transmitted to the
receiver as overhead.

2) Backward Representation: Based on the value of the
horizontal and the vertical field interactions, the regres-
sors (U; and 6;) are computed using (14)—(18) or the
asymptotic counterparts using (19)—(20).

3) Whitening: Using the backward representation,
uncorrelated error image field W
(11D)-(12). R

To achieve high compression rates, the error image 7 is vector
quantized, the details are discussed in the next section. The
image is reconstructed by reversing the steps of the encoder

the
is evaluated from

as shown in Fig. 2.

HI. VECTOR QUANTIZATION

We briefly discuss the basic idea of vector quantization (VQ)
(Fig. 3) for the sake of completeness and to introduce notation.
The N x N image, W, to be vector quantized is partitioned
into contiguous, nonoverlapping, square 7 X n subblocks. Each
n X n subblock is then rearranged in lexicographic order
to form mn? x 1 vectors W;. The number of input vectors
W; is K = N?/n?. The encoder computes the distortion
d(W;,Y;) between the input vector W; and each code vector
Y;,7 =1,2,--+,p, from a codebook C with p codevectors.
The optimum encoding rule is.the nearest neighbor rule, in
which the index J is transmitted to the decoder if code vector
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Fig. 2. Noncausal DPCM system.

Y yields the least distortion. The decoder simply looks up the
Jth code vector Y; from a copy of the codebook C' and the
output W; is Y. The decoded vectors are then rearranged to
form the reconstructed image.

An optimal vector quantizer is one which uses a codebook
C™ that yields the least average distortion D* for encoding the
input vectors W; among all possible codebooks. The design
algorithm for an optimal codebook is difficult. However,
a clustering algorithm, commonly referred to as the LBG
algorithm or generalized Lloyd algorithm is normally used
to generate the codebook. The algorithm employs a large set
of input vectors derived from a training sequence, selects or
designs an initial codebook and then optimizes it. See [6] or
[7] for details.

VQ for image compression has two important limitations.
The first is its computational complexity which grows expo-
nentially as the size of the code vector or the size of the
image increases. The second is degradation especially at high
compression ratios due to the low signal to quantization error
ratio (SQR). We describe quadtree cascaded VQ (QCVQ) de-
signed to improve on both of these problems. To improve SQR,
we introduce a mean removal technique based on quadtrees.
Computational complexity is reduced by implementing VQ in
stages—cascaded VQ. We discuss these two issues separately
in the two subsequent sections.

IV. QUADTREE MEAN REMOVAL

The basic idea of block mean removal (see Baker and
Gray [8]) is to divide the image in blocks, to compute the
mean of each block (arranged as a vector), and subtract the
mean of each block from the intensity of each pixel in the
block. The resultant vector is referred to as the residual vector.
The residual vectors and the means are coded using separate
codebooks. Thus, we decompose the original vector into
separate features, a mean representing the general background
level and a residual vector representing the departure of the
vector about its mean.

Most regions of the image consist of highly homogeneous
information. Rather than dividing the image into equal size
blocks, it is preferable to segment the image into homogeneous
blocks of varying sizes and shapes and then transmit their
means. This requires additional bits to describe the size, shape,
and location of each region. It represents a trade-off between

Original
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Vector Formation

k
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Codebook Channel

Codebook Formation

Transmitter
ul W‘ Re tructed
Table lookup !r JL Reacr ] constructe
image
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Fig. 3. Vector quantizer.
A B
C D

1 2
3 415 8

617

10

22 { 2

° 15[16 3
» 18|19 25|26 10 15 18-21 25-28
17 20]21 2 27{28

11-14

Fig. 4. Quadtree partition.

better compression due to more homogeneous regions versus
the additional overhead required for the description of each
individual block. Quadtrees represent a good compromise be-
cause the partition is readily specified with a modest overhead
in bits per pixel. A variable size partition based on a quadtree
is illustrated in Fig. 4.

We apply the quadtree mean removal scheme discussed
above, not to the original image, but to the error image that
results from the initial noncausal prediction step. This is an
important distinction of our work.

A. Quadtree Mean Removal Algorithm

The initial step in the quad tree mean removal is to select the
starting block size. As first step, we partition the error image
into four equal sized blocks, say of 128 x 128 pixels. The
mean of each 128 x 128 block is computed, quantized, and
subtracted from each pixel in the block to form the residual
error image. At this stage, a decision is made whether to
subdivide each block further. For a given block, if the decision
is positive, the block is again divided into four subblocks
corresponding to the generation of four children from the
appropriate node. Means are again evaluated, quantized, and
subtracted from each block. The procedure is repeated now
with each of the new subblocks until either the decision turns
out to be negative or we reach the lowest block size which, in
our experiments in Section VII, we choose to be 4 X 4.
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Fig. 5. Order of traversal.

The decision to further subdivide the block is based on the
variance of the block. We start by looking at four subblocks of
the original error image and determine if they are inactive, by
comparing the subblock variance with a preselected threshold
value. If inactive, that is, if the subblock variance is less than
the threshold, we remove the large block mean; otherwise, we
segment the subblock into four equal parts, yielding the four
children of the subblock and continue with the same technique.
As stated earlier, the procedure is repeated until either the 4
X 4 subblock size is reached or the variance drops below the
threshold value.

In our procedure, we set the threshold as a fraction, v, of
the overall variance of the error image. We have experimented
successfully with values of + between 0.25 and 0.50. A
higher value of the threshold implies larger blocks or smaller
number of children, whereas a lower value implies more block
subdivisions.

The above technique fine tunes the size of each block,
reducing the overhead involved in the transmission of the
means. It gives rise to a new problem—the need to transmit to
the receiver adequate information about the quadtree structure
so that the means are reintroduced at the appropriate pixels.
The following subsection addresses this issue.

Quadtree Representation: A number of methods have been
proposed in the literature to represent the quadtree structure,
see, for example, Samet [9], that uses a pointer-based repre-
sentation. Since in our application we are concerned only with
the segmentation of the error image, we need not pursue this
complex pointer-based representation. As an alternative, we
use a fairly simple pointerless representation (see [10]) made
of the following two rules.

1) Block Subdivision Coding: A ‘0’ is transmitted if there

is no further subdivision of the block (or subblocks). A
‘1’ is transmitted in case of further subdivision of the
block.

2) Block Scanning: Each subdivided block is always
traversed in the following order: North-West (NW),
North-East (NE), South-West (SW) and South—East
(SE), or, more specifically, referring to block A in
Fig. 5, the order of traversing will be Al, A2, A3, and

, A4.

Based on the above approach, the quadtree representation

of Fig. 4 is

C
7 N D
PR N— [P N—
~ ~ A~
1 01 01 0000 00 01 0000 1 6001 0000

A
—— e B
N
110001 0000 0O
The quadtree subdivision is represented by a string of 1’s and
0’s. This string may then be coded using a lossless coding
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Fig. 6. Cascaded VQ.

technique such as arithmetic coding to further reduce the
overhead involved with quadtree representation. We have not
included this in our results.

In summary, we described quadtree mean removal as an
efficient procedure for block mean subtraction. The residual
error image consists of blocks of different sizes, which are
approximately homogeneous. They may be coded using a
variable block size VQ. Variable block size VQ raises a further
complication, namely, that separate codebooks containing code
vectors of unequal dimensions need to be constructed for
different block sizes. The optimal allocation of codebook sizes
for a given codebook size m is image dependent and extremely
difficult to implement. In addition, as we move to higher
compression rates, the number of code vectors per codebook
decreases and, as such, the image quality deteriorates. We
circumvent this problem by using code vectors of the same
dimension as explained in the next section.

V. CASCADED VQ

The mean removed error image, referred to as the residual
error image, is next vector quantized. The VQ method that
we implement is a modification of cascaded or multistage VQ
[11] shown in Fig. 6.

Before presenting the approach, it is worthwhile to comment
on some of the main features of cascaded VQ. The basic idea
behind cascaded VQ is to perform VQ in stages. The first
stage performs VQ of the input vectors W;,i = 1,... K,
leading to W; = Y for some codeword Y7. The second stage
vector quantizes the difference vectors (Wy,); = W; — Wi
which are generated by subtracting from the original vectors
W; their respective vector quantized approximations W; of
the first VQ stage. If necessary, additional stages are added.
Stage j > 2 quantizes the difference vectors (Wq,_,);. The
size of the codebook of the last stage is usually taken larger
than the size of the previous stages. The reason is that even if
the earlier stages perform a relatively crude VQ of the input
vectors, the last stage will improve on the accuracy.

The receiver used for reconstructing the error image consists
of a number of lookup tables. Each table decodes a correspond-
ing stage of the cascaded VQ algorithm. The output is. used to
reconstruct the original error image.

Cascaded VQ offers several advantages ‘over single stage
VQ. At each stage of cascaded VQ, the codebooks are much
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smaller than in single stage VQ. Since the generation of
a codebook is basically a search in the space of possible
code vectors, the design of smaller codebooks involves a
reduced search, therefore, the time and effort required are
significantly decreased. In addition, smaller codebooks require
less overhead for transmission and storage. In general, this
simplicity of standard cascaded VQ comes at the expense
of PSNR. The overall PSNR for the cascaded VQ scheme
just described is in general smaller than the PSNR of the
optimized single stage VQ for the same compression ratio.
This is because the codebook that results is, in general, not
the optimal one. With cascaded VQ, one optimizes locally at
each stage, so the algorithm is greedy. Further improvement
in PSNR may be obtained by the use of optimally designed
cascaded VQ codebooks as presented in [12].

Selector: In our experiments, we use a modified version of
cascaded VQ. The modification is the inclusion of a selector in
between consecutive stages of the cascaded VQ. We explain
the role of the selector with reference to Fig. 6. Start with
the first stage of cascaded VQ and generate the difference
vectors (Wy,); = Wi — Wi which act as the input to the
second stage. The purpose of the selector is to drop those
difference vectors that correspond to vectors which have been
represented satisfactorily by the first stage. Only the remaining
difference vectors are vector quantized by the second stage.
This procedure is now repeated at each subsequent stage, until
all of the vectors have been dropped or the permissible number
of stages has been exhausted.

To decide if a vector has been satisfactorily coded, we
have a criterion which is based upon the average absolute
distortion. The average distortion d,, introduced by vector
quantizing all of the vectors in the first stage is evaluated as
doy = Z|W; — Wi|/K where K = N?/n? is as before the
total number of input vectors. We then define a threshold A4
to be in between 30% to 75% of the average distortion d,.
This threshold is used to select the vectors that will be kept for
the second stage. The distortion incurred in vector quantizing
a vector at the first stage is compared to the threshold. If it
falls below the threshold, the vector is considered satisfactorily
represented by the first stage and its difference vector (Wy, );
dropped from further consideration. Otherwise, the difference
vector (Wg,); is selected and passed to the second stage.
The selected difference vectors (Wy, )s,é = 1,--+, Ko from
the first stage form the training set for the generation of
the codebook at the second stage. The training set for the
second stage will be much smaller than that of the first stage,
ie., Ko < K. It consists of only those vectors which are not
adequately represented by the first stage. A new codebook is
generated at the second stage, the difference vectors encoded,
the differences generated and passed on to the selector, and
the process continued. The threshold A, at the input of the
second stage selector can be taken to be A; or made adaptive
by repeating the distortion computation.

The introduction of the selector serves two purposes. First,
it prevents additional error for those vectors which are rep-
resented adequately by earlier stages. Second, it attempts
to spread the quantization error uniformly over the entire
error image. By keeping for subsequent stages of additional

quantization only the vectors with a higher degree of distortion,
the selector enables allocating more bits to these data vectors,
with the overall goal of reducing their final level of distor-
tion before transmission. The net result of the selector is to
improve significantly the overall PSNR of cascaded VQ. The
introduction of the selector enables us to reduce the complexity
involved in single stage VQ without having to pay a high
price of reduced PSNR. The inclusion of the selector requires
the additional overhead of one bit per difference vector. This
overhead is needed to code the status of the difference vector,
i.e., whether it is dropped or not. On the other hand, the
selector drops vectors which are represented adequately by the
previous stage. The threshold value of the selector is chosen in
such a way that the net overhead needed for coding the status
information is compensated by this savings.

Barnes and Frost [12] study the optimal design of cas-
caded VQ (referred to as direct sum VQ). They show that
for cascaded VQ, optimal encoding can be implemented by
a sequential encoder. However, the complexity of such an
encoder exceeds that of an exhaustive search of the direct
sum codebooks. For computational simplicity, we use the
suboptimal scheme discussed in this section.

VI. QUADTREE CASCADED VQ SCHEME

Based on the discussion of the two previous sections, the
proposed VQ scheme, referred to as quadtree cascaded VQ
(QCVQ), is illustrated in Fig. 7 and consists of the following
major steps. ,

1) The error image which is the output of the noncausal
prediction step, see Section II, is first preprocessed to
remove the mean. Since most regions of the error image
consist of highly homogeneous information, instead of
removing means from each (4 x 4) block (constituting
a vector), a variable block size mean removal technique
is used. In particular, we use quadtrees to find a fast
segmentation algorithm. The quadtree technique, as ex-
plained before, leads to variable block size removal.
These means are scalar quantized and are transmitted
to the receiver along with the block segmentation infor-
mation. Although we have not implemented this in our
experimental studies, we can also apply further com-
pression to the block means, either lossy compression
like DPCM, or, lossless compression like arithmetic
or entropy coding, thus further reducing the associated
overhead.

2) The mean removed error image is now vector quantized
using cascaded VQ. Data vectors are formed by dividing
the mean removed error image in 4 x 4 blocks. The
generation of the codebook at each stage uses the LBG
algorithm [6]. LBG is highly sensitive to the choice of .
the initial codebook. To generate the initial codebook,
we used the method of Splitting [6]. The mean removed
etror image is quantized using the final codebook and
transmitted to the receiver. The difference between the
mean removed error image and the quantized mean
removed error image, referred to as the difference error
image, is passed to the next stage of VQ.
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Fig. 7. Quadtree cascaded VQ.

3) The next stage is a replica of the first except for
the up-front inclusion of a selector. The difference
error image is fed to the selector. The selector retains
only those vectors which have comparatively higher
distortion and passes them onto the second stage. Vectors
which have been represented adequately by the first
stage are dropped. The difference vectors that survive
the selector form the training set for the codebook at
the second stage: Using the newly generated codebook,
the selected difference vectors are vector quantized and,
again, the difference between the original difference
vectors and their quantized versions is evaluated. The
VQ in stages is repeated, until all the vectors have been
dropped or the permissible number of stages has been
exhausted. The introduction of the selector offers several
advantages: improved PSNR for the same compression
rate; less storage for storing the codebook; reduced
search time, hence, lesser complexity for generation of
the codebook; and faster speed for quantization of the
vectors.

A final remark on cascaded VQ is that it offers an opportunity
for a variable rate coding system. At each stage, we measure
the actual distortion incurred in encoding the input vectors. If
this distortion exceeds the desired level, additional VQ stages
are added. This ensures good picture quality for highly detailed
error images, while offering a higher compression ratio for the
simpler ones.

VII. NRQ/CVQ

A. Algorithm

The noncausal predictor, the quadtree mean removal, and
the cascaded VQ blocks described in Sections II-VI are inte-
grated into the compression scheme represented in Fig. 8. We

“refer to this scheme as noncausal codec with residual quadtree
cascaded VQ (NRQ/CVQ). We discuss its main features with
reference to Fig. 8.

1) Noncausal Prediction: The first block of the codec is
the noncausal prediction algorithm of [2], which is
discussed in Section II. It is used to remove the spatial
redundancy from the image by subtracting the predicted
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Fig. 8. NRQ/CVQ compression system.

pixel intensity values from the actual pixel intensities.
The output of this block is the uncorrelated error image
W. The field correlations (3., 3 ) and the global mean,
which are needed for reconstruction of the image at the
receiver, represent transmission overhead.

2) Quadtree mean removal: The block following the non-
causal prediction is the quadtree mean removal algo-
rithm of Section IV. It is applied to the uncorrelated
error image W. The residual error image W, is passed
to the cascaded VQ. The quadtree means are transmit-
ted to the receiver. Although not implemented in our
experiments described below, the quadtree means may
be compressed by DPCM coding, scalar quantization,
and entropy coding.

3) Cascaded VQ: The residual error image W, is vector
quantized by the cascaded VQ algorithm of Section V.
We have found that two stages are usually a good
compromise between simplicity of implementation and
performance. In between the stages, we use a selector as
described in Section V. By entropy coding, the quantiza-
tion output can be compressed further. Our experimental
results in Subsection VII-B do not include this lossless
compression stage.

4) VO decoder: At the decoder, a replica W* of the
uncorrelated error image is reconstructed in the first
block by VQ decoding and by reintroducing the block
means at the appropriate locations.

5) Reconstruction: The second block of the decoder uses
the field interactions (8, x) to construct the backward
unilateral equivalent representative model (©;,U;) to-
regenerate the image from the reconstructed error image
W*. Finally, the global mean is reintroduced.

We compare briefly our NRQ/CVQ with the approach in
Vaisey and Gersho (V & G) [13]. Vaisey and Gersho use a
quadtree mean removal algorithm to divide the original image
into square blocks of various sizes. The decision to further
subdivide a block is made on the basis of the absolute value
of the means. A tolerance value A, is selected at each level..
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Further subdivision of a given block stops if the absolute value
of the means of the blocks resulting from the next subdivision
are within the tolerance A, of the mean of the present block.
The mean removed image is then vector quantized using a
variable block-sized VQ.

In contrast, NRQ/CVQ vector-quantizes the error image
after the noncausal prediction block, i.e., it quantizes the error
image W formed by subtracting the noncausally predicted
values of the pixels from their actual values. The dynamic
range of this error image, and so the dynamic range of
the block means, is much smaller than the corresponding
dynamic range in V & G. This in itself significantly improves
the performance of the coupled quadtree mean removal with
cascaded VQ. Because of this reduced dynamic range, using
a mean block decision in our quadtree as in V & G would
cause very little subdivision to occur. We base instead the
quadtree subdivision on the variances of the blocks which do
not depend on the corresponding block means. This provides a
very sensitive indicator of the block details, hence, of when to
subdivide or not. Quadtree subdivision in NRQ/CVQ proceeds
then in much the same way as in V & G, except that decisions
to terminate or to go further into the tree are always based on
the block variances.

The second major difference between NRQ/CVQ and V
& G lies in the vector quantization of the error image after
the block mean removal, referred to as the residual image.
There are several issues here. Vaisey and Gersho use a variable
block size VQ to vector quantize the residual image. Before
quantization, the blocks are grouped according to their size.
Within each of these groups, the vectors representing the pixels
of the blocks are arranged in lexicographic order. For example,
we may have groups of 42-dimensional vectors all the way up
to 322-dimensional vectors (32 being the maximum block size
allowed in V & G). Separate codebooks are then developed
for each of these groups of different dimensions.

In contrast with V & G, in NRQ/CVQ, the VQ step is
decoupled from the quadtree mean removal step. The residual
error image is subdivided in blocks of equal size. Only a single
codebook of constant dimension is developed at each stage.
There is no need for the additional overhead of -transmitting
this information to the receiver.

A second issue concerns the complexity associated with the
design of large dimension codebooks as they may arise for
example in V & G. In V & G, the codebook dimensions are
as large as the largest block size resulting from the quadtree
subdivision, which is typically 32 x 32. For our cascaded
VQ, we subdivide the residual error image in 4 x 4 blocks,
regardless of the dimension of the largest block size resulting
from the quadtree step (which in an extreme case could be the
whole error image). In addition, by having several cascaded
stages, we further reduce the size of the largest codebook. For
example, for a total budget of six bits per 4 X 4 quantization
blocks, a single stage VQ leads to a codebook of dimension
64, while the more typical two stage cascaded VQ, with say
two bits assigned to the first stage and four bits to the second
stage, leads to a four vector codebook for the first stage and a
sixteen vector codebook for the second stage. These are much
simpler to implement than the codebook of dimension 64.

A third issue is still concerned with the dimension of the
largest block in the quadtree. Because we have decoupled
Quadtree mean removal from the cascaded VQ, the blocks in
the Quadtree mean removal stage that we use can be as large
as it takes. This is not the case in V & G where they constrain
the maximum quadtree block size to a relatively small number
(32 x 32) resulting in considerable more subdivisions in their
quadtree algorithm than may actually be required.

B. Experimental Study

In this subsection, we compare the bit rate/quality perfor-
mance of NRQ/CVQ with that of alternative coding/decoding
algorithms. We carry out qualitative and quantitative studies.
The qualitative analysis is based on the subjective evaluation
of the image reconstructed by different compression schemes.
This provides a feel for the subjective quality achieved by each
scheme. The second comparison study is based on a quanti-
tative measure, namely the PSNR (or equivalently MSE) as
defined in (2). The use of PSNR does not always correlate well
with the perceived image quality. Nevertheless, it is commonly
used by other authors in evaluating compression algorithms.
For this reason, we also include PSNR comparisons.

We compare NRQ/CVQ with the following compression
techniques: baseline JPEG; quadtree cascaded VQ (QCVQ);
causal prediction (DPCM) with quadtree cascaded VQ
(DPCM/QCVQ); and noncausal prediction with conventional
vQ.

JPEG: The JPEG algorithm is the baseline algorithm stan-
dardized by the Joint Photographic Experts Group, see [14].
It is the current technology benchmark. For reproducibility of
the results, we use the Stanford implementation of Hung [15],
available through anonymous ftp from havefun.stanford.edu.
By adjusting the value of the Q-factor, different compression
ratios may be obtained. In our studies with JPEG, we include
the final stage of lossless entropy coding, which, we stress,
is not present in any of the other compression schemes. If
entropy coding is included in our scheme, we should expect
a further reduction in the reported bit per pixel (bpp) rate of
at least 10 to 20%.

Quadtree Cascaded VQ (QCVQ): The test images are com-
pressed using quadtree mean removal cascaded VQ. Starting,
for example, from a 256 x 256 image, the quadtree mean
removal algorithm, as described in Section 1V, is initiated on
each 128 x 128 subblock. The lowest block size, at which the
subdivision is finally stopped, is 4 x 4. The residual image
generated after subtracting the quadiree means is then vector
quantized using the modified cascaded VQ scheme explained
in Section V. The VQ is trained on -sets derived from the
residual image and VQ is performed on each 4 x 4 block.
QCVQ is like our codec NRQ/CVQ except that there is no
noncausal prediction step. In other words, the quadtree mean
removal and cascaded VQ are applied directly to the original
image, not to the error image, the output by the noncausal
predictor.

Causal Prediction (DPCM) with QCVQ: DPCM  is a
widely used causal predictive coding scheme. We include
our tests with this algorithm in order to evaluate to what
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TABLE I
PARAMETERS FOR CAUSAL AND NONCAUSAL MODELS
Image Causal Model Noncausal Model Mean
Bi 85 B3 [ - B
Lenna || 0.863320 | 0.666224 | -0.556740 |[ 0.114133 | 0.383855 || 94.2464

degree the noncausal image models deliver better results in
comparison with the causal ones. In DPCM, the prediction
is subtracted from the actual pixel intensity to form an error
image, referred to as DPCM differential image. We use as
DPCM model a third order Markov Mesh. The differential
error image is then vector quantized using a QCVQ stage.
In other words, DPCM with QCVQ is NRQ/CVQ with the
noncausal predictor step substituted by the DPCM predictor.

Noncausal Prediction with Conventional VQ: This scheme
is the noncausal predictive step in NRQ/CVQ followed with
a conventional single stage VQ. It does not include residual
quadtree mean removal.

Noncausal Prediction with Residual Quadtree Cascaded VQ
(NRQ/CVQ): This is the algorithm described in the paper. It
couples noncausal predictor with QCVQ.

The parameters for the causal and noncausal prediction
model for each of the images are shown in Table I. These
are obtained using the techniques described in [3].

Subjective Evaluation: We first compare the five schemes
by showing the images reconstructed by using each of the five
techniques listed above. It should be noted that limitations in
the printing process can hide details that are apparent using
a higher resolution display medium. Figs. 9 to 11 illustrate
the visual comparison among the five compression schemes,
discussed earlier. We display the results with Lenna contained
" in the USC database.

Figs. 9 and 10 show the reconstructed Lenna at 0.375 bpp
which corresponds to a compression ratio of 21.33. Fig. 9 is
the only comparison we show of NRQ/CVQ with noncausal
prediction with conventional VQ and with quadtree mean
removal cascaded VQ (QCVQ). It clearly shows that the
combination of both noncausal prediction with quadtree mean
removal cascaded VQ as done with NRQ/CVQ, Fig. 9(d),
is better than noncausal prediction with conventional VQ,
Fig. 9(b), or QCVQ alone, Fig. 9(c). Accordingly, our subse-
quent studies are only concerned with comparing NRQ/CVQ
with DPCM/QCVQ and JPEG.

Fig. 10 illustrates the results of the JPEG, DPCM/QCVQ,
and NRQ/CVQ at 0.375 bpp, again a compression ratio of
21.33. A similar comparison with Lenna at 0.188 bpp (a
compression ratio of 42.55) is performed in Fig. 11.In Fig. 11,
the test image is a square of 256 x 256 pixels, instead of the
128 x 128 pixels as used earlier.

Before continuing on with the comparison, we indicate how
we compute the compression ratio, in particular how we get
0.188 bpp. In NRQ/CVQ, we use a two stage cascaded VQ
to compress the error image. The codebooks used at the two
stages are of size 2 and 4 code vectors, respectively. Hence
three bits are needed to encode the vector corresponding to
each 4 x 4 subblock of the mean removed error image. If
all vectors are kept in both stages, i.e., no selector is used,
this implies a bit rate of 3/16 or 0.1875 bpp. However, this

raw bit rate is modified by the actions of the quadtree mean
removal and of the selector. The number of blocks resulting
from Quadiree subdivision is 521. A three-bit scalar quantizer
is used to encode the mean of each block. The amount of
overhead for the transmission of the means is then

521 x 3

256 x 256 26)

= 0.022 bpp.
This overhead can be reduced further by using some coding
scheme like DPCM to code the bit stream representing the
block means, therefore, it is not included in evaluating the
overall bit rate. Note that in our comparison studies we also
exclude a similar overhead in causal DPCM with QCVQ or
the overhead associated with JPEG. The overhead required for
the selector is evaluated as follows. The selector transmits one
additional bit to code the status of each difference vector, i.e.,
to code whether the difference vector is dropped or retained.
Dividing the 256 x 256 error image in 4 x 4 subblocks for
VQ results in 4096 vectors. Hence, 4096 bits are needed as
overhead after the first stage. However, by setting the selector
threshold value to 75% of the average distortion, only half i
of the difference vectors are retained for the final stage. This
means savings of two bits per each vector discarded or a total
of 2 x 2048 bits, which equals the status overhead. Based on
this analysis, the bit rate for Lenna works out to be 0.1875 bpp.
Figs. 10 and 11 illustrate the improvement in the visual
quality with NRQ/CVQ when compared with JPEG and

-DPCM/QCVQ. This is not surprising since clearly JPEG

and DPCM/QCVQ are not designed to operate at these com-
pression ratios. JPEG exhibits blocking or tiling throughout
the image, edges are distorted, and fine details appear to be
lost. In Fig. 11(b) for example, sharp edges of the cap, hair,
etc., are not maintained, fine details such as the eyelashes and
the lines of the hat are blurred. Important features such as
the nose and the lips are difficult to distinguish from their
respective surroundings.

DPCM/QCVQ (see Fig. 11(c)) performs a better job than
JPEG on the edges and finer details. Still, it exhibits other
forms of distortions, in particular, vertical streaking is ob-
served in the image. As apparent in Fig. 11(c), this streaking
is more apparent in bright intensity areas, such as the cap and
the face, resulting in a poor perceived quality of the image.

There is little evidence of any such distortion in Fig. 11(d),
the image compressed with NRQ/CVQ. Edge integrity is
maintained and the monotone areas are reproduced with all
the smooth variations remaining intact. Only the fine details
such as the eyelashes and the lines on the hat are affected,
these too with comparatively little degradation.

Implementation Issues: We discuss briefly the computa-
tional effort and codebook design associated with NRQ/CVQ.
We will then propose alternative implementations. that sig-
nificantly improve the cost effectiveness of the NRQ/CVQ
implementation and provide test results on this practical im-
plementation. :

Computational effort: The direct implementation of the

noncausal prediction step as described in Section II involves

a maximum likelihood estimation procedure and an iterative

Riccati equation that are computationally intensive steps. In
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alternative, a more practical implementation uses the steady
state solution to the Riccati equation, see equations (19)
and (20), and the approximate parameter estimates given by
equations (21) and (22). We refer to this implementation as
the practical NRQ/CVQ.

Local Codebook: The results displayed in Figs. 9 to 11
using some form of VQ use vector quantizers trained with
local codebooks, i.e., codebooks designed using a single
error image derived from the test image.

Local codebooks add to the computational effort and to
the overhead associated. with image codecs. While these
factors are a major deterrent to using standard VQ, cascaded
VQ presents significant improvement on both grounds. For
example, at 0.188 bpp, with a two stage cascaded VQ,
we need to design two codebooks, the first one with two
codewords and the second one with four codewords, which
reduces significantly the associated computational effort. In

(b

(D

(a) Original 128 x 128 Lenna face, (b)-(d) comparison of reconstructed Lenna face after compression to 0.3750 bpp (b) using noncausal prediction
with conventional VQ (c) using Quadtree mean removal cascaded VQ (d) and using standard NRQ/CVQ.

terms of overhead, six codewords need to be transmitted
to the receiver. For a 256 x 256 image divided in 4 x 4
subblocks this computes to

16 x 8X6
256 x 256

where we use eight bits to quantize each entry in the code-

vector. Adding to this the overhead of the block means, see

(26), amounts to less than 18% of the coding budget. This

overhead compares favorably with the overhead associated

with JPEG and is on the order of the additional compression
gain provided by a final stage of lossless compression.

We now present results with the practical version of
NRQ/CVQ and using a universal codebook. Fig. 12 compares
the 256 x 256 Lenna image at 0.188 bpp, again a compression
ratio of 42.55, using JPEG, and NRQ/CVQ. We provide
results for two different implementations of NRQ/CVQ: the

= 0.012 bpp
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(a)

©

Fig. 10.
DPCM/QCVQ (d) and using standard NRQ/CVQ.

standard version, referred to as standard NRQ/CVQ, which
uses the parameters (8,, 8) given in Table I evaluated using
the likelihood function [3], the regressors (U;, ©;) computed
using (11)—(12), and residual codebooks based on the test
image only (local codebook); and a practical version, referred
to as practical NRQ/CVQ, which uses 8, = 0.246982 and
Br = 0.243056 evaluated using the approximated formulas
given by (22) and (21), the steady state regressors (U, O)
computed with the analytical solution given in (19) and (20),
and residual codebooks derived from a training sequence.
The images used in the training sequence are imagel and
image4 of the USC database, and face.256 and hat.256 of
the MIT database. Hence, the training sequence does not
include the Lenna image which is imagel8 of the USC
database.

The results of both versions of NRQ/CVQ are superior to
that of JPEG. JPEG introduces a blocking or tiling effect

b

(d)

(a) Original 128 X 128 Lenna face, (b)~(d) comparison of reconstructed Lenna face after compression to 0.3750 bpp (b) using JPEG (c) using

which results in loss of edges and of most of the details.
If we compare the two NRQ/CVQ’s, the perceived visual
quality of the standard NRQ/CVQ.is slightly better than
that of the practical NRQ/CVQ. On the other hand, practical
NRQ/CVQ offers reduced computational complexity and faster
speed, making it practically more attractive. The point is
that there is a trade-off between visual quality versus the
computational speed. The enhancement in speed offered by
practical NRQ/CVQ is worth the price paid in terms of the
small loss in visual quality.

Quantitative Evaluation: The PSNR obtained by applymg
NRQ/CVQ, JPEG, and DPCM/QCVQ to the test imdges
are shown in Table II. The PSNR values confirm the sub-
jective evaluation conclusion that NRQ/CVQ outperforms
DPCM/QCVQ and JPEG. In the case of Lenna at 0.188 bpp (a
compression ratio of 42.5), there is a gain in PSNR of about 2.8
dB over JPEG and a gain of about 2 dB over DPCM/QCVQ.
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Fig. 11. (a) Original 256 X 256 Lenna face, (b)-(d) comparison of reconstructed Lenna face after compression to 0.1880 bpp (b) using JPEG (c) using

DPCM/QCVQ (d) and using standard NRQ/CVQ.

TABLE II
PSNR’s FOR Lenna
Compression | NRQ/CVQ JPEG .DPCM/QCVQ
0.5 bpp 31.73dB | 30.0126 dB | 27.1319 dB
0.375 bpp 30.05 dB 28.7050 dB | 26.6628 dB
0.188bpp | 26.9146 dB | 24.1423 dB | 24.9337 dB

The PSNR comparisons also seem to indicate the trend that
the performance of NRQ/CVQ improves over JPEG as the
compression ratio is increased. For example, the difference
in the PSNR’s of the two schemes at 0.5 bpp is 1.7174
dB increasing to about 2.78 dB at 0.188 bpp. This seems

to be in opposition to the trend perceived when comparing
NRQ/CVQ with DPCM/QCVQ. For Lenna, the differences
are 4.6 dB at 0.5 bpp and 2 dB at 0.188 bpp. The rea-
son for this behavior is the reduction in the size of the
codebook used in VQ. The number of code vectors used
decreases with higher compression ratios, causing an increase
in the resulting MMSE due to the VQ of the error image.
Still, the PSNR of NRQ/CVQ is higher than the PSNR of
DPCM/QCVQ. The improved performance of NRQ/CVQ,
which uses a noncausal prediction model, over DPCM/QCVQ,
which uses a causal model, illustrates the superiority of
noncausal prediction over causal prediction. Similarly, the
improvement over JPEG shows that NRQ/CVQ can deliver
for still images better quality than this international standard.
Similar comparisons were also performed over a variety of
test images. The results were similar to the ones indicated
above.
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Fig. 12. Original 256 X 256 Lenna face, (b)—(d) comparison of reconstructed Lenna face after compression to 0.1880 bpp (b) using JPEG (c) using

practical NRQ/CVQ (d) and using standard NRQ/CVQ.

VIII. CONCLUSION

We have described a new procedure for lossy compression
of still images. We refer to it as the noncausal codec with resid-
ual quadtree mean removal and cascaded VQ (NRQ/CVQ). We
used NRQ/CVQ to compress images up to 8/0.188 = 42.5:1
compression ratio. NRQ/CVQ uses a noncausal prediction
model to generate the residual image which is considerably
less correlated than the original image. The residual image
is then compressed using residual quadtree cascaded VQ.
It is important to emphasize that quadtree mean removal is
after, not before, noncausal prediction. In other words, we
remove the block means in the error image resulting from
the noncausal prediction step. This has proven in our studies
to be much more efficient in both quality delivered and

. smaller number and larger blocks than block mean removal
directly applied to the original image. The performance of

NRQ/CVQ was compared to JPEG, and causal prediction with
quadtree mean removal cascaded VQ as in DPCM/QCVQ.
Our experimental results show that NRQ/CVQ outperform
all alternative technologies, exhibiting a higher PSNR and a
better perceived image quality. NRQ/CVQ is computationally
more complex than JPEG and causal prediction. We discussed
several short cuts to the implementation of NRQ/CVQ and
the trade-offs in performance. .

We summarize the main features of NRQ/CVQ.

* Noncausal Prediction: NRQ/CVQ models the real im-
ages as a noncausal Gauss Markov random field and
utilizes the recursive prediction algorithms developed in
[2], [3]. The noncausal prediction model outperforms the
causal prediction model. As a result, the residual image
generated by subtracting the predicted pixel intensities
from the original values ‘is considerably less correlated
leading to higher compression.
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Residual quadtree mean removal: NRQ/CVQ applies
quadtrees to segment the noncausal prediction error image
into square blocks of variable size. This segmentation
leads to an efficient mean subtraction (MS) procedure
resulting in. considerable savings in the transmission of
the local means.

Quadtree coding: NRQ/CVQ uses a simple pointerless
representation of the quadtrees which at the receiver
enables the reintroduction of the local means at the
appropriate locations.

Quadtree cascaded vector quantizer: NRQ/CVQ quan-
tizes the quadtree mean removed residual image through
a modified cascaded vector quantizer. The standard cas-
caded VQ is modified to incorporate a selector at each
stage. The selector serves a dual purpose. First, it prevents
additional errors from being introduced in those vectors
which are already represented optimally at a previous
stage. Second, it attempts to spread the quantization
error uniformly. Quadtree cascaded VQ outperforms the
conventional single stage VQ, both in terms of speed and

PSNR.
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