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ABSTRACT

Studying similarity of objects by looking at their shapes arises
naturally in many applications. However, under different view-
points one and the same object appears to have different shapes.
In addition, the correspondence between their feature points are
unknown to the viewer.

In this paper, we introduce the concept of intrinsic shape of an
object that is invariant to affine-permutation shape distortions.

We study geometry of the intrinsic shape space in the frame-
work of differentiable manifolds with the emphasis on the compu-
tational aspects. We represent the intrinsic shape space as a folded
Grassmann manifold. This allows us to easily analyze and com-
pare different intrinsic shapes under the affine-permutation distor-
tion without explicitly computing and recovering these intrinsic
shapes.

We present the mathematical equations for connecting two in-
trinsic shapes by a geodesic, measuring their similarity, and mor-
phing one intrinsic shape onto another.

1. INTRODUCTION

In many imaging environments, sensors and objects are arbitrarily
oriented with respect to one another. As the relative 3D position
of the object is unknown and often changes in time, the shape of
the object captured by the sensor looks distorted in different im-
ages. The affine shape distortion model approximates these shape
distortions closely and thus is used widely in the image processing
community.

When the shape is distorted, for example, by an affine shape
distortion, the feature points that comprise the shape move to dif-
ferent locations on the image plane. Since the image is scanned
in a fixed order, such as the raster scan order, by the input device,
the feature points of distorted shapes are not guaranteed to be read
in the same order, thus adding another degree of ambiguity, We
identify this type of shape irregularity as permutation. The permu- -
tation of feature points is commonly addressed in the well-known
feature correspondence problem.

The combined affine-permutation shape distortion is a frequently
observed source of difficulty in many image processing applica-
tions such as target detection, classification, pattern recognition,
and regtstration,

In this paper, we explore effective ways to deal with affine-
permutation distortions of shapes. In Section 2 we define a shape
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space and show that the above distortions are modeled as a group
action on the shape space. We introduce the notion of an intrinsic
shape as an orbit of all equivalent shapes. The intrinsic shape of an
object is invariant to an affine class of motions and permutations
of its feature points. Thus, the intrinsic shape uniquely represents
the object in a broad range of imaging environments.

In Section 3 we breakdown an action of the affine-permutation
group into a sequence of primitive group actions.

In Section 4, we derive an efficient algorithm referred to as
BLAISER (the BLind Algorithm for Intrinsic Shape Recovery) for
computing the intrinsic shape of an object.

In Sections 5, 6, and 7, we look at the space of intrinsic shapes
in the framework of differentiable manifolds and study its geome-
try. We solve the two-point boundary value problem of given two
shapes finding the geodesic connecting their corresponding intrin-
sic shapes as well as the distance between them. This is achieved
directly from the coordinatization of the two shapes without com-
puting the intrinsic shape of an object.

The geometry in the intrinsic shape space allows us to spec-
ify two shapes and then morph one onto the other obtaining the
intermediate shapes. An example is presented in Section 8.

2. PROBLEM FORMULATION

We describe the shape of an object by a set of unlabeled 7 feature
points in R¥ (for 2D shapes p = 2, for 3D shapes p = 3, etc.).
The shape is represented by an 72 x p tall-skinny matrix X of real
entries that are the Cartesian coordinates of the n feature points in
TRP. The matrix X € X is referred to as the configuration matrix,
while the set of all shape matrices A’ is defined as the configuration
space, or shape space. We note that we consider only non-singular
shapes, i.e. shapes with rank(X) = p.

We start by defining an equivalence relationship on A". We say
that two shapes X1, X» € X are equivalent iff they are related by:

X; = PXA+ 187
where A4 € GL; is an affine distortion matrix acting on the right,
and P € P is the permutation matrix acting on the left and chang-
ing the order of rows in X. & is a p x 1 translation vector that
moves all feature points in R7uniformly in the same direction. 1
ts . x 1 vector of ones.
Rewriting in vec notatign, the above relationship becomes:
vec(X1) = (AT @ P)vec(X2) + (6 @ 1)
where the symbol & denotes the Kronecker product, see [1]. The
above equation is, as shown in [2], an action of the affine-permutation
groupG = {g: g = (AT ® P,é ® 1)} on the configuration space.
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Fig. 1. Shape space reduction

The quotient space Gs(n,p) = A/ is a set of equivalence
classes under the action of group @, also referred to as orbits. 1f we
let semi-open brackets [X jg to denote these equivalence classes,
then we can write:

[X]g ={Xg:9€ G} €Gs(n,p)

We now define the intrinsic shape to be the orbit [X ] €
Gs(n,p). Itis a set of all shapes that are equivalent to X. We also
mark exactly one shape in each orbit 8§ € [X s to be a unique
canonical representative of the orbit, S fully identifies its orbit
[XJg. For this reason we can write S = X [¢ and refer to it as
the intrinsic shape of an object. The space & of all such 8 is in
bijective correspondence with Gs(n, p). Both Gs{n,p) and & are
different representations of the intrinsic shape space.

In this paper we take two approaches to the problem of study-
ing similarity of objects. The first approach is known as the canon-
ical representative marking approach. The first approach uses the
notion of intrinsic shape S € &. We identify a unique represen-
tative S for each orbit [X j¢ by a set of properties and we denote
it as the intrinsic shape. We also give an algorithm for blindly
reconstructing S given any shape X,

The second approach studies the similarity of objects directly
in the quotient space Gs(n, p). The intrinsic shape [X |¢ € Gs(n, p)
is the orbit of all equivalent shapes. We study the geometry of
Ga(n, pydirectly from the coordinatization of any arbitrary repre-
sentative shape from the orbit. In addition to studying similarity
of objects we also look at other geometric problems, such as con-
necting two intrinsic shapes by a geodesic and morphing one shape
onto the other.

3. FROM SHAPE SPACE TO INTRINSIC SHAPE SPACE

In section 2 we discussed that we can go from the shape space X'
to either the intrinsic shape space Gs{n, p) or its bijective intrinsic
shape space S. However, the action of group G cannot be easily
studied. For this reason, we break down the action of group ¢ into
a set of consecutive actions of more primitive groups, as shown in
Figure 1. .

The left-hand side of Figure 1, going from top to bottom,
shows the reduction process of the shape space & into the space
of intrinsic shapes 5. Each reduced space is obtained by acting
on the space above it with some group action, forming orbits, and
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then keeping in the space the unique canonical representatives of
each orbit. Thus, § C W C Y C &. Each step for the left-hand
side is described in Section 4.

Each of these spaces is in bijective correspondence with the
spaces of orbits, formed under the same group action. They are
shown on the right-hand side, and discussed in detail in Section 5.

4. BLIND RECONSTRUCTION OF S € [X jg IN 2D

In this section we briefly summarize the BLind Algorithm for In-
trinsic ShapE Recovery (BLAISER) that recovers from any shape
X € X the corresponding intrinsic shape 8 € [X Jg. For details
on the algorithm we refer the reader to [2].

We note that this section is for 2D shapes (case p = 2). With
some effort it can be extended to higher dimensions as well.

Definition 1 The intrinsic shape S in each equivalence class [X |g
is defined uniquely by the following four properties:

1. The center of mass is located at the origin.
2. The inner product STS is the 2D identity matrix L

3. The reorientation point, which we define uniquely for every
2D shape, is aligned with the z—coordinate axis.

4. The columns of S are ordered in ascending y coordinate
values, then in ascending T coordinate values for the columns
with the same y values.

By satisfying the first two properties, we are reducing the shape
space X' into the normalized shape space Y, as shown in Figure 1.
This is achieved by first centering the shape with respect to its
center of mass, and then performing a series of three gecmetric
operations — a non-uniform scaling followed by a rotation and
another non-uniform scaling. These geometric operations are eas-
ily determined by the shape’s second order central moments, and
are discussed in details in [2]. The normalized shape is invariant
to translation, uniform scaling, non-uniform scaling, and shearing.

Next, we identify the shape’s reorientation peint and reorient
the shape using this unique point. We rotate and, if necessary,
reflect the normalized shape Y € ) to arrive at a unique 2D ori-
entation. This satisfies the third property and reduces Y € ¥
o W € W, as shown in Figure 1. We note that the algorithm for
uniquely identifying the reorientation point is omitted here. We re-
fer the readers again to |2] for details on this algorithm. The idea
behind the algerithm is that we are dividing the shape into sub-
shapes of equal radius from the center of mass, and then studying .
fold number for each subshape. Then, we get a list of fundamen-
tal angles, [2], from which we uniquely identify the reorientation
point and determine if the shape needs to be reflected. The oriented
shape becomes invariant to rotations and reflections.

Finally, we sort columns of W as described in the fourth prop-
erty and obtain the intrinsic shape 8. This step reduces the ori-
ented shape space W to the intrinsic shape space &. The intrin-
sic shape is thus invariant to translation, uniform and non-uniform
scaling, shearing, rotation and reflection, and permutation of its
feature points.

For further details on BLAISER we refer the reader to [2].

5. QUOTIENT GEOMETRY OF SMOOTH MANIFOLDS

We recall rhat a shape is represented by an arbitrary n % p rank-p
matrix X € X. We can view this matrix as a linearly independent



p-frame in R™. We can realize A’ as a quotient of general linear
groups, which are also Lie groups as X 2= GF'(n, p) = GLn/GLap.
GF(n,p) obtained this way is a smooth manifold. It is frequently
referred 10 as the Generalized Stiefel manifold. For background
information we refer the reader to [3]. Also, as mentioned in Sec-
tion 2, we will abuse the notation and say that X € GF(rn, p).

Now we go back to Figure 1 and start reviewing its right-
hand side in the framework of smooth manifolds, We construct
Y = [X|wv € Gf(n, p) from X € GF (n, p) by first removing the
mean, and then replacing the diagonal matrix of the singular values
in its compact SVD decomposition with the identity. Removing
the mean makes column vectors of Y sum to zero, while replacing
singular values with ones makes Y be orthonormal (YTY = I).
The obtained space Gf (r, p} = On/On.p is a space of orthonormal
p-frames, and is called the Stiefel manifold, [3].

In order to eliminate the orientation ambiguity we take a Lie
group O, and consider a quotient space Gf (n, p)/Op. Each ele-
ment in the quotient space is a set of afl possible rotated and re-
flected versions of Y and is given by [Y]o, = {YV : V € O}
This shows that the space of oriented shapes W is in bijective cor-
respondence with the space Gr(n, p} = Gf (n,p)/Op. Gr(n,p) is
the Grassmann manifold, [3]. 1t can also be defined as the space of
all p-dim subspaces in R™. Uader this definition if W is a point
on the Grassmann manifold Gr{n, p) then W = span(Y). Both
definitions are equivalent, but we will work with the orbits [Y Jo,.
We will use a shorthand symbol [Y ], omitting the group O, as
its subindex. The detailed treatment of the Grassmann manifold is
presented in Section 6.

The final step allows arbitrary permutations of » feature points,
which are row permutations of the shape matrices. This ambiguity
is eliminated by taking a finite group of permutations P and fold-
ing the Grassmann manifold into Gr(n, p)/P. This is presented in
Section 7.

Notions of time and distance on a smooth manifeld We refer the
reader for the necessary background on differentiable manifolds to
classical textbooks on Riemannian geometry [4, 3, 5]. Here we
informally present the notions of time and distance on manifolds.

Smooth curves are smooth mappings v : {r1, 72} — ) from
the time domain R to a smooth manifold Y. They carry a way
of natural differentiation in time &' dvy/dt. The derivative
H, = +'(t) at peint Yy = ~(t) is called the rangen: vector at
Y. Vector fields are mappings that assign to each point on )/ one
of its tangent vectors. A connection is a way of differentiating vec-
tor fields along curves in V. A vector field along some curve is said
t0 be a parallel vector field if its derivative is zero along the curve.
Given a curve ~(t) and a tangent vector D, at point (0}, there ex-
ists a unique parallel vector field along the curve that extends the
tangent vector. We say we parallel transported the tangent vector
D, along the curve to D, at point 4(¢). We define a straight line,
called a geodesic, to be a curve ~ of zero acceleration, i.e., a curve
that paralle! transports its derivative tangent vector H, = %(0},
see Figure 2 for the itlustration.

We don’t define distances directly on the manifold. Rather, we
equip tangent spaces with the inner products, making ) a Rieman-
nian manifold, A compatible with the Riemannian metric connec-
tion, also called a Levi-Civita connection, preserves inner products
during parallel transport. Then a notion of distance on the mani-
fold is defined in the following way. We pick a point Y, € ¥
and some tangent vector ¥, at point Y,. This defines a geodesic
curve y(t) s.t. v(0) = Y, and '(0) = H,. Then the distance
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geodesic
(i

d’r(‘u‘) =Y,
Sy =H,

Fig. 2. Connecting points Y, and Y, by a geodesic ~(t)

between points Y, = (0) and Y, = ~(7) is the length of the
7(t) curve:

hd
d(Yo;Y'r)jf ”'&%llpdt:THH“”F (])

Since the curve «(t) is a geodesic, its derivarive veetor field ' (t)
is the paralle! vector field. At the same time a Levi-Civita connec-
tion preserves norms of parallel vector fields. Thus, the norm will
be constant in the integration.

6. GRASSMANN MANIFOLD

We remind the reader that a point on the Grassmann manifold is
the orbit [Y | € Gr(n,p) under the action of the Lie group O,
where Y is an orthonormal = x p tall-skinny matrix representing
a point on the Stiefel manifold Gf (n, p). In this section we study
in detail Gr (7, p), with the emphasis on the computational aspects.
We are working with any arbitrary Y € ['Y'| matrix as the defining
representative of the orbit ['Y | € Gr(n, p).

We consider a natural embedding of Gr(n,p) in R**" and
equip the manifold with the natural Levi-Civita connection. Then
we study equations for the geodesic and its derivative vector field.

Solution for the Initial Value Problem Edelman, Arias and Smith
{6] have proposed a computationally practical way of defining equa-
tions for the geodesic and its derivative vector field, given an initial
point and a tangent direction at the point. This is known as an ini-
tial value problem in the theory of differential equations, Their
approach does not require an explicit formula for the connection,
For completeness we present their result below.

Let Y, be a representative of the orbit [Y,] € Gr(n,p) and
let H,, be a valid tangent vector at Y ,. We define the geodesic y(¢)
by the initial values v(0) = [Y,] and +'(0) = [H, ]. We perform
an SVD decomposition of H, = IUEV". We define matrices
Cy = cosm(t-E) and S¢ = sinm(t- E) to be the matrix-cosine
and matrix-sine, which are defined well for symmetric matrices,
[1]. Then the equations for the geodesic v{(#) = [Y,] and its
derivative vector field along the geodesic 4'(t) = [H,) at time ¢
are given by:

Y. Y, VO VT + HVEEWT 5

H, = - Y,VSEVT + HVCVT @
These equations tell us how the point [Y,] and its tangent [H. |
evolve along the geodesic. This result is derived in [6].

Solution for the 2-point Boundary Value Problem The problem
we would like to solve is quite different from the solution given by
equation 2. Instead of defining equations for the geodesic and its
derivative vector field, given an initial point and a tangent direction
at the point, it is essential for us to define these equations, given an
initial and a final points on the Gr{n, p), which are to be connected



by a geodesic. In the theory of differential equations this corre-
sponds to a two-point boundary value problem. Such a problem is
commonly solved numerically, using the shoeting method [7]. We
present our result for an explicit expression for the solution of the
two-point boundary value problem, involving only standard linear
algebra operations.

Let [Y,],[Y:] € Gr(n,p) be two points ¢n the Gr(n, p),
which are to be connected by a geodesic. We define the geodesic
+(t) by the initial v(0) = [Y,] and final v(7) = [Y,] values,
This is a two-point boundary value problem. Let Y, € [Y,] and
Y. € [Y.] be some representatives for the initial and final val-
ues, We perform an SVD decomposition of YX Y, = V,C, VT,
which gives two rotation matrices V,, V.. and a cosine matrix of the
principal angles C. Then we define the matrix E, = acosm{C),
whose diagonal elements are the principal angles between the two
subspaces spanned by [Yo] and [Y ], see [8]. The distance be-
tween the points is given by v = ||E-||F. We define the matrix
E = E; /7 s0that | E||r.= 1 Also we define §; = sinm(T-E) as
well as cosine and sine matrices of half angles 'y, = cosm(3-E)
and S,, = sinm(5-E). :

In Euclidean space, we can take two points y,,yr € R7,
connect them by a line, and then find a point y, in between them,
which will lie at equal distance to both points. This mid-point will
be given by ym = (¥o+¥r)/2. We present our result for a similar
construct on the Grassmannian Gr{n, p). It is of great importance
for studying its properties. The equations of the () geodesic’s
midpoint and of the tangent vector from its derivative vector field
at the midpoint are given by:

Yo = L(YVi4 Y, Vo)CRVT 3)
H, = i(Y.V.-Y. V)5, EVT

In order to obtain a closed form solution for the two-point bound-
ary value problem, all we need to do is to travel back from the point
[Y o ], given by equation (3), at time ¢ = O to the point [Y,] at
time t = —7/2 on the geodesic defined by equation (2). First, we
present a closed-form solution for M, such that |H||r = 1:

H, = -Y, V,C.$. BV + Y. V.8, 'EV.)] @
If we use brackets to denote stacking of matrices together to form
a larger matrix, then an alternative solution can also be obtained
from the equation:
. T
T Vo0l | 0-ES;| [V,0

[Yol Y- " [Ho|H, ] = [o"v,]' [Es, 0 ] [o"vj ©)
From this equation we simul{aneously solve for H, and H- using
the pseudo-inverse of [Y,|Y 7.

We now present our result for the equations of the geodesic
¥t) = [Y.] and its derivative vector field along the geodesic
4'(t) = [H.] at time t. This is an explicit expression for the
solution of the two-point boundary value problem:

Yf.= Yo"’a(ct - StCrSf_l)VoT +Y,-V;—S¢S:1VGT

H,=—Y,Vo(S: + C.C-S7NEVI+Y V.C,STEVT
The time-varying matrices in equation (6) are C; = cosm($E)} and
Sy = sinm{t-E). All other matrices are obtained from an SVD
decomnposition of the inner product Y2 Y 5.

(6)

7. FOLDED GRASSMANN MANIFOLD Gr{n, p)/P

As discussed in Section 5, the final step on the right-hand side of .

Figure 1 is folding the Grassmann manifold Gr(n, p) with a group
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Fig. 3. Morphing an airplane onto a truck

of permutations P, which is not a Lie group. So, in order to pre-
serve the geometry of Gr(n, p) in Gs(n, p) = Gr(n,p)/P, weneed
to require that the folded space Gs(n, p} be convex in Gr(n, p). We
have preliminary results on such folding with proves forthep = 1
case. For p > 1 the folding is still under the investigation.
Currently, we perform folding by solving the optimization prob-
lem P = arg minp¢p ||Y, — PY: || F whichis a good approxima-
tion to the true problem P = argminpcp d{Yo, PY;). The
problem is linear, and is easily solved by the simplex algorithm.

8. MORPHING ONE SHAPE ONTO THE OTHER

In this section we apply the geometry in the intrinsic shape space
Gs(n, p) to the problem of morphing one intrinsic shape ento the
other. In Figure 3 each of eight presented shapes represents a point
in Gs{n, p). We take the initial point in Gs(n, p) to be an airplane,
and the final point to be a truck. They are getting connected by a
geodesic. We show equally spaced six intermediate shapes that we
obtain by following this geodesic from the initial to the final point.
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