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DISTRIBUTED LINEAR PARAMETER ESTIMATION:
ASYMPTOTICALLY EFFICIENT ADAPTIVE STRATEGIES∗
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Abstract. This paper considers the problem of distributed adaptive linear parameter estima-
tion in multiagent inference networks. Local sensing model information is only partially available
at the agents, and interagent communication is assumed to be unpredictable. The paper develops
a generic mixed time-scale stochastic procedure consisting of simultaneous distributed learning and
estimation, in which the agents adaptively assess their relative observation quality over time and
fuse the innovations accordingly. Under rather weak assumptions on the statistical model and the
interagent communication, it is shown that, by properly tuning the consensus potential with respect
to the innovation potential, the asymptotic information rate loss incurred in the learning process
may be made negligible. As such, it is shown that the agent estimates are asymptotically efficient,
in that their asymptotic covariance coincides with that of a centralized estimator (the inverse of the
centralized Fisher information rate for Gaussian systems) with perfect global model information and
having access to all observations at all times. The proof techniques are mainly based on conver-
gence arguments for non-Markovian mixed time-scale stochastic approximation procedures. Several
approximation results developed in the process are of independent interest.
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1. Introduction.

1.1. Background and motivation. Recent advances in sensing and communi-
cation technologies have enabled the proliferation of heterogeneous sensing resources
in multiagent networks, typical examples being cyberphysical systems and distributed
sensor networks. Due to the large size of these networks and the presence of geographi-
cally spread resources, distributed information processing and optimization techniques
(see, for example, [8, 32]) are gaining prominence. They not only offer a robust al-
ternative to fusion center based centralized approaches but lead to efficient use of the
network resources by distributing the computing and communication burden among
the agents. A key challenge in such distributed processing involves the lack of global
(sensing) model information at the local agent level. Moreover, the systems under
consideration are dynamic, often leading to uncertainty in the spatial distribution of
the information content. The performance of existing distributed information pro-
cessing and optimization schemes (see, for example, [5, 7, 15, 16, 17, 18, 21, 28, 29,
33, 35, 36, 37, 41, 42]) based on accurate knowledge of the sensed data statistics may
suffer substantially in the face of such parametric uncertainties. This necessitates
the development of adaptive schemes that learn the model parameters over time in
conjunction with carrying out the desired information processing task.
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Motivated by the above, in this paper we focus on the problem of distributed
recursive least squares parameter estimation, in which the agents have no prior knowl-
edge of the global sensing model or of the individual observation qualities as measured
in terms of the signal to noise ratio (SNR). Our goal is to develop an adaptive dis-
tributed scheme that is asymptotically efficient, i.e., achieves the same estimation
performance at each agent (in terms of asymptotic covariance) as that of a (hypo-
thetical) centralized fusion center with perfect global model information and having
access to all agents’ observations at all times. To this end, we develop a consen-
sus+innovation scheme, in which the agents collaborate by exchanging (appropriate)
messages with their neighbors (consensus) and fusing the acquired information with
the new local observation (innovation). Apart from the issue of optimality, the inter-
agent collaboration is necessary for estimator consistency, as the local observations
are generally not rich enough to guarantee global observability. Lacking prior global
model and local SNR information, the innovation gains at the agents are not opti-
mal a priori, and the agents simultaneously engage in a distributed learning process
based on past data samples with the aim of recovering the optimal gains asymptot-
ically. Thus the distributed learning process proceeds in conjunction and interacts
with the estimate update. Intuitively, the overall update scheme has the structure
of a certainty-equivalent control system (see, for example, [24, 25] and the references
therein, in the context of parameter estimation), the key difference being the dis-
tributed nature of the learning and estimation tasks. Under rather weak assumptions
on the interagent communication (network connectivity on average) we show that, by
properly tuning the consensus potential with respect to the innovation potential, the
asymptotic information rate loss incurred in the learning process may be made neg-
ligible, and the agent estimates are asymptotically efficient in that their asymptotic
covariances coincide with that of the hypothetical centralized estimator. The proper
tuning of the persistent consensus and innovation potentials are necessary for this
optimality, leading to a mixed time-scale stochastic procedure. In this context, we
note the study of mixed time-scale stochastic procedures that arise in algorithms of
the simulated annealing type (see, for example, [12]). Apart from being distributed,
our scheme technically differs from [12] in that, whereas the additive perturbation
in [12] is a martingale difference sequence, ours is a network dependent consensus
potential manifesting past dependence. In fact, intuitively, a key step in the analysis
is to derive pathwise strong approximation results to characterize the rate at which
the consensus term/process converges to a martingale difference process. We also
emphasize that our notion of mixed time-scale is different from that of stochastic al-
gorithms with coupling (see [3, 43]), where a quickly switching parameter influences
the relatively slower dynamics of another state, leading to averaged dynamics. Mixed
time-scale procedures of this latter type arise in multiscale distributed information dif-
fusion problems; see, in particular, the paper [22], which studies interactive consensus
formation in Markov modulated switching networks.

We comment on the main technical ingredients of the paper. Due to the mixed
time-scale behavior and the non-Markovianity (induced by the learning process that
uses all past information), the stochastic procedure does not fall under the purview
of standard stochastic approximation (see, for example, [31]) or distributed stochastic
approximation (see, for example, [1, 14, 18, 19, 23, 27, 38, 40]) procedures. As such,
we develop several intermediate results on the pathwise convergence rates of mixed
time-scale stochastic procedures. Some of these tools are of independent interest and
general enough to be applicable to other distributed adaptive information processing
problems.
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We briefly summarize the organization of the rest of the paper. Section 1.2
presents notation to be used throughout. The abstract problem formulation and
the mixed time-scale distributed estimation scheme are stated and discussed in sec-
tions 2.1 and 2.2, respectively. The main results of the paper are stated in section 3,
whereas section 4 presents some intermediate convergence results on recursive stochas-
tic schemes. The key technical ingredients concerning the asymptotic properties of
the distributed learning and estimation processes are obtained in section 5, while the
main results of the paper are proved in section 6. Finally, section 7 concludes the
paper.

1.2. Notation. We denote the k-dimensional Euclidean space by R
k. The set

of reals is denoted by R, whereas R+ denotes the nonnegative reals. For a, b ∈ R,
we will use the notation a ∨ b and a ∧ b to denote the maximum and minimum of
a and b, respectively. The set of k × k real matrices is denoted by R

k×k. The
corresponding subspace of symmetric matrices is denoted by S

k. The cone of positive
semidefinite matrices is denoted by S

k
+, whereas S

k
++ denotes the subset of positive

definite matrices. The k × k identity matrix is denoted by Ik, while 1k and 0k

denote, respectively, the column vector of ones and zeros in R
k. Often the symbol 0

is used to denote the k× p zero matrix, the dimensions being clear from the context.
The operator ‖·‖ applied to a vector denotes the standard Euclidean L2 norm, while
applied to matrices it denotes the induced L2 norm, which is equivalent to the matrix
spectral radius for symmetric matrices. The notation A ⊗ B is used to denote the
Kronecker product of two matrices A and B.

Time is assumed to be discrete or slotted throughout the paper. The symbols t
and s denote time, and T+ is the discrete index set {0, 1, 2, . . .}. The parameter to
be estimated belongs to a subset Θ (generally open) of the Euclidean space RM . The
true (but unknown) value of the parameter is θ∗, and a canonical element of Θ is θ.
The estimate of θ∗ at time t at agent n is xn(t) ∈ R

M . Without loss of generality,
the initial estimate, xn(0), at time 0 at agent n is a nonrandom quantity.

Spectral graph theory. The interagent communication topology may be de-
scribed by an undirected graph G = (V,E) with V = [1 · · ·N ] and E the set of agents
(nodes) and communication links (edges), respectively. The unordered pair (n, l) ∈ E
if there exists an edge between nodes n and l. We consider simple graphs, i.e., graphs
devoid of self-loops and multiple edges. A graph is connected if there exists a path1

between each pair of nodes. The neighborhood of node n is

Ωn = {l ∈ V | (n, l) ∈ E} .
Node n has degree dn = |Ωn| (the number of edges with n as one end point.) The
structure of the graph can be described by the symmetric N ×N adjacency matrix,
A = [Anl], Anl = 1, if (n, l) ∈ E, Anl = 0 otherwise. Let the degree matrix be the
diagonal matrix D = diag (d1 · · · dN ). By definition, the positive semidefinite matrix
L = D−A is called the graph Laplacian matrix. The eigenvalues of L can be ordered
as 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN (L), the eigenvector corresponding to λ1(L) being
(1/

√
N)1N . The multiplicity of the zero eigenvalue equals the number of connected

components of the network; for a connected graph, λ2(L) > 0. This second eigenvalue
is the algebraic connectivity or the Fiedler value of the network; see [6] for detailed
treatment of graphs and their spectral theory.

1A path between nodes n and l of length m is a sequence (n = i0, i1, . . . , im = l) of vertices, such
that (ik, ik+1) ∈ E for all 0 ≤ k ≤ m− 1.
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2. Problem formulation.

2.1. System model and preliminaries. Let θ∗ ∈ Θ be an M -dimensional
(vector) parameter that is to be estimated by a network of N agents. Throughout,
we assume that all the random objects are defined on a common measurable space
(Ω,F) equipped with a filtration {Ft}. For the true (but unknown) parameter value
θ∗, probability and expectation are denoted by Pθ∗ [·] and Eθ∗ [·], respectively. All
inequalities involving random variables are to be interpreted almost surely (a.s.).

Each agent makes independent and identically distributed (i.i.d.) observations of
noisy linear functions of the parameter. The observation model for the nth agent is

yn(t) = Hnθ
∗ + ζn(t),

where (i) {yn(t) ∈ R
Mn} is the observation sequence for the nth agent and (ii) for

each n, {ζn(t)} is a zero-mean temporally i.i.d. noise sequence of bounded variance,
such that ζn(t) is Ft+1 adapted and independent of Ft. Moreover, the sequences
{ζn(t)} and {ζl(t)} are mutually uncorrelated, i.e., E

[
ζn(t)ζ

�
l (t)

]
= 0 for n 	= l. For

most practical agent network applications, each agent observes only a subset of Mn of
the components of θ with Mn 
 M . It is then necessary for the agents to collaborate
by means of occasional local interagent message exchanges to achieve a reasonable
estimate of the parameter θ∗. Moreover, due to inherent uncertainties in the deploy-
ment and the sensing environment, the statistics of the observation process (i.e., of
the noise) are likely to be unknown a priori. For example, the exact observation noise
variance at an agent depends on several factors beyond the control of the deployment
process and should be learned over time for reasonable estimation performance. In
other words, prior knowledge of the spatial distribution of the information content
(e.g., which agent is more accurate than the others) may not be available, and the
proposed estimation approach should be able to adaptively learn the true value of
information leading to an accurate weighting of the various observation resources.

Let Rn ∈ S
Mn
++ be the true covariance of the observation noise ζn(t) at agent n. It

is well known that, given perfect knowledge of Rn for all n, the best linear centralized
estimator {xc(t)} of θ∗ is asymptotically normal, i.e.,

√
t+ 1 (xc(t)− θ∗) =⇒ N (

0,Σ−1
c

)
,

provided the matrix Σc =
∑N

n=1 H
�
n R−1

n Hn is invertible. In case the observation
process is Gaussian, the best linear estimator is optimal, and Σc coincides with the
Fisher information rate. In general, with the knowledge of the covariance only and no
other specifics about the noise distribution, the above estimate is optimal in that no
other estimate achieves smaller asymptotic covariance than Σ−1

c for all distributions
with covariance Rn.

The goal of this paper is to develop a distributed estimator that leads to asymp-
totically normal estimates with the same asymptotic covariance Σ−1

c at each agent
under the following constraints: (1) each agent is aware only of its local observation
model Hn and, more importantly, (2) the true noise covariance Rn is not known a
priori at agent n and needs to be learned from the received observation samples and
exchanged messages with its neighbors over time. Recently, in [20] a distributed al-
gorithm was introduced that leads to the desired centralized asymptotic covariance
at each agent but requires full model information (i.e., all the Hn’s) and the exact
covariance values Rn at all agents. This is due to the fact that, for optimal asymptotic
covariance, the approach in [20] requires an appropriate innovation gain at each agent,
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the latter depending on all the model matrices and noise covariances. In the absence
of model and covariance information, a natural alternative is to employ a certainty-
equivalence type approach in which an adaptive sequential gain refinement (learning)
step is incorporated into the desired estimation task. In this paper, we show that
such a learning process (see section 2.2) is feasible in a distributed setting and, more
importantly, the coupling between the learning and parameter estimation tasks does
not slow down the convergence rate (measured in terms of asymptotic covariance) of
the latter to θ∗.

2.2. Distributed adaptive estimator: Algorithm ADLE. The adaptive
distributed linear estimator (ADLE) involves two simultaneous update rules, namely,
(1) the estimate (state) update and (2) the gain update. To formalize, let {xn(t)}
denote the {Ft} adapted sequence of estimates of θ∗ at agent n.

Estimate update. The estimate update at agent n then proceeds as follows:

(2.1) xn(t+ 1) = xn(t)− βt

∑
l∈Ωn(t)

(xn(t)− xl(t)) + αtKn(t) (yn(t)−Hnxn(t)) .

In the above, {βt} and {αt} represent appropriate time-varying weighting factors for
the agreement (consensus) and innovation (new observation) potentials, respectively,
whereas {Kn(t)} is an adaptively chosen {Ft}-adapted matrix gain process. Also,
Ωn(t) denotes the {Ft+1}-adapted time-varying random neighborhood of agent n at
time t.

Gain update. The adaptive gain update at sensor n involves another {Ft}
adapted distributed learning process that proceeds in parallel with the estimate up-
date. In particular, we set

(2.2) Kn(t) = (Gn(t) + γtIM )
−1

H�
n (Qn(t) + γtIMn)

−1
,

where {γt} is a sequence of positive reals, such that γt → 0 as t → ∞, and the positive
semidefinite matrix sequences {Qn(t)} and {Gn(t)} evolve as follows:

(2.3) Qn(t+ 1) =
1

t

t∑
s=0

yn(s)y
�
n (s)−

(
1

t

t−1∑
s=0

yn(s)

)(
1

t

t−1∑
s=0

yn(s)

)�

,

and
(2.4)

Gn(t+1) = Gn(t)−βt

∑
l∈Ωn(t)

(Gn(t)−Gl(t))+αt

(
H�

n (Qn(t) + γtIMn)
−1 Hn −Gn(t)

)
with positive semidefinite initial conditions Qn(0) and Gn(0), respectively.

Note that the Qn(t)’s are empirical covariance matrices and the Gn(t)’s, based
on a consensus-type update, are used to estimate an aggregate gain statistic (Σc

introduced below) at each network agent. The purpose of the Qn(t)’s is to generate
consistent estimates of the true covariances Rn(t)’s at the respective agents, and, as
such, the empirical covariance update in (2.3) may be replaced by any other consistent
local covariance estimation procedure.

Before further discussion, we formalize assumptions on the model, the time-
varying communication topology, and the algorithm weight sequences {αt} and {βt}
in the following:
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(A.1) The observation model is globally observable, i.e., the (normalized) Gram-
mian matrix

Σc =
1

N

N∑
n=1

H�
n R−1

n Hn

is invertible, where Rn denotes the nonsingular true (but unknown) covariance of the
observation noise ζn(t) at agent n.

(A.2) The {Ft+1}-adapted sequence {Lt} of communication network Laplacians
(modeling the agent communication neighborhoods Ωn(t)-s at each time t) is tempo-
rally i.i.d. with Lt being independent of Ft for each t. Further, the sequence {Lt}
is connected on the average, i.e., λ2(L) > 0, where L = Eθ∗ [Lt] denotes the mean
Laplacian.

(A.3) The sequences {Lt} and {ζn(t)}n∈V are mutually independent.

(A.4) There exists ε1 > 0, such that for all n, Eθ∗
[‖ζn(t)‖2+ε1

]
< ∞.

(A.5) The weight sequences {αt} and {βt} are given by

(2.5) αt =
a

(t+ 1)τ1
and βt =

b

(t+ 1)τ2
,

where a, b > 0, 0 < τ2 ≤ τ1 ≤ 1, and τ1 > τ2 + 1/(2 + ε1) + 1/2.
Remark 2.1. Note that the global observability requirement in (A.1) is quite

weak and, in fact, is necessary to attain estimator consistency in a centralized set-
ting. In a sense, the assumption (A.1) on the global sensing model and the mean
connectivity condition in (A.2) provide minimal structural conditions for attaining
distributed observability, i.e., the ability to obtain consistent parameter estimates in
the proposed distributed information setting. Intuitively, the necessity of (A.2) (in
addition to (A.1)) for such distributed observability stems from the observation that,
in general, in the absence of local observability a disconnected interagent communica-
tion network would lead to multiple communication-disjoint agent components, none
with sufficient informative measurements to consistently estimate the true parameter.
We emphasize that the mean network connectivity assumption formalized in (A.2),
which generalizes the notion of connectivity in static communication topologies to dy-
namic stochastic scenarios, models a broad class of agent networks with unpredictable
communication; for instance, (A.2) allows for spatially correlated communication link
failures (often resulting from multiagent interference) and subsumes the commonly
used packet erasure model in gossip type of agent communications [4]. On the other
hand, in the current setting, we assume that the interagent communication is noise-free
and unquantized in the event of an active communication link; the problem of quan-
tized data exchange in networked control systems (see, for example, [18, 26, 30, 39])
is an active research topic.

We comment on the choice of the weight sequences {βt} and {αt} associated with
the consensus and innovation potentials, respectively. From (A.5) we note that both
the excitations for agent-collaboration (consensus) and local innovation are persistent,
i.e., the sequences {βt} and {αt} sum to ∞—a standard requirement in stochastic ap-
proximation type algorithms to drive the updates to the desired limit from arbitrary
initial conditions. Further, the square summability of {αt} (τ1 > 1/2) is required
to mitigate the effect of stochastic sensing noise perturbing the innovations. The re-
quirement βt/αt → ∞ as t → ∞ (τ1 > τ2), i.e., the asymptotic domination of the
consensus potential over the local innovations, ensures the right information mixing,
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Fig. 2.1. An example: circles depict agents and dotted lines bidirectional communication links.

thus, as shown below, leading to optimal estimation performance. Technically, the
different asymptotic decay rates of the two potentials lead to mixed time-scale stochas-
tic recursions whose analyses require new techniques in stochastic approximation as
developed in the paper.

Example 2.1. As an illustration, consider the agent model in Figure 2.1 with
N = 5 agents. The vector parameter θ∗ ∈ R

5 in this example may have a physical
interpretation, for example, with θ∗n, the nth component of θ∗, indicating the (un-
known) intensity of a source geographically co-located with agent n, n = 1, . . . , 5.
Each agent n observes a scalar sequence

yn(t) =
(
θ∗n−1 + θ∗n + θ∗n+1

)
+ ζn(t),

perhaps corresponding to a superposition of local source intensities, where we adopt
the convention that θ∗0 = θ∗5 and θ∗6 = θ∗1 . It is readily seen that the local agent
observations are not globally observable for θ∗. In fact, in this example, without
collaboration no agent n would be able to reconstruct even the local intensity θn.
The collective observation model is however globally observable for θ∗, i.e., (A.1)
holds. The dotted lines denote the potential interagent communication links (possibly
switching stochastically between on and off) through which the locally unobservable
agents may collaborate by information exchange. By abstracting the above model in
terms of the generic notation, the ADLE estimate update rule (2.1) at an agent n,
say n = 3, then takes the form

x3(t+ 1) = x3(t) − βt (2x3(t)− x1(t)− x4(t))

+ αt(G3(t) + γtI5)
−1H�

3 (Q3(t) + γt)
−1(y3(t)− x3,2(t)− x3,3(t)− x3,4(t)),

where H3 = [0 1 1 1 0], Q3(t) denotes the (scalar) sample covariance (2.3), x3,l(t)
denotes the lth component of x3(t) with l = 2, 3, 4, and G3(t) is updated as

G3(t+1) = G3(t)−βt (2G3(t)−G1(t)−G4(t))+αt

(
H�

3 (Q3(t) + γt)
−1 H3 −G3(t)

)
.

In the above, we assumed that at time t, both the communication links (1, 3) and
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(3, 4) are active. Assuming that the stochasticity, if any, in the link formation satisfies
(A.2), the following analysis will show that the above estimate sequences will optimally
converge to θ∗ a.s. as t → ∞.

3. Main results. We formally state the main results of the paper, the proofs
being provided in section 6.

The first result concerns the asymptotic agreement or consensus among the vari-
ous agent estimates.

Theorem 3.1. Let assumptions (A.1)–(A.5) hold. Then for each τ0 such that

0 ≤ τ0 < τ1 − τ2 − 1

2 + ε1
,

we have

Pθ∗
(
lim
t→∞(t+ 1)τ0 ‖xn(t)− xl(t)‖ = 0

)
= 1

for any pair of agents n and l.
Theorem 3.1 relates the rate of agreement to the difference τ1 − τ2 of the algo-

rithm weight parameters, the latter quantifying the relative intensities of the global
agreement and local innovation potentials. Notably, the order of this convergence is
independent of the network topology (as long as it is connected in the mean) and the
distributed gain learning process (2.2)–(2.4). In fact, as will be evident from the proof
arguments, the local covariance learning step in (2.3) may be replaced by any other
consistent learning procedure, still retaining the order of convergence in Theorem 3.1.

Theorem 3.2. Let assumptions (A.1)–(A.5) hold with τ1 = 1 and a ≥ 1. Then,
for each n the estimate sequence {xn(t)} is strongly consistent. In particular, we have

(3.1) Pθ∗
(
lim
t→∞(t+ 1)τ ‖xn(t)− θ∗‖ = 0

)
= 1

for each n and τ ∈ [0, 1/2).
The consistency in Theorem 3.2 is order optimal in that (3.1) fails to hold (unless

the noise covariances are degenerate) with an exponent τ ≥ 1/2 for any (including
centralized) estimation procedure, which is due to the fact that the optimal (cen-
tralized) estimator is asymptotically normal with nondegenerate (positive definite)
asymptotic covariance.

The next result concerns the asymptotic efficiency of the estimates generated by
the distributed ADLE .

Theorem 3.3. Let assumptions (A.1)–(A.5) hold with τ1 = 1 and a = 1, and let
Σc = NΣc. Then, for each n√

(t+ 1) (xn(t)− θ∗) =⇒ N (
0,Σ−1

c

)
,

where N (·, ·) and =⇒ denote the Gaussian distribution and weak convergence, respec-
tively.

Referring to the introductory discussion in section 2.1, we note that the dis-
tributed and adaptive ADLE achieves the best error covariance decay among the
class of linear centralized estimators and is optimal in the Fisher information sense if
the noise process is Gaussian. In a sense, Theorem 3.3 reinforces the applicability and
advantage of distributed estimation schemes. Apart from issues of robustness, imple-
menting a centralized estimator is communication-intensive as it requires transmitting
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all sensor data to a fusion center at all times. On the other hand, the distributed
ADLE algorithm involves only sparse local communication among the sensors at each
step and achieves the performance of a centralized estimator asymptotically as long
as the communication network stays connected in the mean. Further, note that the
assumption a = 1 is not necessary for asymptotic normality of the ADLE estimates;
however, the optimality (asymptotic efficiency) is no longer guaranteed for a 	= 1, i.e.,
the resulting asymptotic covariance of the estimates deviates from Σ−1

c .

4. Some approximation results. In this section we establish several strong
(pathwise) convergence results for generic mixed time-scale stochastic recursive pro-
cedures (the proofs being provided in Appendix A). These are of independent interest
and will be used in subsequent sections to analyze the properties of the ADLE scheme.

Throughout this section, by {zt}, we will denote an {Ft}-adapted stochastic
process taking values in some Euclidean space or some subset of symmetric matrices.
The initial condition z0 will be assumed to be deterministic unless otherwise stated.
Further, the probability space is assumed to be rich enough to allow the definition
of various auxiliary processes governing the recursive evolution of {zt}. Since the
results in this section concern generic stochastic processes not necessarily tied to the
parameter vector, the θ∗ indexing in the probability and expectation will be dropped
temporarily.

We start by quoting a convergence rate result from [20] on deterministic recursions
with time-varying coefficients.

Lemma 4.1 (Lemmas 4 and 5 of [20]). Let {zt} be an R+ valued sequence satis-
fying

zt+1 ≤ (1− r1(t))zt + r2(t),

where {r1(t)} and {r2(t)} are deterministic sequences with

a1
(t+ 1)δ1

≤ r1(t) ≤ 1 and r2(t) ≤ a2
(t+ 1)δ2

and a1 > 0, a2 > 0, 0 ≤ δ1 < 1, δ2 > 0. Then, if δ1 < δ2, (t+ 1)δ0zt → 0 as t → ∞
for all 0 ≤ δ0 < δ2 − δ1. Also, if δ1 = δ2, the sequence {zt} remains bounded, i.e.,
supt≥0 ‖zt‖ < ∞.

We now develop a stochastic analog of Lemma 4.1 in which the weight sequence
{r1(t)} is a random process with some mixing conditions.

Lemma 4.2. Let {zt} be an {Ft}-adapted R+ valued process satisfying

zt+1 ≤ (1− r1(t))zt + r2(t).

In the above, {r1(t)} is an {Ft+1}-adapted process, such that for all t, r1(t) satisfies
0 ≤ r1(t) ≤ 1 and

a1
(t+ 1)δ1

≤ E [r1(t) | Ft] ≤ 1

with a1 > 0 and 0 ≤ δ1 < 1. The sequence {r2(t)} is deterministic and R+ valued and
satisfies r2(t) ≤ a2/(t+1)δ2 with a2 > 0 and δ2 > 0. Then, if δ1 < δ2, (t+1)δ0zt → 0
as t → ∞ for all 0 ≤ δ0 < δ2 − δ1.

Versions of Lemma 4.2 with stronger assumptions on the weight sequences were
used in earlier work. For example, the deterministic version (Lemma 4.1) was proved
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in [18], whereas a version with i.i.d. weight sequences was used in [20]. Further, several
variants under varying assumptions exist in the literature based on generalized super-
martingale convergence theorems; see, for example, [1, 34, 40]. However, for reasons
to be clear soon, in this work there will be instances in which the memorylessness
assumption on the weight sequences is too restrictive. Hence, we develop the version
stated in Lemma 4.2.

The following result will be used to quantify the rate of convergence of distributed
vector or matrix valued recursions to their network-averaged behavior.

Lemma 4.3. Let {zt} be an R+ valued {Ft}-adapted process that satisfies

zt+1 ≤ (1− r1(t)) zt + r2(t)Ut (1 + Jt) .

Let the weight sequences {r1(t)} and {r2(t)} satisfy the hypothesis of Lemma 4.2. Fur-
ther, let {Ut} and {Jt} be R+ valued {Ft} and {Ft+1} adapted processes, respectively,
with supt≥0 ‖Ut‖ < ∞ a.s. The process {Jt} is i.i.d. with Jt independent of Ft for
each t and satisfies the moment condition E[‖Jt‖2+ε1 ] < κ < ∞ for some ε1 > 0 and
a constant κ > 0. Then, for every δ0 such that

0 ≤ δ0 < δ2 − δ1 − 1

2 + ε1
,

we have (t+ 1)δ0zt → 0 a.s. as t → ∞.
The key difference between Lemma 4.3 and Lemma 4.2 is that the processes

associated with the sequence {r2(t)} are now stochastic.
Lemma 4.4. Let {zt} be an R

NM valued {Ft} adapted process such that zt ∈ C⊥

(see (B.11) in Appendix B for the definition of the consensus subspace C and its
orthogonal complement C⊥) for all t. Also, let {Lt} be an i.i.d. sequence of Laplacian
matrices as in assumption (A.2) that satisfies

λ2(L) = λ2 (E[Lt]) > 0

with Lt being Ft+1 adapted and independent of Ft for all t. Then there exists a
measurable {Ft+1} adapted R+ valued process {rt} (depending on {zt} and {Lt}) and
a constant cr > 0, such that 0 ≤ rt ≤ 1 a.s. and

‖(INM − βtLt ⊗ IM ) zt‖ ≤ (1− rt) ‖zt‖
with

(4.1) E [rt | Ft] ≥ cr
(t+ 1)τ2

a.s.

for all sufficiently large t, where the weight sequence {βt} and τ2 are defined in (2.5).
Remark 4.1. We comment on the necessity of the various technicalities involved in

the statement of Lemma 4.4. Let PNM denote the matrix (1/N) (1N ⊗ IM ) (1N ⊗ IM )�

and PNMzt = 0 since zt ∈ C⊥. With this, a naive approach of showing the existence
of such a process {rt} would be to use the submultiplicative inequality

‖(INM − βtLt ⊗ IM − PNM ) zt‖ ≤ ‖(INM − βtLt ⊗ IM − PNM )‖ ‖zt‖ .
Using properties of the Laplacian and the matrix PNM , it can be shown that for
sufficiently large t

‖(INM − βtLt ⊗ IM − PNM ) zt‖ ≤ (1− βtλ2(Lt)) ‖zt‖ .
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With this we may choose to define the desired sequence {rt} in Lemma 4.4 by

(4.2) rt = βtλ2(Lt)

for all t. Indeed, {rt} thus defined satisfies 0 ≤ rt ≤ 1 and (4.4) (at least for t large
enough). Since Lt is independent of Ft, we obtain

E[λ2(Lt) | Ft] = E[λ2(Lt)] ≤ λ2(L),

where the last inequality is a consequence of Jensen’s inequality applied to the concave
functional λ2(·). Thus the hypothesis λ2(L) > 0 does not shed any light on whether
E[λ2(Lt)] > 0 or not. Unfortunately, it turns out that in the gossip type of commu-
nication setting, in which none of the network instances are connected, λ2(Lt) = 0
a.s. Hence, in such cases E[λ2(Lt)] is actually 0. This in turn implies that the {rt}
proposed in (4.2) violates the requirement (4.1) of Lemma 4.4. This necessitates an
altogether different approach for constructing the desired sequence {rt}. As shown in
the following, such an rt is no longer independent of Ft, being a function of both Lt

and zt in general.

5. Convergence and asymptotic properties. In this section we establish
asymptotic properties of the ADLE and the associated distributed learning and es-
timation processes. The key technical result concerning the adaptive gain learning
process is presented in Lemma 5.1, whereas the major convergence properties of the
estimate processes concerning boundedness of the agent estimates, interagent esti-
mate consensus, and estimate consistency are obtained in Lemma 5.4, Lemma 5.7,
and Lemma 5.9, respectively. The assumptions (A.1)–(A.5) are assumed to hold
throughout the section.

The following result concerns the convergence of the online gain approximation

processes {Kn(t)} to their optimal counterparts Kn = Σ
−1

c H�
n R−1

n .
Lemma 5.1. For each n the gain sequence {Kn(t)} (given by (2.2)–(2.4)) con-

verges to Kn = Σ
−1

c H�
n R−1

n a.s., i.e.,

Pθ∗
(
lim
t→∞Kn(t) = Σ

−1

c H�
n R−1

n

)
= 1.

The proof is accomplished in terms of several intermediate steps that highlight the
interaction between the dynamics of distributed collaboration and local adaptation.
To this end, we first investigate the processes {Gn(t)}; see (2.4). The processes
{Gn(t)} may be viewed as approximations of the normalized Grammian and, as will
be shown in the following, converge to Σc. The following assertion concerns the
consensus of the approximate Grammians to their network average and is stated as
follows (see Appendix B for a proof).

Lemma 5.2. For each n we have

Pθ∗
(
lim
t→∞ ‖Gn(t)−Gavg(t)‖ = 0

)
= 1,

where Gavg(t) =
1
N

∑N
n=1 Gn(t) is the instantaneous network-averaged Grammian.

On the basis of Lemma 5.2, to show the convergence of the approximate (normal-
ized) Grammian sequences to Σc, it suffices to show the convergence of the network-
averaged sequence {Gavg(t)} to the latter. This is obtained in the following lemma
(see Appendix B for a proof).
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Lemma 5.3. The following holds:

Pθ∗
(
lim
t→∞Gavg(t) = Σc

)
= 1.

We now complete the proof of Lemma 5.1.
Proof of Lemma 5.1. It follows from Lemma 5.2 and Lemma 5.3 that

(5.1) Pθ∗
(
lim
t→∞Gn(t) = Σc

)
= 1

for all n = 1, . . . , N . The assertion in Lemma 5.1 is immediate from (5.1) and the
observation that Qn(t) → Rn and γt → 0 as t → ∞.

The rest of the section is concerned with the convergence analysis of the estimate
sequences {xn(t)} generated by the ADLE . Several results on the convergence be-
havior of the estimates are presented, culminating in the proofs of the main results of
the paper in section 6.

Lemma 5.4. The estimate sequences {xn(t)} generated by the ADLE algorithm
(see (2.1)) are pathwise bounded, i.e., for each n, supt≥0 ‖xn(t)‖ < ∞ a.s.

The proof involves a Lyapunov type argument. The following decay rate estimates
(see Appendix B for proofs) associated with certain time-varying spectral operators
will be used in the construction of a suitable Lyapunov function.

Proposition 5.5. Let Kt and H denote the matrices diag (K1(t), . . . ,KN(t))
and diag(H1, . . . , HN ), respectively. Then, there exist εK > 0, a (deterministic) time
tK and a constant cK, such that

z�
(
βtL⊗ IM + αtKtH

)
z ≥ cKαt ‖z‖2

for all t ≥ tK, z ∈ R
NM , and K̃ satisfying ‖K̃H − KH‖ ≤ εK.

Proposition 5.6. Let K and H be defined as in Proposition 5.5. Then, for every
0 < ε < 1 there exist a deterministic time tε and a constant cε, such that

z�
(
βtL⊗ IM + αtK̃H

)
z ≥ cεβt ‖zC⊥‖2

for all t ≥ tε, z ∈ R
NM , and K̃ satisfying

(5.2)
∥∥∥K̃H − KH

∥∥∥ ≤ ε.

Also, in the above zC⊥ denotes the projection of z in the orthogonal complement of
the consensus subspace C as defined in (B.11) in Appendix B.

Proof of Lemma 5.4. The estimator recursions in (2.1) may be written as

xt+1 =
(
INM − βtL⊗ IM − αtKtH

)
xt − βt

(
L̃t ⊗ IM

)
xt + αtKtyt

with xt and yt denoting [x�
1 (t), . . . ,x

�
N (t)]� and [y�

1 (t), . . . ,y
�
N (t)]�, respectively.

The sequence {L̃t} denotes the sequence of zero mean i.i.d. matrices given by L̃t =
Lt − Lt for all t. The process {zt} defined as zt = xt − 1N ⊗ θ∗ may then be shown
to satisfy the recursion

zt+1 =
(
INM − βtL⊗ IM − αtKtH

)
zt − βt

(
L̃t ⊗ IM

)
zt + αtKtζt,
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with ζt = [ζ�1 (t), . . . , ζ�N (t)]�. Now fix 0 < ε < εK ∧ 1, where εK is defined in the
hypothesis of Proposition 5.5. Since, Kt → K a.s., by Egorov’s theorem [13] for every
δ > 0, there exists tδ such that

Pθ∗

(
sup
t≥tδ

‖KtH−KH‖ ≤ ε

)
> 1− δ and Pθ∗

(
sup
t≥tδ

‖Kt −K‖ ≤ ε

)
> 1− δ.

Moreover, such a tδ may be chosen to satisfy tδ > tK∨ tε, where tK and tε are defined
in the hypotheses of Proposition 5.5 and Proposition 5.6, respectively.

Let Kε be a (deterministic) matrix, such that

‖KεH−KH‖ < ε and ‖Kε −K‖ < ε.

Then, for every δ > 0, we may define the {Ft} adapted process {Kδ
t }, such that

Kδ
t =

⎧⎨⎩
Kt if t < tδ,
Kt if t ≥ tδ and ‖KtH−KH‖ ∨ ‖Kt −K‖ ≤ ε,
Kε otherwise.

Also, for each δ > 0, we define the {Ft} adapted process {zδt} by the recursion

zδt+1 =
(
INM − βtL⊗ IM − αtKδ

tH
)
zδt − βt

(
L̃t ⊗ IM

)
zδt + αtKδ

t ζt

with zδ0 = z0. To show that the process {zt} (and hence {xt}) is bounded a.s., we
note that it suffices to show that the process {zδt} is bounded a.s. for each δ > 0. This
is due to the fact that, by the definition of tδ, for each δ > 0 we have

Pθ∗

(
sup
t≥0

∥∥Kδ
t −Kt

∥∥ = 0

)
> 1− δ,

and hence

Pθ∗

(
sup
t≥0

∥∥zδt − zt
∥∥ = 0

)
> 1− δ.

Thus the boundedness of the processes {zδt} for each δ > 0 would imply

Pθ∗

(
sup
t≥0

‖xt‖ < ∞
)

> 1− δ

for every δ > 0. The assertion of Lemma 5.4 would then follow by taking δ to zero.
Hence, in the following, we focus only on the processes {zδt} and show that the

latter are bounded a.s. for every δ > 0. To this end, fix δ > 0 and consider the Ft

process V δ
t = ‖zδt‖2. It can be shown (Assumption (A.3)) that

(5.3) Eθ∗
[
V δ
t+1 | Ft

]
= V δ

t + β2
t

(
zδt
)�

Eθ∗
[
(L̃t ⊗ IM )2

]
zδt + α2

tEθ∗
[∥∥Kδ

t ζt
∥∥2]

− 2
(
zδt
)�(

βtL⊗ IM + αtKδ
tH

)
zδt + β2

t

(
zδt
)�(

L⊗ IM
)2

zδt

+α2
t

(
zδt
)�(Kδ

tH
)�Kδ

tHzδt + 2αtβt

(
zδt
)�(

L⊗ IM
) (Kδ

tH
)
zδt .

Since the Laplacians are bounded matrices by definition and the matrix Kδ
t is bounded

for t ≥ tδ by construction, there exists a constant c3 > 0, sufficiently large, such that
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the inequalities

(5.4)
(
zδt
)�

Eθ∗
[
(L̃t ⊗ IM )2

]
zδt =

(
zδt,C⊥

)�
Eθ∗

[
(L̃t ⊗ IM )2

]
zδt,C⊥ ≤ c3

∥∥∥zδt,C⊥

∥∥∥2 ,
(
zδt
)� (

L⊗ IM
)2

zδt =
(
zδt,C⊥

)� (
L⊗ IM

)2
zδt,C⊥ ≤ c3

∥∥∥zδt,C⊥

∥∥∥2 ,(
zδt
)� (

L⊗ IM
) (Kδ

tH
)
zδt ≤ c3

∥∥zδt∥∥2 ,
(5.5)

(
zδt
)� (Kδ

tH
)� Kδ

tHzδt ≤ c3
∥∥zδt∥∥2 , Eθ∗

[∥∥Kδ
t ζt

∥∥2] ≤ c3

hold for all t ≥ tδ with zδt,C⊥ denoting the projection of zδt on the subspace C⊥. Also,
by Proposition 5.5 and Proposition 5.6, for t ≥ tδ,(

zδt
)� (

βtL⊗ IM + αtKδ
tH

)
zδt ≥ cKαt

∥∥zδt∥∥2 + cεβt

∥∥∥zδt,C⊥

∥∥∥2 ,
where the positive constants cK and cε are defined in the hypotheses of Proposition 5.5
and Proposition 5.6, respectively. Using (5.4) and (5.5) in (5.3) leads to

Eθ∗
[
V δ
t+1 | Ft

] ≤ Vt −
(
cKβt − 2c3β

2
t

) ∥∥∥zδt,C⊥

∥∥∥2
for all t ≥ tδ. Observing the decay rates of the various terms in (2.5), we conclude
that there exists t̄δ ≥ tδ, such that

cKβt − 2c3β
2
t > 0 and cεαt − 2αtβtc3 − α2

t c3 > 0

for t ≥ t̄δ and, hence,

(5.6) Eθ∗
[
V δ
t+1 | Ft

] ≤ V δ
t + c3α

2
t

for all t ≥ t̄δ. Let us introduce the {Ft} adapted process {V δ

t}, such that

(5.7) V
δ

t = V δ
t − c3

∞∑
s=t

α2
s

for t ≥ 0. The process {V δ

t} is well defined as the sequence {αt} is square summable.
From (5.6) it follows immediately that

Eθ∗
[
V

δ

t+1 | Ft

]
≤ V δ

t − c3α
2
t − c3

∞∑
s=t+1

α2
s = V

δ

t

for t ≥ tδ. Hence, the process {V δ

t}t≥tδ
is a supermartingale. Moreover, it is bounded

from below, since Vt ≥ 0 by construction, and, in fact,

V
δ

t ≥ −c3

∞∑
s=0

α2
s
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for all t ≥ 0. Thus {V δ

t}t≥tδ
is a supermartingale that is bounded from below and

hence converges a.s. to a finite random variable V
δ
, i.e., V

δ

t → V a.s. as t → ∞. In

particular, the process {V δ

t} is pathwise bounded. By (5.7) the process {V δ
t } is also

pathwise bounded. Thus, for each δ > 0, the process {zδt} is bounded a.s. and the
assertion follows.

The next result (see Appendix B for a proof) quantifies the rate at which the
different agent estimates reach agreement and is stated as follows.

Lemma 5.7. For every τ0 such that 0 ≤ τ0 < τ1 − τ2 − 1/(2 + ε1), we have

Pθ∗
(
lim
t→∞(t+ 1)τ0 (xn(t)− xavg(t)) = 0

)
= 1

with xavg(t) = (1/N)
∑N

n=1 xn(t) denoting the instantaneous network-averaged esti-
mate.

The rest of the section focuses on the convergence properties of the network-
averaged estimate {xavg(t)} and completes the final steps required to establish the
convergence properties of the agent estimates {xn(t)}. The first result in this direction
concerns the consistency of the average estimate sequence.

Lemma 5.8. Under the additional assumption that τ1 = 1 (see (A.5)) we have

Pθ∗
(
lim
t→∞ (xavg(t)− θ∗) = 0

)
= 1

with xavg(t) = (1/N)
∑N

n=1 xn(t) the instantaneous network-averaged estimate.
Proof. Let us denote by zt the residual xavg(t)−θ∗. The Ft adapted process {zt}

may be shown to satisfy the recursion

(5.8) zt+1 = (IM − αtΓt) zt + αtUt + αtJt

with {Γt}, {Ut} being Ft-adapted and {Jt} being Ft+1-adapted and given by
(5.9)

Γt =
1

N

N∑
n=1

Kn(t)Hn, Ut =
1

N

N∑
n=1

Kn(t) (xn(t)− xavg(t)) and Jt =
1

N
Kn(t)ζn(t),

respectively. Now fix 0 < τ0 < τ1− τ2−1/(2+ε1) and, by the convergence of the gain
processes and Lemma 5.7, Γt → IM and (t+ 1)τ0Ut → 0 a.s. as t → ∞. By Egorov’s
theorem the a.s. convergence may be assumed to be uniform on sets of arbitrarily
large probability measure, and hence for every δ > 0, there exist uniformly bounded
processes {Γδ

t}, {U δ
t }, and {Kδ

t} satisfying

Pθ∗

(
sup
s≥tδε

∥∥Γδ
s − IM

∥∥ ∨ ∥∥Kδ
t −K∥∥ > ε

)
= 0 and Pθ∗

(
sup
s≥tδε

(s+ 1)τ0
∥∥U δ

s

∥∥ > ε

)
= 0

for each ε > 0 and some tδε (sufficiently large), such that

Pθ∗

(
sup
t≥0

∥∥Γδ
t − Γt

∥∥ ∨ ∥∥Kδ
t −Kt

∥∥ ∨ ∥∥U δ
t − Ut

∥∥ = 0

)
> 1− δ.

Also, for each δ > 0, define the Ft-adapted process {zδt} by

(5.10) zδt+1 =
(
IM − αtΓ

δ
t

)
zδt + αtU

δ
t + αtJ

δ
t
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with zδ0 = z0 and Jδ
t = 1

N

∑N
n=1 K

δ
n(t)ζn(t) and

(5.11) Pθ∗

(
sup
t≥0

∥∥zδt − zt
∥∥ = 0

)
> 1− δ.

By the above development, to show that zt → 0 as t → ∞, it suffices to show that
zδt → 0 as t → ∞ for each δ > 0. Hence, in the following, we focus on the process
{zδt} only for a fixed but arbitrary δ > 0.

Now let {V δ
t } denote the {Ft} adapted process such that V δ

t = ‖zδt‖2 for all t.
Using the fact that Eθ∗ [ζt | Ft] = 0 for all t, it follows that

(5.12) Eθ∗
[
V δ
t+1 | Ft

] ≤ ∥∥IM − αtΓ
δ
t

∥∥2 V δ
t + 2αt(U

δ
t )

� (
IM − αtΓ

δ
t

)
zδt

+α2
t ‖Ut‖2 + α2

tEθ∗
[
‖Jt‖2 | Ft

]
.

For t large enough

(5.13)
∣∣2αtU

�
t

(
IM − αtΓ

δ
t

)
zδt
∣∣ ≤ 2αt

∥∥U δ
t

∥∥ ∥∥zδt∥∥ ≤ 2αt

∥∥U δ
t

∥∥ ∥∥zδt∥∥2 + 2αt

∥∥U δ
t

∥∥ .
Then making tδε larger (if necessary), such that ‖U δ

t ‖ ≤ ε(t + 1)−τ0 , Eθ∗ [‖Jt‖2|Ft] is
uniformly bounded, and (5.13) holds for all t ≥ tδε, it follows from (5.12)–(5.13) that
there exist positive constants c1 and c2 so that

Eθ∗
[
V δ
t+1 | Ft

] ≤ (
1− c1αt + c2αt(t+ 1)−τ0

)
V δ
t

+ c2
(
αt(t+ 1)−τ0 + α2

t (t+ 1)−2τ0 + α2
t

)
for all t ≥ tδε. Since 0 < τ0 < τ1, the first term inside the second set of parenthesis on
the right-hand side dominates; by making c4 > c2 and c3 < c1 appropriately, we have

(5.14) Eθ∗
[
V δ
t+1 | Ft

] ≤ (1− c3αt)V
δ
t + c4αt(t+ 1)−τ0 ≤ V δ

t + c4αt(t+ 1)−τ0

for all t ≥ tδε. Now consider the {Ft} adapted process {V δ

t}, such that

(5.15) V
δ

t = V δ
t − c4

∞∑
s=t

αs(s+ 1)−τ0

for t ≥ 0. Since τ1 = 1 and τ0 > 0, the sequence {αt(t+ 1)−τ0} is summable and the

process {V δ

t} is bounded from below. It is readily seen that {V δ

t}t≥tδε
is a supermartin-

gale and hence converges a.s. to a finite random variable. By (5.15), the process {V δ
t }

also converges a.s. to a finite random variable V δ (necessarily nonnegative). Finally,
from (5.14),

Eθ∗
[
V δ
t+1

] ≤ (1− c3αt)Eθ∗
[
V δ
t

]
+ c4αt(t+ 1)−τ0

for t ≥ tδε. Since τ0 > 0 the sequence {αt(t+1)−τ0} decays faster than {αt}, and hence
by Lemma 4.1 we have Eθ∗ [V δ

t ] → 0 as t → ∞. The sequence {V δ
t } is nonnegative,

so by Fatou’s lemma we further conclude that

0 ≤ Eθ∗
[
V δ

] ≤ lim inf
t→∞ Eθ∗

[
V δ
t

]
= 0.

The above implies V δ = 0 a.s. by the nonnegativity of V δ. Hence ‖zδt‖ → 0 as t → ∞
and the desired assertion follows.
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By inductive reasoning, we now obtain a stronger version of Lemma 5.8 that
quantifies the convergence rate in the above (see Appendix B for a proof).

Lemma 5.9. Let assumptions (A.1)–(A.5) hold with τ1 = 1 and a ≥ 1. Then, for
each n and τ ∈ [0, 1/2),

(5.16) Pθ∗
(
lim
t→∞(t+ 1)τ ‖xn(t)− θ∗‖ = 0

)
= 1.

6. Proofs of main results. The proof of Theorem 3.1 is a direct consequence
of the triangle inequality and Lemma 5.7 since all agent estimates converge to the
network-averaged estimate at the required rate.

Proof of Theorem 3.2.
Proof. Since ε1 > 0, τ1 = 1 and τ1 > τ2 +1/(2+ ε1)+ 1/2, from Lemma 5.7 there

exists ε > 0 (sufficiently small) such that

Pθ∗
(
lim
t→∞(t+ 1)1/2+ε ‖xn(t)− xavg(t)‖ = 0

)
= 1

for all n. Moreover, by Lemma 5.9, for each τ ∈ [0, 1/2), we have (t + 1)τ‖xavg(t) −
θ∗‖ → 0 a.s. as t → ∞, for all n. Since τ < 1/2 + ε, an immediate application of the
triangle inequality yields the required estimate convergence rate.

Proof of Theorem 3.3. We will use the following result from [11] concerning
the asymptotic normality of non-Markov stochastic recursions. The statement here is
somewhat less general than in [11] but serves our application and eases the additional
notational complexity.

Lemma 6.1 (Theorem 2.2. in [11]). Let {zt} be an R
k valued {Ft} adapted process

that satisfies

zt+1 =

(
Ik − 1

t+ 1
Γt

)
zt + (t+ 1)−1ΦtVt + (t+ 1)−3/2Tt,

where {Vt} and {Tt} are R
k valued stochastic processes, such that, for each t, Vt−1

and Tt are Ft-adapted, and where the processes {Γt} and {Φt} are R
k×k valued and

{Ft} adapted. Assume

Γt → Ik, Φt → Φ, and Tt → 0 as t → ∞.

Let the sequence {Vt} satisfy E[Vt|Ft] = 0 for each t and there exist a constant C > 0
and a matrix Σ such that C >

∥∥E[VtV
�
t |Ft]− Σ

∥∥ → 0 as t → ∞, and, with

(6.1) σ2
t,r =

∫
‖Vt‖2≥r(t+1)

‖Vt‖2dP,

let limt→∞ 1
t+1

∑t
s=0 σ

2
s,r = 0 for every r > 0. Then, the asymptotic distribution of

(t+ 1)1/2zt is normal with mean 0 and covariance matrix ΦΣΦ�.
Proof of Theorem 3.3. Recall the residual process {zt} and its δ-approximations

{zδt} as constructed in (5.8)–(5.10). With τ1 = a = 1,

zt+1 =

(
IM − 1

t+ 1
Γt

)
zt + (t+ 1)−1Ut + (t+ 1)−1Jt,

where Ut and Jt are defined in (5.8)–(5.10). Since Jt = (1/N)
∑N

n=1 Kn(t)ζn(t) and
the {Kn(t)}’s may not converge uniformly (both in time and space), Lemma 6.1 is
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not applicable directly. Hence, we first consider the process {zδt} for some δ > 0. In
order to apply Lemma 6.1 to the process {zδt}, define

Tt = (t+ 1)1/2U δ
t

for each t. Note that, by (B.20) ‖U δ
t ‖ = o((t+ 1)−1/2), and hence Tt → 0 as t → ∞.

Also define

Φt = IM and Vt = Jδ
t

for each t. Clearly, Eθ∗ [Vt|Ft] = 0 for all t. By the convergence of Kδ
t to K,

(6.2) lim
t→∞Eθ∗

[
VtV

�
t | Ft

]
= lim

t→∞
1

N2

N∑
n=1

Kδ
n(t)Rn

(
Kδ

n

)�
= Σ−1

c ,

where the first step in (6.2) follows from the fact that the agent observation noises
are mutually uncorrelated, i.e.,

Eθ∗
[
ζn(t)ζl(t)

� | Ft

]
= Eθ∗

[
ζn(t)ζl(t)

�] = 0

for each pair (n, l) of distinct agents at all times t, and the last step is an immediate
consequence of Lemma 5.1.

Moreover the uniform boundedness of the process {Kδ
t} implies the existence of

a constant C > 0 such that∥∥Eθ∗
[
VtV

�
t | Ft

]− Σ−1
c

∥∥ < C

for all t ≥ 0. The {Vt} thus constructed also satisfies the uniform integrability assump-
tion (6.1) due to the i.i.d. nature of the noise processes and the uniform boundedness
of {Kδ

t}. Thus, the process {zδt} falls under the purview of Lemma 6.1 with Φ = IM
and Σ = Σ−1

c . We thus conclude that

(t+ 1)1/2zδt =⇒ N (
0,Σ−1

c

)
for each δ > 0. To extend this asymptotic normality to the process {zt}, consider any
bounded continuous function f : RM �−→ R. By weak convergence (Portmanteau’s
theorem, [2]) we have

(6.3) lim
t→∞Eθ∗

[
f
(
(t+ 1)1/2zδt

)]
= Eθ∗ [f (z∗)]

for each δ, where z∗ denotes aN (0,Σ−1
c ) distributed random vector under the measure

P∗. Denoting by ‖f‖∞ the sup-norm of f(·) (necessarily finite) we obtain from (5.11)∥∥∥Eθ∗
[
f
(
(t+ 1)1/2zδt

)]
− Eθ∗

[
f
(
(t+ 1)1/2zt

)]∥∥∥ ≤ 2δ‖f‖∞.

By (6.3) we then have

lim sup
t→∞

∥∥∥Eθ∗
[
f
(
(t+ 1)1/2zt

)]
− Eθ∗ [f (z∗)]

∥∥∥ ≤ 2δ‖f‖∞.

Since the above holds for each δ > 0, we conclude that Eθ∗ [f((t + 1)1/2zt)] →
Eθ∗ [f(z∗)] as t → ∞. This convergence holds for all bounded continuous functions
f(·) thus giving the required weak convergence of the sequence {(t+ 1)1/2zt}.
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7. Conclusion. We have developed a distributed estimator that combines a
recursive collaborative learning step with the estimate update task. Through this
learning process, the agents adaptively improve their quantitative model information
and innovation gains with a view toward achieving the performance of the optimal
centralized estimator. Intuitively, the distributed approach is a culmination of two po-
tentials, the agreement (or consensus) and the innovation. By properly designing the
relative strength of their excitations, we have shown that the agent estimates may be
made asymptotically efficient in terms of their asymptotic covariance which coincides
with the asymptotic covariance (the inverse of the Fisher information rate for Gaus-
sian systems) of a centralized estimator with perfect statistical information and having
access to all agent observations at all times. A typical application scenario involves
multisensor distributed platforms, for example, the smart grid or vehicular networks.
Such networks are generally equipped with rich sensing infrastructures and high sens-
ing diversity but suffer from lack of information about the global model and about the
relative observation efficiencies due to unpredictable changes and constraints in the
sensing resources. Extensions of this work to nonlinear sensing platforms are currently
being investigated. Another important direction will be the extension of this adaptive
collaborative scheme to dynamic parameter situations as opposed to the static case
considered in this paper.

Appendix A. Proofs for section 4.
Proof of Lemma 4.2. We start by showing that for each positive integer k, the

following holds:

(A.1) lim
t→∞(t+ 1)k(δ2−δ1−ε0)E

[
zkt
]
= 0

for every 0 < ε0 ≤ δ2−δ1. The proof proceeds by induction on k. Let us first consider
k = 1. We then have

(A.2) E [zt+1] ≤ E [(1− E[r1(t) | Ft]) zt] + r2(t)

≤ (1− r1(t))E[zt] + r2(t),

where by r1(t) we denote the quantity a1/(t + 1)δ1 . The deterministic R+ valued
sequence {E[zt]} satisfies the conditions of Lemma 4.1 and the claim in (A.1) holds
for k = 1. Now assume the claim in (A.1) holds for all k ≤ k0 with k0 a positive
integer. We now show that the claim also holds for k = k0 + 1. Indeed, by the
polynomial expansion

zk0+1
t+1 =

k0+1∑
i=0

(
k0 + 1

i

)
((1− r1(t)) zt)

k0+1−i
ri2(t)

and the fact that 0 ≤ r1(t) ≤ 1, we have

zk0+1
t+1 ≤ (1− r1(t))z

k0+1
t +

k0+1∑
i=1

(
k0 + 1

i

)
zk0+1−i
t ri2(t).

In a way similar to (A.2), the above implies

(A.3) E

[
zk0+1
t+1

]
≤ (1− r1(t))E

[
zk0+1
t

]
+

k0+1∑
i=1

(
k0 + 1

i

)
E

[
zk0+1−i
t

]
ri2(t).
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By the induction hypothesis and the assumptions on the sequence {r2(t)}, there exist
constants ci for i = 1, . . . , k0 + 1, such that

(A.4)

E

[
zk0+1−i
t

]
ri2(t) ≤

ci
(t+ 1)(k0+1−i)(δ2−δ1−ε0)+iδ2

=
ci

(t+ 1)(k0+1)(δ2−δ1−ε0)+i(δ1+ε0)

for all i = 1, . . . , k0 + 1. It is readily seen that the smallest decay rate in the above
is attained at i = 1. Hence, from (A.3)–(A.4), there exists another constant c0, such
that

E

[
zk0+1
t+1

]
≤ (1− r1(t))E

[
zk0+1
t

]
+

c0
(t+ 1)(k0+1)(δ2−δ1−ε0)+(δ1+ε0)

.

The deterministic sequence {E[zk0+1
t ]} then falls under the purview of Lemma 4.1 by

taking δ2
.
= (k0 +1)(δ2 − δ1− ε0)+ (δ1 + ε0) and δ1

.
= δ1. Since ε0 > 0, an immediate

application of Lemma 4.1 gives

lim
t→∞(t+ 1)(k0+1)(δ2−δ1−ε0)E

[
zk0+1
t

]
= 0

and the induction step follows. This establishes the desired claim in (A.1).
We now complete the proof of Lemma 4.2. To this end, choose δ, such that

0 < δ < δ2 − δ1− δ0. Let kδ0 be a positive integer, such that kδ0(δ2 − δ1 − δ0− δ) > 1.
Then, for every ε > 0, we have

(A.5) P
(
(t+ 1)δ0zt > ε

) ≤ E[z
kδ0
t ]

εkδ0 (t+ 1)−kδ0
δ0

≤ c

εkδ0 (t+ 1)kδ0
(δ2−δ1−δ0−δ)

.

The last step is a consequence of the claim in (A.1), by which there exists a constant
c > 0, such that

E[z
kδ0
t ] ≤ c

(t+ 1)kδ0
(δ2−δ1−δ)

for all t ≥ 0. Since kδ0(δ2 − δ1 − δ0 − δ) > 1 by choice, the rightmost term in (A.5) is
summable in t. We thus obtain

∑∞
t=0 P((t+ 1)δ0zt > ε) < ∞, and hence

(A.6) P
(
(t+ 1)δ0zt > ε i.o.

)
= 0

by the Borel-Cantelli lemma (i.o. stands for infinitely often in (A.6)). Since (A.6)
holds for arbitrary ε > 0, we conclude that (t+ 1)δ0zt → 0 a.s. as t → ∞.

Proof of Lemma 4.3. Fix δ ∈ (0, δ2 − δ1 − δ0 − 1
2+ε1

). The following is readily
verified:

For every ε3 > 0, there exists Rε3 > 0, such that

(A.7) P

(
sup
t≥0

1

(t+ 1)
1

2+ε1
+δ

‖Ut(1 + Jt)‖ < Rε3

)
> 1− ε3.

Indeed, for any ε2 > 0, we note that

(A.8) P

(
1

(t+ 1)
1

2+ε1
+δ

‖Jt‖ > ε2

)
≤ 1

ε2+ε1
2 (t+ 1)1+δ(2+ε1)

E
[‖Jt‖2+ε1

]
≤ κ

ε2+ε1
2 (t+ 1)1+δ(2+ε1)

.



2220 SOUMMYA KAR, JOSÉ M. F. MOURA, AND H. VINCENT POOR

Since δ > 0, the term on the right-hand side of (A.8) is summable, and by the Borel-
Cantelli lemma we may conclude that

P

(
1

(t+ 1)
1

2+ε1
+δ

‖Jt‖ > ε2 i.o.

)
= 0.

Since ε2 is arbitrary, it follows that

(A.9) P

(
lim
t→∞

1

(t+ 1)
1

2+ε1
+δ

‖Jt‖ = 0

)
= 1.

From the boundedness of {Ut} and (A.9) we may further conclude that

(A.10) P

(
lim
t→∞

1

(t+ 1)
1

2+ε1
+δ

‖Ut(1 + Jt)‖ = 0

)
= 1.

By Egorov’s theorem the a.s. convergence in (A.10) is uniform except on a set of
arbitrarily small measure, which verifies the claim in (A.7).

We now establish the desired result by a truncation argument. For a scalar a,
define its truncation (a)C at level C > 0 by

(A.11) (a)C =

{ a
|a| min(|a|, C) if a 	= 0,

0 if a = 0.

For a vector, the truncation operation applies componentwise. Now, for each C > 0,
consider the sequence {ẑC(t)} given by the recursion

(A.12) ẑC(t+ 1) = (1− r1(t))ẑC(t) + r2(t) (Ut(1 + Jt))
C(t+1)

1
2+ε1

+δ

with ẑC(0) = z0. Using (A.11), we have

(A.13) ẑC(t+ 1) ≤ (1− r1(t))ẑC(t) + r̂2(t),

where

(A.14) r̂2(t) ≤ k1

(t+ 1)δ2−δ− 1
2+ε1

∀t

for some constant k1 > 0. By construction the process {ẑC(t)} is {Ft} adapted, and
hence the recursion in (A.13)–(A.14) falls under the purview of Lemma 4.2. Thus, for
every C > 0, we have (t+1)δ0 ẑC(t) → 0 a.s. as t → ∞, since δ0 < δ2 − δ1 − δ− 1

2+ε1
.

Now, for ε3 > 0, consider the sequence {ẑRε3
(t)}, where Rε3 > 0 is the constant

in (A.7). Using (A.7) and (A.12) we may conclude that

(A.15) P

(
inf
t≥0

(
ẑRε3

(t)− zt
) ≥ 0

)
> 1− ε3.

Since all processes involved are nonnegative, it readily follows from (A.15) that

(A.16) P

(
lim
t→∞(t+ 1)δ0zt = 0

)
> 1− ε3.

The lemma follows by taking ε3 to zero in (A.16).
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Proof of Lemma 4.4. Let L denote the set of possible Laplacian matrices (nec-
essarily finite) and D the distribution on L induced by the link formation process.
Since the set of Laplacian matrices is finite, the set L may be chosen such that
p = infL∈L pL > 0 with pL = P(Lt = L) for each L ∈ L and

∑
L∈L pL = 1. The

hypothesis λ2(L) > 0 implies that for every z ∈ C⊥,

(A.17)
∑
L∈L

z�Lz ≥
∑
L∈L

z�(pLL)z = z�Lz ≥ λ2(L)‖z‖2.

Denoting by |L| the cardinality of L, it follows from (A.17) that for each z ∈ C⊥ there
exists some Lz ∈ L, such that z�Lzz ≥ (λ2(L)/|L|)‖z‖2. Moreover, since the set L is
finite, the mapping Lz : C⊥ −→ L may be realized as a measurable function.

For each L ∈ L, the eigenvalues of the matrix INM − βtL ⊗ IM are 1 and 1 −
βtλn(L), 2 ≤ n ≤ N , each being repeated M times. Hence, for t ≥ t0 (large enough),
‖INM − βtL⊗ IM‖ ≤ 1 and ‖(INM − βtL⊗ IM )z‖ ≤ ‖z‖ for every z ∈ R

NM . Hence,
the functional rL,z given by

rL,z =

{
1 if t < t0 or z = 0,

1− ‖(INM−βtL⊗IM )z‖
‖z‖ otherwise

is jointly measurable in L and z and satisfies 0 ≤ rL,z ≤ 1 for each pair (L, z). Let
{rt} be the {Ft+1} adapted process given by rt = rLt,zt for each t, and ‖(INM −βtL⊗
IM )zt‖ = (1 − rt)‖zt‖ a.s. for each t. We now need to verify that {rt} satisfies (4.1)
for some cr > 0. To this end, for t large enough,

‖(INM − βtLzt ⊗ IM )zt‖2 = z�t (INM − 2βtLzt ⊗ IM )zt + β2
t z

�
t (Lzt ⊗ IM )2zt

≤ (
1− 2βtλ2(L)/|L|

) ‖zt‖2 + c1β
2
t ‖zt‖2

≤ (
1− βtλ2(L)/|L|

) ‖zt‖2,
where we have used the definition of the function Lz, the boundedness of the Laplacian
matrix, and the fact that βt → 0. Hence, by making t0 larger if necessary, we have

(A.18) ‖(INM − βtLzt ⊗ IM )zt‖ ≤
(
1− βt

λ2(L)

4|L|
)
‖zt‖

for all t ≥ t0. Now, by (A.18)

E [‖(INM − βtL⊗ IM )zt‖ | Ft] =
∑
L∈L

pL (1− rL,zt) ‖zt‖

≤
⎛⎝1−

⎛⎝pβt
λ2(L)

4|L| +
∑

L �=Lzt

pLrL,zt

⎞⎠⎞⎠ ‖zt‖.

Since
∑

L �=Lzt
pLrL,zt ≥ 0, we have for t ≥ t0,

(1− E[rt|Ft])‖zt‖ = E [‖(INM − βtL⊗ IM )zt‖ | Ft] ≤
(
1− pβt

λ2(L)

4|L|
)
‖zt‖.

Since, by definition rt = 1 on the set {zt = 0}, it follows that

E[rt|Ft] ≥
pλ2(L)

4|L| βt

for all t ≥ t0, thus establishing the assertion.
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Appendix B. Proofs for section 5.
Proof of Lemma 5.2. We will show the desired convergence in the matrix Frobe-

nius norm (denoted by ‖ · ‖F in the following). Since the matrix space under consid-
eration is finite dimensional, the convergence in L2 norm will follow. The existence of
quadratic moments implies the convergence of the sample covariances (see (2.3)) to
the true covariances, and hence for each n, Qn(t) → Rn a.s. Since, in addition, the
sequence {γt} in (2.2) goes to zero, we may choose an a.s. finite random variable R2,
such that for each n,

(B.1) Pθ∗

(
sup
t≥0

∥∥∥H�
n (Qn(t) + γtIMn)

−1
Hn

∥∥∥ ≤ R2 < ∞
)

= 1.

By construction, the matrix sequences {Gn(t)} and {Qn(t)} are symmetric for each

n. Let G̃n(t) = Gn(t) − Gavg(t) denote the deviation of the Grammian estimate

at agent n from the instantaneous network average Gavg(t). Also, let G̃t and Dt,

respectively, denote the matrices [G̃1(t), . . . , G̃N (t)]� and [D1(t), . . . , DN(t)]�, where
Dn(t) = (Qn(t) + γtIMn)

−1 for each n. Using the readily verifiable properties of the
Laplacian,

(B.2) (1N ⊗ IM )
�
(Lt ⊗ IM ) = 0, (Lt ⊗ IM ) (1N ⊗Gavg(t)) = 0,

we have

(B.3) G̃t+1 = (INM − βt (Lt ⊗ IM )− αtINM ) G̃t + αt ((Dt −Davg(t))) ,

where Davg(t) =
1
N

∑N
n=1 Dn(t). Note that, by (B.1), there exists an {Ft} adapted

a.s. bounded process {Ut}, such that supt≥0 ‖Dt − Davg(t)‖F ≤ Ut a.s. For m ∈
{1, · · · ,M}, let G̃m,t denote the mth column of G̃t. The process {G̃m,t} is {Ft}
adapted and G̃m,t ∈ C⊥ for each t. Then, by Lemma 4.4 there exists a [0, 1] valued
{Ft+1} adapted process {rm,t}, such that

‖(INM − βtLt ⊗ IM )G̃m,t‖ ≤ (1− rm,t)‖G̃m,t‖

and Eθ∗ [rm,t|Ft] ≥ cm,r/(t + 1)τ2 a.s. for t ≥ t0 sufficiently large. Noting that the
square of the Frobenius norm is the sum of the squared column L2 norms, we have

(B.4) ‖(INM − βtLt ⊗ IM )G̃t‖2F ≤
M∑

m=1

(1− rm,t)
2‖G̃m,t‖2 ≤ (1 − rt)

2‖G̃t‖2F ,

where {rt} is the {Ft+1} adapted process given by rt = r1,t ∧ r2,t ∧ · · · ∧ rM,t. By the
conditional Jensen’s inequality, we obtain

(B.5) Eθ∗ [rt|Ft] ≥ ∧M
m=1Eθ∗ [rm,t|Ft] ≥ cr/(t+ 1)τ2

for some cr > 0 and t ≥ t0. Recall {αt} from (2.5). Using (B.4), we finally get

‖(INM − βtLt ⊗ IM − αtINM )G̃t‖F ≤‖(INM − βtLt ⊗ IM )G̃t‖F + αt‖G̃t‖F
≤(1 − rt)‖G̃t‖F + αt‖G̃t‖F
≤ (1− rt/2) ‖G̃t‖F(B.6)



ASYMPTOTIC EFFICIENT DISTRIBUTED ESTIMATION 2223

for t ≥ t0. From (B.3) and (B.6) we then have

(B.7) ‖G̃t+1‖F ≤ ‖(INM − βtLt ⊗ IM − αtINM )G̃t‖F + αtUt

≤ (1− rt/2) ‖G̃t‖F + αtUt.

By (B.5) and since βt/αt → ∞ as t → ∞, the recursion in (B.7) clearly falls under

the purview of Lemma 4.3, and we conclude that ‖G̃t‖F → 0 a.s. as t → ∞. The
convergence in the L2 norm follows immediately.

Proof of Lemma 5.3. The process {Gavg(t)} satisfies the following recursion:

Gavg(t+ 1) = (1− αt)Gavg(t) + αtDavg(t).

Let G̃avg(t) denote the residual Gavg(t)− Σc, and the process {G̃avg(t)} satisfies

(B.8) G̃avg(t+ 1) = (1− αt) G̃avg(t) + αt

(
Davg(t)− Σc

)
.

By Lemma 18 in [18] there exist t0 sufficiently large and a constant B such that

0 ≤
t−1∑
k=s

((
t−1∏

l=k+1

(1− αl)

)
αk

)
≤ B

for all positive integers t and s with t0 ≤ s ≤ t. Also, the convergence of the sample
covariances and the fact that γt → 0 as t → ∞ imply Davg(T ) → Σc a.s. as t → ∞.
Hence, for a given ε > 0, we may choose tε > t0 such that ‖Davg(t) − Σc‖ < ε for all
t ≥ tε. From (B.8), we then have for t > tε

‖G̃avg(t)‖ ≤
∣∣∣∣∣
(

t−1∏
k=tε

(1− αk)

)∣∣∣∣∣ ∥∥∥G̃avg(tε)
∥∥∥+

t−1∑
k=tε

((
t−1∏

l=k+1

(1− αl)

)
αkε

)

≤
∣∣∣∣∣
(

t−1∏
k=tε

(1− αk)

)∣∣∣∣∣ ∥∥∥G̃avg(tε)
∥∥∥+Bε.(B.9)

Since
∑

t≥0 αt = ∞ the first term on the right-hand side of (B.9) goes to zero as

t → ∞, and we have lim supt→∞ ‖G̃avg(t)‖ ≤ Bε. Since ε > 0 is arbitrary, we

conclude that G̃avg(t) → 0 a.s. as t → ∞ by taking ε to zero. The desired assertion
follows immediately.

Proof of Proposition 5.5. A version of this result was established in [20, Lemma 6]
for the case of constant gains Kn(t). In the following we generalize the arguments
of [20] to time-varying adaptive gains. To this end we show

(B.10) inf
‖z‖=1

z�
(
βt

αt
L⊗ IM +KH

)
z > 0

for all t sufficiently large, where K = diag (K1, . . . ,KN).
A vector z ∈ R

NM may be decomposed as z = zC + zC⊥ with zC denoting its
projection on the consensus or agreement subspace C,

(B.11) C =
{
z ∈ R

NM | z = 1N ⊗ a for some a ∈ R
M
}
,
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and zC⊥ the orthogonal complement. Also, denoting by DK the symmetricized version
of KH, i.e., DK = 1

2 (KH+H�K�), standard matrix manipulations and properties of
the Laplacian yield

(B.12)

z�
(
βt

αt
L⊗ IM +KH

)
z ≥ βt

αt
λ2(L) ‖zC⊥‖2 + z�C⊥DKzC⊥ + 2z�C DKzC⊥ + z�C DKzC .

By construction,
∑N

n=1 KnHn = Σ
−1

c

∑N
n=1 H

�
n R−1

n Hn = NIM , and hence we note

that z�C DKzC = ‖zC‖2 for each z ∈ R
NM . Let us choose a constant c1 > 0 such that

z�C⊥DKzC⊥ ≥ −c1 ‖zC⊥‖2 and z�C DKzC⊥ ≥ −c1 ‖zC‖ ‖zC⊥‖ .
It then follows from (B.12) that

(B.13)

z�
(
βt

αt
L⊗ IM +KH

)
z ≥

(
βt

αt
λ2(L)− c1

)
‖zC⊥‖2 − 2c1 ‖zC‖ ‖zC⊥‖+ ‖zC‖2 .

Since βt/αt → ∞ and λ2(L) > 0, there exists t1 sufficiently large such that

(B.14)
βt

αt
λ2(L)− c1 > c21 ∀t ≥ t1.

We now verify (B.10) for t ≥ t1. To this end, assume ‖z‖ = 1. In case zC = 0
(‖zC⊥‖ = 1), we have from (B.13)

z�
(
βt

αt
L⊗ IM +KH

)
z ≥ βt

αt
λ2(L)− c1 > 0.

For the other case, i.e., zC 	= 0,

z�
(
βt

αt
L⊗ IM + KH

)
z ≥ ‖zC‖2

[(
βt

αt
λ2(L)− c1

) ‖zC⊥‖2
‖zC‖2 − 2c1

‖zC⊥‖
‖zC‖ + 1

]
> 0,

where the last inequality follows from the fact that the quadratic functional of
‖zC⊥‖
‖zC‖

is always positive due to the discriminant condition imposed by (B.14). We thus
conclude that

(B.15) z�
(
βt

αt
L⊗ IM +KH

)
z > 0

for all t ≥ t1 and z, such that ‖z‖ = 1. Since the quadratic form in (B.15) is a
continuous function on the compact unit circle, we may further conclude that

(B.16) inf
‖z‖=1

z�
(
βt

αt
L⊗ IM +KH

)
z > c2 > 0

for some positive constant c2, thus verifying the assertion in (B.10) for all t ≥ t1.
To complete the proof of Proposition 5.5, choose any 0 < ε < c2. It then follows
from (B.16) that for t ≥ t1 and arbitrary z ∈ R

NM ,

z�
(
βtL⊗ IM + αtKtH

)
z ≥ αt ‖z‖2

[
inf

‖z‖=1
z�

(
βt

αt
L⊗ IM +KH

)
z

]
≥ (c2 − ε)αt ‖z‖2 ,

thus verifying the assertion of Proposition 5.5 with εK = ε, tK = t1, and cK = c2
− ε.
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Proof of Proposition 5.6. By (B.13) in Proposition 5.5, there exists a constant
c1 > 0 such that for arbitrary z ∈ R

NM

z�
(
βt

αt
L⊗ IM +KH

)
z ≥

(
βt

αt
λ2(L)− c1

)
‖zC⊥‖2 − 2c1 ‖zC‖ ‖zC⊥‖+ ‖zC‖2 .

Hence for K̃ satisfying (5.2), we have

z�
(
βt

αt
L⊗ IM + K̃H

)
z ≥ z�

(
βt

αt
L⊗ IM +KH

)
z− ε ‖z‖2

=

(
βt

αt
λ2(L)− c1 − ε

)
‖zC⊥‖2 − 2c1‖zC‖‖zC⊥‖+(1− ε)‖zC‖2.

Using the fact that 0 < ε < 1, we have

(B.17)

z�
(
βt

αt
L⊗ IM + K̃H

)
z ≥

(
βt

2αt
λ2(L) +

(
βt

2αt
λ2(L)− c1 − ε− c21

1− ε

))
‖zC⊥‖2

+

(
c1√
1− ε

‖zC⊥‖ − √
1− ε ‖zC‖

)2

.

Since λ2(L) > 0 and βt/αt → ∞ as t → ∞, there exists tε (large enough), such that(
βt

2αt
λ2(L)− c1 − ε− c21

1− ε

)
≥ 0

for all t ≥ tε. We may then conclude from (B.17) that

z�
(
βt

αt
L⊗ IM + K̃H

)
z ≥ βt

2αt
λ2(L) ‖zC⊥‖2 ,

and hence

z�
(
βtL⊗ IM + αtK̃H

)
z ≥ λ2(L)

2
βt ‖zC⊥‖2

for all t ≥ tε, z ∈ R
NM , and K̃ satisfying (5.2). This establishes the assertion.

Proof of Lemma 5.7. Let the residual x̃n(t) = xn(t) − xavg(t). Then arguments
along the lines of (B.2)–(B.3) show that the process x̃t = [x̃�

1 (t), . . . , x̃
�
N (t)]� satisfies

the recursion

x̃t+1 = (INM − βtLt ⊗ IM ) x̃t + αtz̃t,

where the process {z̃t} is defined as

z̃t =

(
INM − 1

N
1N ⊗ (1N ⊗ IM )

�
)
Kt (yt −Hxt) .

Since Kt → K as t → ∞, the process {xt} is bounded (Lemma 5.4), and the observa-
tion noise ζt satisfies (A.5), there exist two R+ valued processes: (1) an Ft-adapted
{Ut} satisfying supt≥0 ‖Ut‖ < ∞ a.s. and (2) an i.i.d. {Ft+1} adapted {Jt} indepen-
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dent of Ft for each t and Eθ∗ [‖Jt‖2+ε1 ] < ∞, such that

‖z̃t‖ ≤ Ut (1 + Jt) .

Since x̃t ∈ C⊥ for all t, by Lemma 4.4 there exists an {Ft+1} adapted R+ valued
process {rt} with 0 ≤ rt ≤ 1 a.s. such that

‖(INM − βtLt ⊗ IM − PNM ) x̃t‖ ≤ (1− rt) ‖x̃t‖
for all t (large enough) and a constant cr > 0 such that for all t

Eθ∗ [rt | Ft] ≥ cr
(t+ 1)τ2

a.s.

From the above development we conclude that

(B.18) ‖x̃t+1‖ ≤ (1− rt) ‖x̃t‖+ αtUt (1 + Jt)

for all t (large enough). The recursion (B.18) clearly falls under the purview of
Lemma 4.3, and we have the assertion

Pθ∗
(
lim
t→∞(t+ 1)τ0 x̃t = 0

)
= 1

for all τ0 ∈ [0, τ1 − τ2 − 1
2+ε1

). This establishes the claim.

Proof of Lemma 5.9 We will use the following approximation result from [10]
in the proof.

Proposition B.1 (Lemma 4.3 in [10]). Let {bt} be a scalar sequence satisfying

bt+1 ≤
(
1− c

t+ 1

)
bt + dt(t+ 1)−τ ,

where c > τ , τ > 0, and the sequence {dt} is summable. Then lim supt→∞(t+1)τbt <
∞.

The following generalized convergence criterion of dependent stochastic sequences
will also be useful.

Proposition B.2 (Lemma 10 in [9]). Let {J t} be an R valued {Ft+1} adapted
process such that E[J t|Ft] = 0 a.s. for each t ≥ 1. Then the sum

∑
t≥0 J t exists and

is finite a.s. on the set where
∑

t≥0 E[J
2

t |Ft] is finite.
Proof of Lemma 5.9. For each δ > 0 recall the construction in (5.8)–(5.10).

Clearly, it suffices by the arguments in Lemma 5.8 to establish the required conver-
gence rate claim for each of the processes {zδt}.

Let τ ∈ [0, 1/2) be such that

Pθ∗
(
lim
t→∞(t+ 1)τ

∥∥zδt∥∥ = 0
)
= 1

for all n. Such a τ always exists by Lemma 5.8. We now show that there exists τ
such that τ < τ < 1/2 for which the claim holds. To this end, choose τ̃ ∈ (τ, 1/2)
and let μ = 1/2(τ + τ̃ ). For each δ > 0 recall the construction in (5.8)–(5.10), and
the Ft-adapted process {zδt} satisfies

(B.19)∥∥zδt+1

∥∥2 ≤ ∥∥IM − αtΓ
δ
t

∥∥2 ∥∥zδt∥∥2 + α2
t

∥∥U δ
t

∥∥2 + α2
t

∥∥Jδ
t

∥∥2 + 2αt

(
zδt
)� (

IM − αtΓ
δ
t

)
Jδ
t

+ 2αt

∥∥U δ
t

∥∥ (∥∥IM − αtΓ
δ
t

∥∥ ∥∥zδt∥∥+ αt ‖Jt‖
)
.
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Since τ1 > τ2 + 1/(2 + ε1) + 1/2 and by Lemma 5.7 and (5.9), the process {U δ
t } may

be chosen such that2

(B.20)
∥∥U δ

t

∥∥ = o
(
(t+ 1)−1/2

)
.

Since ‖zδt‖ = o((t + 1)−τ ) (by hypothesis), we obtain

2αt

∥∥U δ
t

∥∥ ∥∥IM − αtΓ
δ
t

∥∥ ∥∥zδt∥∥ = o
(
(t+ 1)−3/2−τ

)
.

The existence of the second moment of the observation noise process and the bound-
edness of {Kδ

t} imply

(B.21) Pθ∗
(
lim
t→∞(t+ 1)−1/2−ε

∥∥Jδ
t

∥∥ = 0
)
= 1

for each ε > 0, and hence

2α2
t

∥∥U δ
t

∥∥ ∥∥Jδ
t

∥∥ = o
(
(t+ 1)−3/2−τ

)
.

Since 2μ = τ + τ̃ and τ̃ < 1/2, by (B.21) we note that∑
t≥0

(t+ 1)2μαt

∥∥U δ
t

∥∥ ∥∥IM − αtΓ
δ
t

∥∥ ∥∥zδt∥∥ < ∞.

Similarly we have∑
t≥0

(t+ 1)2μα2
t

∥∥U δ
t

∥∥ ∥∥Jδ
t

∥∥ < ∞,
∑
t≥0

(t+ 1)2μα2
t

∥∥U δ
t

∥∥2 < ∞.

Now consider the terms α2
t ‖Jδ

t ‖2. Since the second moment of the observation noise
process exists, {Kδ

t} is uniformly bounded, and 2μ < 1, it can be shown that∑
t≥0

(t+ 1)2μα2
t ‖Jδ

t ‖2 < ∞.

Now let {W δ
t } denote the Ft+1 sequence given by

W δ
t = αt

(
zδt
)� (

IM − αtΓ
δ
t

)
Jδ
t .

We note that Eθ∗ [W δ
t |Ft] = 0 for all t and (at least for t large) we have Eθ∗ [(W δ

t )
2|Ft] ≤

α2
t ‖zδt‖2‖Jδ

t ‖2. Since the second moment of the observation noise process exists and
{Kδ

t} is uniformly bounded, we obtain

Eθ∗
[(
W δ

t

)2 | Ft

]
= o

(
(t+ 1)−2−2τ

)
.

Hence

(B.22) Eθ∗
[
(t+ 1)4μ

(
W δ

t

)2 | Ft

]
= o

(
(t+ 1)−2−2τ+4μ

)
= o

(
(t+ 1)−2+2τ̃

)
.

Since 2τ̃ < 1, the sequence on the left-hand side of (B.22) is summable and by
Proposition B.2 we conclude that

∑
t≥0(t+1)2μW δ

t exists and is finite. Since Γδ
t → IM

2For R+ valued sequences {ft} and {gt} the notation ft = o(gt) means that ft/gt → 0 as t → ∞.
For stochastic sequences the o(·) is to be interpreted a.s. or pathwise.
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uniformly and αt → 0 as t → ∞, we have

(B.23)
∥∥IM − αtΓ

δ
t

∥∥2 ≤ (
1− a(t+ 1)−1

)
for all t large enough. Thus (eventually) we have from (B.19)∥∥zδt+1

∥∥2 ≤ (
1− a(t+ 1)−1

) ∥∥zδt∥∥2 + dt(t+ 1)−2μ,

where the term dt(t + 1)−2μ corresponds to all the residuals. Moreover by (B.20)–
(B.23) the limit limt→∞

∑t
s=0 ds exists and is finite. Since a ≥ 1 > 2μ, an immediate

application of Proposition B.1 yields

lim sup
t→∞

(t+ 1)2μ
∥∥zδt∥∥2 < ∞ a.s.

Hence, there exists τ with τ < τ < μ, such that (t + 1)τ
∥∥zδt∥∥ → 0 a.s. as t → ∞.

Since the above holds for all δ > 0, we conclude that (t+1)τ ‖zt‖ → 0 a.s. as t → ∞.
Thus, for every τ for which the convergence in (5.16) holds there exists τ ∈ (τ , 1/2)
for which the convergence continues to hold. Hence, by induction we conclude that
the required convergence holds for all τ ∈ [0, 1/2).

REFERENCES

[1] D. Bertsekas, J. Tsitsiklis, and M. Athans, Convergence Theories of Distributed Iterative
Processes: A Survey, Technical report, Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA, 1984.

[2] P. Billingsley, Convergence of Probability Measures, John Wiley and Sons, New York, 1999.
[3] V. S. Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint, Cambridge Uni-

versity Press, Cambridge, UK, 2008.
[4] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Randomized gossip algorithms, IEEE

Trans. Inform. Theory, 52 (2006), pp. 2508–2530.
[5] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, Distributed Kalman filtering using

consensus strategies, in Proceedings of the 46th IEEE Conference on Decision and Control,
New Orleans, LA, 2007, pp. 5486–5491.

[6] F. R. K. Chung, Spectral Graph Theory, AMS, Providence, RI, 1997.
[7] T. Chung, V. Gupta, J. Burdick, and R. Murray, On a decentralized active sensing strategy

using mobile sensor platforms in a network, in Proceedings of the 43rd IEEE Conference
on Decision and Control, Vol. 2, Paradise Island, Bahamas, 2004, pp. 1914–1919.

[8] A. G. Dimakis, S. Kar, J. Moura, M. G. Rabbat, and A. Scaglione, Gossip algorithms for
distributed signal processing, Proc. IEEE, 98 (2010), pp. 1847–1864.

[9] L. E. Dubins and D. A. Freedman, A sharper form of the Borel-Cantelli lemma and the
strong law, Ann. Math. Statist., 36 (1965), pp. 800–807.

[10] V. Fabian, Stochastic approximation of minima with improved asymptotic speed, Ann. Math.
Statist., 37 (1967), pp. 191–200.

[11] V. Fabian, On asymptotic normality in stochastic approximation, Ann. Math. Statist., 39
(1968), pp. 1327–1332.

[12] S. B. Gelfand and S. K. Mitter, Recursive stochastic algorithms for global optimization in
Rd, SIAM J. Control Optim., 29 (1991), pp. 999–1018.

[13] P. R. Halmos, Measure Theory, Springer-Verlag, New York, 1974.
[14] M. Huang and J. Manton, Stochastic approximation for consensus seeking: Mean square

and almost sure convergence, in Proceedings of the 46th IEEE Conference on Decision and
Control, New Orleans, LA, 2007.

[15] A. Jadbabaie, A. Tahbaz-Salehi, and A. Sandroni, Non-Bayesian Social Learning, PIER
working paper 2010-005, University of Pennsylvania, Philadelphia, Feb., 2010.

[16] D. Jakovetic, J. Xavier, and J. Moura, Weight optimization for consenus algorithms with
correlated switching topology, IEEE Trans. Signal Process., 58 (2010), pp. 3788–3801.

[17] D. Jakovetic, J. Xavier, and J. Moura, Cooperative convex optimization in networked sys-
tems: Augmented Lagrangian algorithms with directed gossip communication, IEEE Trans.
Signal Process., 59 (2011), pp. 3889–3902.



ASYMPTOTIC EFFICIENT DISTRIBUTED ESTIMATION 2229

[18] S. Kar, J. M. F. Moura, and K. Ramanan, Distributed parameter estimation in sensor net-
works: Nonlinear observation models and imperfect communication, IEEE Trans. Inform.
Theory, 58 (2012), pp. 3575–3605.

[19] S. Kar and J. M. F. Moura, Distributed consensus algorithms in sensor networks with im-
perfect communication: Link failures and channel noise, IEEE Trans. Signal Process., 57
(2009), pp. 355–369.

[20] S. Kar and J. Moura, Convergence rate analysis of distributed gossip (linear parameter)
estimation: Fundamental limits and tradeoffs, IEEE J. Selected Topics Signal Process., 5
(2011), pp. 674–690.

[21] U. A. Khan and J. M. F. Moura, Distributing the Kalman filter for large-scale systems, IEEE
Trans. Signal Process., 56 (2008), pp. 4919–4935.

[22] V. Krishnamurthy, K. Topley, and G. Yin, Consensus formation in a two-time-scale Marko-
vian system, Multiscale Model. Simul., 7 (2009), pp. 1898–1927.

[23] H. Kushner and G. Yin, Asymptotic properties of distributed and communicating stochastic
approximation algorithms, SIAM J. Control Optim., 25 (1987), pp. 1266–1290.

[24] T. L. Lai and C. Z. Wei, Asymptotically efficient self-tuning regulators, SIAM J. Control
Optim., 25 (1987), pp. 466–481.

[25] T. L. Lai, Asymptotic properties of nonlinear least squares estimates in stochastic regression
models, Ann. Statist., 2 (1994), pp. 1917–1930.

[26] K. Li and J. Baillieul, Robust and efficient quantization and coding for control of multidimen-
sional linear systems under data rate constraints, Internat. J. Robust Nonlinear Control,
17 (2007), pp. 898–920.

[27] T. Li, M. Fu, L. Xie, and J.-F. Zhang, Distributed consensus with limited communication
data rate, IEEE Trans. Automat. Control, 56 (2011), pp. 279–292.

[28] I. Lobel and A. Ozdaglar, Distributed subgradient methods for convex optimization over
random networks, IEEE Trans. Automat. Control, 56 (2011), pp. 1291–1306.

[29] C. Lopes and A. Sayed, Diffusion least-mean squares over adaptive networks: Formulation
and performance analysis, IEEE Trans. Signal Process., 56 (2008), pp. 3122–3136.

[30] A. Matveev and A. Savkin, The problem of state estimation via asynchronous communication
channels with irregular transmission times, IEEE Trans. Automat. Control, 48 (2006),
pp. 670–676.

[31] M. Nevel’son and R. Has’minskii, Stochastic Approximation and Recursive Estimation, AMS,
Providence, RI, 1973.

[32] R. Olfati-Saber, J. A. Fax, and R. M. Murray, Consensus and cooperation in networked
multi-agent systems, Proc. IEEE, 95 (2007), pp. 215–233.

[33] R. Olfati-Saber, Kalman-consensus filter: Optimality, stability, and performance, in Pro-
ceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China, 2009,
pp. 7036–7042.

[34] B. Polyak, Introduction to Optimization, Optimization Software, New York, 1987.
[35] S. S. Ram, A. Nedic, and V. V. Veeravalli, Incremental stochastic subgradient algorithms

for convex optimization, SIAM J. Optim., 20 (2009), pp. 691–717.
[36] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, Consensus in ad hoc WSNs with noisy

links—Part I: Distributed estimation of deterministic signals, IEEE Trans. Signal Process.,
56 (2008), pp. 350–364.

[37] I. Schizas, G. Mateos, and G. Giannakis, Stability analysis of the consensus-based distributed
LMS algorithm, in Proceedings of the 33rd International Conference on Acoustics, Speech,
and Signal Processing, Las Vegas, NV, 2008, pp. 3289–3292.

[38] S. Stankovic, M. Stankovic, and D. Stipanovic, Decentralized parameter estimation by
consensus based stochastic approximation, in Proceedings of the 46th IEEE Conference on
Decision and Control, New Orleans, LA, 2007, pp. 1535–1540.

[39] S. Tatikonda and S. Mitter, Control under communication constraints, IEEE Trans. Au-
tomat. Control, 49 (2004), pp. 1056–1068.

[40] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, Distributed asynchronous deterministic
and stochastic gradient optimization algorithms, IEEE Trans. Automat. Control, 31 (1986),
pp. 803–812.

[41] L. Xiao, S. Boyd, and S. Lall, A scheme for robust distributed sensor fusion based on average
consensus, in Proceedings of the International Conference on Information Processing in
Sensor Networks, Los Angeles, CA, 2005, pp. 63–70.

[42] G. Yin, Y. Sun, and L. Wang, Asymptotic properties of consensus-type algorithms for net-
worked systems with regime-switching topologies, Automatica, 47 (2011), pp. 1366–1378.

[43] G. Yin and Q. Zhang, Discrete-Time Markov Chains: Two-Time-Scale Methods and Appli-
cations, Springer, New York, 2005.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


