
21SPIRAL LIBRARY GENERATOR

SPIRAL: A GENERATOR FOR 
PLATFORM-ADAPTED LIBRARIES OF 
SIGNAL PROCESSING ALGORITHMS

Markus Püschel1

José M. F. Moura1

Bryan Singer2

Jianxin Xiong3

Jeremy Johnson4

David Padua5

Manuela Veloso6

Robert W. Johnson7

Abstract

SPIRAL is a generator for libraries of fast software imple-
mentations of linear signal processing transforms. These
libraries are adapted to the computing platform and can
be re-optimized as the hardware is upgraded or replaced.
This paper describes the main components of SPIRAL:
the mathematical framework that concisely describes sig-
nal transforms and their fast algorithms; the formula gen-
erator that captures at the algorithmic level the degrees of
freedom in expressing a particular signal processing
transform; the formula translator that encapsulates the
compilation degrees of freedom when translating a spe-
cific algorithm into an actual code implementation; and,
finally, an intelligent search engine that finds within the
large space of alternative formulas and implementations
the “best” match to the given computing platform. We
present empirical data that demonstrate the high perform-
ance of SPIRAL generated code.

Key words: program generation, automatic performance
tuning, signal processing, domain-specific language, sig-
nal transform, Fourier transform, DFT, FFT, search, opti-
mization

1 Introduction

The short life cycles of modern computer platforms are a
major problem for developers of high performance soft-
ware for numerical computations. The different plat-
forms are usually source code compatible (i.e., a suitably
written C program can be recompiled) or even binary
compatible (e.g., if based on Intel’s x86 architecture), but
the fastest implementation is platform-specific due to dif-
ferences in, for example, micro-architectures or cache
sizes and structures. Thus, producing optimal code
requires skilled programmers with intimate knowledge in
both the algorithms and the intricacies of the target plat-
form. When the computing platform is replaced, hand-
tuned code becomes obsolete.

The need to overcome this problem has led in recent
years to a number of research activities that are collec-
tively referred to as “automatic performance tuning”.
These efforts target areas with high performance require-
ments such as very large data sets or real-time processing.

One focus of research has been the area of linear alge-
bra leading to highly efficient automatically tuned soft-
ware for various algorithms. Examples include ATLAS
(Whaley and Dongarra, 1998), PHiPAC (Bilmes et al.,
1997), and SPARSITY (Im and Yelick, 2001). 

Another area with high performance demands is dig-
ital signal processing (DSP), which is at the heart of
modern telecommunications and is an integral compo-
nent of different multimedia technologies, such as image/
audio/video compression and water marking, or in medi-
cal imaging such as computed image tomography and
magnetic resonance imaging, just to cite a few examples.
The computationally most intensive tasks in these tech-
nologies are performed by discrete signal transforms.
Examples include the discrete Fourier transform (DFT),
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the discrete cosine transforms (DCTs), the Walsh–Had-
amard transform (WHT) and the discrete wavelet trans-
form (DWT).

The research on adaptable software for these trans-
forms has to date been comparatively scarce, except for
the efficient DFT package FFTW (Frigo and Johnson,
1998; Frigo, 1999). FFTW includes code modules, called
“codelets”, for small transform sizes, and a flexible
breakdown strategy, called a “plan”, for larger transform
sizes. The codelets are distributed as a part of the pack-
age. They are automatically generated and optimized to
perform well on every platform, i.e., they are not plat-
form-specific. Platform-adaptation arises from the choice
of plan, i.e., how a DFT of large size is recursively
reduced to smaller sizes. FFTW has been used by other
groups to test different optimization techniques, such as
loop interleaving (Gatlin and Carter, 1999), and the use
of short-vector instructions (Franchetti et al., 2001);
UHFFT (Mirkovic and Johnson, 2001) uses an approach
similar to FFTW and includes search on the codelet level
and additional recursion methods.

SPIRAL is a generator for platform-adapted libraries
of DSP transforms, i.e., it includes no code for the com-
putation of transforms prior to installation time. The
users trigger the code generation process after installa-
tion by specifying the transforms to implement. In this
paper we describe the main components of SPIRAL: the
mathematical framework to capture transforms and their
algorithms, the formula generator, the formula translator,
and the search engine.

SPIRAL’s design is based on the following realization: 

• DSP transforms have a very large number of different
fast algorithms (the term “fast” refers to the operations
count).

• Fast algorithms for DSP transforms can be represented
as formulas in a concise mathematical notation using a
small number of mathematical constructs and primi-
tives.

• In this representation, the different DSP transform
algorithms can be automatically generated.

• The automatically generated algorithms can be auto-
matically translated into a high-level language (such
as C or Fortran) program.

Based on these facts, SPIRAL translates the task of
finding hardware adapted implementations into an intelli-
gent search in the space of possible fast algorithms and
their implementations.

The main difference to other approaches, in particular
to FFTW, is the concise mathematical representation that
makes the high-level structural information of an algo-
rithm accessible within the system. This representation,
and its implementation within the SPIRAL system, ena-

bles the automatic generation of the algorithm space, the
high-level manipulation of algorithms to apply various
search methods for optimization, the systematic evalua-
tion of coding alternatives, and the extension of SPIRAL
to different transforms and algorithms. The details will
be provided in Sections 2–4.

The architecture of SPIRAL is displayed in Figure 1.
Users specify the transform they want to implement and
its size, e.g., a DFT of size 1024. The Formula Genera-
tor generates one, or several, out of many possible fast
algorithms for the transform. These algorithms are repre-
sented as programs written in a SPIRAL proprietary lan-
guage—the signal processing language (SPL). The SPL
program is compiled by the Formula Translator into a
program in a common language such as C or Fortran.
Directives supplied to the formula translator control
implementation choices such as the degree of unrolling,
or complex versus real arithmetic. Based on the run-time
of the generated program, the Search Engine triggers the
generation of additional algorithms and their implemen-
tations using possibly different directives. Iteration of
this process leads to a C or Fortran implementation that is
adapted to the given computing platform. Optionally, the
generated code is verified for correctness. SPIRAL is
maintained at the website of Moura et al. (1998). 

 Johnson et al. (1990) first proposed, for the domain of
DFT algorithms, to use formula manipulation to study
various ways of optimizing their implementation for a
specific platform. Other research on adaptable packages
for the DFT includes Auslander et al. (1996), Egner
(1997), Haentjens (2000), and Sepiashvili (2000), and for
the WHT includes Johnson and Püschel (2000). The use
of dynamic data layout techniques to improve perform-
ance of the DFT and the WHT has been studied in the
context of SPIRAL in Park et al. (2000) and Park and
Prasanna (2001).

Fig. 1 The architecture of SPIRAL.
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This paper is organized as follows. In Section 2 we
present the mathematical framework that SPIRAL uses to
capture signal transforms and their fast algorithms. This
framework constitutes the foundation for SPIRAL’s
architecture. The following three sections explain the
three main components of SPIRAL, the formula genera-
tor (Section 3), the formula translator (Section 4), and the
search engine (Section 5). Section 6 presents empirical
run-time results for the code generated by SPIRAL. For
most transforms, highly tuned code is not readily availa-
ble as benchmark. An exception is the DFT for which we
compared SPIRAL generated code with FFTW, one of
the fastest fast Fourier transform (FFT) packages availa-
ble.

2  SPIRAL’s Framework

SPIRAL captures linear discrete signal transforms (also
called DSP transforms) and their fast algorithms in a concise
mathematical framework. The transforms are expressed
as a matrix–vector product

(1)

where x is a vector of n data points, M is an n × n matrix
representing the transform, and y is the transformed vec-
tor.

Fast algorithms for signal transforms arise from factor-
izations of the transform matrix M into a product of
sparse matrices:

(2)

Typically, these factorizations reduce the arithmetic cost
of computing the transform from O(n2), as required by
direct matrix–vector multiplication, to O(n log n). It is a
special property of signal transforms that these factoriza-
tions exist and that the matrices Mi are highly structured.
In SPIRAL, we use this structure to write these factoriza-
tions in a very concise form.

 We illustrate SPIRAL’s framework with a simple
example: the DFT of size four, indicated as DFT4. The
DFT4 can be factorized into a product of four sparse
matrices:

(3)

This factorization represents a fast algorithm for com-
puting the DFT of size four and is an instantiation of the
Cooley–Tukey algorithm (Cooley and Tukey, 1965), usu-
ally referred to as the FFT. Using the structure of the
sparse factors, equation (3) is rewritten in the concise
form

(4)

where we used the following notation. The tensor (or
Kronecker) product of matrices is defined by

The symbols  represent, respectively, the n × n
identity matrix, the rs×rs stride permutation matrix that
maps the vector element indices j as

(5)

and the diagonal matrix of twiddle factors (n = rs),

(6)

where

denotes the direct sum of A and B. Finally,

is the DFT of size 2.
A good introduction to the matrix framework of FFT

algorithms is provided in Van Loan (1992) and Tolimieri
et al. (1997). SPIRAL extends this framework 1) to cap-
ture the entire class of linear DSP transforms and their
fast algorithms and 2) to provide the formalism necessary
to automatically generate these fast algorithms. We now
extend the simple example above and explain SPIRAL’s
mathematical framework in detail. In Section 2.1 we define
the concepts that SPIRAL uses to capture transforms and
their fast algorithms. In Section 2.2 we introduce a number
of different transforms considered by SPIRAL. In Sec-
tion 2.3 we discuss the space of different algorithms for a
given transform. Finally, in Section 2.4 we explain how
SPIRAL’s architecture (see Figure 1) is derived from the
presented framework.

y M x⋅=

M M1 M2···Mt Mi sparse.,⋅=

DFT4

1 1 1 1

1 i 1– i–
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1 i– 1– i
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B
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DFT2
1 1

1 1–
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2.1 TRANSFORMS, RULES, AND 
FORMULAS

In this section we explain how DSP transforms and their
fast algorithms are captured by SPIRAL. At the heart of
our framework are the concepts of rules and formulas. In
short, rules are used to expand a given transform into for-
mulas, which represent algorithms for this transform. We
will now define these concepts and illustrate them using
the DFT.

Transforms. A transform is a parametrized class of
matrices denoted by a mnemonic expression, e.g. DFT,
with one or several parameters in the subscript, e.g.
DFTn, which stands for the matrix

(7)

Throughout this paper, the only parameter will be the
size n of the transform. Sometimes we drop the subscript
when referring to the transform. Fixing the parameter
determines an instantiation of the transform, e.g. DFT8,
by fixing n = 8. By abuse of notation, we will refer to an
instantiation also as a transform. By “computing a trans-
form M”, we mean evaluating the matrix–vector product
y = M · x in equation (1).

Rules. A break-down rule, or simply rule, is an equa-
tion that structurally decomposes a transform. The appli-
cability of the rule may depend on the parameters, i.e. the
size of the transform. An example rule is the Cooley–
Tukey FFT for a DFTn, given by

(8)

where the twiddle matrix and the stride permuta-
tion  are defined in equations (6) and (5). A rule such
as equation (8) is called parametrized, since it depends
on the factorization of the transform size n. Different fac-
torizations of n give different instantiations of the rule. In
the context of SPIRAL, a rule determines a sparse struc-
tured matrix factorization of a transform, and breaks
down the problem of computing the transform into com-
puting possibly different transforms of usually smaller
size (here, DFTr and DFTs). We apply a rule to a trans-
form of a given size n by replacing the transform by the
right-hand side of the rule (for this n). If the rule is para-
metrized, an instantiation of the rule is chosen. As an
example, applying equation (8) to DFT8, using the factor-
ization , yields

(9)

In SPIRAL’s framework, a break-down rule does not yet
determine an algorithm. For example, applying the

Cooley–Tukey rule (8) once reduces the problem of com-
puting a DFTn to computing the smaller transforms DFTr
and DFTs. At this stage it is undetermined how these are
computed. By recursively applying rules we eventually
obtain base cases such as DFT2. These are fully expanded
by trivial break-down rules, the base case rules, that
replace the transform by its definition, e.g.,

(10)

Note that F2 is not a transform, but a symbol for the
matrix.

Formulas. Applying a rule to a transform of given size
yields a formula. Examples of formulas are equation (9)
and the right-hand side of equation (4). A formula is a
mathematical expression representing a structural decom-
position of a matrix. The expression is composed from
the following:

• mathematical operators such as the matrix product ·,
the tensor product , the direct sum ; 

• transforms of a fixed size such as DFT4, ;
• symbolically represented matrices such as In, , ,

, or for a 2 × 2 rotation matrix of angle : 

• basic primitives such as arbitrary matrices, diagonal
matrices, or permutation matrices.

On the latter we note that we represent an n × n permuta-
tion matrix in the form , where  is the defining
permutation in cycle notation. For example,

 signifies the mapping of indices
, and

An example of a formula for a DCT of size 4 (introduced
in Section 2.2) is 

(11)

Algorithms. The motivation for considering rules and
formulas is to provide a flexible and extensible frame-

DFTn e2πikl n⁄[ ]k l, 0 … n 1–, ,= i, 1– .= =

DFTn DFTr Is⊗( ) Ts
n Ir DFTs⊗( ) Lr

n,⋅ ⋅ ⋅=

for n r s,⋅=
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n

Lr
n

8 4 2⋅=

DFT4 I2⊗( ) T2
8 I4 DFT2⊗( ) L4

8.⋅ ⋅ ⋅

DFT2 F2 where F2, 1 1

1 1–
.= =

⊗ ⊕
DCT8

II( )

Lr
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F2 Rα α
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αcos αsin

αsin– αcos
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π n,[ ] σ

σ 2 4 3, ,( )=
2 4 3 2→ → →

2 4 3, ,( ) 4,[ ]

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

.=

2 3,( ) 4,[ ] diag 1 1 2⁄,( ) F2 R13π 8⁄⊕⋅( )⋅
2 3,( ) 4,[ ] I2 F2⊗( ) 2 4 3, ,( ) 4,[ ].⋅ ⋅ ⋅
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work that derives and represents algorithms for trans-
forms. Our notion of algorithms is best explained by
expanding the previous example DFT8. Applying rule (8)
(with ) once yields formula (9). This formula
does not determine an algorithm for the DFT8, since it is
not specified how to compute DFT4 and DFT2. Expand-
ing using again rule (8) (with ) yields 

Finally, by applying the (base case) rule (10) to expand
all occurring DFT2’s we obtain the formula 

(12)

which does not contain any transforms. In our frame-
work, we call such a formula fully expanded. A fully
expanded formula uniquely determines an algorithm for
the represented transform: 

fully expanded formula  algorithm. 

In other words, the transforms in a formula serve as
place-holders that need to be expanded by a rule to spec-
ify the way they are computed. 

Our framework can be restated in terms of formal lan-
guages (Révész, 1983). We can define a grammar by tak-
ing transforms as (parametrized) non-terminal symbols,
all other constructs in formulas as terminal symbols, and
an appropriate set of rules as productions. The language
generated by this grammar consists exactly of all fully
expanded formulas, i.e., algorithms for transforms. 

In the following section we demonstrate that the pre-
sented framework is not restricted to the DFT, but is
applicable to a large class of DSP transforms. 

2.2 EXAMPLES OF TRANSFORMS AND 
THEIR RULES

SPIRAL considers a broad class of DSP transforms and
associated rules. Examples include the DFT, the WHT,
the discrete cosine and sine transforms (DCTs and DSTs),
the Haar transform, and the discrete wavelet transform
(DWT). 

We provide a few examples. The DFTn, the workhorse
in DSP, is defined in equation (7). The  is defined
as 

There are 16 types of trigonometric transforms,
namely eight types of DCTs and eight types of DSTs
(Wang and Hunt, 1985). As examples, we have 

(13)

where the superscript indicates in romans the type of the
transform, and the index range is k, l = 0, …, n – 1 in all
cases. Some of the other DCTs and DSTs relate directly
to the ones above; for example, 

The  and the  are used in the image and
video compression standards JPEG and MPEG, respec-
tively (Rao and Hwang, 1996). 

The (rationalized) Haar transform is recursively defined
by 

We also consider the real and the imaginary part of the
DFT: 

(14)

We list a subset of the rules considered by SPIRAL for
the above transforms in equations (15)–(28). Owing to lack
of space, we do not give the exact form of every matrix
appearing in the rules, but simply indicate their type. In
particular, n × n permutation matrices are denoted by

, diagonal matrices by Dn, other sparse matri-
ces by , and 2 × 2 rotation matrices by . The
same symbols may have different meanings in different
rules. By , we denote matrix conjuga-
tion; the exponent P is always a permutation matrix. The
exact form of the occurring matrices can be found in
(Elliott and Rao, 1982; Vetterli and Nussbaumer, 1984;
Wang, 1984). 

8 4 2⋅=

4 2 2⋅=

DFT2 I2⊗( ) T2
4 I2 DFT2⊗( ) L2

4⋅ ⋅ ⋅( ) I2⊗( )
T⋅ 2

8 I4 DFT2⊗( ) L4
8,⋅ ⋅

F2 I2⊗( ) T2
4 I2 F2⊗( ) L2

4⋅ ⋅ ⋅( ) I2⊗( )
T⋅ 2

8 I4 F2⊗( ) L4
8.⋅ ⋅

↔

WHT2k

WHT2k F2 … F2⊗ ⊗ .=


 � � � � � 

k – fold

DCTn
II( ) l 1 2⁄+( )kπ n⁄( )cos[ ],=

DCTn
IV( ) k 1 2⁄+( ) l 1 2⁄+( )π n⁄( )cos[ ],=

DSTn
II( ) k 1+( ) l 1 2⁄+( )π n⁄( )sin[ ],=

DSTn
IV( ) k 1 2⁄+( ) l 1 2⁄+( )π n⁄( )sin[ ],=

DCTn
III( ) DCTn

II( )( )T,=

and DSTn
III( ) DSTn

II( )( )T,=

where ·( )T transpose.=

DCT II( ) DCT IV( )

RHT2 F2,=

RHT2k 1+

RHT2k 1 1⊗

I2k 1 1–⊗
,=

k 1.>

CosDFT Re DFTn( ),= and

SinDFT Im DFTn( ).=

Pn Pn′ Pn″, ,
Sn Sn′, Rk Rk

j( ),

AP P 1– A P⋅ ⋅=
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(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

The above rule can be informally divided into the fol-
lowing classes: 

• base case rules expand a transform of (usually) size 2
(e.g. rules (15) and (22));

• recursive rules expand a transform in terms of similar
(e.g. rules (16) and (27)) or different (e.g. rules (23)
and (19)) transforms of smaller size;

• transformation rules expand a transform in terms of
different transforms of the same size (e.g. rules (17)
and (24)); 

• iterative rules completely expand a transform (e.g. rule
(26) ). 

Further we note the following important facts. 

• Some rules are parametrized, i.e. they have different
instantiations. For example, rule (16) depends on the
factorization n = r · s, which in general is not unique.

• For the DFT there are rules that are substantially dif-
ferent from the Cooley–Tukey rule (16) (e.g. rule (19),
which computes a DFT via DCTs and DSTs).

• The Cooley–Tukey variant proposed in Park et al.
(2000) is represented by rule (18), which arises from
rule (16) by replacing the first factor  with

.

Inspecting (15)–(28) we confirm that these rules involve
only a few constructs and primitives. In particular,
enlarging the transform domain from the DFT and the
Cooley–Tukey rule (16) to the trigonometric transforms
(rules (23)–(26)) requires only the addition of the direct
sum  and of a few primitives such as diagonal and per-
mutation matrices. Other rules that can be represented
using only the above constructs include split-radix FFT,
Good–Thomas FFT, and Rader FFT; see Tolimieri et al.
(1997). A rule framework for FIR filters is presented in
Ga�ić et al. (2003). 

2.3 THE ALGORITHM SPACE

For a given transform there is freedom in how to expand,
i.e., which rule to apply. This freedom may arise from the
applicability of different rules or from the applicability of
one rule that has different instantiations. As an example,
a DFT16 can be expanded using rule (16) or rule (19). If
rule (16) is chosen, then the actual expansion depends on
the factorization of the size 16, namely one of 8 · 2, 4 · 4,
2 · 8. After the expansion, a similar degree of freedom
applies to the smaller transform obtained. The net result
is that, for a given transform, there is a very large number
of fully expanded formulas, i.e. algorithms. For example,
Table 1 shows the surprisingly large number of algo-
rithms arising from the rules considered by SPIRAL, for
the DFT and the DCT(IV) of small 2-power sizes. 

The set of all algorithms for a given transform consti-
tutes the algorithm space that SPIRAL searches when
generating an efficient implementation on a given plat-
form. The numbers in Table 1 show that, even for a mod-

DFT2 F2=

DFTn DFTr Is⊗( ) Ts
n Ir DFTs⊗( ) Lr

n,⋅ ⋅ ⋅=

n r s⋅=

DFTn CosDFTn i SinDFTn⋅+=

DFTn Lr
n Is DFTr⊗( ) Ls

n Ts
n⋅ ⋅ ⋅=

 Ir DFTs⊗( ) Lr
n, n⋅ ⋅ r s⋅=

DFTn I2 In 2 1–⁄ F2 diag 1 i,( )⋅⊗( )⊕( )Pn=

DCTn 2 1+⁄
I( ) DSTn 2 1–⁄

I( )( )P ′n 2 1–( )⁄⊕( )⋅
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4 n
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4 n
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RHT2k RHT2k 1– I2k 1–⊕( )=
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DFTr Is⊗
Lr

n Is DFT⊗ r( ) Ls
n⋅ ⋅
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est transform size, an exhaustive search in this space is
not feasible. 

It is important to note that the numerous fully
expanded formulas, i.e. algorithms, generated for a given
transform from a set of rules, have (almost) the same
arithmetic cost (i.e. the number of additions and multipli-
cations required by the algorithm). They differ in the data

flow during the computation, which leads to a large
spread in the run-times of the corresponding implementa-
tions, even for very small transform sizes. As an exam-
ple, Figure 2 shows a histogram of run-times for all 45
algorithms for a  and for all 15,778 algorithms for
a  implemented by SPIRAL in straight-line code
(i.e. without using loops). The platform is a Pentium 4,
1.8 GHz, running Linux, using gcc 2.95. Each of the
WHT algorithms requires precisely 80 additions and 80
subtractions. The run-times range between about 750 and
1450 ns, which is around a factor of 2. For the 
algorithms the number of additions ranges from 96 to
104, and the number of multiplications ranges from 48 to
56. The run-times are between approximately 430 and
900 ns, more than a factor of 2. In both cases, the fastest
algorithms are rare. For example, for the DCTIV, only
about 1.5% of the algorithms are within a 10% run-time
range of the fastest algorithm. 

2.4 FRAMEWORK SUMMARY

The mathematical framework presented in this section
provides a clear roadmap on how to implement SPIRAL,
a system that automatically searches the algorithm space
of a given transform for a fastest implementation on a

Fig. 2 Histogram of the run-times (in nanoseconds) of all 45 algorithms for a , and all 15,778 algorithms for a
, implemented in straight-line code on a Pentium 4, 1.8 GHz, running Linux.
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Table 1
Number of algorithms for DFT and DCT(IV) of size
2k, for k = 1, …, 9.

k DFT, size 2k DCT(IV), size 2k

1 1 1

2 7 8

3 48 86

4 434 15,778

5 171016 ~ 5.0 × 108

6 ~ 3.4 × 1012 ~ 5.3 × 1017

7 ~ 3.7 × 1028 ~ 5.6 × 1035

8 ~ 2.1 × 1062 ~ 6.2 × 1071

9 ~ 6.8 × 10131 ~ 6.8 × 10143

WHT25

DCT16
IV( )

DCT16
IV( )
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given platform. At the core of SPIRAL is the representa-
tion of an algorithm as a (fully expanded) formula. This
representation connects the mathematical realm of DSP
transform algorithms with the realm of their actual C or
Fortran implementations. Automation of the implementa-
tion process thus requires: 1) a computer representation
of formulas, which in SPIRAL is achieved by the lan-
guage SPL; 2) the automatic generation of formulas; 3)
the automatic translation of fully expanded formulas into
programs. Further, to generate a very fast implementa-
tion, requires: 4) a search module that controls the for-
mula generation and possible implementation choices,
such as the degree of unrolling. 

Taken together we obtain the architecture of SPIRAL
displayed in Figure 1. The following three sections are
devoted to the three key modules of SPIRAL: the for-
mula generator (Section 3), the formula translator (Sec-
tion 4), and the search module (Section 5). 

3 Formula Generator
The task of the formula generator module within SPI-
RAL (see Figure 1) is to generate algorithms, given as
formulas, for a user-specified transform. The formula
generator is interfaced with SPIRAL’s search module,
which controls the formula generation. In this section we
overview the design and the main components of SPI-
RAL’s formula generator. 

The most important features of the formula generator
are as follows. 

• Extensibility. The formula generator, and hence SPI-
RAL, can be easily expanded by including new trans-
forms and new rules.

• Efficiency. Formula generation is fast, i.e. does not
constitute a bottleneck in SPIRAL’s code generation
process, and it is storage efficient, an important feature
for some search methods (e.g. STEER; see Section 5),

which concurrently work with a large number of algo-
rithms.

In the following we overview how we realized these fea-
tures by introducing appropriate data structures to repre-
sent transforms, rules, and algorithms. We conclude with
a sketch of the internal architecture of the formula gener-
ator and some notes on its implementation. 

3.1 EXTENSIBILITY: DATABASES OF 
TRANSFORMS AND RULES

SPIRAL’s framework (Section 2) shows that algorithms
for a given transform arise from the successive applica-
tion of a small number of rules. This fact leads naturally
to an extensible design of the formula generator, in which
transforms and rules are collected in respective data-
bases. An entry for a transform in the transform database
collects the information about the transform that is neces-
sary for the operation of the formula generator. For
example, definition, parameters, and dimension of the
transform have to be known. Similarly, an entry for a rule
in the rule database collects the necessary information
about the rule, such as the associated transform, applica-
bility conditions, and the actual structure of the rule.
Thus, extension of the formula generator, and hence SPI-
RAL, with new transforms or rules require the user to
create a new entry in the respective database. 

3.2 EFFICIENCY: RULETREES

The formula generator represents formulas by a recursive
data structure corresponding to their abstract syntax
trees. For algorithms of large transform sizes this repre-
sentation becomes storage intensive. Furthermore, sev-
eral search algorithms (Section 5) require the local
manipulation of algorithms, which is unduly difficult if
they are represented as formulas. 

Fig. 3 A fully expanded ruletree for the DFT8 and the corresponding fully expanded formula; the rules at the nodes
are omitted.
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To overcome this problem, the formula generator uses
a different representation for algorithms, namely rule-
trees. Every algorithm for a transform is determined by
the sequence of rules applied in the expansion process.
Thus we can represent an algorithm by a ruletree in
which each node contains the transform at this stage and
the rule applied to it. A ruletree is called fully expanded,
if all rules in the leaves are base case rules. Fully
expanded ruletrees correspond to fully expanded formu-
las and thus to algorithms. 

As a simple example, Figure 3 shows a ruletree for the
DFT8 corresponding to formula (12), which was derived
by two applications of rule (16) and three applications of
the (base case) rule (15); we omitted the rule names in
the nodes. 

Ruletrees are storage efficient; each node only con-
tains pointers to the appropriate transform and rule in the
database. Furthermore, ruletrees can be easily manipu-
lated, e.g. by expanding a subtree in a different way. The
efficient representation also leads to the very fast genera-
tion of ruletrees. On current computing platforms, thou-
sands of trees can be generated in a few seconds. 

3.3 INFRASTRUCTURE AND 
IMPLEMENTATION

The internal architecture of the formula generator,
including the search engine, is displayed in Figure 4. The
dashed boxes indicate databases. A user-specified instan-
tiation of a transform is expanded into one or several
ruletrees using known rules. The choice of rules is con-
trolled by the search engine. The ruletrees are translated
into formulas and exported to the formula translator,
which compiles them into C or Fortran programs

(explained in Section 4). The run-time of the generated
programs is returned to the search engine, which controls
the generation of the next set of ruletrees (see Section 5). 

Formula generation and formula manipulation fall into
the realm of symbolic computation, which led us to
choose the language and computer algebra system GAP
(GAP Team, 1997), including AREP (Egner and Püschel,
1998), as an implementation platform. GAP provides the
infrastructure for symbolic computation with a variety of
algebraic objects. The GAP share package AREP is
focused on structured matrices and their symbolic manip-
ulation. A high level language such as GAP facilitates the
implementation of the formula generator. As an addi-
tional advantage, GAP provides exact arithmetic for
square roots, roots of unity, and trigonometric expres-
sions that make up the entries of most DSP transforms
and formulas. 

4 Formula Translator

The task of the formula translator module within SPI-
RAL is to translate fully expanded formulas generated by
the formula generator into programs. Currently, the trans-
lated programs are either C or Fortran procedures,
although other languages including assembly or machine
code could be produced. Once a formula has been trans-
lated into a program, it can be executed and timed by the
performance evaluation component and the resulting
time returned to the search engine. This allows SPIRAL
to search for fast implementations of DSP transforms
using the mathematical framework presented in
Section 2. 

The formulas input to the formula translator are repre-
sented in the SPL language. SPL is a domain-specific lan-

Fig. 4 Internal architecture of the formula generator including the search module. The main components are recur-
sive data types for representing ruletrees and formulas, and extensible databases (dashed boxes) for rules and
transforms.
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guage for representing structured matrix factorizations.
SPL borrows concepts from Tensor Product Language
(TPL; Auslander et al., 1996). SPL programs consist of
formulas that are symbolic representations of structured
matrix factorizations of matrices with fixed row and col-
umn dimensions. Each formula corresponds to a fixed
transform matrix, which can be obtained by evaluating
the formula. Alternatively, the formula can be interpreted
as an algorithm for applying the transform represented by
the formula to an arbitrary input vector. Using the struc-
ture in a formula, the SPL compiler translates the formula
into a procedure for applying the corresponding trans-
form to the input vector. 

A key feature of the SPL compiler is that the code gen-
eration process can be controlled by the user without
modifying the compiler. This is done through the use of
compiler directives and a template mechanism called
meta-SPL. Meta-SPL allows SPIRAL, in addition to
searching through the space of algorithms, to search
through the space of possible implementations for a
given formula. A key research question is to determine
which optimizations should be performed by default by
the SPL compiler and which optimizations should be
controlled by the search engine in SPIRAL. Some opti-
mizations, such as common subexpression elimination,
are always applied; however, other potential optimiza-
tions, such as loop unrolling, for which it is not clear
when and to what level to apply, are implementation
parameters for the search engine to explore. It is worth
noting that it is necessary for the SPL compiler to apply
standard compiler optimizations such as common subex-
pression elimination, rather leaving them to the backend
C or Fortran compiler, since these compilers typically do
not fully utilize these optimizations on the type of code
produced by the SPL compiler (Xiong et al., 2001). 

The SPL representation of algorithms around which
SPIRAL is built is very different from FFTW’s codelet
generator, which represents algorithms as a collection of
arithmetic expression trees for each output, which then is
translated into a dataflow graph using various optimiza-
tions (Frigo, 1999). In both cases, the representation is
restricted to a limited class of programs corresponding to
linear computations of a fixed size, which have simplify-
ing properties such as no side effects and no conditionals.
This opens the possibility for domain-specific optimiza-
tions. Advantages of the SPL representation of algo-
rithms as generated by the formula generator include the
following. 1) Formula generation is separated from for-
mula translation and both the formula generator and for-
mula translator can be developed, maintained, and used
independently. In particular, the formula generator can be
used by DSP experts to include new transforms and algo-
rithms. SPL provides a natural language to transfer infor-
mation between the two components. 2) The representation

is concise. The arithmetic expression tree representation
used in FFTW expresses each output as a linear function
of all n inputs and thus grows roughly as ,
which restricts its application to small transform sizes
(which, of course, is the intended scope and sufficient in
FFTW). 3) High-level mathematical knowledge is main-
tained, and this knowledge can be used to obtain optimi-
zations and program transformations not available using
standard compiler techniques. This is crucial, for exam-
ple, for short-vector code generation (Section 4.4). 4)
The mathematical nature of SPL allows other programs,
in our case the formula generator, to easily manipulate
and derive alternative programs. Moreover, algorithms
are expressed naturally using the underlying mathemat-
ics. 5) SPL provides hooks that allow alternative code
generation schemes and optimizations to be controlled
and searched externally without modifying the compiler. 

In the following three subsections we describe SPL,
meta-SPL, and the SPL compiler, respectively. An over-
view of the language and compiler will be given, and sev-
eral examples will be provided, illustrating the syntax of
the language and the translation process used by the com-
piler. Additional information may be found in Xiong
(2001) and Xiong et al. (2001). We conclude with a brief
overview of an extension to the SPL compiler that gener-
ates short-vector code for last generation platforms that
feature single-instruction multiple-data (SIMD) instruc-
tion set extensions. 

4.1 SPL

In this section we describe the constructs and syntax of
the SPL language. Syntax is described informally guided
by the natural mathematical interpretation. A more for-
mal treatment along with a BNF grammar is available in
Xiong (2001). In the next section we describe meta-SPL,
a meta-language that is used to define the semantics of
SPL and allows the language to be extended. 

SPL programs consist of the following: 1) SPL formu-
las, representing fully expanded formulas in the sense of
Section 2.1; 2) constant expressions for entries appearing
in formulas; 3) define statements for assigning names to
formulas or constant expressions; and 4) compiler direc-
tives and type declarations. Each formula corresponds to
a factorization of a real or complex matrix of a fixed size.
The size is determined from the formula using meta-SPL,
and the type is specified as real or complex. Meta-SPL is
also used to define the symbols occurring in formulas.
Rather than constructing matrices, meta-SPL is used by
the compiler to generate a procedure for applying the
transform (as represented by a formula) to an input vec-
tor of the given size and type. 

Constant expressions. The elements of a matrix can be
real or complex numbers. Complex numbers 

O n2 n( )log( )

a b 1–+
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are represented by the pair of real numbers . In
SPL, these numbers can be specified as scalar constant
expressions, which may contain function invocations and
symbolic constants such as pi. For example, 12,
1.23, 5*pi, sqrt(5), and (cos(2*pi/3.0),
sin(2*pi/3)) are valid scalar SPL expressions. All
constant scalar expressions are evaluated at compile-
time. 

SPL formulas. SPL formulas are built from general
matrix constructions, parametrized symbols denoting
families of special matrices, and matrix operations such
as matrix composition, direct sum, and the tensor prod-
uct. Each construction has a list of arguments that
uniquely determine the corresponding matrix. The dis-
tinction between the different constructions is mainly
conceptual; however, it also corresponds to different
argument types. 

SPL uses a prefix notation similar to Lisp to represent
formulas. The following lists example constructions that
are provided from each category. However, it is possible
to define new general matrix constructions, parametrized
symbols, and matrix operations using meta-SPL. 

General matrix constructions. Let  denote an SPL
constant and ik, jk, and σκ denote positive integers. Exam-
ples include the following. 

• (matrix (a11 ... a1n) ... (am1 ... amn))
– the m × n matrix .

• (sparse ( ) ... ( )) – the m × n
matrix where m = max( i1,…, it ), n = max( j1,…, jt )
and the non-zero entries are  for k = 1,…, t.

• (diagonal (a1 ... an)) – the n × n diagonal
matrix diag( a1,…, an ).

• (permutation (σ1 ... σn)) – the n × n permuta-
tion matrix: , for k = 1, …, n.

Parametrized Symbols. Parametrized symbols repre-
sent families of matrices parametrized by integers.
Examples include the following. 

• (I n) – the n × n identity matrix In.
• (F n) – the n × n DFT matrix Fn.
• (L n s) – the n × n stride permutation matrix ,

where s|n.
• (T n s) – the n × n twiddle matrix , where s|n.

Matrix operations. Matrix operations take a list of
SPL formulas, i.e. matrices, and construct another
matrix. In the following examples, A and Ai are arbitrary
SPL formulas and P is an SPL formula corresponding to
a permutation matrix. 

• (compose A1 ... At) – the matrix product A1 …
At.

• (direct-sum A1 ... At) – the direct sum A1
… At.

• (tensor A1 ... At) – the tensor product A1  …
At.

• (conjugate A P) –  the matrix conjugation AP =
P-1 · A · P, where P is a permutation.

Define Statements are provided for assigning names
to formulas or constant expressions. They provide a
short-hand for entering subformulas or constants in for-
mulas. 

• (define name formula)
• (define name constant-expression)

Compiler Directives. There are two types of compiler
directives. The first type is used to specify the matrix
type, and the second type is used to influence the code
produced by the compiler. 

• #datatype REAL | COMPLEX – set the type of
the input and output vectors.

• #subname name – name of the procedure produced
by the compiler for the code that follows.

• #codetype REAL | COMPLEX – if the data type
is complex, indicate whether complex are real varia-
bles will be used to implement complex arithmetic in
the generated code.

• #unroll ON | OFF – if ON generate straight-line
code and if OFF generate loop code. 

Figure 5 shows SPL expressions for the fully expanded
formulas for the transforms DFT8 and , corre-
sponding to equations (12) and (11), respectively. These
examples use all of the components of SPL including
parametrized symbols, general matrix constructions,
matrix operations, constant expressions, define state-
ments, and compiler directives. These SPL formulas will
be translated into C or Fortran procedures with the names
F_8 and DCT2_4 respectively. The procedure F_8 has a
complex input and output of size 8 and uses a mixture of
loop and straight-line code. Complex arithmetic is
explicitly computed with real arithmetic expressions. The
procedure DCT2_4 has a real input and output of size 4
and is implemented in straight-line code. 

4.2 META-SPL

The semantics of SPL programs are defined in meta-SPL
using a template mechanism. Templates tell the compiler
how to generate code for the various symbols that occur
in SPL formulas. In this way, templates are used to define
general matrix constructions, parametrized symbols and
matrix operations, including those built-in and those
newly created by the user. They also provide a mecha-
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nism to compute the input and output dimensions of the
matrices corresponding to a formula. In addition to tem-
plates, meta-SPL can define functions (scalar, vector, and
matrix) that can be used in template definitions. Finally,
statements are provided to inform the parser of the sym-
bols that are defined by templates. 

Symbol definition, intrinsic functions, and tem-
plates. Meta-SPL provides the following directives to
introduce parametrized matrices, general matrix con-
structions, matrix operators, intrinsic functions and tem-
plates. 

• (primitive name shape) – introduce new par-
ametrized symbol.

• (direct name size-rule) – introduce a new
general matrix construction.

• (operation name size-rule) – introduce
new matrix operation.

• (function name expression) – define an
intrinsic function.

• (template formula [condition] (i-
code-list)) – define a template.

The parameters shape and size-rule specify how
the row and column dimensions of the represented matrix
are computed. 

A template contains a pattern followed by an optional
guard condition and a code sequence using an intermedi-
ate code representation called i-code. When the SPL

compiler encounters an expression that matches the pat-
tern and satisfies the guard condition, it inserts the corre-
sponding i-code into the translated program, where the
parameters are replaced by the values in the matched
expression. 

Templates use the convention that the input and output
vectors are always referred to by the names X and Y and
have sizes given by coldim and rowdim, respectively.
Intermediate code can refer to x, y, the input parameters,
and temporary variables. The code consists of a sequence of
two operand assignments and conditionals are not allowed.
Loops are allowed; however, the number of iterations,
once the template is instantiated will always be constant. 

The following examples illustrate how templates are
used to define parameterized symbols and matrix opera-
tions. A detailed description of templates is provided in
Xiong (2001). Note that the syntax used here is slightly
simplified to allow for a more accessible presentation.
Also row and column dimensions are computed explic-
itly rather than relying on size and shape rules. 

Figure 6 shows the template definition for the para-
metrized symbol (T n s).The pattern (T n s) will
match any SPL expression containing the symbol T in the
first position followed by two integer parameters. The
guard condition specifies that the two integer parameters
are positive and the second parameter divides the first.
The resulting code multiplies the input vector x by constants
produced from intrinsic function calls: w(n, k) = .

#datatype COMPLEX #datatype REAL
#codetype REAL #unroll ON
#unroll ON #subname DCT2_4
(define F4 (compose
(compose (permutation (1 3 2 4))
(tensor (F 2) (I 2)) (direct_sum
(T 4 2) (compose (diagonal (1 sqrt(1/2))) (F 2))
(tensor (I 2) (F 2) (matrix
(L 4 2))) ( cos(13*pi/8) sin(13*pi/8))

#subname F_8 (-sin(13*pi/8) cos(13*pi/8))
#unroll OFF )
(compose )

(tensor F4 (I 2)) (permutation (1 3 2 4))
(T 8 2) (tensor (I 2) (F 2))
(tensor (I 4) (F 2)) (permutation (1 4 2 3))
(L 8 4)) )

Fig. 5 SPL expressions for DFT8 and .DCT4
II( )
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Figure 7 provides template definitions for the matrix
operations compose and tensor. These examples show
how to apply matrix operations to code sequences, which is
the foundation for the translation process. Given i-code
for the subexpressions representing the operands of the
matrix operation, the code construction creates a code
sequence for the matrix obtained by applying the opera-
tion to the operand matrices. 

The code for the matrix composition y = (AB)x is
obtained by applying the code for B to the input x and
assigning the output to the temporary vector t, introduced
by deftemp, and then applying the code for A to t to get
the output y. The i-code for the matched parameters A
and B is called using the call statement. The call is
inlined with appropriate parameter substitution and index
adjustment. For vector indexing we use the notation
start:stride:end, e.g., 1 : 2 : 7 = 1, 3, 5 ,7.

The code for the tensor product of an m × n matrix A
and a p × q matrix B is obtained from the factorization

. The two factors are com-
bined using composition. The first factor simply loops
over n calls to the code for B, and the second factor loops
over p calls to the code for A; however, in the latter case,
the data is accessed at stride p.

4.3 SPL COMPILER

In this section, we describe the organization of the SPL
compiler and illustrate the process used to translate SPL
formulas into programs. In addition, mechanisms are
described that allow SPIRAL to search over different
implementation strategies. 

The SPL compiler translates an SPL formula  into an effi-
cient program (currently in C or Fortran) to compute the

(template (T n s) ;; ---- n and s are integer parameters
[n >= 1 && s >= 1 && n%s == 0]
( coldim = n
rowdim = n
for i=0,...,n-1
y(i) = w(n,i*s) * x(i)

end ) )

Fig. 6 Template for (T n s)

(template (compose A B) ; y = (A B) x = A(B(x)).
( deftemp t(B.rowdim)
coldim = A.rowdim
rowdim = B.coldim
t(0:1:B.rowdim-1) = call B(x(0:1:B.coldim-1))
y(0:1:A.rowdim-1) = call A(t(0:1:B.rowdim-1)) ) )

(template (tensor A B) ; y = (A tensor B) x
( rowdim = A.rowdim * B.rowdim
coldim = A.coldim * B.coldim
deftemp t(A.coldim*B.rowdim)

for i=0:A.coldim-1
t(i*B.rowdim:1:(i+1)*B.rowdim-1) =

call B(x(i*B.coldim:1:(i+1)*B.coldim-1));
end
for j=0:B.rowdim-1

y(j*A.rowdim:B.rowdim:(j+1)*A.rowdim-1) =
call A(t(j*A.coldim:B.rowdim:(j+1)*A.coldim -1 )

end ) )

Fig. 7 Template for compose and tensor.

A B⊗ A Ip⊗( ) In B⊗( )=
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matrix–vector product of the matrix given by the SPL
formula. Translation proceeds by applying various trans-
formations, corresponding to the algebraic operators in
SPL, to code segments starting with code for the matrices
occurring in the SPL formula. The code segments and
transformations are defined by the template mechanism
in meta-SPL discussed in the previous section. Meta-SPL
also provides a mechanism to control the optimization
and code generation strategies used by the compiler. 

The input to the SPL compiler consists of an SPL pro-
gram, a meta-SPL template, and a set of interspersed
compiler directives. The SPL program and meta-SPL can
be intermixed in the input so long as the definition of any
new symbol appears before its use. The output of the SPL
compiler is a set of Fortran or C procedures which com-
pute the matrix–vector products corresponding to all of
the top level SPL formulas in the SPL program. The
compiler proceeds in five steps, as illustrated in Figure 8:
1) parsing; 2) intermediate code generation; 3) intermedi-
ate code restructuring; 4) optimization; 5) target code gen-
eration. 

Parsing. The parser creates three data structures from
the input SPL and meta-SPL program: a set of abstract
syntax trees (AST), a table containing templates, and a
symbol table. Each SPL formula is translated into an
abstract syntax tree (AST). The leaf nodes of an AST
contain primitive matrices and the internal nodes corre-
spond to matrix operators. The AST is a binary tree; n-
ary formulas, such as (compose A1 ... An) are
associated right-to-left. Template definitions are stored in
the template table. Each entry in the template table con-
tains an AST which represents the pattern, an arithmetic

expression tree which represents the condition, and a
linked-list that holds the i-code. Each name defined by
define, primitive, operation, direct, or
function is stored in the symbol table. 

Intermediate Code Generation. I-code is generated
for each AST created from the SPL program using the
necessary symbol values and template definitions obtained
from the symbol and template tables. A recursive top-
down pattern matching algorithm is used to match the
symbols occurring in the AST with templates in the tem-
plate table. After matching a template, parameters are
evaluated and the template i-code is inserted into the i-
code for the AST from the bottom up. The i-code for a
node in the AST is constructed according to the matching
template definition from the i-code of its children. As the
i-code is combined it may be necessary to rename variables,
in-line call statements, and unify address expressions. 

Intermediate Code Restructuring. Several code trans-
formations, depending on the compiler options and direc-
tives, are performed. These transformations include loop
unrolling, complex to real arithmetic conversion and
intrinsic function evaluation. 

Optimization. After the code restructuring the com-
piler performs some basic optimization on the i-code
sequence. These optimizations, which include constant
folding, copy propagation, common subexpression elimi-
nation, and dead code elimination, have proven to be
necessary to achieve good performance when the target
C/Fortran compiler is not aggressive enough with its
optimizations. Recently, code reordering (or scheduling)
for locality was included as optional optimization
(Moura and Püschel, 2003) but is not discussed in this
paper. 

Fig. 8 The SPL compiler.

Fig. 9 The abstract syntax tree (AST) for the DFT4 for-
mula in (4).
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Target Code Generation. The optimized i-code is
translated to the target language, currently C or Fortran. 

An Example. We illustrate the entire compilation
process for the SPL formula 

(compose (tensor (F 2) (I 2))
(T 4 2) (tensor (I 2) (F 2)) (L 4 2))

corresponding to the formula for a DFT4 given in equa-
tion (4). Figure 9 shows the AST for this formula. Since
the DFT4 is a complex transform, the formula is com-
piled with the flag #datatype COMPLEX (see Section
4.1). Accordingly, the i-code generated in the compila-
tion steps operates on complex numbers.

 The SPL compiler processes the AST in Figure 9 bot-
tom-up starting with the leaves. Using the template defi-
nitions for F, L, and T, the following code is produced.
The constant (0.0,1.0) denotes . 

Next, templates for the special cases,  and ,
of the tensor product are used to construct code for
(tensor (I 2) (F 2)) and (tensor (F 2)
(I 2)), respectively. The code for (compose (ten-
sor (I 2) (F 2)) (L 4 2)) is obtained by con-
catenating the code for (tensor (I 2) (F 2))
with the code for (L 4 2)). An optimization removes
unnecessary temporaries, i.e., the permutation is trans-
lated into a readdressing of the input variables for (ten-
sor (I 2) (F 2)) according to (L 4 2). We
display the i-code generated for all internal nodes in the
AST in Figure 9. 

Finally the code for the root node is generated. At this
stage the above-mentioned optimizations are applied
including common subexpression elimination or (the
optional) conversion from complex to the interleaved for-
mat (alternately real and imaginary part) invoked by the
tag #codetype REAL. In our example the following
code is generated for #codetype COMPLEX and
#codetype REAL, respectively: 

Loop Code. The code generated in the previous exam-
ple consists entirely of straight-line code. The SPL com-
piler can be instructed to generate loop code by using
templates with loops such as those for the twiddle sym-
bol and the tensor product. Using these templates, the
SPL compiler translates the expression (compose (F
2) (I 4)) (T 8 4)) into the following Fortran code. 

do i0 = 0, 7
t0(i0+1) = T8_4(i0+1) * x(i0+1)

end do
do i0 = 0, 3

y(i0+5) = t0(i0+1) - t0(i0+5)
y(i0+1) = t0(i0+1) + t0(i0+5)

end do

F2 := T42 :=

y(2) = x(1) - x(2) y(1) = x(1)

y(1) = x(1) + x(2) y(2) = x(2)

y(3) = x(3)

y(4) = (0.0,1.0)*x(4)

L42 :=

y(1) = x(1)

y(2) = x(3)

y(3) = x(2)

y(4) = x(4)

F2 I2 := (I2 F2)L42 :=

y(1) = x(1) + x(3) y(1) = x(1) + x(3)

y(3) = x(1) - x(3) y(2) = x(1) - x(3)

y(2) = x(2) + x(4) y(3) = x(2) + x(4)

y(4) = x(2) - x(4) y(4) = x(2) - x(4)

T42(I2 F2)L42 :=

i 1–=

I A⊗ B I⊗

⊗ ⊗

⊗

y(1) = x(1) + x(3)

y(2) = x(1) - x(3)

y(3) = x(2) + x(4)

f = x(2) - x(4)

y(4) = (0.0,1.0)*f

F4 := F4 :=

f0 = x(1) - x(3) f0 = x(1) - x(5)

f1 = x(1) + x(3) f1 = x(2) - x(6)

f2 = x(2) - x(4) f2 = x(1) + x(5)

f3 = x(2) + x(4) f3 = x(2) + x(6)

y(3) = f1 - f3 f4 = x(3) - x(7)

y(1) = f1 + f3 f5 = x(4) - x(8)

f6 = (0.0,1.0) * f2 f6 = x(3) + x(7)

y(4) = f0 - f6 f7 = x(4) + x(8)

y(2) = f0 + f6 y(5) = f2 - f6

y(6) = f3 - f7

y(1) = f2 + f6

y(2) = f3 + f7

y(7) = f0 + f5

y(8) = f1 - f4

y(3) = f0 - f5

y(4) = f1 + f4
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Since loops are used, constants must be placed in an
array so that they can be indexed by the loop variable.
Initialization code is produced by the compiler to initial-
ize arrays containing constants. In this example, the con-
stants from  are placed in the array T8_4.

Observe that the data must be accessed twice: once to
multiply by the twiddle matrix and once to compute

. By introducing an additional template that
matches the expression that combines  and the
preceding twiddle matrix, the computation can be per-
formed in one pass. 

do i0 = 0, 3
r1 = 4 + i0
f0 = T8_4(r1+1) * x(i0+5)
y(i0+5) = x(i0+1) - f0
y(i0+1) = x(i0+1) + f0

end do

This example illustrates how the user can control the
compilation process through the use of templates. 

In order to generate efficient code it is often necessary
to combine loop code and straight-line code. This can be
accomplished through the use of loop unrolling. After
matching a template pattern with loops, the instantiated
code has constant loop bounds. The compiler may be
directed to unroll the loops, fully or partially to reduce
loop overhead and increase the number of choices in
instruction scheduling. When the loops are fully unrolled,
not only is the loop overhead eliminated but it also
becomes possible to substitute scalar expressions for
array elements. The use of scalar variables tends to
improve the quality of the code generated by Fortran and
C compilers which are usually unable to analyze codes
containing array subscripts. The down side of unrolling is
the increase in code size. 

In SPL, the degree of unrolling can be specified for the
whole program or for a single formula. For example, the
compiler option -B32 instructs the compiler to fully
unroll all loops in those subformulas whose input vector
is smaller than or equal to 32. Individual formulas can be
unrolled through the use of the #unroll directive. For
example 

#unroll on
(define I2F2 (tensor (I 2) (F 2)))
#unroll off
(tensor (I 32) I2F2)

will be translated into the following code. 

do i0 = 0, 31
y(4*i0+2) = x(4*i0+1) - x(4*i0+2)
y(4*i0+1) = x(4*i0+1) + x(4*i0+2)
y(4*i0+4) = x(4*i0+3) - x(4*i0+4)
y(4*i0+3) = x(4*i0+3) + x(4*i0+4)

end do

The ability to control code generation through the use
of compiler options, compiler directives and templates
allows the SPIRAL system to search over implementa-
tion strategies by setting compiler flags, inserting direc-
tives, and inserting template definitions. 

4.4 SHORT VECTOR EXTENSION OF THE 
SPL COMPILER

Most recent micro-architectures feature special instruc-
tion sets that have the potential to considerably speed up
computation. Examples include fused multiply–add instruc-
tions and short-vector SIMD (single instruction, multiple
data) instructions. Examples for the latter include SSE on
Pentium III and 4 and SSE2 on Pentium 4. For example,
using SSE, four single-precision floating point additions
or multiplications can be performed in a single instruc-
tion and, on Pentium III/4, in one cycle. 

Compiler vectorization to date is limited to very sim-
ply structured code and looping patterns and fails on
more complex algorithms such as fast DSP transforms.
Thus, to obtain optimal performance for these algo-
rithms, careful hand-tuning, often in assembly code, is
necessary. In Franchetti and Püschel (2002, 2003) we
have extended SPIRAL to automatically generate short-
vector code for various architectures. The generated code
is very competitive with the best available code including
the short-vector DFT library provided by Intel. The key
to obtaining this high performance is automatic formula
manipulation that transforms a given formula, using
mathematical rules, into a form suitable for mapping into
short-vector code. This manipulation is enabled through
the mathematical representation of formulas and is not
feasible using, for example, a C code representation of an
algorithm. We do not explain the approach to greater
detail in this paper, but refer the reader to Franchetti and
Püschel (2002, 2003). 

5 Search Engine

To find a platform-adapted implementation for a given
transform, SPIRAL considers the space of algorithms
and their possible implementations. On the algorithmic
level, the degrees of freedom are given by the many pos-
sible fully expanded formulas (or ruletrees) for the trans-
form. For a given formula, there are degrees of freedom
in generating code, one important example being the
choice of the unrolling strategy. The space of alternative
implementations is too large to be tested exhaustively
(e.g. Table 1) and exhibits a wide variation in run-times
(e.g. Figure 2). 

The formula generator (Section 3) and the formula
translator (Section 4) can generate any of these different
possible implementations. The task of the search engine

T4
8

F2 I4⊗
F2 I4⊗
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is to intelligently search the space of implementations for
the optimal one for the given platform. The search is per-
formed in a feedback loop; run-times of previously gen-
erated implementations are used to control formula
generation and code generation for further implementa-
tions. 

We have implemented a number of different search
methods within SPIRAL, including exhaustive search,
dynamic programming, random search, hill climbing
search, and STEER, a stochastic evolutionary search
algorithm. Further, we have developed a “meta-search”
algorithm that searches for the fastest implementation for
a specified length of time using a combination of the
search algorithms indicated above. Each of the search
algorithms operates with the ruletree representation of
algorithms (see Section 3.2) and optionally searches over
implementation degrees of freedom. These implementa-
tion choices are either varied globally, i.e. for entire rule-
trees, or applied to specific nodes in the ruletree by
setting appropriate flags. For example, a flag “unrolling”
in a node of a ruletree ensures that the code generated for
that node contains no loops. 

The different search algorithms are described in more
detail below. 

5.1 EXHAUSTIVE SEARCH

Exhaustive search is straightforward. It generates all the
possible implementations for a given transform and times
each one to determine the fastest one. This search method
is only feasible for very small transform sizes, as the
number of possible algorithms for most transforms grows
exponentially with the transform size. For example,
Table 1 shows that exhaustive search becomes impracti-
cal for DFTs of size 26 and for ’s of size 25.

5.2 DYNAMIC PROGRAMMING

Dynamic programming (DP) is a common approach to
search in this type of domain (Johnson and Burrus, 1983;
Frigo and Johnson, 1998; Haentjens, 2000; Sepiashvili,
2000). DP recursively builds a table of the best ruletrees
found for each transform. A given transform is expanded
once using all applicable rules. The ruletrees, i.e. expan-
sions, of the obtained children are looked up in the table.
If a ruletree is not present, then DP is called recursively
on this child. Finally, the table is updated with the fastest
ruletree of the given transform. DP usually times fewer
ruletrees than the other search methods. 

DP makes the following assumption: 

DP assumption: the best ruletree for a transform is
also the best way to expand that transform in a larger
ruletree. 

This assumption does not hold in general; the perform-
ance of a ruletree varies greatly depending on its position
in a larger ruletree due to the pattern of data flow and the
internal state of the given machine. In practice, though,
DP usually finds reasonably fast formulas. A variant of
DP considered by SPIRAL keeps track of the n best rule-
trees found at each level, thus relaxing the DP assump-
tion. 

5.3 RANDOM SEARCH

Random search generates a number of random ruletrees
and chooses the fastest. Note that it is a non-trivial prob-
lem to uniformly draw ruletrees from the space of all
possibilities, i.e. algorithms. Thus, in the current imple-
mentation, a random ruletree is generated by choosing
(uniformly) a random rule in each step of the expansion
of the given transform. 

Random search has the advantage that it times as few
or as many formulas as the user desires, but leads to poor
results if the fast ruletrees are scarce. 

5.4 STEER

STEER (Split Tree Evolution for Efficient Run-times)
uses a stochastic, evolutionary search approach (Singer
and Veloso, 2001, 2002). STEER is similar to genetic
algorithms (Goldberg, 1989), except that, instead of
using a bit vector representation, it uses ruletrees as its
representation. Unlike random search, STEER uses evo-
lutionary operators to stochastically guide its search
toward more promising portions of the space of formulas. 

Given a transform and size of interest, STEER pro-
ceeds as follows: 

1. Randomly generate a population P of legal rule-
trees of the given transform and size.

2. For each ruletree in P, obtain its running time.
3. Let Pfastest be the set of the b fastest trees in P.
4. Randomly select from P, favoring faster trees, to

generate a new population Pnew.
5. Cross-over c random pairs of trees in Pnew.
6. Mutate m random trees in Pnew.
7. Let .
8. Repeat step 2 and following.

All selections are performed with replacement so that
Pnew may contain multiple copies of the same tree. Since
timing ruletrees is expensive, run-times are cached and
only new ruletrees in P at step 2 are actually timed. 

During this process, the ruletrees may not be opti-
mized as a whole, but still include subtrees that are very
efficient. Crossover (Goldberg, 1989) provides a method
for exchanging subtrees between two different ruletrees,

DCT IV( )

P Pfastest Pnew∪←
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potentially allowing one ruletree to take advantage of a
better subtree in another ruletree. Crossover on a pair of
ruletrees t1 and t2 proceeds as follows: 

1. Let n1 and n2 be random nodes in t1 and t2, respec-
tively, such that n1 and n2 represent the same
transform and size.

2. If no n1 and n2 exists, then the trees cannot be
crossed over.

3. Otherwise, swap the subtrees rooted at n1 and n2.

Mutations (Goldberg, 1989) make changes to ruletrees to
introduce new diversity to the population. If a given rule-
tree performs well, then a small modification to the rule-
tree may perform even better. Mutations provide a
method for searching the space of similar ruletrees.
STEER uses three different mutations. 

• Regrow: Remove the subtree under a node and grow a
new random subtree.

• Copy: Find two nodes within the ruletree that repre-
sent the same transform and size. Copy the subtree
underneath one node to the subtree of the other.

• Swap: Find two nodes within the ruletree that repre-
sent the same transform and size. Swap the subtrees
underneath the two nodes.

These mutations are illustrated in Figure 10. 
As with the other search methods, STEER optionally

searches over implementation options such as the unroll-
ing strategy. For example, enabling a “local unrolling”
option determines, for each node in the ruletree, whether
it should be translated into loop code or unrolled code.
The unrolling decisions within a ruletree are subject to
mutations within reasonable limits. 

Fig. 10 Examples of mutations performed on the tree labeled “Original”. Areas of interest are circled.
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STEER explores a larger portion of the space of rule-
trees than dynamic programming, while still remaining
tractable. Thus, STEER often finds faster formulas than
dynamic programming, at the small cost of a more
expensive search. 

5.5 HILL CLIMBING SEARCH
Hill climbing is a refinement of random search, but is not
as sophisticated as STEER. First, hill climbing generates
a random ruletree and times it. Then, it randomly mutates
this ruletree with the mutations defined for STEER, and
times the resulting ruletree. If the new ruletree is faster,
hill climbing continues by applying a mutation to the
new ruletree and the process is repeated. Otherwise, if the
original ruletree was faster, hill climbing applies another
random mutation to the original ruletree and the process
is repeated. After a certain number of mutations, the
process is restarted with a completely new random rule-
tree.

5.6 TIMED SEARCH
When there is a limited time for search, SPIRAL’s search
engine has an integrated approach that combines the
above search methods to find a fast implementation in the
given time. Timed search takes advantage of the strengths
of the different search methods, while limiting the search.
It is completely configurable, so that a user can specify
which search methods are used and how long they are
allowed to run. SPIRAL provides reasonable defaults.
These defaults first run a random search over a small
number of ruletrees to find a reasonable implementation.
Then it calls dynamic programming since this search
method often finds good ruletrees in a relatively short
time. Finally, if time remains, it calls STEER to search an
even larger portion of the search space. 

5.7 INTEGRATION AND 
IMPLEMENTATION
All search methods above have been implemented in
SPIRAL. As with the formula generator (Section 3), the

search engine is implemented entirely in GAP. The
search engine uses the ruletree representation of algo-
rithms as its only interface to the formula generator.
Thus, all search methods are immediately available when
new transforms or new rules are added to SPIRAL. 

6 Experimental Results

In this section, we present a number of experiments we
have conducted using the SPIRAL system version 3.1
(Moura et al., 1998). Table 2 shows the computing plat-
forms we used for the experiments. In the remainder of
this section we refer to the machines by the name given
in the first column. 

All timings for the transform implementations gener-
ated by SPIRAL are obtained by taking the mean value of
a sufficiently large number of repeated evaluations. As C
compiler options, we used “-O6 -fomit-frame-pointer-
malign-double -fstrict-aliasing -mcpu=pentiumpro” for
gcc, “-fast -xO5 -dalign” for cc, and “-G6 -O3” and “-G7
-O3” for the Intel compiler on the Pentium III and the
Pentium 4, respectively. 

The experimental data presented in this section, as
well as in Section 2.3, illustrate the following key points.
1) The fully-expanded formulas in the algorithm space
for DSP transforms have a wide range of performance
and formulas with the best performance are rare (see Fig-
ure 2). 2) The best formula is platform-dependent. The
best formula on one machine is usually not the best for-
mula on another machine. Search can be used to adapt
the given platform by finding formulas well suited to that
platform. This is shown in Section 6.1. 3) Intelligent
search can be used to find good formulas while only con-
sidering a small portion of the entire search space. This is
shown in Section 6.2 by presenting the best run-times
found and the number of formulas considered for the
DFT and DCT(II) using different search methods. This is
crucial due to the large number of possible formulas (see
Table 1). 4) In addition to considering the space of for-
mulas, the SPIRAL search engine can also search
through alternative implementations. SPIRAL does this
by searching over alternative SPL compiler directives

Table 2
Computing platforms for experiments.

name CPU and speed RAM OS C compiler

athlon Athlon, 1100 MHz 512 MB Linux 2.2.16 gcc 2.95.2

p4linux Pentium 4, 1400 MHz 1024 MB Linux 2.4.2 gcc 2.95.2

p4win Pentium 4, 1400 MHz 1024 MB Win 2000 Intel 5.0

sun UltraSparc II, 450 MHz 1536 MB SunOS 5.7 cc 6 update 2 C 5.3

p3linux Pentium III, 900 MHz 256 MB Linux 2.2.17 gcc 2.91.66

p3win Pentium III, 650 MHz 256 MB Win 2000 Intel 5.0
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and templates. An example is presented in Section 6.3
where SPIRAL searches also explores the degree of
unrolling used by the SPL compiler. 5) The resulting per-
formance produced by SPIRAL is very good. This is
shown in Section 6.4 by comparing the implementations
produced by SPIRAL for the DFT to FFTW (Frigo and
Johnson, 1998), one of the best available FFT packages.
In Section 6.5, the performance of a wide range of trans-
forms is compared to that of the DFT. The results show
that the performance that SPIRAL obtains is generally
available to all DSP transforms and does not arise from
special cases available only to the FFT.

6.1 ARCHITECTURE DEPENDENCE

The best implementation of a given transform varies con-
siderably between computing platforms. To illustrate
this, we generated an adapted implementation of a

 on four different platforms, using a dynamic pro-
gramming search (Section 5.2). Then we timed these
implementations on each of the other platforms. The
results are displayed in Table 3. Each row corresponds to
a timing platform; each column corresponds to a gener-
ated implementation. For example, the run-time of the
implementation generated for p4linux, timed on athlon is
in row 3 and column 2. As expected, the fastest run-time
in each row is on the main diagonal. Furthermore, the
other implementations in a given row perform signifi-
cantly slower. 

6.2 COMPARISON OF SEARCH METHODS

Figures 11 and 12 compare several search methods pre-
sented in Section 5. The considered transforms are

, for k = 1,…, 17 and , for k = 1, …, 7. The
experiment is run on p3linux. The target language is C,
and the default global unrolling of all nodes of size 25

and smaller is used, except for the timed search. Further,
for the DFT of large size (2k > 32) we consider only the
Cooley–Tukey rule (16) and its variant (18), excluding

rules (17), (19), and others, which perform poorly for
large sizes. This considerably cuts down the DFT algo-
rithm space. 

There are two different types of plots shown in these
figures. The upper plots, respectively, show the run-times
of the fastest implementation found by different search
methods, divided by the run-times for the best implemen-
tation found by 1-best dynamic programming (that is, the
default dynamic programming that only keeps the single
best formula for each transform and size). Thus, lower
points correspond to faster formulas found. The bottom
plots, respectively, show the number of implementations
timed by the different search methods. Most of the search
time is spent on timing the implementations; thus, the
number of implementations timed is a good measure of
the total time spent by the search algorithm. The y-axis
is in logarithmic scale. The plots include an additional
line indicating the total number of possible algorithms

Table 3
Comparing fast implementations of a DFT of size

 generated for different machines. The run-
times are given in seconds.

fast implementation for

p3linux p4linux athlon sun

timed
on

p3linux 0.89 1.08 0.99 1.10

p4linux 0.97 0.63 0.73 1.23

athlon 1.23 1.23 1.07 1.22

sun 0.95 1.67 1.42 0.82

220

DFT220

DFT2k DFT2k
II( )

Fig. 11 Comparison of search methods for the DFT on
p3linux.
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using the rules in SPIRAL. The timed search may time
the same formula multiple times, since it calls various
search methods, and thus, at small sizes, may time more
implementations than possible algorithms. For dynamic
programming, the number of implementations of smaller
size timed is also included. We omitted random search
since it always times 100 implementations. 

For the DFT, both random search and hill climbing
search find rather slow formulas in comparison to the
other search methods at many of the larger sizes. In sev-
eral of these cases, however, the algorithms found by ran-
dom search are still within a reasonable 30–40% of the
best. This is due to two reasons. First, as said above, we
turned off some rules for large sizes that are known to
perform poorly. Secondly, we do not draw uniformly
from the algorithm space (see Section 5.3), which, in this
case, also works in favor for the random search. (The

majority of DFT ruletrees based on rule (16) have a bal-
anced top-level split, which leads to bad performance.) 

It is surprising that hill climbing search performs so
poorly, sometimes even considerably worse than random
search. Hill climbing search initially generates fewer ran-
dom ruletrees than random search; if these are poorly
chosen, the search may not find mutations that produce
good ruletrees. Thus, STEER has an important advantage
over hill climbing in that it generates and uses a larger
population; also, STEER has an advantage over random
search in that it uses evolutionary operators to intelli-
gently search for fast implementations. 

For the DFT, there is no one search method that con-
sistently finds faster formulas than the other methods. In
fact, for the considered transforms and rules, plain 1-best
dynamic programming does not perform much worse
than the other methods; it is sometimes 10% slower than
some of the other search methods. Generally, either
STEER, timed search, or 4-best dynamic programming
finds the fastest formula for a given DFT size in the
experiments reported here. 

For the DCT(II), STEER finds faster formulas or
equally fast formulas than all of the other search meth-
ods. For size 27, STEER is able to find a formula that is
20% faster than that found by 1-best dynamic program-
ming. 

These plots show that the number of possible formulas
grows very quickly for very small sized transforms, forc-
ing the search algorithms to only consider a very small
portion of the space of formulas. For dynamic program-
ming, it is clear that increasing the number of best formu-
las kept for each transform and size increases the number
of formulas that must be timed. For small sizes, timed
search usually times the most formulas as it calls several
search algorithms. Since, in the presented experiments,
timed search is only allowed 30 min, it begins to time
slightly fewer formulas at larger sizes as it requires more
time to run larger sized formulas. For larger sizes of the
DFT, 4-best dynamic programming times the most for-
mulas of all the search algorithms. For DCT(II) sizes 25 to
27, STEER times the most formulas. 

6.3 SEARCHING OVER LOCAL 
UNROLLING SETTINGS

Figure 13 compares several of the search methods when
also searching over local unrolling settings for the DFT.
STEER and 1-best and 4-best dynamic programming
were run on the same machine as the experiments in Sec-
tion 6.2; this time, the search methods also explored the
possible local unrolling settings. Sections 4 and 5
describe how this is accomplished. The plots in Figure 13
compare these new runs against the previous runs that
used a fixed global unrolling setting. 

Fig. 12 Comparison of search methods for DCT  on
p3linux.

II( )
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For many of the smaller sizes of the DFT, the searches
that explored the possible local unrolling settings found
faster implementations than those that used a fix global
unrolling setting. The price paid is the number of timed
formulas, which is much larger compared to searching
with fixed global unrolling setting. Thus, if search time is
not an issue, allowing a search over local unrolling set-
tings can produce faster implementations. 

6.4 COMPARISON WITH FFTW

Figure 14 compares the performance of the best SPIRAL
implementation of the DFT to FFTW 2.1.3 on all of the
computing platforms considered for sizes 21 to 222. For

other transforms highly tuned code is not readily availa-
ble. We observe that for various machines and various
sizes SPIRAL is faster than FFTW and vice versa. For
small DFT sizes, FFTW code is slower due to its more
complicated infrastructure. The same reason seems to
favor SPIRAL code on p4win where the Intel vendor
compiler can perform additional optimizations on SPI-
RAL’s simple loop code. The main point in this compari-
son is not that one is faster than the other (without
additional analysis and careful consideration of error in
timing experiments a definitive conclusion cannot be
drawn presently), but rather that the run-times produced
by the general SPIRAL system are comparable across a
range of platforms and transform sizes to FFTW. 

6.5 PERFORMANCE OF DIFFERENT 
TRANSFORMS

Figure 15 shows the performance of the best implementa-
tions of different transforms found by SPIRAL on the
Sun machine. The transforms include different types of
trigonometric transforms, the Walsh–Hadamard trans-
form and the (rationalized) Haar transform. The perform-
ance of these transforms for sizes 2 to 64 is compared to
the best time for the DFT of the same size. Since the per-
formance of these transforms are comparable to that of
the DFT and it was shown in Section 6.4 that the SPIRAL
DFT times are comparable to the best available FFT pack-
ages, we can conclude that good performance is obtained

Fig. 13 Comparison of search methods searching over
local unrolling settings for the DFT on p3linux.

Fig. 14 Comparison of the performance of SPIRAL
and FFTW on different platforms.
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across transforms. Figure 15 shows that the other trans-
forms are faster than the DFT beyond size 4, with the
WHT and RHT being the fastest. This is to be expected
since these transforms operate on real data whereas the
DFT operates on complex data. That the DFT is faster for
sizes 2 and 4 may be due to special optimizations that
have been applied to the DFT. 

7 Conclusions
We presented the main components of SPIRAL, a system
that automatically generates platform-adapted implemen-
tations of linear DSP transforms. At the core of SPIRAL
is the representation of algorithms for transforms as
mathematical formulas using a few constructs and primi-
tives. This insight motivates the design of the language
SPL, which is a domain-specific language for (linear)
DSP algorithms. The SPL compiler translates algorithms,
written in SPL, into C or Fortran procedures, and thus
connects the mathematical realm of algorithms with the
realm of concrete implementations. The space of algo-
rithms for a given transform is very large, and yet gener-
ated from a small set of rules, which makes possible the
automatic generation of these algorithms, and, further-
more, makes it easy to include new transforms. Since
algorithms can be automatically generated and imple-
mented, SPIRAL is able to use search to find a “good
match” of algorithm and platform. Thus, the code optimi-
zation is performed mainly at a “high”, algorithmic,
level. The distinguishing difference between algorithms
generated for the same transform is the data flow (not the
arithmetic cost), which, on modern architectures, has a
strong impact on performance. SPIRAL’s search directly
addresses the problem of finding the best data flow. 

Since SPIRAL’s methodology is based on a descrip-
tion of the algorithms, it is not transform specific, which
distinguishes it from other approaches. Every algorithm
that can be written using the provided constructs can be
included. New constructs can be added if necessary. Dif-
ferent target languages or code types can be included by
expanding the SPL compiler. 

We believe that our approach has the potential to solve
the problem of generating efficient DSP implementations
across different DSP algorithms and different computing
architectures. 
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