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DCT/DST and Gauss–Markov
Fields: Conditions for Equivalence

Jośe M. F. Moura and Marcelo G. S. Bruno

Abstract—The correspondence addresses the intriguing question of
which random models are equivalent to the discrete cosine transform
(DCT) and discrete sine transform (DST). Common knowledge states
that these transforms are asymptoticallyequivalent to first-order Gauss
causal Markov random processes. We establish that the DCT and the
DST are exactly equivalent to homogeneous one-dimensional (1-D) and
two-dimensional (2–D) Gaussnoncausal Markov random fields defined
on finite lattices with appropriate boundary conditions.

I. INTRODUCTION

In this correspondence, we establish the second-order equivalence
between the discrete sine transform (DST) and the discrete cosine
transform (DCT) and arbitrary order noncausal Gauss–Markov ran-
dom fields (GMrf’s) defined on a finite lattice. We prove this by
showing that the DST and the DCT diagonalize the covariance matrix
associated with these fields. Following [1], we work with the inverse
of the covariance matrix, which is called the potential matrix, that
is highly structured; for homogeneous noncausal GMrf’s of arbitrary
order, it is given by a Toeplitzcanonical matrix plus a boundary
matrix.

Section II expresses the Toeplitz component of the potential matrix
as matrix polynomials that are diagonalizable by either the DST or the
DCT plus a perturbation matrix. Section III shows that for a given
arbitrary order one-dimensional (1-D) GMrf, particular choices of
boundary conditions (bc’s) lead to a boundary matrix that cancels
the perturbation term in the expansion of the Toeplitz canonical
matrix. The final result is then an overall potential matrix that is

Manuscript received September 24, 1996; revised March 6, 1998. This work
was supported in part by DARPA under Grant DABT 63-98-1-0004. The work
of M. G. S. Bruno was also supported in part by CNPq-Brazil. The associate
editor coordinating the review of this paper and approving it for publication
was Dr. Jitendra K. Tugnait.

The authors are with the Department of Electrical and Computer Engineer-
ing, Carnegie Mellon University, Pittsburgh, PA 15213-3890 USA.

Publisher Item Identifier S 1053-587X(98)05966-2.

diagonalizable by either the DST or the DCT. Results are extended
to two-dimensional (2-D) GMrf’s in Section IV using the Kronecker
product. The same techniques can be used to show similar results for
the other sinusoidal transforms introduced in [2].

II. NOTATION AND PRELIMINARIES

Let e1 = [1 0 � � � 0]T and, for1 � i � N , ei be a zero vector
except for entryi, which is a 1. We define the followingN � N

matrices whose entries are zero, except as indicated:

• reflection matrixJ, with counter diagonal of ones;
• forward shiftK1, with first upper diagonal of ones;
• backward shiftK2 = K

T
1 , with lower diagonal of ones;

• the powers of the shift operatorsKi
1 andKi

2, 1 � i � N � 1,
with the ith-upper, or, respectively,i-lower, diagonal of ones;

• F0 = 0, and symmetric matricesFi = J(KN�i
1 + K

N�i
2 ),

0 � i � N � 1, with the (i � 1)th lower and uppercounter
diagonals of ones;

• H = K1+K2, with the first upper and lower diagonal of ones;
• H is like H, with, in addition, the entries (1, 1) and (N; N ),

which are also ones.

Eigenstructure ofH andH: MatricesH and H are symmetric
tridiagonal matrices. Their eigenstructure is well known, e.g., [3].
The eigenvectors ofH are the basis vectors of the DST, and the
eigenvectors ofH are the basis vectors of the DCT. In other words,
their eigenvectors are the rows of the orthogonal transform matrices
S andC for the DST and DCT, respectively, which are defined as

Skn =
2

N + 1
sin

�(k + 1)(n+ 1)

N + 1
0�k; n�N�1

(1)

Ckn =

1

N
; k = 0; 0 � n � N � 1

2

N
cos

�(2n+ 1)k

2N
; 1 � k � N � 1

0 � n � N � 1.

(2)

Toeplitz Matrices: We decompose a banded symmetricN � N

Toeplitz matrix as

8m � N : T = b1I+ b2(K1 +K2) + b3(K
2
1 +K

2
2) + � � �

+ bm(Km�1
1 +K

m�1
2 ): (3)

Powers[Ki�1
1 +K

i�1
2 ]: The following lemma relates(Ki

1+K
i
2)

to the powers ofHi and ofHi.
Lemma II.1: Let F�1 = F0 = 0 andFi, i � 1 be defined as

before. Then

0 � i � N � 1: K
i
1 +K

i
2 = Pi(H) + Fi�1 (4)

where P0(H) = 2I, and Pi(H), 1 � i � N � 1 are matrix
polynomials inH

i even: Pi(H) = H
i
� iH

i�2
� �

i
1H

i�4
� � � � � �

i
(i�2)=2I (5)

i odd: Pi(H) = H
i
� iH

i�2
� �

i
1H

i�4
� � � � � �

i
(i�3)=2H: (6)

Similarly

0 � i � N � 1: K
i
1 +K

i
2 = Qi(H)� Fi (7)

where Q0(H) = 2I and Qi(H), 1 � i � N � 1 are matrix
polynomials inH

i even: Qi(H) = H
i
� iH

i�2
� �

i
1H

i�4
� � � � � �

i
(i�2)=2I (8)

i odd: Qi(H) = H
i
� iH

i�2
� �

i
1H

i�4
� � � � � �

i
(i�3)=2H: (9)
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TABLE I
RECURSION FORCOEFFICIENTS�

j
i

�
i
k

�
3

1 = 0

�
i+1
1 = �

i
1 � (i� 1) i � 3

�
i+1
k = �

i
k � �

i�1
k�1 2 � k �

i� 3

2
i � 7

i odd, i � 3

�
i+1
(i�1)=2 = ��i�1(i�3)=2

i � 5

�
i+1
1 = �

i
1 � (i� 1) i � 4

i even,i � 4

�
i+1
k = �

i
k � �

i�1
k�1 2 � k �

i� 2

2
i � 6

The coefficients�ji are computed according to the recursion in
Table I.

The proof of Lemma II.1 is found in a technical report available
from the authors.

III. DCT/DST AND 1-D GMRF’S

We establish the second-order equivalence between the DCT (or
DST) and 1-D noncausal GMrf’s by determining the GMrf’s for
which the DCT (or the DST) is their Karuhnen–Loève transform
(KLT). We do this for arbitrary-order, finite-length, spatially homo-
geneous, noncausal GMrf’s with appropriately chosen bc’s.

The KLT of a GMrf diagonalizes its covariance matrix and is
determined by the eigenvectors of the GMrf covariance matrix.
Finding this eigenstructure is, in general, hard because there is
no direct parametrization of the GMrf covariance. Reference [1]
shows, however, that for arbitrary-order GMrf’s on finite lattices, the
inverse of the covariance (the potential matrix) has a well-defined
parametrized structure. We work with the potential matrix and use
this parametrization to show when the DCT or the DST diagonalize
the potential matrix, hence, the covariance matrix of the GMrf.

Consider a zero-mean spatially homogeneousmth-order GMrf
fx(n)g defined on the finite lattice1 � n � N and described by
the finite difference equation

x(n) =�a1[x(n� 1) + x(n+ 1)]� � � �

� am[x(n �m) + x(n+m)] + v(n) (10)

wherefv(n)g is correlated noise. Stackx(n) andv(n), 1 � n � N

in two column vectorsx andv, and define the vector of bc’sxbc

xbc = [x(0) � � � x(�(m� 1)) � � � x(N + 1) � � � x(N +m)]T : (11)

With xbc, we extend (10) up to the boundary. In matrix form, (10),
1 � n � N , becomes

Acx = Gbcxbc + v: (12)

By inspection, the matricesAc andGbc are Toeplitz and Hankel,
respectively

Ac = I+

m

i=1

ai[K
i
1 +K

i
2]

and

Gbc = �

m

i=1

aiFi: (13)

The structure ofGbc follows by writing (10) forn = 1; � � � ; m and
n = N � (m� 1); � � � ; N and collecting the terms in the boundary
valuesx(0); � � � ; x(�(m� 1)); � � � ; x(N + 1); � � � ; x(N +m).

The bc’s of interest are homogeneous, i.e.,

Gbcxbc = �Abcx: (14)

Equation (14) definesAbc implicitly. Substituting (14) in (12), we get

Ax = v; with A = Ac +Abc: (15)

We recall from [1] that

A potential matrix;
Ac canonical potential matrix;
Abc bc matrix;

and that the covariance matrix�x of x is proportional toA�1.
Hence, the DCT or the DST are the KLT of a GMrf when they
diagonalize its potential matrixA. Let x = fx(n): 1 � n � Ng be
an mth-order GMrf as in (10).

Theorem III.1—DST and GMrf:The DST is the KLT of themth-
order GMrf x with bc’s

1 � k � m� 1: x(0) = 0; x(�k) = �x(k) (16)

2 � k � m: x(N + 1) = 0;

x(N + k) = �x(N � k + 2): (17)

Theorem III.2—DCT and GMrf:The DCT is the KLT of themth-
order GMrf x with bc’s

0 � k � m� 1: x(�k) = x(k + 1) (18)

1 � k � m: x(N + k) = x(N � k + 1): (19)

To prove the theorems, we show that the bc’s in the theorems lead
to anAbc that cancels a Hankel perturbation term in the expansion
of the canonical potential matrixAc (see below). This is done by
working with (13) and (14).

Proof of Theorem III.1: Equation (13) expressesAc, which is a
symmetric Toeplitz matrix, as the sum of powers of the matricesKi,
i = 1; 2. From Lemma II.1, substituting (4) in (13), we rewriteAc as

Ac =

m

i=0

diaiPi(H) +

m

i=2

aiFi�1 (20)

where a0 = 1, d0 = 1=2, di = 1, 1 � i, P0(H) = 2I,
and P1(H) = H. To obtain a global potential matrixA whose
eigenmatrix is the DST matrix, it suffices to choose a bc matrix
Abc that cancels the second term in (20) ofAc; in other words

Abc = �

m

i=2

aiFi�1 leading to

A =Ac +Abc =

m

i=0

diaiPi(H): (21)

With thisAbc, matrixA is a polynomial inH and, hence, diagonal-
izable by the DST matrix.

Homogeneous bc’s:In matrix form, the bc’s given by (16) and
(17) in Theorem III.1 lead to

xbc = � [e2 � � � em 0 � � � 0 eN�m+1 � � � eN�1]x

=�Msx: (22)

bc MatrixAbc: Substituting (22) in (14) and using the definitions
of Gbc in (13) and ofMs in (22), we get

Abc =�Gbc(�1)Ms

=GbcMs

= �

m

i=1

aiFi[e2 � � � em 0 � � � 0 eN�m+1 � � � eN�1]: (23)

Multiplying out the matrices in (23) leads toAbc given by (21),
proving the theorem.
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Proof of Theorem III.2: From Lemma II.1, the canonical matrix
Ac is

Ac =

m

i=0

diaiQi(H)�

m

i=1

aiFi (24)

where a0 = 1, d0 = 1=2, di = 1, 1 � i, Q0(H) = 2I, and
Q1(H) = H. The matrixAbc needed to cancel the second term in
(24) is

Abc =

m

i=1

aiFi: (25)

Homogeneous bc’s:In matrix form, the bc’s given by (18) and
(19) in Theorem III.2 lead to

xbc = [e1 � � � em 0 � � � 0 eN�m+1 � � � eN ]x

=Mcx: (26)

bc MatrixAbc: Replacingxbc in (14) and again usingGbc in
(13) andMc in (26)

Abc =�GbcMc

= � �

m

i=1

aiFi [e1 � � � em 0 � � � 0 eN�m+1 � � � eN ]:

(27)

Multiplying out leads to the matrixAbc in (25), proving the theorem.
Remark: We make the following observations.

• The DCT bc’s in Theorem III.2 are the asymmetric Neumann
bc’s [1]. In DCT-based standards, the image is segmented in
smaller rectangular blocks, which are then independently DCT
transformed. The bc’s in Theorem III.2 assume symmetry across
boundaries, i.e., they ensure continuity across the blocks. They
are particularly suited to processing partitioned blocks when the
image is smooth.

• The bc’s corresponding to the DST in Theorem III.1 are a shifted
version of the asymmetric Neumann bc’s with an inversion of
sign. This suggests that the DST is well suited when there are
edges at the boundaries of the image blocks with the picture
intensity changing, say, from bright in one block to average at
the edge and then to dark in the next block.

• Perturbation matrices similar to (23) and (27) for the 1-D case
are also in [4] and [5].

IV. DCT/DST AND 2-D GMRF’S

We consider GMrf’s on square latticesL = f(i; j): 1 � i; j �
Ng. We collect the field values1

X = fx(i; j): (i; j) 2 Lg along
row i in a column vectorxi and stack these vectors in a long
column vectorx. From [1], it follows that the potential matrixA
of the 2-D GMrf is highly sparse with a block structure, which is
compactly captured by Kronecker products. The Kronecker product
of two matricesA andB corresponds to the matrixA
B = [aijB];
see [3] for properties.

Consider a 2-D (homogeneous) GMrf on a finite lattice, where
f�ij � �, (i; j) 2 Lg is the correspondingnoncausal2-D neighbor-
hood system. The MMSE description of the field is

1 � i; j � N :

x(i; j) =
(i�k; j�l)2�

�a(k; l)x(i� k; j � l) + v(i; j): (28)

The coefficientsa(k; l) are such that they satisfy thesymmetrycon-
ditions a(�k; l) = a(k; l), a(k; �l) = a(k; l), anda(�k; �l) =
a(k; l). We also representa(k; l) by alk.

1We also represent the field values at pixel(i; j) asxij .

Let Wp be the maximum Euclidean distance between sites(i; j)
and(i�k; j�l) such that(i�k; j�l) 2 �. Collecting (28) in matrix
format, we get the following structure for the canonical component
(Ac) of the potential matrix (see [1, Th. 2])

Ac = I
D0 +K1 
D1 +K2 
D
T
1 + � � �

+Km
1 
Dm +Km

2 
DT
m (29)

whereD0 is centrosymmetric, Toeplitz, and banded; the off-diagonal
blocksDi are persymmetric, Toeplitz, and banded; andm is the
largest integer such thatm � Wp.

We focus attention on arbitrary-order models withdiagonal sym-
metry. Diagonal symmetry forces the off-diagonal Toeplitz blocksDi

to be symmetric. Hence, the canonical componentAc is

Ac = I
D0 + (K1 +K2)
D1 + � � �

+ (Km
1 +Km

2 )
Dm (30)

=

m

j=0

dj [K
j
1 +K

j
2]
Dj (31)

where d0 = 1=2 and dj = 1, 1 � j � m. The Dj ’s have the
following structure [1]:

0 � j � m: Dj =

p(j)

k=0

dka
k
j [K

k
1 +Kk

2 ]: (32)

In (31) and (32),m is the largest integerm � Wp, p(0) = m, and
p(j), 1 � j � m is such that

p2(j) + j2 �W 2
p : (33)

In order to obtain a potential matrix that is diagonalizable by
a Kronecker product of sinusoidal orthogonal transform matrices
(C
C or S
 S), we must add to the canonicalblock ToeplitzAc

an appropriate perturbationblock Hankelmatrix of bc’s. The desired
perturbation matrices are

(Abc)DST = �

m

j=2

Fj�1 


p(j)

k=0

dka
k
jPk(H)

�

m

j=0

[djPj(H)]


p(j)

k=2

akjFk�1

�

m

j=2

Fj�1 


p(j)

k=2

akjFk�1 (34)

(Abc)DCT =

m

j=1

Fj 


p(j)

k=0

dka
k

jQk(H)

+

m

j=0

[djQj(H)]


p(j)

k=1

a
k
jFk

�

m

j=1

Fj 


p(j)

k=1

a
k
jFk (35)

whered0 = 0:5, dj = 1, j � 1,F
�1 = F0 = 0, and the polynomials

Pk andQk are those in (4) and (7), whose coefficients are obtained
using the recursions in Table I.

The bc’s that correspond to (34) and (35) are in the next two
theorems. Proofs are in a technical report.
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Theorem IV.1—DST and GMrf:The DST is the KLT of themth-
order symmetric GMrfX with the following bc’s: For�(m�1) � i,
j � N + m

xi0 = xi(N+1) = x0j = x(N+1)j = 0

8 k; k + 1 �Wp; k > 0:

xi(�k) = �xik andx(�k)j = �xkj

8 k; k � Wp; k > 1:

xi(N+k) = �xi(N�k+2) andx(N+k)j = �x(N�k+2)j : (36)

Theorem IV.2—DCT and GMrf:The DCT is the KLT of themth-
order symmetric GMrfX with the following bc’s: For�(m�1) � i,
j � N + m

8 k; k + 1 �Wp; k � 0:

xi(�k) = �xi(k+1) andx(�k)j = �x(k+1)j

8 k; k � Wp; k � 1:

xi(N+k) = �xi(N�k+1) andx(N+k)j = �x(N�k+1)j : (37)

V. CONCLUSION

We show that the DCT and the DST are statisticallyequivalentto
homogeneousnoncausalGMrf’s by establishing that they are the KLT
of 1-D or 2-D arbitrary-order homogeneous GMrf’s with appropriate
bc’s. This is an exact equivalence that contrasts with the common
argument ofasymptoticequivalence of the DCT and the DST with
certain first-ordercausalGauss Markov random processes.

The bc’s for the DCT assume symmetry across boundaries. Be-
cause this ensures continuity across blocks, the DCT is particularly
suited to processing partioned blocks when an image is smooth. The
bc’s for the DST correspond to intensity changes, which makes it
appropriate when the image goes from dark to bright or bright to
dark at the boundaries of the image blocks.
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Graph Theoretic Techniques for
Pruning Data and Their Applications

Tetsuya Hoya

Abstract—In pattern recognition tasks, we usually do not pay much
attention to the arbitrarily chosen training set of a pattern classifier
beforehand. This correspondence proposes several methods for pruning
data sets based upon graph theory in order to alleviate redundancy in
the original data set while retaining the original data structure as far as
possible. The proposed methods are applied to the training sets for pattern
recognition by a multilayered perceptron neural network (MLP-NN) and
the locations of the centroids of a radial basis function neural network
(RBF-NN). The advantage of the proposed graph theoretic methods is that
they do not require any calculation for the statistical distributions of the
clusters. The experimental results in comparison both with thekkk-means
clustering and with the learning vector quantization (LVQ) methods show
that the proposed methods give encouraging performance in terms of
computation for data classification tasks.

Index Terms—Data-pruning algorithms, graph theoretic techniques,
pattern classification.

I. INTRODUCTION

Neural networks have played a significant role in pattern classifica-
tion studies with the rapid development in new computer architectures
as well as with advances in vector quantization networks, Bayesian, or
nearest neighbor-based classifiers. In pattern recognition tasks using
NN’s, normally a large amount of data for training NN’s are required
to generalize the mapping of the input–output relation. This is time
consuming. The need for pruning the training data sets is, hence,
desirable because the sets usually are not chosen with much care, and
there is, therefore, a large possibility of containing redundant informa-
tion in the training phase. Moody and Darken [1] used the centroids of
RBF-NN’s obtained by thek-means clustering algorithm. In an earlier
work, thek-nearest neighbor (k-NN)-based algorithm [2] was used
for the reduction in the size of RBF-NN’s [3]. This method, however,
involves the estimation of thea posterioridistributions, which is one
of common problems in statistical analysis. Graph theory provides
a number of ways to solve problems in a variety of disciplines and
has also been used for clustering [4]–[6]. In a recent paper [7], a
method to the data reduction was proposed, which automatically
selects the number of exemplars for each class. In that paper, a
minimal/shortest spanning tree (MST/SST) was used to calculate the
density of the patterns in the training data set of thek-NN and the
learning vector quantization neural network (LVQ-NN) classifiers. In
this correspondence, three graph theoretic techniques for data pruning
are proposed and applied to the data sets for digit word recognition.
It is also proposed that the representative vectors should suitably be
chosen to contain “well-balanced” information of the given training
data. The proposed methods are designed to consider both hierarchical
and nonhierarchical aspects of the data sets and do not require any
arduous statistical approximation. In Sections III–V, these pruning
methods are developed. The performances of the proposed methods
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