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Eigenstructure off andH: Matrices H and H are symmetric
tridiagonal matrices. Their eigenstructure is well known, e.g., [3].
The eigenvectors oH are the basis vectors of the DST, and the
eigenvectors oH are the basis vectors of the DCT. In other words,
their eigenvectors are the rows of the orthogonal transform matrices
Abstract—The correspondence addresses the intriguing question of S @ndC for the DST and DCT, respectively, which are defined as

DCT/DST and Gauss—Markov
Fields: Conditions for Equivalence

Joe M. F. Moura and Marcelo G. S. Bruno

which random models are equivalent to the discrete cosine transform r 5 (k+ D(n+1)
(DCT) and discrete sine transform (DST). Common knowledge states Spn = / _ g TR . (n (1)
that these transforms are asymptoticallyequivalent to first-order Gauss N+1 N+1 )
causal Markov random processes. We establish that the DCT and the B 0k, nSN—1
DST are exactly equivalent to homogeneous one-dimensional (1-D) and 1
two-dimensional (2-D) Gaussnoncausal Markov random fields defined -, E=0,0<n<N-1
on finite lattices with appropriate boundary conditions. :
Cen =Y 2 2(n+ 1k 2)
TCOSTT’, 1<E<N-1
I. INTRODUCTION 0<n<N-1.

In this corregpondenc_e, we establish the second-ordc_er equwalenc?oeplitz Matrices: We decompose a banded symmeticx N
between the discrete sine transform (DST) and the discrete cos{ne, plitz matrix as
transform (DCT) and arbitrary order noncausal Gauss—Markov ran- ) ‘

dom fields (GMrf's) defined on a finite lattice. We prove this by Vm < N: T =bI+by(Ky + Ky) + bs(KT + K3) + - -
showing that the DST and the DCT diagonalize the covariance matrix + bm(anfl + Kgnfl), 3
associated with these fields. Following [1], we work with the inverse
of the covariance matrix, which is called the potential matrix, that
is highly structured; for homogeneous noncausal GMrf's of arbitra|t§7
order, it is given by a Toeplitzanonical matrix plus a boundary
matrix.

Section Il expresses the Toeplitz component of the potential matrix 0<i<N-1. Ki+K} P(H)+F,_; (4)
as matrix polynomlals.that are fjlagongllzable by either the DST or t\r/]v%ere Po(H) = 2T, and P,(H), 1 < i < N — 1 are matrix
DCT plus a perturbation matrix. Section Ill shows that for a given S
arbitrary order one-dimensional (1-D) GMrf, particular choices d?olynomlals inH

Powers[K! ™' + K. ']: The following lemma relate€K; + K3 )
the powers ofH’ and of H'.

Lemmall.l: Let F_, = Fo = 0 andF;, 7 > 1 be defined as
before. Then

boundary conditions (bc’s) lead to a boundary matrix that cancelgven: P;(H)=H'—iH" > —a/H' " — - —a{;_9),I  (5)
the perturbation term in the expansion of the Toeplitz canonicalyqg: PH)=H —-iH *—a/H *-...- ‘l"fi—3)/2H- (6)
matrix. The final result is then an overall potential matrix that is
Similarly
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TABLE | _ The bc’s of interest are homogeneous, i.e.,
RECURSION FOR COEFFICIENTS o/ Gooxse = —Apx. (14)
Vi Equation (14) defined ;. implicitly. Substituting (14) in (12), we get
al=0 Ax=v, withA=A.+A,.. (15)
aitl = af —(i—1) i>3 We recall from [1] that
i odd,i >3 A potential matrix;
ol —ai —all  2<k< i=3 i>7 A, canonical potential matrix;
2 A,. bc matrix;
az’j_ll)/z = —aé:_IS)/Q i>5 and that the covariance matriX, of x is proportional toA ™!,
_ Hence, the DCT or the DST are the KLT of a GMrf when they
it =al —(i—-1) i >4 diagonalize its potential matriA. Letx = {x(n): 1 < n < N} be
ieven, >4 o an mth-order GMrf as in (10).
ayt=af —ai”} 2<k< 2 i>6 Theorem 111.1—DST and GMrfThe DST is the KLT of thenth-
2 order GMrf x with bc'’s
. ; . L 1<k<m-1: 2(0)=0, z(—k)=—-a(k 16
The coefficientsa] are computed according to the recursion in SEsm 2(0) z(=k) v(k) (16)
Table I. 2<k<m: x(N+1)=0,
The proof of Lemma II.1 is found in a technical report available o(N+k)=—2(N—Fk+2). a7

from the authors. Theorem I1l.2—DCT and GMrf:The DCT is the KLT of thenth-

der GMrf x with bc
lll. DCT/DST AND 1-D GMRF's order SN With be's

We establish the second-order equivalence between the DCT (or O<k<m—1 a(-k)=z(k+1) (18)
DST) and 1-D noncausal GMrf's by determining the GMrf's for 1<k<m: z(N+k)=a(N-k+1). (19)

which the DCT (or the DST) is their Karuhnen-&e transform To prove the theorems, we show that the bc’s in the theorems lead

(KLT). We do this for arbitrary-order, finite-length, spatially homo- . . :
eneous. noncausal GMrf's with aobrooriately chosen be's to an A,. that cancels a Hankel perturbation term in the expansion
9 ! : | approp y - . of the canonical potential matriA. (see below). This is done by
The KLT of a GMrf diagonalizes its covariance matrix and is . .
determined by the eigenvectors of the GMrf covariance matr'Worklng with (13) and (14).
: y 'genv varl X Proof of Theorem I11.1: Equation (13) expresseA., which is a

F|nd|_ng this elgen§trut_:ture Is, in general, h_ard because there Vinmetric Toeplitz matrix, as the sum of powers of the matries
no direct parametrization of the GMrf covariance. Reference [ﬁ—l 2. From Lemma II.1, substituting (4) in (13), we rewride. as
shows, however, that for arbitrary-order GMrf's on finite lattices, the™ " " 9 ' c
inverse of the covariance (the potential matrix) has a well-defined A = i
parametrized structure. We work with the potential matrix and use T
this parametrization to show when the DCT or the DST diagonalize
the potential matrix, hence, the covariance matrix of the GMrf. Whereao = 1, do = 1/2, di = 1, 1 < i, B(H) = 2,
Consider a zero-mean spatially homogeneauth-order GMrf and P1(H) = H. To obtain a global potential matribd whose

{z(n)} defined on the finite latticé < » < N and described by €igenmatrix is the DST matrix, it suffices to choose a bc matrix

dia; P;,(H) + Z a;F;— (20)
i=2

1=0

the finite difference equation A, that cancels the second term in (20)Af; in other words
z(n) =—aifz(n=1)+z(n+1)] —--- Ay = — Z a;F,_, leading to
— awfz(n —m)+ z(n+m)]+v(n) (10) i=2
where{v(n)} is correlated noise. Stackn) andwv(n), 1 <n < N A=A.+A; = Z d;a;: P;(H). (21)
in two column vectorx andv, and define the vector of bc’ss. =

Xpe =[2(0) -+ a(=(m = 1)) -+ (N +1)--- (N +m)]". (11) With this A,., matrix A is a polynomial inH and, hence, diagonal-
izable by the DST matrix.

" Homogeneous bc’sin matrix form, the bc’s given by (16) and
(17) in Theorem IIl.1 lead to

With x;., we extend (10) up to the boundary. In matrix form, (10)
1 < n < N, becomes

A x = GpoXpe + V. (12)
Xpe = — [92 T €y 0---0 eN—m+1 " eN_1]x
By inspection, the matriceA . and G;. are Toeplitz and Hankel, — _M.x. (22)
respectively °
m bc Matrix A;.: Substituting (22) in (14) and using the definitions
A, =T+ aiKi + Kj] of Gy. in (13) and of M, in (22), we get
and = Ay =—Gp(—1)M,
m = GbcMs
Gy = — Z a;F;. (13) m
i—1 = - Z a;Filea - €, 0 - Oen_mi1 -+ en—1]- (23)
The structure ofG,. follows by writing (10) forn =1, ---, m and =1
n=N—(m-—1),---, N and collecting the terms in the boundaryMultiplying out the matrices in (23) leads t4;. given by (21),

valuesz(0), ---, e(—(m —=1)), -+, &(N + 1), ---, (N +m). proving the theorem.
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Proof of Theorem II.2: From Lemma II.1, the canonical matrix Let W, be the maximum Euclidean distance between giteg)

A is and(i—k, j—1) such thati—k, j—I) € 5. Collecting (28) in matrix
m . m format, we get the following structure for the canonical component
A, = Z dia;Q;(H) = > a,F; (24) (A.) of the potential matrix (see [1, Th. 2])
=0 =1
whereao = 1, do = 1/2, d; = 1, 1 < i, Qo(H) = 2I, and Ac=19Dy+K, @D +K; ©Dy +---
Q. (H) = H. The matrixA,. needed to cancel the second term in +K" @D, + K5 @ D), (29)
(24) is
m whereDy is centrosymmetric, Toeplitz, and banded; the off-diagonal
Ay = Z a;F;. (25) blocks D; are persymmetric, Toeplitz, and banded; andis the

i=1 largest integer such that < W,.
Homogeneous bc’sin matrix form, the bc's given by (18) and We focus attention on arbitrary-order models witiagonal sym-
(19) in Theorem lIl.2 lead to metry. Diagonal symmetry forces the off-diagonal Toeplitz blofks
to be symmetric. Hence, the canonical compon&ntis

Xbe = [el o epr0---0 eN-—m+1 """ eN']X
=M.x. (26) A, =I0oDo+ (K1 +K2) @Dy +---
bc Matrix Aj.: Replacingxs. in (14) and again usings;. in + (K" +K3") @Dy, (30)

(13) andM.. in (26)

:ZCZJ[K{‘FK%]@D]' (31)
A—brt = _GhCML'

j=0

= - (—ZaiR)[el ren 0 0ey myr o en]. wheredy = 1/2 andd; = 1, 1 < j < m. The D;’s have the
=1 following structure [1]:

(27)
- . . . p(J)
Multiplying out leads to the matriX ;. in (25), proving the theorem. P o 3 ke k k
Remark: We make the following observations. O<jsm: Dj= ; draj[Ki + Ka] (32)

e The DCT bc's in Theorem IIl.2 are the asymmetric Neumann
bc’s [1]. In DCT-based standards, the image is segmented Im (31) and (32),n is the largest integem < W, p(0) = m, and
smaller rectangular blocks, which are then independently DG j), 1 < j < m is such that
transformed. The bc’s in Theorem 111.2 assume symmetry across

boundaries, i.e., they ensure continuity across the blocks. They 'S (Jj)+ i’ < I/I"']f. (33)
are particularly suited to processing partitioned blocks when the
image is smooth. In order to obtain a potential matrix that is diagonalizable by

« The bc’s corresponding to the DST in Theorem Il1l.1 are a shifteal Kronecker product of sinusoidal orthogonal transform matrices
version of the asymmetric Neumann bc’s with an inversion diC @ C or S @ S), we must add to the canonichlock ToeplitzA..
sign. This suggests that the DST is well suited when there aa@ appropriate perturbatidriock Hankelmatrix of bc’s. The desired
edges at the boundaries of the image blocks with the pictuperturbation matrices are
intensity changing, say, from bright in one block to average at
the edge and then to dark in the next block. m ()

« Perturbation matrices similar to (23) and (27) for the 1-D case ~ (Asc)pst = — > A F,1 @ [ Y draj Pe(H)

are also in [4] and [5]. 7=2 k=0
m »(7)
IV. DCT/DST AND 2-D GMRF's = RGP © | > ajFe
We consider GMrf's on square latticds = {(i, j): 1 < i, j < =0 k=2
N}. We collect the field valuésX = {x(i, j): (i, j) € L} along m L.
row i in a column vectorx’ and stack these vectors in a long - Fj0|> ajFe (34)
column vectorx. From [1], it follows that the potential matriXA i=2 k=2
of the 2-D GMrf is highly sparse with a block structure, which is ()
compactly captured by Kronecker products. The Kronecker product  (A;.)pcer = F,® Z ¢ikank(ﬁ)
of two matrices4A and B corresponds to the matrix © B = [a;; B]; j=1 k=0
see [3] for properties. . (i)
Consider a 2-D (homogeneous) GMrf on a finite lattice, where oy e | Nk
+ 1 i(H)] @ 1, Fp,
{n:;j =n, (i, j) € L} is the correspondingoncausal-D neighbor- FZ(] (4, (F)] ; K
hood system. The MMSE description of the field is )
m prl7
1<i,j<N: =3 KF; 0 | afFs (35)
x(in j) = Z —a(k, Da(i =k, j = 1) +v(i, j). (28) g=1 k=1
(i—k, j—I)Er
! ' wheredy = 0.5,d; =1,j > 1,F_; = Fy, = 0, and the polynomials

The coefficients:(k, ) are such that they satisfy tlymmetrycon-
ditions a(—k, ) = a(k, 1), a(k, =1) = a(k, 1), anda(—k, —1) =
a(k, 1). We also represent(k, 1) by al.

P, and @, are those in (4) and (7), whose coefficients are obtained
using the recursions in Table I.

The bc’s that correspond to (34) and (35) are in the next two
1We also represent the field values at pikelj) asz;;. theorems. Proofs are in a technical report.
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Theorem IV.1—DST and GMrfThe DST is the KLT of thenth-
order symmetric GMriX with the following bc's: For—(m —1) < 4,
< N4+m

Li0 = Ty(N+1) = Loj = L(N+1); = 0

Yk, E+1<W,, k>0

(=) = —Tik aNdx(_p); = —Tk;j
Vi k< Wy, k> 1:
Li(Nk) = —Ei(N—kt2) ANA2(Nyp); = —2(N_k12);. (36)

Theorem IV.2—DCT and GMrfThe DCT is the KLT of thenth-
order symmetric GMriX with the following bc’s: For—(m —1) < i,
j < N+m

Vi, k+1<W,, k>0:
Ti(—k) = —Ti(k+1) ANAT(—p); = —T(k41);
Yk, k<W,, k>1:

Ti(Nfk) = —Ti(N—k41) ANAT(NyR); = —T(v_kt1);- (37)

V. CONCLUSION

We show that the DCT and the DST are statisticalfjivalentto
homogeneousoncausalGMrf's by establishing that they are the KLT
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Graph Theoretic Techniques for
Pruning Data and Their Applications

Tetsuya Hoya

Abstract—In pattern recognition tasks, we usually do not pay much
attention to the arbitrarily chosen training set of a pattern classifier
beforehand. This correspondence proposes several methods for pruning
data sets based upon graph theory in order to alleviate redundancy in
the original data set while retaining the original data structure as far as
possible. The proposed methods are applied to the training sets for pattern
recognition by a multilayered perceptron neural network (MLP-NN) and
the locations of the centroids of a radial basis function neural network
(RBF-NN). The advantage of the proposed graph theoretic methods is that
they do not require any calculation for the statistical distributions of the
clusters. The experimental results in comparison both with thek-means
clustering and with the learning vector quantization (LVQ) methods show
that the proposed methods give encouraging performance in terms of
computation for data classification tasks.

Index Terms—Data-pruning algorithms, graph theoretic techniques,
pattern classification.

Neural networks have played a significant role in pattern classifica-
tion studies with the rapid development in new computer architectures
as well as with advances in vector quantization networks, Bayesian, or
nearest neighbor-based classifiers. In pattern recognition tasks using
NN's, normally a large amount of data for training NN's are required
to generalize the mapping of the input—output relation. This is time
consuming. The need for pruning the training data sets is, hence,

INTRODUCTION

of 1-D or 2-D arbitrary-order homogeneous GMrf’'s with appropriatdesirable because the sets usually are not chosen with much care, and
bc’s. This is an exact equivalence that contrasts with the commtirere is, therefore, a large possibility of containing redundant informa-
argument ofasymptoticequivalence of the DCT and the DST withtion in the training phase. Moody and Darken [1] used the centroids of

certain first-ordercausalGauss Markov random processes.

RBF-NN’s obtained by thé-means clustering algorithm. In an earlier

The bc's for the DCT assume symmetry across boundaries. Beork, the k-nearest neighbork(NN)-based algorithm [2] was used
cause this ensures continuity across blocks, the DCT is particulaidy the reduction in the size of RBF-NN's [3]. This method, however,
suited to processing partioned blocks when an image is smooth. Theolves the estimation of tha posterioridistributions, which is one
bc's for the DST correspond to intensity changes, which makesoit common problems in statistical analysis. Graph theory provides

appropriate when the image goes from dark to bright or bright
dark at the boundaries of the image blocks.
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