
Content-based Image Sequence Representation?

Pedro M. Q. Aguiar†, Radu S. Jasinschi∗, José M. F. Moura‡, and Charnchai
Pluempitiwiriyawej‡

†ISR—Institute for Systems and Robotics, IST—Instituto Superior Técnico,
Av. Rovisco Pais, 1049-001 Lisboa, Portugal. E-mail: aguiar@isr.ist.utl.pt

∗Philips Research, WOp 124, Prof. Holstlaan 4, 5656 AA, Eindhoven, Netherland.
E-mail:radu.jasinschi@philips.com

‡Department of Electrical and Computer Engineering, Carnegie Mellon University,
5000 Forbes Ave, Pittsburgh, PA 15213-3890, USA. E-mail: moura@ece.cmu.edu

Abstract. In this chapter we overview methods that represent video se-
quences in terms of their content. These methods differ from those devel-
oped for MPEG/H.26X coding standards in that sequences are described
in terms of extended images instead of collections of frames. We describe
how these extended images, e.g., mosaics, are generated by the basically
same principle: the incremental composition of visual photometric, geo-
metric, and multi-view information into one or more extended images.
Different outputs, e.g., from single 2-D mosaics to full 3-D mosaics, are
obtained depending on the quality and quantity of photometric, geomet-
ric, and multi-view information. In particular, we detail a framework well
suited to the representation of scenes with independently moving objects.
We address the two following important cases: i) the moving objects can
be represented by 2-D silhouettes (generative video approach) ; or ii) the
camera motion is such that the moving object must be described by their
3-D shape (recovered through rank 1 surface-based factorization). A ba-
sic pre-processing step in content-based image sequence representation
is to extract and track the relevant background and foreground objects.
This is achieved by 2-D shape segmentation for which there is a wealth
of methods and approaches. The chapter includes a brief description of
active contour methods for image segmentation.

1 Introduction

The processing, storage, and transmission of video sequences is now a common
feature of many commercial and free products. In spite of the many advances
in the representation of video sequences, especially with the advent and the
development of the MPEG/H.26X video coding standards, there is still room for
more compact video representations than currently used by these standards.

? The work of the first author was partially supported by the (Portuguese) Foundation
for Science and Technology grant POSI/SRI/41561/2001. The work of the third and
fourth authors was partially supported by ONR grant # N000 14-00-1-0593 and by
NIH grants R01EB/AI-00318 and P41EB001977.

moura
To be published in CRC Handbook on " Digital Image Sequence Processing: Compression and Analysis," editor: Todd Reed, Chapter 2, pp. 5-72, CRC Press, Boca Raton, FL, 2004. Invited Chapter.

In this chapter we describe work developed in the last twenty years that
addresses the problem of content-based video representation. This work can be
seen as an evolution from standard computer vision, image processing, com-
puter graphics, and coding theory towards a full 3-D representation of visual
information. Major application domains using video sequences information in-
clude: (i) visually guided robotics, inspection, and surveillance; and (ii) visual
rendering. In visually guided robotics, partial or full 3-D scene information is
necessary, which requires the full reconstruction of 3-D information. On the other
hand, inspection and surveillance robotics often times requires only 2-D informa-
tion. In visual rendering, the main goal is to display the video sequence in some
device in the best visual quality manner. Common to all these applications is
the issue of compact representation since full quality video requires an enormous
amount of data, which makes its storage, processing, and transmission a difficult
problem. We consider in this paper an hierarchy of content-based approaches:
(i) generative video (GV) that generalizes 2D mosaics; (ii) multi-layered GV
type representations; and (iii) full 3D representation of objects.

The MPEG/H.26X standards use frame-based information. Frames are rep-
resented by their GOP structure (e.g., IPPPBPPPBPPPBPPP) and each frame
is given by slices composed of macro-blocks that are made of typically 8 × 8
DCT blocks. In spite of many advances allowed by this representation, it falls
short of: (i) level of details represented; (ii) compression rates. DCT blocks
for spatial luminance/color coding and macro-blocks for motion coding pro-
vide the highest levels of details. However, they miss capturing pixel-level lumi-
nance/color/texture spatial variations and temporal (velocity) variations, thus
leading to visual artifacts. The compression ratios achieved, e.g., 40:1, are still
too low for effective use of MPEG/H.26X standards in multimedia applications
for storage and communication purposes.

Content-based representations go beyond frame-based or pixel-based repre-
sentations of sequences. Video content information is represented by objects that
have to be segmented and represented. These objects can be based on 2-D in-
formation, e.g., faces, cars, or trees, or 3-D information, e.g., when faces, cars,
or trees are represented in terms of their volumetric content. Just segmenting
objects from individual video frames is not sufficient: these segmented objects
have to be combined across the sequence to generate extended images for the
same object. These extended images, which include mosaics, are an important
element in the “next generation” systems for compact video representation. Ex-
tended images stand midway between frame-based video representations and
full 3-D representations. With extended images a more compact representation
of videos is possible, which allows for their more efficient processing, storage,
and transmission.

In this chapter we discuss work on extended images as a sequence of ap-
proaches that start with standard 2-D panoramas or mosaics, e.g., used in as-
tronomy for very far objects, to full 3-D mosaics used in visually guided robotics
and augmented environments. In the evolution from standard single 2-D mosaics
to full 3-D mosaics, more assumptions and information about the 3-D world are

used. We present this historical and technical evolution as the development of
the same basic concept, i.e., the incremental composition of photometric (lumi-
nance/color), shape (depth), and points of view (multiview) information from
successive frames in a video sequence to generate one or more mosaics. As we
make use of additional assumptions and information about the world, we obtain
different types of extended images.

One such content-based video representation is called generative video (GV).
In this representation 2-D objects are segmented and compactly represented as,
e.g., coherent stacks of rectangles. These objects are then used to generate mo-
saics. GV mosaics are different from standard mosaics. GV mosaics include the
static or slowly changing background mosaics, but they also include foreground
moving objects, which we call ‘figures.’ The GV video representation includes
the following constructs: (i) layered mosaics, one for each foreground moving
2-D object or objects lying at the same depth level; and (ii) a set of operators
that allow for the efficient synthesis of video sequences. Depending on the rela-
tive depth between different objects in the scene and the background a single or
a multi-layered representation may be needed. We have shown that GV allows
for a very compact video sequence representation, which enables a very efficient
coding of videos with compression ratios in the range of 1000 : 1.

Often layered representations are not sufficient to describe well the video
sequence, for example, when the camera motion is such that the rigidity of the
real-world objects can only be captured by going beyond 2-D shape models, and
resorting to fully 3-D models to describe the shape of the objects. To recover
automatically the 3-D shape of the objects and the 3-D motion of the camera
from the 2-D motion of the brightness pattern on the image plane, we describe
in this chapter the surface-based rank 1 factorization method.

Content-based video representations, either single layer or multiple layers
GV, or full 3D object representations involve as an important pre-processing step
the segmentation and tracking of 2-D objects. Segmentation is a very difficult
problem for which there is a wealth of approaches described in the literature. We
discuss in this chapter contour-based methods that are becoming popular. These
methods are based on energy minimization approaches and extend beyond the
well known ‘snakes’ method where a set of points representing positions on the
image boundary of 2-D objects—contours—are tracked in time. These methods
make certain assumptions regarding the smoothness of these contours and how
they evolve over time. These assumptions are at the heart of representing ‘active’
contours. For completeness, we briefly discuss active contour based segmentation
methods in this chapter.

In the next three subsections, we briefly overview work by others on single and
multilayered video representations and 3D representations. Section 2 overviews
‘active contour’ based approaches to segmentation. We then focus in section 3
on generative video and its generalizations to multi-layered representations and
in section 4 on the rank 1 surface based 3D video representations. Section 5
concludes the chapter.

1.1 Mosaics for static 3-D scenes and large depth: single layer

Image mosaics have received considerable attention from astronomy, biology,
aerial photogrammetry and image stabilization to video compression, visualiza-
tion, and virtualized environments, among others. The main assumption in these
application domains is that the 3-D scene layout is given by static regions shown
very far away from the camera, that is, with large average depth values w.r.t. to
the camera (center). Methods using this assumption will be discussed next.

Lippman [1] developed the idea of mosaics in the context of video production.
This reference deals mostly with generating panoramic images describing static
background regions. In this technique, panoramic images are generated by accu-
mulating and by integrating local image intensity information. Objects moving
in the scene are averaged out; their shape and position in the image is described
as a ‘halo’ region containing the background region; the position of the object
in the sequence is reconstructed by appropriately matching the background re-
gion in the ‘halo’ to that of the background region in the enlarged image. His
target application is high definition television (HDTV) systems which require
the presentation of video at different aspect ratios compared to standard TV.
Burt and Adelson [2] describe a multiresolution technique for image mosaicing.
Their aim is to generate photomosaics for which the region of spatial transition
between different images (or image parts) is smooth in terms of its grey level
or color difference. They use for this purpose Laplacian pyramid structures to
decompose each image into their component pass-band images defined at dif-
ferent spatial resolution levels. For each band, they generate a mosaic, and the
final mosaic is given by combining the mosaics at the different pass-bands. Their
target applications are satellite imagery and computer graphics. Burt [3,4] and
his collaborators at the David Sarnoff Laboratory have developed techniques
for generating mosaics in the framework of military reconnaissance, surveillance,
and target detection. Their motivation is image stabilization for systems moving
at high speed and that use, among others, video information. The successive
images of these video sequences display little overlap, and they show, in gen-
eral, a static 3-D scene, and, in some cases a single moving (target) object.
Image or camera stabilization is extremely difficult under these circumstances.
They use a mosaic-based stabilization technique by which a given image of the
video sequence is registered to the mosaic built from preceding images of the
sequence instead of just from the immediately preceding image. This mosaic is
called the reference mosaic. It describes an extended view of a static 3-D terrain.
The sequential mosaic generation is realized through a series of image alignment
operations that include the estimation of global image velocity and of image
warping. Teodosio and Bender [5] proposed salient video stills as a novel way to
represent videos. A salient still represents the video sequence by a single high
resolution image by translating, scaling, and warping images of the sequence
into a single high-resolution raster. This is realized by: (i) calculating the optical
flow between successive images; (ii) using an affine representation of the optical
flow to appropriately translate, scale, and warp images; and (iii) using a weighted
median of the high-resolution image. As an intermediate step a continuous space

time raster is generated in order to appropriately align all pixels, regardless if
the camera pans or zooms, thus creating the salient still. Irani et. al. [6] propose
a video sequence representation in terms of static, dynamic, and multiresolution
mosaics. A static mosaic is built from collections of ‘sub’ mosaics, one for each
scene subsequence, by aligning all of its frames to a fixed coordinate system.
This type of mosaic can handle cases of static scenes, but it is not adequate for
one having temporally varying information. In the later case, a dynamic mosaic
is built from a collection of evolving mosaics. Each of these temporarily updated
mosaics is updated according to information from the most recent frame. One
difference with static mosaic generation is that the coordinate system of the dy-
namic mosaics can be moving with the current frame. This allows for an efficient
updating of the dynamic content.

1.2 Mosaics for static 3-D scenes and variable depth: multiple layers

When a camera moves in a static scene containing fixed regions or objects that
cluster at different depth levels, then it is necessary to generate multiple mosaics,
one for each layer.

Wang and Adelson [7] describe a method to generate layers of panoramic
images from video sequences generated through camera translation with respect
to static scenes. They use the information from the induced (camera) motion.
They segment the panoramic images into layers according to the motion induced
by the camera motion. Video mosaicing is pixel based. It generates panoramic
images from static scenery panned or zoomed by a moving camera.

1.3 Video representations with fully 3-D models

The mosaicing approaches outlined above represent a video sequence in terms of
flat scenarios. Since the planar mosaics do not model the 3-D shape of the ob-
jects, these approaches do not provide a clear separation between object shape,
motion, and texture. Although several researchers proposed enhancing the mo-
saics by incorporating depth information, see for example the plane+parallax
approach [8, 6], these models often do not provide meaningful representations
for the 3-D shape of the objects. In fact, any video sequence obtained by rotat-
ing the camera around an object demands a content-based representation that
must be fully 3-D-based.

Among 3-D model-based video representations, the semantic coding approach
assumes that detailed a priori knowledge about the scene is available. An exam-
ple of semantic coding is the utilization of head and shoulders parametric models
to represent facial video sequences, see [9, 10]. The video analysis task estimates
along time the small changes of the head and shoulders model parameters. The
video sequence is represented by the sequence of estimated head and shoulders
model parameters. This type of representation enables very high compression
rates for the facial video sequences, but can not cope with more general videos.

The use of 3-D-based representations for videos of general scenes demands
the automatic 3-D modeling of the environment. The information source for a

number of successful approaches to 3-D modeling has been a range image, see for
example [11,12]. This image, obtained from a range sensor, provides the depth
between the sensor and the environment facing it, on a discrete grid. Since the
range image itself contains explicit information about the 3-D structure of the
environment, the references cited above deal with the problem of how to combine
a number of sets of 3-D points (each set corresponding to a range image) into a
3-D model.

When no explicit 3-D information is given, the problem of computing auto-
matically a 3-D model based representation is that of building the 3-D models
from the 2-D video data. The recovery of the 3-D structure (3-D shape and 3-
D motion) of rigid objects from 2-D video sequences has been widely considered
by the computer vision community. Methods that infer 3-D shape from a single
frame are based on cues such as shading and defocus. These methods fail to
give reliable 3-D shape estimates for unconstrained real-world scenes. If no prior
knowledge about the scene is available, the cue to estimating the 3-D structure
is the 2-D motion of the brightness pattern in the image plane. For this reason,
the problem is generally referred to as structure from motion (SFM).

Structure from motion: Factorization Among the existing approaches to
the multiframe SFM problem, the factorization method [13], is an elegant method
to recover structure from motion without computing the absolute depth as an
intermediate step. The object shape is represented by the 3-D position of a set
of feature points. The 2-D projection of each feature point is tracked along the
image sequence. The 3-D shape and motion are then estimated by factorizing
a measurement matrix whose columns are the 2-D trajectories of each of the
feature point projections. The factorization method proved to be effective when
processing videos obtained in controlled environments with a relatively small
number of feature points. However, to provide dense depth estimates, and dense
descriptions of the shape, it usually requires hundreds of features, which then
poses a major challenge tracking them along the image sequence, and that leads
to a combinatorially complex correspondence problem. In section 4, we describe
a 3-D model-based video representation scheme that overcomes this problem
by using the surface-based rank 1 factorization method [14,15]. There are two
distinguishing features of this approach. First, it is surface based rather than
(point) feature based, i.e., it describes the shape of the object by patches, for
example, planar patches, or higher order polynomial patches. Planar patches
provide not only localization but also information regarding the orientation of
the surface. To obtain similar quality descriptions of the object, the number
of patches needed is usually much smaller than the number of feature points
needed. In [14], it is shown that the polynomial description of the patches leads
to a parameterization of the object surface and this parametric description of
the 3-D shape induces a parametric model for the 2-D motion of the brightness
pattern in the image plane. Instead of tracking pointwise features, this method
tracks regions of many pixels each where the 2-D image motion of each region is
described by a single set of parameters. This approach avoids the correspondence
problem and is particularly suited for practical scenarios where the objects are

for example large buildings that are well described by piecewise flat surfaces. The
second characteristic of the method in [14, 15], and in section 4, is that it requires
only the factorization of a rank 1 rather than rank 3 matrix, which simplifies
significantly the computational effort of the approach and is more robust to
noise.

Clearly, the generation of images from 3-D models of the world is a sub-
ject that has been addressed by the computer graphics community. When the
world models are inferred from of photographies s or video images, rather than
specified by an operator, the view generation process is known as image based
rendering (IBR). Some systems use a set of calibrated cameras (i.e., with known
3-D positions and internal parameters) to capture the 3-D shape of the scene
and synthesize arbitrary views by texture mapping, e.g., the Virtualized Reality
system [16]. Other systems are tailored to the modelling of specific 3-D objects
like the Façade system [17], which does not need a priori calibration but requires
user interaction to establish point correspondences. These systems, as well as the
framework described in section 4, represent a scene by using geometric models of
the 3-D objects. A distinct approach to IBR uses the plenoptic function [18]—an
array that contains the light intensity as a function of the viewing point position
in 3-D space, the direction of propagation, the time, and the wavelength. If in
empty space, the dependence on the viewing point position along the direction of
propagation may be dropped. By dropping also the dependence on time, which
assumes that the lighting conditions are fixed, researchers have attempted to
infer from images what has been called the light field [19]. A major problem in
rendering images from acquired lightfields is that, due to limitations on the num-
ber of images available and on the processing time, they are usually subsampled.
The Lumigraph system [20] overcomes this limitation by using the approximate
geometry of the 3-D scene to aid the interpolation of the light field.

The remaining sections of the chapter are organized as follows. In section 2,
we overview image segmentation methods. Section 3 details the tasks of video
analysis and synthesis using GV. In section 4 we describe the representation
based on 3-D models. Section 5 concludes the paper.

2 Image Segmentation

In this section, we discuss segmentation algorithms, in particular, energy mini-
mization and active contour based approaches, which are popularly used in video
image processing. In subsection 2.1, we review concepts from Variational Calcu-
lus and present several forms of the Euler-Lagrange equation. In subsection 2.2,
we broadly classify the image segmentation algorithms into two categories: edge-
based and region-based. In subsection 2.3, we consider active contour methods for
image segmentation and discuss their advantages and disadvantages. The semi-
nal work on active contours by Kass, Witkin, and Terzopoulos [21], including its
variations, is then discussed in subsection 2.4. Next, we provide in subsection 2.5
background on curve evolution, while subsection 2.6 shows how curve evolution
can be implemented using the level set method. Finally, we provide in subsec-

tion 2.7 examples of segmentation by these geometric active contour methods
utilizing curve evolution theory and implemented by the level set method.

2.1 Calculus of variations

In this section, we sketch the key concepts we need from the Calculus of Varia-
tions, which are essential in the energy minimization approach to image process-
ing. We present the Euler-Lagrange equation, provide a generic solution when a
constraint is added, and, finally, discuss gradient descent numerical solutions.

Given a scalar function u(x) : [0, 1] → R with given constant boundary
conditions u(0) = a and u(1) = b, the basic problem in the Calculus of Variation
is to minimize a energy functional [22]

J(u) =
∫ 1

0

E
(
u(x), u′(x)

)
dx, (1)

where E(u, u′) is a function of u and u′, the first derivative of u. From classical
Calculus, we know that the extrema of a function f(x) in the interior of the
domain are attained at the zero of the first derivative of f(x), i.e., where f ′(x) =
0. Similarly, to find the extrema of the functional J(u), we solve for the zero of
the first variation of J , i.e., δJ = 0. Let δu and δu′ be small perturbations of u
and u′, respectively. By Taylor series expansion of the integrand in (1), we have

E(u + δu, u′ + δu′) = E(u, u′) +
∂E

∂u
δu +

∂E

∂u′ δu
′ + · · · . (2)

Then

J(u + δu) = J(u) +
∫ 1

0

(Eu δu + Eu′ δu′) dx + · · · , (3)

where Eu = ∂E
∂u and Eu′ = ∂E

∂u′ represent the partial derivatives of E(u, u′) with
respect to u and u′, respectively. The first variation of J is then

δJ(u) = J(u + δu) − J(u) (4)

=
∫ 1

0

(Eu δu + Eu′ δu′) dx. (5)

Integrating by parts the second term of the integral, we have

∫ 1

0

Eu′ δu′ dx = Eu′ δu(x)

∣∣∣∣∣

x=1

x=0

−
∫ 1

0

δu
d

dx
(Eu′) dx (6)

= −
∫ 1

0

δu
d

dx
(Eu′) dx. (7)

The non-integral term vanishes because δu(1) = δu(0) = 0 due to the assumed
constant boundary conditions of u. Substituting equation (7) back into equation
(4), we obtain

δJ(u) =
∫ 1

0

[
δu Eu − δu

d

dx
(Eu′)

]
dx. (8)

A necessary condition for u to be an extremum of J(u) is that u makes the
integrand zero, i.e.,

Eu − d

dx
Eu′ =

∂E

∂u
− d

dx

(
∂E

∂u′

)
= 0. (9)

This is the Euler-Lagrange equation for a one-dimensional (1D) problem in the
Calculus of Variations [22].

More generally, the Euler-Lagrange equation for an energy functional of the
form

J(u) =
∫ 1

0

E(x, u, u, u′′, . . . , un) dx, (10)

where un is the nth derivative of u(x) with respect to x, can be derived in a
similar manner as

Eu − d

dx
Eu′ +

d 2

dx2
Eu′′ − , . . . , + (−1)n d n

dxn
Eun = 0. (11)

For a scalar function defined on a 2-D domain or a 2-D plane, u(x, y) : R2 → R,
we have a similar result. For instance, given an energy functional

J(u) =
∫∫

Ω

E(u, ux, uy, uxx, uyy) dx dy, (12)

the corresponding Euler-Lagrange equation is given by

∂E

∂u
− d

dx

(
∂E

∂ux

)
− d

dy

(
∂E

∂uy

)
+

d 2

dx2

(
∂E

∂uxx

)
+

d 2

dy2

(
∂E

∂uyy

)
= 0. (13)

Analogously, we obtain a system of Euler-Lagrange equations for a vector-value
function u. For example, if u(x) = [u1(x) u2(x)]T : R → R2, then the corre-
sponding system of Euler-Lagrange equations is

Eu1 − d

dx
Eu1′ +

d 2

dx2
Eu1′′ − , . . . , + (−1)n d n

dxn
Eu1n = 0, (14)

Eu2 −
d

dx
Eu2′ +

d 2

dx2
Eu2′′ − , . . . , + (−1)n d n

dxn
Eu2n = 0. (15)

Adding constraints Usually, we are not allowed to freely search for the optimal
u; rather, constraints are added. For instance, we may want to search for a
function u(x) that minimizes the energy functional

J1(u) =
∫ b

a

E(x, u, u′) dx, (16)

under a constraint functional

J2(u) =
∫ b

a

G(x, u, u′) dx = c, (17)

where c is a given constant. By use of a Lagrange multiplier λ, the new energy
functional becomes

J(u) = J1(u) − λ J2(u) (18)

=
∫ b

a

[E(x, u, u′) − λ G(x, u, u′)] dx. (19)

As a result, the corresponding Euler-Lagrange equation is

∂E

∂u
− d

dx
Eu′ − λ

(
∂G

∂u
− d

dx
Gu′

)
= 0, (20)

which must be solved subject to the constraint equation (17).

Gradient descent flow One of the fundamental questions in the Calculus of
Variations is how to solve the Euler-Lagrange equation, i.e., how to solve for u
in

F(u) = 0, (21)

where F(u) is a generic function of u whose zero makes the first variation of a
functional J zero, i.e., δJ = 0. Equation (21) can be any of the Euler-Lagrange
equations in (11), (13), (14), or (20). Only in a very limited number of simple
cases is this problem solved analytically. In most image processing applications,
directly solving this problem is infeasible. One possible solution for F(u) = 0 is
to first let u(x) be a function of an(other) artificial time marching parameter t,
and then numerically solve the partial differential equation (PDE)

∂u

∂t
= F(u), (22)

with a given initial u0(x) at t = 0. At steady state,

∂u

∂t
= 0 (23)

implies that F(u) = 0 is achieved, and the solution to the Euler-Lagrange equa-
tion is obtained. This is denoted as the gradient descent flow method.

2.2 Overview of Image Segmentation Methods

Image segmentation is a fundamental step in building extended images, as well
as many other image and video processing techniques. The principal goal of
image segmentation is to partition an image into clusters or regions that are
homogeneous with respect to one or more characteristics or features. The first
major challenge in segmenting or partitioning an image is the determination of
the defining features that are unique to each meaningful region so that they
may be used to set that particular region apart from the others. The defining
features of each region manifest themselves in a variety of ways including, but

not limited to, image intensity, color, surface luminance, and texture. In gener-
ative video and structure from motion, an important feature is the 2D-induced
motion of the feature points or the surface patches. Once the defining features
are determined, the next challenging problem is how to find the “best” way to
capture these defining features through some means such as statistical charac-
teristics, transforms, decompositions, or other more complicated methodologies,
and then use them to partition the image efficiently. Furthermore, any corrup-
tion by noise, motion artifacts, and the missing data due to occlusion within
the observed image pose additional problems to the segmentation process. Due
to these difficulties, the image segmentation problem remains a significant and
considerable challenge.

The image segmentation algorithms proposed thus far in the literature may
be broadly categorized into two different approaches, each with its own strengths
and weaknesses [23, 24].

1. Edge-based approach relies on discontinuity in image features between
distinct regions. The goal of edge-based segmentation algorithms is to locate
the object boundaries, which separate distinct regions, at the points where
the image has high change (or gradient) in feature values. Most edge-based
algorithms exploit spatial information by examining local edges found within
the image. They are often very easy to implement and computationally fast,
as they involve a local convolution of the observed image with a gradient
filter. Moreover, they do not require a priori information about image con-
tent. The Sobel [25], Prewitt [26], Laplacian [27,28], or Canny [29] edge
detectors are just a few examples. For simple noise-free images, detection of
edges results in straightforward boundary delineation. However, when ap-
plied to noisy or complex images, edge detectors have three major problems:
(i) they are very sensitive to noise; (ii) they require a selection of an edge
threshold; and (iii) third they do not generate a complete boundary of the
object because the edges often do not enclose the object completely due to
noise or artifacts in the image or when objects are touching or overlapping.
These obstacles are difficult to overcome because solving one usually leads
to added problems in the others. To reduce the effect of the noise, one may
lowpass filter the image before applying an edge operator. However, it also
suppresses soft edges, which in turn leads to more incomplete edges to dis-
tinguish the object boundary. On the other hand, to obtain more complete
edges, one may lower the threshold to be more sensitive to, thus include
more, weak edges, but this means more spurious edges appear due to noise.
To obtain satisfactory segmentation results from edge-based techniques, an
ad-hoc post-processing method, such as the vector graph method of Casadei
and Mitter [30, 31] is often required after the edge detection to link or group
edges that correspond to the same object boundary and get rid of other spu-
rious edges. However, automatic edge linking algorithm is computationally
expensive and generally not very reliable.

2. Region-based approach, as opposed to the edge-based approach, relies on
the similarity of patterns in image features within a cluster of neighboring

pixels. Region-based techniques such as region growing or region merging
[32–34] assign membership to objects based on homogeneity statistics. The
statistics are generated and updated dynamically. Region growing methods
generate a segmentation map by starting with small regions that belong
to the structure of interest, called seeds. To grow the seeds into larger re-
gions, the neighboring pixels are then examined one at a time. If they are
sufficiently similar to the seeds, based on a uniformity test, then they are
assigned to the growing region. The procedure continues until no more pix-
els can be added. The seeding scheme to create the initial regions and the
homogeneity criteria for when and how to merge regions are determined à
priori. The advantage of region-based models is that the statistics of the en-
tire image, rather than local image information, are considered. As a result,
the techniques are robust to noise and can be used to locate boundaries that
do not correspond to large image gradients. However, there is no provision in
the region-based framework to include the object boundary in the decision
making process, which usually leads to irregular or noisy boundaries and
holes in the interior of the object. Moreover, the seeds have to be initially
picked (usually by an operator) to be within the region of interest, or else
the result may be undesirable.

2.3 Active contour methods

Among a wide variety of segmentation algorithms, active contour methods [21,
35–43] have received considerable interest, particularly in the video image pro-
cessing community. The first active contour method, called “snake,” was intro-
duced in 1987 by Kass, Witkin, and Terzopoulos [21, 35]. Since then the tech-
niques of active contours for image segmentation have grown significantly and
have been used in other applications as well. An extensive discussion of various
segmentation methods as well as a large set of references on the subject may be
found in [44].

Because active contour methods deform a closed contour, this segmentation
technique guarantees continuous closed boundaries in the resulting segmentation.
In principle, active contour methods involve the evolution of curves toward the
boundary of an object through the solution of an energy functional minimization
problem. The energy functionals in active contour models depend not only on
the image properties but also on the shape of the contour. Therefore, they are
considered a high level image segmentation scheme, as opposed to the traditional
low level schemes such as edge detectors [29,25] or region growing methods [32–
34].

The evolution of the active contours is often described by a PDE, which can
either be tracked by a straightforward numerical scheme such as the Lagrangian
parameterized control points [45], or by more sophisticated numerical schemes
such as the Eulerian level set methods [46, 47].

Although traditional active contours for image segmentation are edge-based,
the current trends are region-based active contours [41, 43] or hybrid active con-
tour models, which utilize both region-based and edge-based information [40,

42]. This is because the region-based models, which rely on regional statistics
for segmentation, are more robust to noise and less sensitive to the placement
of the initial contour than the edge-based models.

The classical snake algorithm [21] works explicitly with a parameterized
curve. Thus, it is also referred to as a parametric active contour, in contrast
to the geometric active contour [48], which is based on the theory of curve
evolution. Unlike the parametric active contour methods, the geometric active
contour methods are usually implemented implicitly through level sets [47, 46].

In the following sections, we describe the parametric active contour method,
or the classical snake, and discuss its advantages and its shortcomings in section
2.4. We also present two variations of classical snakes that attempt to improve
the snake algorithms. We then provide background on contour evolution theory
and the level set method in section 2.5 and 2.6, respectively. We finally show
in section 2.7 how the geometric contour method, which is based on the curve
evolution theory and often implemented by the level set method, can improve
the performance of image segmentation over the parametric active contour based
algorithms.

2.4 Parametric active contour

The parametric active contour model or snake algorithm [21] was first introduced
in the computer vision community to overcome the traditional reliance on low-
level image features like pixel intensities. The active contour model is considered
a high level mechanism because it imposes the shape model of the object in the
processing. The snake algorithm turns the boundary extraction problem into an
energy minimization problem [49]. A traditional snake is a parameterized curve
C(p) = [x(p) y(p)]T for p ∈ [0, 1] that moves through a spatial domain Ω of
the image I(x, y) to minimize the energy functional

J(C) = Eint(C) + Eext(C). (24)

It has two energy components, the internal energy Eint and the external energy
Eext. The high-level shape model of the object is controlled by the internal en-
ergy, whereas the external energy is designed to capture the low-level features
of interest, very often edges. The main idea is to minimize these two energies
simultaneously. To control the smoothness and the continuity of the curve, the
internal energy governs the first and second derivatives of the contour, i.e.,

Eint =
1
2

∫ 1

0

α |C′(p)|2 + β |C′′(p)|2 dp, (25)

where α and β are constants and C′(p) and C′′(p) are the first and second
derivatives of the contour with respect to the indexing variable p, respectively.
The first derivative discourages stretching and makes the contour behave like an
elastic string. The second derivative discourages bending and makes it behave
like a rigid rod. Therefore, the weighting parameters α and β are used to control
the strength of the model’s elasticity and rigidity, respectively.

The external energy, on the other hand, is computed by integrating a poten-
tial energy function P (x, y) along the contour C(p), i.e.,

Eext =
∫ 1

0

P (C(p)) dp, (26)

where P (x, y) is derived from the image data. The potential energy function
P (x, y) must take small values at the salient features of interest because the
contour C(p) is to search for the minimum external energy. Given a gray-level
image I(x, y) viewed as a function of the continuous variables (x, y), a typical
potential energy function designed for the active contour C to capture step edges
is

P (x, y) = − |∇Gσ(x, y) ∗ I(x, y)|2 , (27)

where Gσ(x, y) is a 2-D Gaussian function with variance σ2, ∇ represents the
gradient operator, and ∗ is the image convolution operator. The potential energy
function defined as in (27) is called the edge map of the image. Figure 1 (b)
shows the corresponding edge map of the image in figure 1 (a). The problem
of finding a curve C(p) that minimizes an energy functional J(C(p)) is known
as a variational problem [22]. It has been shown in [21] that the curve C that
minimizes J(C) in (24) must satisfy the following Euler-Lagrange equation

αC′′(p) − βC′′′′(p) −∇P (C(p)) = 0. (28)

To find a solution to equation (28), the snake is made dynamic by first letting
the contour C(p) be a function of time t (as well as p), i.e., C(p, t), and then
replacing the 0 on the right hand side of equation (28) by the partial derivative
of C with respect to t as the following

∂C
∂t

= αC′′(p) − βC′′′′(p) −∇P (C(p)). (29)

The gradient descent method is then used to iteratively solve for the zero of (29).
To gain some insight about the physical behavior of the evolution of active

contours, Xu and Prince realized equation (29) as the balancing between two
forces [39]

∂C
∂t

= Fint(C) + Fext(C), (30)

where the internal force is given by

Fint = αC′′(p) − βC′′′′(p), (31)

and the external force is given by

Fext = −∇P (x, y). (32)

The internal force Fint dictates the regularity of the contour, whereas the exter-
nal force Fext pulls it toward the desired image feature. We call Fext the potential

(a) Original MR image (b) Edge map

(c) Potential force field (d) Zoom in of the potential force
field

Fig. 1. (a) Original image; (b) edge map derived from (a); (c) potential force field: the
negative gradient of the edge map (b); (d) zoom in of area within the square box in
(c).

force field, because it is the vector field that pulls the evolving contour toward
the desired feature (edges) in the image. Figure 1 (c) shows the potential force
field, which is the negative gradient magnitude of the edge map in figure 1(b).
Figure 1 (d) zooms in the area within the square box shown in figure 1 (c).

The snake algorithm gains its popularity in the computer vision community
because of the following characteristics:

1. It is deformable, which means it can be applied to segment objects with
various shapes and sizes.

2. It guarantees a smooth and closed boundary of the object.
3. It has been proven very useful in motion tracking for video.

The major drawbacks associated with the snake’s edge-based approach are:

1. It is very sensitive to noise because it requires the use of differential operators
to calculate the edge map.

2. The potential forces in the potential force field are only present in the close
vicinity of high values in the edge map.

3. It utilizes only the local information along the object boundaries, not the
entire image.

Hence, for the snake algorithm to converge to a desirable result, the initial con-
tour must be placed close enough to the true boundary of the object. Otherwise,
the evolving contour might stop at undesirable spurious edges or the contour
might not move at all if the potential force on the contour front is not present.
As a result, the initial contour is often obtained manually. This is a key pitfall
of the snake method.

Variations of Classical Snakes Many efforts have been made to address this
problem. For example, to help the snake move or avoid being trapped by spurious
isolated edge points, Cohen’s balloon snake approach [36] added another artificial
inflation force to the external force component of equation (30). So the balloon
snake’s external force becomes

Fext = −∇P (x, y) + Fconst n̂, (33)

where Fconst is an arbitrary constant and n̂ is the unit normal vector on the
contour front. However, the balloon snake has limitations. Although the balloon
snake aims pass through edges that are too weak with respect to the inflation
force Fconst n̂, adjusting the strength of the balloon force is difficult because it
must be large enough to overcome the weak edges and noises, but small enough
not to overwhelm a legitimate boundary. Besides, the balloon force is image-
independent, i.e., it is not derived from the image. Therefore, the contour will
continue to inflate at the points where the true boundary is missing or weaker
than the inflation force.

Xu and Prince [50,39] introduced a new external force for edge-based snakes
called the gradient vector flow (GVF) snake. In their method, instead of directly

(a) (b)

Fig. 2. Two examples of the potential force fields of an edge map: (a) gradient of the
edge map, (b) Xu and Prince’s GVF field.

using the gradient of the edge map as the potential force field, they diffuse it
first to obtain a new force field that has a larger capture range than the gradient
of the edge map. Figures 2(a) and (b) depict the gradient of an edge map and
the Xu and Prince’s new force field, respectively. Comparing the two figures, we
observe that the Xu and Prince’s vector forces gradually decrease as they are
away from the edge pixels, whereas the vector forces in the gradient of the edge
map exist only in the neighboring pixels of the edge pixels. As a result, there
are no forces to pull a contour that is located at the pixels far away from the
edge pixels in the gradient of the edge map field but the contour may experience
some forces at the same location in the Xu and Prince’s force field.

Two other limitations, associated with the parametric representation of the
classical snake algorithm are the need to perform re-parameterization and topo-
logical adaptation. It is often necessary to dynamically re-parameterize the snake
in order to maintain a faithful delineation of the object boundary. This adds com-
putational overhead to the algorithm. In addition, when the contour fragments
need to be merged or split, it may require a new topology, thus the reconstruction
of the new parameterization. McInerney and Terzopoulos [51] have proposed an
algorithm to address this problem but this algorithm is quite complex.

2.5 Curve evolution theory

In this section, we explain how to control the motion of a propagating contour
using the theory of curve evolution. In particular, we present two examples of
the motion for a propagating curve that are commonly used in active contour
schemes for image segmentation.

Denote a family of smooth contours as

C(p, t) =
[
x(p, t)
y(p, t)

]
, (34)

where p ∈ [0, 1] parameterizes the set of points on each curve, and t ∈ [0,∞)
parameterizes the family of curves at different time evolutions. With this pa-
rameterization scheme, a closed contour has the property that

C(0, t) = C(1, t) ∀ t. (35)

We are interested in finding an equation for the propagating motion of a curve
that eventually segments the image. Assume a variational approach for image
segmentation formulated as finding the curve C∗ such that

C∗ = argmin
C

J(C), (36)

where J is an energy functional constructed to capture all the criteria that
leads to the desired segmentation. The solution to this variational problem often
involves a partial differential equation (PDE).

Let F(C) denote an Euler-Lagrange equation such that the first variation
of J(C) with respect to the contour C is zero. Under general assumptions, the
necessary condition for C to be the minimizer of J(C) is that F(C) = 0. The
solution to this necessary condition can be computed as the steady state solution
of the following PDE [52]

∂C
∂t

= F(C). (37)

This equation is the curve evolution equation or the flow for the curve C. The
form of this equation indicates that F(C) represents the “force” acting upon the
contour front. It can also be viewed as the velocity at which the contour evolves.
Generally, the force F has two components. As depicted in figure 3, Fn̂ is the

F
n

F
t

Fig. 3. The normal and tangential components of a force on the contour front.

component of F that points in the normal direction with respect to the contour
front, and Ft̂ is the (other) component of F that is tangent to C.

In curve evolution theory, we are only interested in Fn̂ because it is the force
that moves the contour front forward (or inward), hence changing the geometry
of the contour. The flow along Ft̂, on the other hand, only re-parameterizes the
curve and does not play any role in the evolution of the curve. Therefore, the
curve evolution equation is often reduced to just the normal component as

∂C
∂t

= F n̂, (38)

where F is called the speed function. In principle, the speed function depends
on the local and global properties of the contour. Local properties of the contour
include local geometric information such as the contour’s principal curvature κ
or the unit normal vector n̂ of the contour. Global properties of the curve depend
on its shape and position.

Coming up with an appropriate speed function, or equivalently the curve
evolution equation, for the image segmentation underlies much of the research
in this field. As an example, consider the Euclidean curve shortening flow given
by

∂C
∂t

= κ n̂. (39)

This flow corresponds to the gradient descent along the direction in which the
Euclidean arc length of the curve

L =
∮

C

ds (40)

decreases most rapidly. As shown in figure 4, a jagged closed contour evolving un-

Fig. 4. Flow under curvature: a jagged contour becomes smoother.

der this flow becomes smoother. Flow (39) has a number of attractive properties
that make it very useful in a range of image processing applications. However,
it is never used alone because if we continue the evolution with this flow, the
curve will shrink to a circle, then to a point, and then finally it vanishes.

Fig. 5. Flow with negative constant speed deflates the contour.

Another example illustrates some of the problems associated with a propa-
gating curve. Consider the curve evolution equation

∂C
∂t

= Von̂, (41)

where Vo is a constant. If Vo is positive, the contour inflates. If Vo is negative,
the contour evolves in a deflationary fashion. This is because it corresponds to
the minimization of the area within the closed contour. As seen in figure 5,
most curves evolving under the constant flow (41) often develop sharp points or
corners that are non-differentiable (along the contour). These singularities pose a
problem of how to continue implementing the next evolution of the curve because
the normal to the curve at a singular point is ambiguous. However, an elegant
numerical implementation through the level set method provides an “entropy
solution” that solves this curve evolution problem [53,54, 46, 47]. Malladi et. al.
[38] and Caselles et. al. [55] utilized both the curvature flow (39) and the constant
flow (41) in their active contour schemes for image segmentation because they are
complementary to each other. While the constant flow can create singularities
from an initial smooth contour, the curvature flow removes them by smoothing
the contour in the process.

2.6 Level set method

Given a current position for the contour C and the equation for its motion such
as the one in (37), we need a method to track this curve as it evolves. In general,
there are two approaches to track the contour, the Lagrangian and the Eulerian
approaches. The Lagrangian approach is a straightforward difference approxima-
tion scheme. It parameterizes the contour discretely into a set of control points
lying along the moving front. The motion vectors, derived from the curve evo-
lution equation through a difference approximation scheme, are then applied to
these control points to move the contour front. The control points then advance
to their new locations to represent the updated curve front. Though this is a nat-
ural approach to track the evolving contour, the approach suffers from several
problems [56]:

1. This approach requires an impractically small time step to achieve a stable
evolution.

2. As the curve evolves, the control points tend to “clump” together near high
curvature regions causing numerical instability. Methods for control points
re-parameterization are then needed but they are often less than perfect and
hence can give rise to errors.

3. Besides numerical instability, there are also problems associated with the way
the Lagragian approach handles topological changes. As the curve splits or
merges, topological problems occur and it requires ad-hoc techniques [51,57]
to continue to make this approach work.

Osher and Sethian [53,54, 46, 47] developed the level set technique for track-
ing curves in the Eulerian framework, written in terms of a fixed coordinate
system. There are four main advantages to this level set technique:

1. Since the underlying coordinate system is fixed, discrete mesh points do
not move, the instability problems of the Lagragian approximations can be
avoided.

2. Topological changes are handled naturally and automatically.
3. It accurately captures the moving front regardless of whether it contains

cusps or sharp corners.
4. It can be extended to work on any number of spatial dimensions.

The level set method [46] implicitly represents the evolving contour C(t) by
embedding it as the zero level of a level set function φ : R2 × [0,∞) → R, , i.e.,

C(t) = {(x, y) ∈ Ω : φ(x, y, t) = 0} . (42)

Starting with an initial level set function φ(t = 0), we then evolve φ(t) so that
its zero level set moves according to the desired flow of the contour. Based on
the convention that this level set graph has negative values inside C and positive
values outside C, i.e.,

inside(C) = Ω1 =
{
(x, y) ∈ Ω : φ(x, y, t) > 0

}
, (43)

outside(C) = Ω2 =
{
(x, y) ∈ Ω : φ(x, y, t) < 0

}
, (44)

the level set function φ can be implemented as the signed Euclidean distance to
the contour C. For details about how to implement the Euclidean distance to a
contour, see [58, 47]. Using the standard Heaviside function

H(φ) =
{

1, if φ ≥ 0
0, if φ < 0 , (45)

we can conveniently mask out the image pixels that are inside, outside, or on
the contour C. For instance, the function H(φ) represents the binary template
of the image pixels that are inside or on the contour. The function 1 − H(φ)
represents the binary template of the image pixels that are strictly outside the

contour. To select only the pixels that are on the contour C, we can use H(φ)−
[1 −H(−φ)]. To facilitate numerical implementation, however, the regularized
Heaviside function and its derivative, the regularized delta function, are often
used instead. Define the regularized Heaviside function by

Hε(φ) =
1
2

[
1 +

2
π

arctan
(

φ

ε

)]
, (46)

then the regularized delta function is

δε(φ) =
d

dφ
Hε(φ), (47)

=
1
π

[
ε

ε2 + φ2

]
. (48)

The functions Hε(φ), 1−Hε(φ), and δε(φ) are to represent the templates of the
image pixels that are inside, outside, and on the contour C, respectively.

φ > 0

φ < 0

 C :φ = 0

n

κ < 0

κ > 0

Fig. 6. Unit normal vectors and curvature of the contour C

By defining the sign of the level set function φ to be positive inside and
negative outside the contour, the unit normal vector n of the contour C, defined

as
n =

∇φ

|∇φ|
, (49)

will point inward as shown in figure 6. Furthermore, the curvature κ along the
contour, defined as

κ = div (n) = div
(

∇φ

|∇φ|

)
=

φxxφ2
y − 2φxφyφxy + φyyφ2

x(
φ2

x + φ2
y

)3/2
, (50)

is positive where the unit normal vectors diverge. On the other hand, the cur-
vature of the contour is negative if the unit normal vectors converge (see figure
6).

2.7 Geometric active contour

Based on the theory of curve evolution [59], geometric active contours [38,48]
evolve the curves using only geometric measures, such as the curvature and
the normal vectors, resulting in a contour evolution that is independent of the
curve’s parameterization. Therefore, there is no need for re-parameterization. In
addition, the geometric active contour method can be implicitly implemented by
the level set technique [47], which handles the topology change automatically. As
mentioned before in section 2.5, Malladi, Sethian, and Vemuri [38], and Caselles,
Kimmel, and Sapiro [55] utilized curvature flow (39) and the constant flow (41)
concurrently to move the contour C in the direction of its normal vector n as in

∂C
∂t

= − g · (κ + Vo) n, (51)

where κ is the curvature of the contour; Vo is a constant; and g, designed to
capture prominent edges, is a decreasing function of the gradient image (or the
edge map). An example of a suitable g is

g =
1

1 + |∇G ∗ I(x, y)|
. (52)

We can see that the contour front will slow down where the value of the edge
map |∇G ∗ I(x, y)| is high because g approaches zero, but it will keep moving at
constant speed Vo where the edge map value is zero. Therefore, the effect of the
constant term Vo is the same as Cohen’s balloon force [36]. As mentioned before,
the effect of the curvature term κ is only to smooth out the contour [46]. Hence,
it plays the role of the internal energy term in the classical snake method [21].

This scheme works well for objects that have well-defined edge maps. How-
ever, when the object boundary is difficult to distinguish, the evolving contour
may leak out because the multiplicative term g only slows down the contour
near the edges. It does not completely stop it. Chan and Vese [43] describe a
new active contour scheme that does not use edges, but combines an energy
minimization approach with a level set based solution. If C is a contour that

partitions the domain of an image I(x, y) into two regions, the region inside the
contour Ω1 and the region outside the contour Ω2, their approach is to minimize
the functional

J(C) = µ · Length(C)

+λ1

∫

Ω1

| I(x, y) − c1|2 dxdy + λ2

∫

Ω2

| I(x, y) − c2|2 dxdy, (53)

where µ, λ1, λ2 are constants, c1 and c2 are the average intensity values of the
image pixels inside and outside the contour, respectively. As defined in (43) and
(44), Ω1 and Ω2 represent the pixels inside and outside the contour C, respec-
tively. If C is embedded as a zero level of the level set function φ, minimizing
the functional (53) is equivalent to solving the PDE [43]

∂φ

∂t
=

[
µ div

(
∇φ

|∇φ|

)
− λ1(I − c1)2 + λ2(I − c2)2

]
δε(φ), (54)

where div(·) denotes the divergence and δε(φ) is the regularized delta function
defined in (47). It masks out only the zero level set of φ, i.e., the contour C.
The first term, the divergence term, which only affects the smoothness of the
contour, is actually the motion under the curvature [46] because

div
(

∇φ

|∇φ|

)
δ(φ) = κ(C), (55)

where κ(C) denotes the curvature of the contour C, see equation (50). Therefore,
equation (54) is equivalent to the curve evolution

∂C
∂t

=
[
µ κ − λ1(I − c1)2 + λ2(I − c2)2

]
n, (56)

where n, as defined in (49), is the outward unit normal vector of the contour C.
The last two terms of (54), however, work together to move the contour such
that all the pixels whose intensity values are similar to c1 are grouped within the
contour, and all the pixels whose intensity values are close to c2 are assigned to be
outside the contour. As a result, the image will be segmented into two constant
intensity regions. More importantly, unlike an edge-based model, this region-
based geometric active contour model is less sensitive to the initial location of
the contour. In addition, with the level set implementation, the algorithm handles
the topological changes of the contour automatically when contour splitting or
merging occurs. Figure 7(a) shows the process of segmenting a blurred-edge,
piecewise-constant image with a hole in it using Chan and Vese’s method and
figure 7(b) depicts the final result. The initial contour, the dashed line, is simply
an ellipse in the middle of the image and the final contours are shown as the two
solid lines in figure 7(b), one is the outside boundary of the object and the other
is at the boundary of the hole within the object. We can see that this successful
result is achieved even when the initial contour is far from the object’s true
boundary. Moreover, the splitting and merging of the contour around the hole,
as seen in figure 7(a), is done automatically through the level set implementation.

(a) Evolving Contour. (b) Final Result.

Fig. 7. Image Segmentation using Chan and Vese’s Method: (a) evolving contour, (b)
final result.

2.8 STACS: Stochastic Active Contour Scheme

The segmentation approaches discussed in the previous subsections work often
well, but also fail in many important applications. For example, the approach in
[43] can segment reasonably well an object from the background when the pixels
inside and outside the contour follow well the two-value model assumption. In
practice this is usually not the case, and this method may lead to poor seg-
mentation results. Another common insufficiency of the segmentation methods
presented in the previous subsections is that often we have a good indication
of the shape of the object but the segmentation method has no explicit way
to account for this knowledge. Edge and region based information may both be
important clues, but existing methods usually take one or the other into account
but not both.

We have developed in [60,61] a method that we call the STochastic Ac-
tive Contour Scheme (STACS) that addresses these insufficiencies of existing
approaches. It is an energy based minimization approach where the energy func-
tional combines four terms: (i) an edge based term; (ii) a region based term that
models the image textures stochastically rather than deterministically; (iii) a
contour smoothness based term; and, finally, (iv) a shape prior term.

These four terms in the energy functional lead to very good segmentation re-
sults, even when the objects to be segmented exhibit low contrast with respect to
neighboring pixels or the texture of different objects is quite similar. To enhance
STACS’ performance, STACS implements a annealing schedule on the relative
weights among the four energy terms. This addresses the following issue. In prac-
tice, it is not clear which clue should dominate the segmentation; it is commonly
true, that, at the beginning of the segmentation process, edge information or re-

gion based information is the more important clue, but, as the contour evolves,
shape may become the dominant clue. STACS places initially more weight in the
edge and region based terms, but then slowly adapts the weights to reverse this
relative importance so that towards the end of the segmentation, more weight
is placed in the shape prior and contour smoothness constraint terms. Lack of
space prevents us from illustrating the good performance of STACS, details are
in [60,61] and references therein.

3 Mosaics: From 2-D to 3-D

In this section we will describe two approaches to mosaic generation. The first
is called Generative Video [62–65] and the second one [66–68] uses partial or full
3-D information to generate mosaics. The motivation in these two approaches
is to overcome the limitations of classical mosaic generation methods: the ob-
jects in the (3-D) scene are very far from the camera so that there barely exists
any parallax1. Depending on the relative geometry between the camera and the
scene different methods can be used to generate mosaics. For example, for ob-
jects far away from the camera, traditional mosaic generation methods are used.
For incoming images of a video sequence I1, · · · , IN a mosaic Mk defined at time
k is incrementally composed by combining the mosaic Mk−1 with the current
image Ik. So, in parallel to the video sequence, we can define a (partial) mosaic
sequence M1, · · · , MN . The spatial dimensions of this mosaic sequence change
for each mosaic with time. The art of this composition has been explored in
the last 25 years by using different blending techniques, i.e., the composition of
Mk given Mk−1 and Ik. Traditional application areas were astronomical, biolog-
ical, and surveillance data. The need of more refined methods, which are used
in robotics related applications or immersive multimedia environments, required
the processing of detailed 2-D and/or 3-D visual information, e.g., the segmen-
tation of 2-D and/or 3-D objects. In this case, just knowledge of pure 2-D image
information is not enough. We describe next how mosaics are generated in this
case.

3.1 Generative Video

In Generative Video (GV) [62–65] an input video sequence I1, · · · , IN is trans-
formed into a set of constructs C1, · · · , CM . These constructs: (i) generalize the
concept of mosaics to that of background (static) part of the image (scene) and
foreground objects; (ii) use object stratification information, i.e., how they are
organized in layers according to their relative 3-D depth information; (iii) encode
(2-D) object shape and velocity information. The goal is to achieve a compact
representation of content-based video sequence information. The mosaics in GV
are augmented images that describe the non-redundant information in the video
1 Parallax describes the relative motion in the image plane of the projection of objects

in (3-D) scenes: objects closer to the camera move at higher speed than objects
further away.

sequence. This non-redundant information corresponds to the video sequence
content. For each independently moving object in the scene, we associate a dif-
ferent mosaic, which we call figure mosaic. The “scene” can be a real 3-D scene or
a synthetic scene generated by graphics tools. For the image background, which
is static or slowly varying, we associate the background mosaic. These mosaics
are stacked in layers [7], with the background mosaic at its bottom, according
to how the objects in the scene move at different “depth” levels.

In GV the object shape/velocity information is encoded by generative oper-
ators that represent video sequence content. These operators are applied to a
stack of background/figure mosaics. They are: (i) windowing operators; (ii) mo-
tion operators; (iii) cut-and-paste operators; and (iv) signal processing operators.
The window operators are image window operators, which select individual im-
ages of the sequence, or figure window operators, which select independently
moving objects in the image; these are called image figures. The motion op-
erators describe temporal transformations of window and/or of mosaics. They
encode rigid translational, scaling, and rotational motion of image regions. The
cut-and-paste operators are used to recursively generate mosaics from the video
sequence. Finally, the signal processing operators describe processes, e.g., spatial
smoothing or scale transformation. These operators are supplemented with the
Stratification Principle and the Tessellation Principle. The Stratification Prin-
ciple describes how world images are stratified in layers, and the Tessellation
Principle represents image figures in terms of compact geometrical models.

Figure and Background Mosaics Generation In GV mosaics are gener-
ated via a content-based method. This means that the image background and
foreground objects are selected as whole regions by shape or windowing opera-
tors and these regions are separately combined from frame-to-frame in order to
generate the background and foreground mosaics.

The background mosaic ΦB is generated recursively from the image regions
selected by shape operators from consecutive images. This is realized by cut-
and-paste operations. Given a sequence of N consecutive images I1, · · · , IN , we
assume that figure and camera velocities are known, and that figure/background
segmentation and tessellation have been completed. The background mosaic ΦB

is generated by the following recursion:
1. For r = 1

ΦB,1 = M1I1. (57)

2. For r ≥ 2
ΦB,r = ArΦB,r−1 + Br(MrIr). (58)

Ar is decomposed as

Ar
df= (I − A2,r)A1,r, (59)

where I is the identity operator. ΦB,r represents the world image at the recursive
step r, Ir is the rth image from the sequence, and Mr is the shape operator that
selects from image Ir the tessellated figure or the image background region. The

operators Ar and Br perform the operations of registration, intersection, and of
cutting.

The operators A1,r and Br register ΦB,r and Ir−1 by using the information
about camera motion. Once registered, the operator A2,r selects from ΦB,r−1

that region that it has in common with Ir , and I − A2,r cuts out of ΦB,r−1 this
region of intersection. Finally, the resulting regions are pasted together. This
algorithm is shown in Fig. 8.

Φr-1 rA1, r Φ

Br I rIr

A1, r Φr-1

Br

U

A 2, r A1, r Φr-1
()

A Φr-1
+-

registration

r

intersection cutting pasting

r

d

Fig. 8. The flow diagram for the background mosaic generation algorithm.

For example, given a sequence of 300 frames of the “Oakland” sequence
taken with a handheld camera w.r.t. a static image background (see Fig. 9 for
two snapshots), the resulting mosaic is shown in Fig. 10.

In the presence of figures, i.e., objects, we have to deal with the problem
of image occlusion. Image occlusion can occur when a figure occludes another
figure and/or the image background, or is occluded by the image boundaries.
This requires the introduction of a new set of figure and background cut-and-
paste operators. For conciseness, we deal here only with the case of one figure
moving relative to the image background. The figure velocity is vF = (vF

x , vF
y) =

(dF
x , dF

y), where dF
x and dF

y are integers; the image background velocity is vI .
The figure mosaic ΦF is generated by the recursion:

1. For r = 1
ΦB

1 = SB
1 I1, (60)

ΦF
1 = SF

1 I1. (61)

2. For r ≥ 1
ΦB

r = (I − MB
r)[A1,r(ΦB

r−1)] + MB
r (BrIFr), (62)

Fig. 9. The 1st (left) and 100th (right) images of the “Oakland” sequence.

ΦF
r = Or[A1,r(ΦF

r−1)] + MF
r (BrIr). (63)

These expressions are structurally similar to the ones used for background mosaic
generation. The only difference between (57) and (58), and (60), (61), (62),
(63) is that the latter expressions include a new set of cut-and-paste operators.

Expressions (60) and (61) compared with (57) contain the background SB
1

and figure SF
1 selection operators; SF

1 selects from inside image I1 the figure
region and SB

1 selects the complement region corresponding to the unoccluded
image background. SB

1 and SF
1 are instances, for r = 1, of the rth step back-

ground and figure selection operators SB
r and SF

r , respectively. SB
r and SF

r are
(N I

x · N I
y) × (N I

x · N I
y) operators, i.e., they have the same dimensions that are

constant because N I
x and N I

y are fixed.

Comparing (58) with (62), we conclude that A2,r is replaced by MB
r , and

that BrIr is replaced by MB
r (BrIr). MB

r has the role of placing the unoccluded
background region selected by SB

r in relation to the world image coordinate
system at step r. Formally, MB

r (SB
r Ir) corresponds to the background region in

image Ir placed in relation to the world image coordinate system. In the absence
of figures, MB

r reduces to A2,r.
The figure mosaic recursion (63) is new. The operator MF

r places the figure
region selected by SF

r in relation to the world image coordinate system at step r.
Therefore, MF

r (SF
r Ir) corresponds to the figure region in image Ir placed in

relation to the mosaic coordinate system. The operator Or will be described
next.

In order to generate ΦF
r , we have to know the operators Or, A1,r, and MF

r .
Among these, only Or has to be determined independently; A1,r and MF

r are
obtained using the information about the image window translational motion.

Fig. 10. The background mosaic for the “Oakland” sequence. It also shows the trajec-
tory of the camera center as it moves to capture the 300 frames.

Or is defined recursively. Let Fr correspond to the figure cut-and-paste op-
erator at step r defined by

Fr
df
= Or + MF

r . (64)

Given that we know Fr−1, we determine Fr and Or through the recursion:

1. Expand Fr−1 to BrFr−1.
2. Perform motion compensation on BrFr−1. This results in the operator Kr

df=
[(DV

⊗
DH)(BrFr−1)].

3. Determine the operator Lr which computes the region of figure overlap be-
tween the ones selected by Kr and MF

r .
4. Subtract Lr from Kr . This gives us Or.

In summary, step 1 expands the dimensions of Fr−1 in order to match it
to that of the figure mosaic at step r. In step 2 we translate the figure part
selected from image Ir−1 to the position it should have at step r; this is realized
by pre-multiplying BrFr−1 with the dislocation operator; the powers of the row
and column component dislocation operators are equal to dF

x + dI
x for DV , and

dF
y + dI

y for DH ; we have to compensate for both image window and figure

translational motion. In step 3, we determine the operator which selects the
figure part that is in overlap between the figure selected from image Ir and Ir−1,
properly compensated and dimensionally scaled. Finally, in step 4 we determine
the figure part which is only known at step r− 1, i.e., the region selected by Or.

As an example of figure and background mosaic generation we use a sequence,
called “Samir” sequence, of thirty 240× 256 images of a real 3-D scene recorded
through a handheld camera. The sequence shows a person walking in front of a
building, the Wean Hall, at the Carnegie Mellon University campus. The illu-
mination conditions were that of a sunny bright day. Some images are shown in
Fig. 11.

Fig. 11. The first (left) and 30th (right) images of the “Samir” sequence.

First, we segment the figure in relation to the image background by detecting
the image region with highest velocity. We use a detection measure on a Gaussian
pyramid of the sequence, followed by thresholding. For each pair of images, we
obtain a binary image showing the figure shape. Since the Samir figure moves
non-rigidly, we obtain a different segmented figure for each image pair. Second,
we tessellate the segmented figure. We tessellate the person’s torso and head
separately from his feet and legs, because his head and torso move rigidly while
his feet and legs move non-rigidly. As a result of this we obtain a tessellated
figure that is the union of the tessellated head and torso with the tessellated feet
and legs. We determine the velocity of this tessellated figure through rectangle
matching. This tessellated figure with its velocity corresponds to the figure and
motion operators. Fig. 12 shows the motion-based segmented and tessellated
figure of the person for the 22th image.

In Fig. 13, we show the background mosaic as processed in the 5th and 28th
frames; the latter represents the final background mosaic. The foreground mosaic
is shown in Fig. 14.

Fig. 12. The motion-based segmented and tessellated “Samir” sequence for the 38th
frame. Left is the motion-based segmentation results and to the right its tessellation
result.

3.2 3-D Based Mosaics

In this method, partial or full 3-D information, e.g., object depth or velocity, is
used to generate mosaics. This generalizes GV by using this extra 3-D informa-
tion for mosaic generation. At the core of this method [66–68] lies the detailed
extraction of 3-D information, i.e., structure-from-motion.

The standard structure-from-motion methods are designed to extract the 3-D
object shape (via its depth) and velocity information. This requires the selection
of points on these objects that are tracked in time via their 2-D associated image
velocities that introduces an ad-hoc factor: the (3-D) object shape is computed
by using the à priori knowledge of its associated (2-D) shape. We solved this
“chicken and egg” problem by generalizing the known 8-point algorithm [69–
71], as described below. Based on this method, a dense 3-D scene depth map is
generated. This depth map corresponds to the background part of the image,
i.e., the static or slowly varying part of the 3-D scene. In addition to this, the
camera (3-D) velocity is computed. Foreground (independently from the camera
and background) moving objects are selected. Finally, based on this 3-D, as
well as 2-D, information, a set of layered mosaics are generated. We distinguish
between planar mosaics and 3-D mosaics. The former are recursively generated
from parts of 2-D images, while the latter uses full 3-D depth information. These
elements are described next.

Structure-From-Motion: Generalized Eight-Point Algorithm The eight-
point algorithm for the computation of scene structure (shape/depth) and (cam-
era/object) motion (8PSFM) as introduced by Longuett-Higgins [69] and further

Fig. 13. The background mosaic at the 5th (left) and 11th (right) of the “Samir”
sequence.

developed by Tsai and Huang [70] is simple. Given two views from an uncali-
brated camera of a rigidly moving object in a 3-D scene, by using the image
correspondence of eight (or more) points projected from the scene onto the two
view images, then the structure and motion of this object can be computed.
Given these eight points, 8PSFM computes the fundamental matrix; this ma-
trix combines the rigid body assumption, the perspective projection of points
in 3-D space onto the image plane, and the correspondence of points between
two successive images. Using the essential matrix, the 3-D object rotation and
translation matrices are computed, and from these the relative depths of points
on the object are estimated. The limitations of 8PSFM are its sensitivity to
noise (SVD matrix computation) and the choice of points on the object. We
proposed [67] a generalization of 8PSFM, called G8PSFM that avoids the need
of choosing in an ad-hoc manner (image projected) object points and it makes
the computation of SFM more robust.

The main elements of G8PSFM are: (i) Divide two successive image into eight
approximately identical rectangular blocks; each block contains approximately
the same number of feature points, and each point belongs to one and only
one block; (ii) from each block in each image, randomly draw feature points
according to a uniformly-distributed random number generator; the result of
this is a set of eight feature point correspondences that span over the whole of
the two images; the coordinates of the feature points are normalized, so that
(0, 0) is at the center of the image plane, and the width and height of the image
are 2 each; (iii) track corresponding points based on a cross-correlation measure
and bi-directional consistency check; two pruning methods reduce the population
of tracked features to a set of stable points; first, all feature points with poor
cross-correlation (based on a threshold) are eliminated, and, second, only the

Fig. 14. The foreground (left) and background mosaics for the “Samir” sequence.

feature points that satisfy a bidirectionality criterion are retained; (iv) compute
the fundamental matrix; (v) compute the three rotation matrix R components
and the two translation matrix T components; (vi) compute the depth of the
corresponding points in the 3-D scene.

The above steps are repeated enough times to exhaust all possible combina-
tions of feature points. This approach can become computationally intractable,
thus making the total number too large for real implementations. We devised a
robust sub-optimum statistical approach that determines the choice of the ‘best’
set of camera motion parameters from a subset of all possible combinations. This
uses an overall velocity estimation error as the quality measure (see [67]).

We implemented G8SFM by assuming that independently moving foreground
objects in the scene are pre-segmented, thus processing only the static part of
the scene for the purposes of layered mosaic generation. The 8GSFM method
can be used for the general case or arbitrarily many objects moving in the scene.
In the discussion that follows, the static background is identified as a single rigid
object. We assume a pinhole camera, with unit focal length that moves in the 3-
D scene, inducing image motion, e.g., tracking or booming. The camera velocity
w.r.t. this background is the negative of the velocity of the background w.r.t. the
camera.

After all these operations, a dense depth map, i.e., depth values at all image
points, is computed. For this a Delaunay triangulation of the feature points is
performed, and a linear interpolation of the depth values available at the vertices
of triangles is computed, thus filling in all internal triangle points with depth
data.

Fig. 15 shows the results of applying the G8PSFM to the “Flowergarden”
sequence. The top image shows an original (gray-level) image; the mid image dis-

plays the dense depth map; the lower image show how, e.g., the tree is segmented
from the top image by using depth map information from the mid image.

Layered Mosaics Based on 3-D Information Mosaic generation based on
3-D information differs from traditional methods (photo-mosaics) that rely on
strictly 2-D image information, e.g., color, motion, and texture, by using 3-D
depth information and camera motion parameters. Thus, the method discussed
here [67, 68] generalizes the photo-mosaic generation methods in that it: (i) com-
putes explicitly 3-D camera parameters; (ii) determines the structure (depth) of
static scenes; (iii) integrates camera and depth information with a perspective
transformation model of image point displacements; (iv) models explicitly vari-
ations in image illumination; (v) can deal with arbitrary camera velocities in
that it is described by an image multiresolution method; (vi) can be extended to
deal with 3-D surfaces. In our approach shown in Figure 16, we identify regions
or layers of ”uniform” depth in the scene, and generate a 2-D sprite for each
such layer. It is assumed that: 1. independently moving foreground objects are
pre-segmented; 2. the segmentation of the background based on depth has al-
ready taken place; and 3. based on (i), (ii), the portion of background for which
a sprite is being created is determined by an alpha map Ak.

The main elements of the method are shown in Figure 16 and a detailed
description is given in [67]. In general, a mosaic Mk at time k is generated by
integrating images of a video sequence from time 1 through k; this can apply
for the luma (Y video component) to chroma (Cr and Cb video components). In
this process, mosaic Mk is obtained by using a prediction using a nine parameter
plane perspective projection Mk(x, y) = Mk (fk(x, y), gk(x, y)), where

fk(x, y) =
Pk(0, 0) · x + Pk(0, 1) · y + Pk(0, 2)
Pk(2, 0) · x + Pk(2, 1) · y + Pk(2, 2)

gk(x, y) =
Pk(1, 0) · x + Pk(1, 1) · y + Pk(1, 2)
Pk(2, 0) · x + Pk(2, 1) · y + Pk(2, 2)

, (65)

and Pk(·, ·) is a 3 × 3 matrix, with Pk(2, 2) equal to 1. The goal then is to
estimate the eight components of the matrix Pk such that Îk ≈ Ik, ∀k. It is
done as follows. As an initialization of the process, the first sprite generated is
equal to the first input image: M1 = I1, and P1 an identity matrix. Next, for
k > 1, the 3-D 8GSFM parameters are integrated with Pk−1(·, ·) to obtain Pk, as
described in the following. This is done by mapping estimated 3-D parameters
Rk, Tk, and Zk into Pk. The 3-D parameter estimation was performed on a pair
of pictures Ik−1 and Ik. Consequently, the estimated camera parameters are
relative to the camera position at instant k − 1. However, since the parameters
Pk are relative to the mosaic, a mechanism is needed to go from relative (i.e.,
pair-wise) 3-D parameters to relative 2-D parameters, and accumulate these
relative 2-D parameters over time to form absolute 2-D parameters. Key to this
is the computation of the 3 × 3 Q matrix. Given a point (xn, yn) in normalized
co-ordinates of image Ik, Q allows us to find an approximate location (x′

n, y′n)

of the corresponding point in image Ik−1 as:

x′
n =

Q(0, 0) · xn + Q(0, 1) · yn + Q(0, 2)
Q(2, 0) · xn + Q(2, 1) · yn + Q(2, 2)

y′n =
Q(1, 0) · xn + Q(1, 1) · yn + Q(1, 2)
Q(2, 0) · xn + Q(2, 1) · yn + Q(2, 2)

. (66)

The mapping from pair-wise 3-D to pair-wise 2-D parameters Q is performed by
assuming that the particular region in 3-D for which a mosaic is being generated
is a 2-D planar object with approximately uniform depth. This representative
depth Z̃ for relevant objects in Ik−1 is obtained as:

Z̃ = median{Zk−1(x, y) |Ak−1(x, y) ≥ τa } , (67)

where τa is a threshold determined empirically. The image

{(x, y) : Ak−1(x, y) ≥ τa}

is usually referred to as the α-image in the MPEG IV community. Then, Q can
be computed as:

Q
∆= R−1

k−1 −
1
Z̃

R−1
k−1T [0 0 1], (68)

where Rk−1 and T are the rotation and translation matrices in 3D, respectively.
The entry Q(2, 2), equals 1.0. We arrived at these relations based on successive
approximations and simplifications made to a generic situation with 3-D scenes
and a real camera to 2-D planar objects at uniform depth and a pin-hole camera,
for which Z = Z̃ . The final step of combining the Q and P matrices’ parameters
is described in [67].

As a consequence of this method, for each 3-D region for which we can de-
fine a consistent average depth Z̃ that represents the average depth of the layer
associated to this region, we generate a separate mosaic. So, e.g., for the “Flower-
garden” sequence we should expect to have, at least, three layers: the foreground
tree, the flower bed, and the houses/sky. This is a crude approximation because
the flower bed itself is represented by a receeding plane which, upon lateral cam-
era motion, for which different points move at different speeds—the higher the
closer they are to the camera and vice-versa. In Figures 17 and 18 we show the
mosaics for the flower bed and houses obtained with 150 images.

3-D Mosaics 3-D mosaics are generated by performing photometric and depth
map compositing. The difference between full 3-D mosaics and layered 3-D based
mosaics is that in the latter case depth approximations are used in the form
of discrete depth layers while for the former case depth is full. Also, depth
maps have to be composited for 3-D mosaics. This introduces a new source
of uncertainty: the incremental composition of depth maps. We have a partial
solution to this problem that is realized by: 1. depth map registration; and
2. depth map composition. Depth map registration is shown in Fig. 19.

Depth map compositing is realized recursively. Given the video sequence
{I1, · · · , Ik, · · · , IN}, we want to generate an extended depth map by combining
the depth maps generated between pairs of successive images. For each pair of
successive images, we generate two depth maps, i.e., {ZF

k } and {ZP
k+1} (“F”

stands for future and “P” stands for past). The important thing to notice is that
both depth maps share the same scaling factor as defined in structure-from-
motion. They can be combined without creating any ambiguity2. The combi-
nation of these depth maps is described by the operation

⊕
: {ZF

k }, {ZP
k+1}

−→ {ZF
k

⊕
ZP,R

k+1}. We observe that ZP,R
k+1 has the superscript R which denotes

the fact that the depth map {ZP
k+1} has been registered to {ZF

k } by using the
translation and rotation parameters estimated between images Ik and Ik+1. The
extended depth map {ZF

k

⊕
ZP,R

k+1} englobes each individual depth map; the op-
eration

⊕
represents each 3-D point with a single depth value; multiple values

at the same point are averaged out. Since, as the camera moves, e.g., from Ik to
Ik+1, we see new parts of the 3-D scene in Ik+1 which were not visible in Ik, and
vice-versa, {ZF

k

⊕
ZP,R

k+1} contains more depth points than in each individual
depth map.

The first instance of the extended depth map is given by combining the depth
maps generated between images I1 and I2, thus resulting in {ZF

1

⊕
ZP,R

2 }. The
process of depth map composition is recursive and it involves two processing lay-
ers which describe the combination of pairs and multiple depth maps. Formally:

1. For each pair of images, Ik and Ik+1, generate pairs of depth maps {ZF
k }

and {ZP
k+1}. This uses the result of structure-from-motion.

2. Generate, for each pair of images, an extended depth map {ZF
k

⊕
ZP,R

k+1}.
This is realized through the compositing operation

⊕
and depth map regis-

tration denoted by R.
3. Compose {ZF

k

⊕
ZP,R

k+1} with the extended depth map obtained up to image
Ik. This involves scale equalization, denoted by · and depth map registration.

Scale equalization is the operation by which depth values are rescaled in
order to adjust them to the same scale; only the pairs of depth maps {ZF

k }
and {ZP

k+1} generated for successive images Ik and Ik+1 using structure-from-
motion by using the same translation and rotation parameters have the same
scale; depth maps obtained for different successive pairs of images depend on
different scaling values.

The depth compositing described above is repeated until all images have been
processed.

Figs. 20, 21, and 22 display the recursive process of depth map composi-
tion. Given three consecutive images Ik, Ik+1, and Ik+2, we first obtain pairs
of (equiscalar) depth maps {ZF

k } and {ZP
k+1}, and {ZF

k+1} and {ZP
k+2}; the

result is displayed by circles representing a depth map pair. Next, we com-
bine pairs of successive depth maps thus resulting in the extended depth maps
2 If we combine depth maps with different scaling factors or without equalized scaling

factors, the result is meaningless because depth values for the same 3-D point are
different.

{ZF
k

⊕
ZP,R

k+1} and {ZF
k+1

⊕
ZP,R

k+2}; they are represented by intersecting circles.
Finally, the extended pairs of depth maps are integrated into a single depth map

{ZF
k

⊕
ZP,R

k+1}
R ⊕

ZP,R
k+2.

Figs. 20, 21, and 22 show the VRML rendering of a photometric and depth
amp compositing. This was realized by associating voxels (3-D volumetric units)
to different depth values and doing the texture mapping (photometric map).

Summary We showed a process of evolution and complexification of mosaic
generation: from 2-D to 3-D mosaics. We described generative video, a much
richer type of mosaic than traditional 2-D mosaics. The more 3-D information is
incorporated in this process of mosaic generation, the more complete the mosaic
becomes in terms of its fidelity to full 3-D information. On the other hand,
more levels of uncertainty and imperfections are added in the process. The final
goal of having a full 3-D reconstruction of a 3-D scene with precise depth and
photometric compositing is still much beyond reach; but this goal is seen as a
driving element in the process described in this section. In the next section, we
describe a full 3D representation of objects, which are extracted from monocular
video sequences.

4 Three-dimensional object-based representation

In this section we describe a framework for 3-D model-based digital video rep-
resentation. The proposed framework represents a video sequence in terms of a
3-D scene model and a sequence of 3-D pose vectors. The 3-D model for the scene
structure contains information about the 3-D shape and texture. The 3-D shape
is modelled by a piecewise planar surface. The scene texture is coded as a set of
ordinary images, one for each planar surface patch. The pose vectors represent
the position of the camera with respect to the scene. A shorter version of the
material in this section was presented in [72].

The main task in analyzing a video sequence within our framework is the
automatic generation of the 3-D models from a single monocular video data se-
quence. We start by reviewing in subsection 4.1 the existing methods to recover
3-D structure from video. Then, we describe the proposed framework in subsec-
tion 4.2 and detail the analysis and synthesis tasks is subsections 4.3 and 4.4.
Finally, in subsections 4.5 and 4.6, we describe experiments and applications of
the proposed framework.

4.1 3-D Object modelling from video

For videos of unconstrained real-world scenes, the strongest cue to estimating
the 3-D structure is the 2-D motion of the brightness pattern in the image plane,
thus the problem is generally referred to as structure from motion (SFM). The
two major steps in SFM are usually the following: first, compute the 2-D motion
in the image plane; second, estimate the 3-D shape and the 3-D motion from the
computed 2-D motion.

Early approaches to SFM processed a single pair of consecutive frames and
provided existence and uniqueness results to the problem of estimating 3-D mo-
tion and absolute depth from the 2-D motion in the camera plane between two
frames, see for example [70]. The two-frame algorithms are highly sensitive to
image noise and, when the object is far from the camera, i.e., at a large distance
when compared to the object depth, they fail even at low level image noise. More
recent research has been oriented toward the use of longer image sequences. For
example, [73] uses nonlinear optimization to solve for the rigid 3-D motion and
the set of 3-D positions of feature points tracked along a set of frames, and [74]
uses a Kalman filter to integrate along time a set of two-frame depth estimates.

Among the existing approaches to the multiframe SFM problem, the factor-
ization method, introduced by Tomasi and Kanade [13], is an elegant method
to recover structure from motion without computing the absolute depth as an
intermediate step. They treat orthographic projections. The object shape is rep-
resented by the 3-D position of a set of feature points. The 2-D projection of each
feature point is tracked along the image sequence. The 3-D shape and motion
are then estimated by factorizing a measurement matrix whose entries are the
set of trajectories of the feature point projections. Tomasi and Kanade pioneered
the use of linear subspace constraints in motion analysis. In fact, the key idea
underlying the factorization method is the fact that the rigidity of the scene
imposes that the measurement matrix lives in a low dimensional subspace of
the universe of matrices. Tomasi and Kanade have shown that the measurement
matrix is a rank 3 matrix in a noiseless situation. This work was later extended
to the scaled-orthographic, or pseudo-perspective, and paraperspective projec-
tions [75], correspondences between line segments [76], recursive formulation [77],
and multibody scenario [78].

Surface-based rank 1 factorization method We use linear subspace con-
straints to solve SFM: recovering 3-D motion and a parameteric description of
the 3-D shape from a sequence of 2-D motion parameters. By exploiting the
subspace constraints, we solve the SFM problem by factorizing a matrix that is
rank 1 in a noiseless situation, rather than a rank 3 matrix as in the original
factorization method.

To recover in an expedite way the 3-D motion and the 3-D shape, we develop
the surface-based rank 1 factorization method [14]. Under our general scenario,
we describe the shape of the object by surface patches. Each patch is described
by a polynomial. This leads to a parameterization of the object surface. We
show that this parametric description of the 3-D shape induces a parameteric
model for the 2-D motion of the brightness pattern in the image plane. The
surface-based factorization approach, [14], overcomes a limitation of the original
factorization method of Tomasi and Kanade, [13]. Their approach relies on the
matching of a set of features along the image sequence. To provide dense depth
estimates, their method usually needs hundreds of features that are difficult to
track and that lead to a complex correspondence problem. Instead of tracking
pointwise features, the surface-based method tracks regions where the optical

flow is described by a single set of parameters. This approach avoids the corre-
spondence problem and is particularly suited to practical scenarios such as when
constructing 3-D models for buildings that are well described by piecewise flat
surfaces.

The algorithm that we develop has a second major feature—its computa-
tional simplicity. By making an appropriate linear subspace projection, we show
that the unknown 3-D structure can be found by factorizing a matrix that is
rank 1 in a noiseless situation, [15]. This contrasts with the factorization of a
rank 3 matrix as in the original method of Tomasi and Kanade, [13]. This allows
the use of faster iterative algorithms to compute the matrix that best approxi-
mates the data.

Our approach handles general shaped structures. It is particularly well suited
to the analysis of scenes with piecewise flat surfaces, where the optical flow model
reduces to the well known affine motion model. This is precisely the kind of scenes
to which the piecewise mosaics video representation framework is particularly
suited for. References [14, 15] contain the detailed theoretical foundations of our
approach to video analysis. In this section, we particularize to the construction
of piecewise mosaics our general methodology.

4.2 Framework

We now detail the framework for 3-D model-based video representation. We
start by describing the video model as a sequence of projections of a 3-D scene.
Then we consider the representation of the 3-D motion of the camera and the
3-D shape of the scene.

Image sequence representation For commodity, we consider a rigid object O
moving in front of a camera. The object O is described by its 3-D shape S
and texture T . The texture T represents the light received by the camera after
reflecting on the object surface, i.e., the texture T is the object brightness as
perceived by the camera. The texture depends on the object surface photometric
properties, as well as on the environment illumination conditions. We assume
that the texture does not change with time.

The 3-D shape S is a representation of the surface of the object, as de-
tailed below. The position and orientation of the object O at time instant f
is represented by a vector mf . The 3-D structure obtained by applying the 3-
D rigid transformation coded by the vector mf to the object O is represented
by M(mf)O.

The frame If , captured at time f , is modelled as the projection of the object,

If = P
{
M(mf)O

}
. (69)

We assume that P is the orthogonal projection operator that is known to be
a good approximation to the perspective projection when the relative depth of
the scene is small when compared to the distance to the camera. Our video

analysis algorithms can be easily extended to the scaled-orthography and the
para-perspective models in a similar way as [75] does for the original factorization
method.

The operator P returns the texture T as a real valued function defined over
the image plane. This function is a nonlinear mapping that depends on the object
shape S and the object position mf . The intensity level of the projection of the
object at pixel u on the image plane is

P
{
M(mf)O

}
(u) = T (sf (S , mf ; u)) , (70)

where sf (S, mf ; u) is the nonlinear mapping that lifts the point u on the im-
age If to the corresponding point on the 3-D object surface. This mapping
sf (S, mf ; u) is determined by the object shape S , and the position mf . To
simplify the notation, we will usually write explicitly only the dependence on f ,
i.e., sf (u).

The image sequence model (69) is rewritten in terms of the object texture T
and the mappings sf (u), by using the equality (70), as

If (u) = T (sf (u)) . (71)

Again, the dependence of uf on S and mf is omitted for simplicity.

3-D Motion representation To represent the 3-D motion, we attach coor-
dinate systems to the object and to the camera. The object coordinate sys-
tem (o.c.s.) has axes labelled by x, y, and z, while the camera coordinate sys-
tem (c.c.s.) has axes labelled by u, v, and w. The plane defined by the axes u
and v is the camera plane. The unconstrained 3-D motion of a rigid body
can be described in terms of a time varying point translation and a rotation,
see [79]. The 3-D motion of the object is then defined by specifying the position
of the o.c.s. {x, y, z} relative to the c.c.s. {u, v, w}, i.e., by specifying a rotation–
translation pair that takes values in the group of the rigid transformations of the
space, the special Euclidean group SE(3). We express the object position at time
instant f in terms of (tf , Θf) where the vector tf =

[
tuf , tvf , twf

]T contains
the coordinates of the origin of the object coordinate system with respect to the
camera coordinate system (translational component of the 3-D motion), and Θf

is the rotation matrix that represents the orientation of the object coordinate
system relative to the camera coordinate system (rotational component of the
3-D motion).

3-D Shape representation The 3-D shape of the rigid object is a parametric
description of the object surface. We consider objects whose shape is given by
a piecewise planar surface with K patches. The 3-D shape is described in terms
of K sets of parameters

{
ak
00, a

k
10, a

k
01

}
, for 1 ≤ k ≤ K, where

z = ak
00 + ak

10(x − xk
0) + ak

01(y − yk
0) (72)

describes the shape of the patch k in the o.c.s. With respect to the representation
of the planar patches, the parameters xk

0 and yk
0 can have any value, for example

they can be made zero. We allow the specification of general parameters xk
0, y

k
0

because the shape of a small patch k with support region {(x, y)} located far
from the the point (xk

0, y
k
0) has a high sensitivity with respect to the shape

parameters. To minimize this sensitivity, we choose for (xk
0, y

k
0) the centroid of

the support region of patch k. With this choice, we improve the accuracy of
the 3-D structure recovery algorithm. By making (xk

0, y
k
0) to be the centroid of

the support region of patch k, we also improve the numerical stability of the
algorithm that estimates the 2-D motion in the image plane.

The piecewise planar 3-D shape described by expression (72) captures also the
simpler feature-based shape description. This description is obtained by making
zero all the shape parameters, except for ak

00 that codes the relative depth of
feature k, z = ak

00.

4.3 Video Analysis

The video analysis task consists in recovering the object shape, object texture,
and object motion from the given video. This task corresponds to inverting the
relation expressed in equation (71), i.e., we want to infer the 3-D shape S, the
texture T , and the 3-D motion {mf , 1 ≤ f ≤ F} of the object O from the video
sequence {If , 1 ≤ f ≤ F} of F frames. In [14] we study this problem for a
piecewise polynomial shape model. This section particularizes our approach for
piecewise planar shapes.

We infer the 3-D rigid structure from the 2-D motion induced onto the image
plane. After recovering the 3-D shape and the 3-D motion of the object, the
texture of the object is estimated by averaging the video frames co-registered
according to the recovered 3-D structure. We now detail each of these steps.

Image motion The parametric description of the 3-D shape induces a param-
eterization for the 2-D motion in the image plane {uf (s)}. The displacement
between the frames I1 and If in the region corresponding to surface patch k is
expressed in terms of a set of 2-D motion parameters. For planar patches, we
get the affine motion model for the 2-D motion of the brightness pattern in the
image plane. We choose the coordinate s = [s, r]T of the generic point in the
object surface to coincide with the coordinates [x, y]T of the object coordinate
system. We also choose the object coordinate system so that it coincides with the
camera coordinate system in the first frame (tu1 = tv1 = 0, Θ1 = I3×3). With
these definitions, we show in [14] that the 2-D motion between the frames I1

and If in the region corresponding to surface patch k is written as

uf (s) = u(αk
f ; s, r) =

[
αuk

f10 αuk
f01

αvk
f10 αvk

f01

] [
s − xk

0

r − yk
0

]
+

[
αuk

f00

αvk
f00

]
, (73)

where the 2-D motion parameters αk
f =

{
αuk

f00, α
uk
f10, α

uk
f01, α

vk
f00, α

vk
f10 , αvk

f01

}
are

related to the 3-D shape and 3-D motion parameters by

αuk
f00 = tuf + ixfxk

0 + iyfyk
0 + izfak

00, (74)

αuk
f10 = ixf + izfak

10, (75)

αuk
f01 = iyf + izf ak

01, (76)

αvk
f00 = tvf + jxfxk

0 + jyf yk
0 + jzfak

00, (77)

αvk
f10 = jxf + jzf ak

10, (78)

αvk
f01 = jyf + jzfak

01, (79)

where ixf , iyf , izf , jxf , jyf , and jzf are entries of the well known 3-D rotation
matrix Θf , see [79].

The parameterization of the 2-D motion as in expression (73) is the well
known affine motion model. Because the object coordinate system coincides with
the camera coordinate system in the first frame, the surface patch k is projected
on frame 1 into region Rk. The problem of estimating the support regions by seg-
menting the 2-D motion has been addressed in the past, see for example [80, 81].
We use the simple method of sliding a rectangular window across the image and
detect abrupt changes in the 2-D motion parameters. We use known techniques
to estimate the 2-D motion parameters, see [82]. Another possible way to use our
structure from motion approach is to select a priori the support regions Rk, as
it is usually done by the feature tracking approach. In fact, as mentioned above,
our framework is general enough to accommodate the feature-based approach
because it corresponds to selecting a priori a set of small (pointwise) support
regions Rk with shape described by z = constant in each region. In [15] we
exploit the feature-based approach.

3-D Structure from 2-D motion The 2-D motion parameters are related
to the 3-D shape and 3-D motion parameters through expressions (74–79).
These expressions define an overconstrained equation system with respect to
the 3-D shape parameters

{
ak
00, a

k
10, a

k
01, 1 ≤ k ≤ K

}
and to the 3-D positions{

mf =
{
tuf , tvf , Θf} , 1,≤ f,≤ F} (under orthography, the component of

the translation along the camera axis, twf , can not be recovered). The esti-
mate {âk

mn} of the object shape and the estimate {t̂uf , t̂vf , Θ̂f} of the object
positions are the least squares (LS) solution of the system. Our approach to this
nonlinear LS problem is the following. First, solve for the translation parameters
which leads to a closed-form solution. Then, replace the estimates {t̂uf , t̂vf} and
solve for the remaining motion parameters {Θf} and shape parameters {ak

mn}
by using a factorization approach.

Translation estimation The translation components along the camera plane
at instant f , tuf and tvf affect only the set of parameters {αuk

f00, 1 ≤ k ≤ K}
and {αvk

f00, 1 ≤ k ≤ K}, respectively. If the parameters {ak
00} and {Θf} are

known, to estimate {tuf , tvf} is a linear LS problem. Without loss of generality,
we choose the object coordinate system in such a way that

∑K
k=1 ak

00 = 0, and
the image origin in such a way that

∑K
k=1 xk

0 =
∑K

k=1 yk
0 = 0. With this choice,

the estimates t̂uf and t̂vf of the translation along the camera plane at frame f
are

t̂uf =
1
K

K∑

k=1

α̂uk
f00 and t̂vf =

1
K

K∑

k=1

α̂vk
f00. (80)

Matrix of 2-D motion parameters Replace the set of translation estimates
{t̂uf , t̂vf} in the equation set (74–79). Define a set of parameters {βuk

f , βvk
f }

related to {αuk
f00, α

vk
f00} by

βuk
f = αuk

f00 −
1
K

K∑

l=1

αul
f00 and βvk

f = αvk
f00 −

1
K

K∑

l=1

αvl
f00. (81)

Collect the parameters {βuk
f , αuk

f01, , α
uk
f10, β

vk
f , αvk

f01, α
vk
f10, 2 ≤ f ≤ F, 1 ≤ k ≤ K}

in a 2(F−1)×3K matrix R, which we call the matrix of 2-D motion parameters,

R =




βu1
2 αu1

210 αu1
201 βu2

2 αu2
210 αu2

201 · · · βuK
2 αuK

210 αuK
201

βu1
3 αu1

310 αu1
301 βu2

3 αu2
310 αu2

301 · · · βuK
3 αuK

310 αuK
301

· ·
βu1

F αu1
F10 αu1

F01 βu2
F αu2

F10 αu2
F01 · · · βuK

F αuK
F10 αuK

F01

βv1
2 αv1

210 αv1
201 βv2

2 αv2
210 αv2

201 · · · βvK
2 αvK

210 αvK
201

βv1
3 αv1

310 αv1
301 βv2

3 αv2
310 αv2

301 · · · βvK
3 αvK

310 αvK
301

· ·
βv1

F αv1
F10 αv1

F01 βv2
F αv2

F10 αv2
F01 · · · βvK

F αvK
F10 αvK

F01




. (82)

Collect the motion and shape parameters in the 2(F − 1) × 3 matrix M and in
the 3 × 3K matrix S as follows

M =




ix2 ix3 · · · ixF jx2 jx3 · · · jxF

iy2 iy3 · · · iyF jy2 jy3 · · · jyF
iz2 iz3 · · · izF jz2 jz3 · · · jzF




T

, (83)

ST =




x1
0 1 0 x2

0 1 0 · · · xK
0 1 0

y1
0 0 1 y2

0 0 1 · · · yK
0 0 1

a1
00 a1

10 a1
01 a2

00 a2
10 a2

01 · · · aK
00 aK

10 aK
01


 . (84)

With these definitions, we write, according to the system of equations (74–79)

R = MST . (85)

The matrix of 2-D motion parameters R is 2(F −1)×3K, but it is rank deficient.
In a noiseless situation, R is rank 3 reflecting the high redundancy in the data,
due to the 3-D rigidity of the object. This is a restatement of the rank deficiency
that has been reported in [13] for a matrix that collects image feature positions.

Rank 1 factorization Estimating the shape and position parameters given
the observation matrix R is a nonlinear LS problem. This problem has a specific
structure: it is a bilinear constrained LS problem. The bilinear relation comes
from (85) and the constraints are imposed by the orthonormality of the rows
of the matrix M (83). We find a suboptimal solution to this problem in two
stages. The first stage, decomposition stage, solves the unconstrained bilinear
problem R = MST in the LS sense. The second stage, normalization stage,
computes a normalizing factor by approximating the constraints imposed by the
structure of the matrix M .

Decomposition Stage Because the first two rows of ST are known, we show
that the unconstrained bilinear problem R = MST is solved by the factorization
of a rank 1 matrix R̃, rather than a rank 3 matrix like in [13], see [15] for the
details. Define M = [M0, m3] and S = [S0, a]. M0 and S0 contain the first
two columns of M and S, respectively, m3 is the third column of M , and a
is the third column of S. We decompose the shape parameter vector a into the
component that belongs to the space spanned by the columns of S0 and the
component orthogonal to this space as

a = S0b + a1, with aT
1 S0 =

[
0 0

]
. (86)

The matrix R̃ is R multiplied by the orthogonal projector onto the orthogonal
complement of the space spanned by the first two columns of S,

R̃ = R

[
I − S0

(
ST

0 S0

)−1

ST
0

]
. (87)

This projection reduces the rank of the problem from 3 (matrix R) to 1 (ma-
trix R̃). In fact, see [15], we get

R̃ = m3a
T
1 . (88)

The solution for m3 and a1 is given by the rank 1 matrix that best approxi-
mates R̃. In a noiseless situation, R̃ is rank 1. By computing the largest singular
value of R̃ and the associated singular vectors, we get

R̃ ' uσvT , m̂3 = αu, âT
1 =

σ

α
vT , (89)

where α is a normalizing scalar different from 0. To compute u, σ, and v we
use the power method—an efficient iterative algorithm that avoids the need to
compute the complete SVD, see [83]. This makes our decomposition algorithm
simpler than the one in [13].

Normalization Stage We see that decomposition of the matrix R̃ does not
determine the vector b. This is because the component of a that lives in the
space spanned by the columns of S0 does not affect the space spanned by the
columns of the entire matrix S and the decomposition stage restricts only this
last space. We compute α and b by imposing the constraints that come from the
structure of matrix M . We get, see [15] for the details,

M̂ = N

[
I2×2 0

¯2×1

−αbT α

]
, where N =

[
RS0

(
ST

0 S0

)−1

u

]
. (90)

The constraints imposed by the structure of M are the unit norm of each row
and the orthogonality between row j and row j +F −1. In terms of N , α, and b,
the constraints are

nT
i

[
I2×2 −αb

−αbT α2(1 + bT b)

]
ni = 1, 1 ≤ i ≤ 2(F − 1), (91)

nT
j

[
I2×2 −αb

−αbT α2(1 + bT b)

]
nj+F−1 = 0, 1 ≤ j ≤ F − 1, (92)

where nT
i denotes the row i of matrix N . We compute α and b from the linear LS

solution of the system above in a similar way to the one described in [13]. This
stage is also simpler than the one in [13] because the number of unknowns is 3
(α and b = [b1, b2]

T) as opposed to the 9 entries of a generic 3× 3 normalization
matrix.

Texture recovery After recovering the 3-D shape and the 3-D motion parame-
ters, the texture of each surface patch is estimated by averaging the video frames
co-registered according to the recovered 3-D structure.

From the 3-D shape parameters {ak
00, a

k
10, a

k
01} and the 3-D motion param-

eters {tuf , tvf , Θf}, we compute the parameters αk
f = {αuk

f00, α
uk
f10, α

uk
f01, α

vk
f00,

αvk
f10, α

vk
f01}, through equations (74–79). Then, we compute the texture of the

planar patch k by

T (s) =
1
F

F∑

f=1

If (uf (s)) (93)

where uf (s) is the affine mapping parameterized by αk
f , given by expression (73).

The computation in expression (93) is very simple, involving only an affine warp-
ing of each image.

4.4 Video Synthesis

The goal of the video synthesis task is to generate a video sequence from the
recovered 3-D motion, 3-D shape, and texture of the object. The synthesis task
is much simpler than the analysis and involves only an appropriate warping of
the recovered object texture.

Each frame is synthesized by projecting the object according to model (69).
As defined above, the point s on the surface of the object projects in frame f
onto uf (s) on the image plane. For planar surface patches, we have seen in the
previous section that the mapping uf (s) is a simple affine motion model, see
expression (73), whose parameters are directly related to the 3-D shape and 3-
D motion parameters through expressions (74–79). The operations that must be
carried out to synthesize the region corresponding to surface patch k at time in-
stant f are: from the 3-D shape parameters {ak

00, a
k
10, a

k
01} and the 3-D motion pa-

rameters {tuf , tvf , Θf}, compute the parameters αk
f = {αuk

f00, α
uk
f10, α

uk
f01, α

vk
f00,

αvk
f10, α

vk
f01}, through equations (74–79); then, project the texture of the patch k

according to the mapping uf (s), given by expression (73).
The projection of the texture is straight forward because it involves only

the warping of the texture image according to the mapping sf (u), the inverse
of uf (s). In fact, according to expressions (69) and (71), we get

If (u) = P
{
M(mf)O

}
(u) = T (sf (u)) , (94)

where the mapping sf (u) is affine. This mapping is computed from the param-
eter vector αk

f by inverting expression (73). We get

sf (u) = s(Ak
f , tk

f ; u, v) = Ak
f

[
u
v

]
+ tk

f (95)

where

Ak
f =

[
αuk

f10 αuk
f01

αvk
f10 αvk

f01

]−1

, tk
f = −

[
αuk

f10 αuk
f01

αvk
f10 αvk

f01

]−1 [
αuk

f00

αvk
f00

]
+

[
xk

0

yk
0

]
. (96)

4.5 Experiment

We used a hand held taped video sequence of 30 frames showing a box over a
carpet. The image in the top of Figure 25 shows one frame of the box video
sequence. The 3-D shape of the scene is well described in terms of four planar
patches. One corresponds to the floor, and the other three correspond to the
three visible faces of the box. The camera motion was approximately a rotation
around the box.

We processed the box video sequence by using our method. We start by
estimating the parameters describing the 2-D motion of the brightness pattern
in the image plane. The 2-D motion in the image plane is described by the affine
motion model. To segment the regions corresponding to different planar patches,
we used the simple method of sliding a 20 × 20 window across the image and
detected abrupt changes in the affine motion parameters. We estimated the affine
motion parameters by using the method of [82].

From the affine motion parameters estimates, we recovered the 3-D structure
of the scene by using the surface-based rank 1 factorization method outlined

above. For the box video sequence, the shape matrix S contains four submatrices,
one for each planar patch. Each submatrix is a matrix that contains the 3-
D shape parameters of the corresponding surface patch. According to the general
structure of matrix S, as specified in subsection 4.3, S is the 3 × 12 matrix

ST =




x1
0 1 0 x2

0 1 0 x3
0 1 0 x4

0 1 0
y1
0 0 1 y2

0 0 1 y3
0 0 1 y4

0 0 1
a1
00 a1

10 a1
01 a2

00 a2
10 a2

01 a3
00 a3

10 a3
01 a4

00 a4
10 a4

01


 , (97)

where (xk
0, y

k
0) are the coordinates of the centroid of the support region of patch k

and
{
ak
00, a

k
10, a

k
01

}
are the parameters describing the 3-D shape of the patch

by z = ak
00 + ak

10(x − xk
0) + ak

01(y − yk
0).

We computed the parameters describing the 3-D structure, i.e, the 3-D mo-
tion parameters {tuf , tvf , Θf , 1 ≤ f ≤ 30} and the 3-D shape parameters {an

00,
an
10, a

n
01, 1 ≤ n ≤ 4} from the image motion parameters in {αuk

f10, α
uk
f01, α

vk
f10, α

vk
f01,

αuk
f00α

vk
f00, 1 ≤ f ≤ 30, 1 ≤ k ≤ 4} by using the surface-based rank 1 factorization

method. After computing the 3-D structure parameters, we recover the texture
of each surface patch by averaging the video frames co-registered according to
the recovered 3-D structure, as described in subsection 4.3.

Figure 23 shows a perspective view of the reconstructed 3-D shape with the
scene texture mapped on it. The spatial limits of the planar patches were deter-
mined the following way. Each edge that links two visible patches was computed
from the intersection of the planes corresponding to the patches. Each edge that
is not in the intersection of two visible patches was computed by fitting a line to
the boundary that separates two regions with different 2-D motion parameters.
We see that the angles between the planar patches are correctly recovered.

4.6 Applications

In this section, we highlight some of the potential applications of the proposed
3-D model-based video representation.

Video coding Model-based video representations enable very low bit rate com-
pression. Basically, instead of representing a video sequence in terms of frames
and pixels, 3-D model-based approaches use the recovered 3-D structure. A video
sequence is then represented by the 3-D shape and texture of the object, and
its 3-D motion. Within the surface-based representation, the 3-D motion and
3-D shape are coded with a few parameters and the texture is coded as a set of
ordinary images, one for each planar patch. We use the box video sequence to
illustrate this video compression scheme.

The video analysis task consists in recovering the object shape, object motion,
and object texture from the given video. The steps of the analysis task for the
box video sequence were detailed above. Figure 24 shows frontal views of the
four elemental texture constructs of the surface-based representation of the box
video sequence. On the top, the planar patch corresponding to the carpet is not

complete. This is because the region of the carpet that is occluded by the box
can not be recovered from the video sequence. The other three images on the
bottom of Figure 24 are the three faces of the box.

The video synthesis task consists in generating a video sequence from the
recovered 3-D motion, 3-D shape, and texture of the object. The synthesis task is
much simpler than the analysis because it involves only an appropriate warping
of the recovered object texture. Each frame is synthesized by projecting the
object texture as described in subsection 4.4.

The original sequence has 50×320×240 = 3840000 bytes. The representation
based on the 3-D model needs

∑
n Tn +

∑
n Sn + 50×M =

∑
n Tn + 2248 bytes,

where Tn is the storage size of the texture of patch n, Sn is the storage size of
the shape of patch n, and M is the storage size of each camera position. Since
the temporal redundancy was eliminated, the compression ratio chosen for the
spatial conversion governs the overall video compression ratio. To compress the
texture of each surface patch in Figure 24, we used the JPEG standard with two
different compression ratios. The storage sizes T1, T2, T3, and T4 of the texture
patches were, in bytes, from left to right in Figure 5, 2606, 655, 662, and 502,
for the higher compression ratio and 6178, 1407, 1406, and 865, for the lower
compression ratio. These storage sizes lead to the average spatial compression
ratios of 31:1 and 14:1.

The first frame of the original box video sequence is on the top of Figure 25.
The bottom images show the first frame of the synthesized sequence for the two
different JPEG spatial compression ratios. In the bottom right image, the first
frame obtained with the higher spatial compression ratio, leading to the overall
video compression ratio of 575:1. The bottom left image corresponds to the lower
spatial compression ratio and an overall video compression ratio of 317:1. In both
cases, the compression ratio due to the elimination of the temporal redundancy
is approximately 20.

From the compressed frames in Figure 25 we see that the overall quality is
good but there are small artifacts in the boundaries of the surface patches.

Video content addressing Content-based addressing is an important applica-
tion of the 3-D model-based video representation. Current systems that provide
content-based access work by first segmenting the video in a sequence of shots
and then labelling each shot with a distinctive indexing feature. The most com-
mon features used are image-based features, such as color histograms or image
moments. By using 3-D models we improve both the temporal segmentation and
the indexing. The temporal segmentation can account for the 3-D content of the
scene. Indexing by 3-D features, directly related to the 3-D shape, enable queries
by object similarity. See [12] for illustrative examples of the use of 3-D models
in digital video processing.

Virtualized reality Current methods to generate virtual scenarios are expen-
sive. Either 3-D models are generated in a manual way which requires a human
to specify the details of the 3-D shape and texture, or auxiliary equipment like

a laser range finder need to be used to capture the 3-D reality. Our work can be
used to generate automatically virtual reality scenes. The 3-D models obtained
from the real life video data can be used to build synthetic image sequences. The
synthesis is achieved by specifying the sequence of viewing positions along time.
The viewing positions are arbitrary—they are specified by the user, either in an
interactive way, or by an automatic procedure. For example, the images in Fig-
ure 26 were obtained by rotating the 3-D model represented in Figure 23. Note
that only the portion of the model that was seen in the original video sequence
is synthesized in the views of Figure 26. Other views are generated in a similar
way. Synthetic images are obtained by selecting from these views a rectangular
window, corresponding to the camera field of view. This is an example of virtual
manipulation of real objects. More complex scenes are obtained by merging real
objects with virtual entities.

4.7 Summary

In this section we described a framework for 3-D content-based digital video
representation. Our framework represents a video sequence in terms of the 3-
D rigid shape of the scene (a piecewise planar surface), the texture of the scene,
and the 3-D motion of the camera. When analyzing a video sequence, we recover
3-D rigid models by using a robust factorization approach. When synthesizing
a video sequence we simply warp the surface patches that describe the scene,
avoiding the use of computationally expensive rendering tools. One experiment
illustrates the performance of the algorithms used. We highlight potential appli-
cations of the proposed 3-D model-based video representation framework.

5 Conclusion

In this Chapter, we presented 2D and 3D content based approaches to the rep-
resentation of video sequences. These representations are quite efficient, they
reduce significantly the amount of data needed to describe the video sequence
by exploiting the large overlap between consecutive images in the video sequence.
These representations abstract from the video sequence the informational units—
constructs—from which the original video can be regenerated. Content based
video representations can be used in compression, with the potential to achieve
very large compression ratios, [62, 63]. But their applications go well beyond com-
pression from video editing, [64], to efficient video database indexing and query-
ing. The approaches presented in this Chapter generalize the traditional mosaics,
going beyond panoramic views of the background. In generative video (GV), pre-
sented in Section 3, the world is assumed to be an overlay of 2D objects. GV leads
to layered representations of the background and independently moving objects.
Section 3 considers also 3D layered mosaics. Section 4, describes the surface-
based rank 1 factorization method that constructs 3D representations of objects
from monocular video sequences. An essential preprocessing step in obtaining
these video representations is the segmentation of the objects of interest from the

background. Section 2 overviews several energy minimization type approaches
to the problem of image segmentation—an essential step in constructing these
content-based video representations.

References

1. Lippman, A.: Movie maps: an application of the optical videodisc to computer
graphics. In: Proc. SIGGRAPH, ACM (1980) 32–43

2. Burt, P.J., Adelson, E.H.: A multiresolution spline with application to image
mosaics. ACM Transactions on Graphics 2 (1983) 217–236

3. Hansen, M., Anandan, P., Dana, K., van der Wal, G., Burt, P.J.: Real-time scene
stabilization and mosaic construction. In: Proceedings of the ARPA APR Work-
shop. (1994) 41–49

4. Hansen, M., Anandan, P., Dana, K., van der Wal, G., Burt, P.J.: Real-time scene
stabilization and mosaic construction. Proceedings of the ARPA APR Workshop
(1994) 41–49

5. Teodosio, L., Bender, W.: Salient video stills: Content and context preserved.
Proceedings of the First ACM International Conference on Multimedia ’93 (1993)
39–46

6. Irani, M., Anandan, P., Bergen, J., Kumar, R., Hsu, S.: Efficient representations of
video sequences and their applications. Signal Processing: Image Communication
8 (1996)

7. Wang, J., Adelson, E.: Representing moving images with layers. IEEE Transactions
Image Processing 3 (1994) 625–638

8. Kumar, R., Anandan, P., Irani, M., Bergen, J.R., Hanna, K.J.: Representation
od scenes from collections of images. In: IEEE Workshop on Representations of
Visual Scenes, Cambridge MA (1995) 10–17

9. Aizawa, K., Harashima, H., Saito, T.: Model-based analysis-synthesis image coding
(MBASIC) system for a person’s face. Signal Processing: Image Communication
1 (1989) 139–152

10. Kaneko, M., Koike, A., Hatori, Y.: Coding of a facial image sequence based on
a 3D model of the head and motion detection. Journal of Visual Communication
and Image Representation 2 (1991)

11. Soucy, M., Laurendeau, D.: A general surface approach to the integration of a
set of range views. IEEE Trans. on Pattern Analysis and Machine Intelligence 17
(1995) 344–358

12. Martins, F.C.M., Moura, J.M.F.: Video representation with three-dimensional
entities. IEEE Journal on Selected Areas in Communications 16 (1998) 71–85

13. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography:
a factorization method. Int. Journal of Computer Vision 9 (1992) 137–154

14. Aguiar, P.M.Q., Moura, J.M.F.: Three-dimensional modeling from two-
dimensional video. IEEE Trans. on Image Processing 10 (2001) 1541–1551

15. Aguiar, P.M.Q., Moura, J.M.F.: Rank 1 weighted factorization for 3d structure
recovery: Algorithms and performance analysis. IEEE Trans. on Pattern Analysis
and Machine Intelligence 25 (2003)

16. Kanade, T., Rander, P., Narayanan, J.: Virtualized reality: Constructing virtual
worlds from real scenes. IEEE Multimedia 4 (1997) 34–47

17. Debevec, P., Taylor, C., Malik, J.: Modeling and rendering architecture from
photographs: a hybrid geometry- and image-based approach. In: SIGGRAPH Int.
Conf. on Computer Graphics and Interactive Techniques. (1996) 11–20

18. Adelson, E., Bergen, J.: The pleenoptic function and the elements of early vision.
In Movshon, J., ed.: Computational Models of Visual Processing. MIT Press (1991)

19. Levoy, M., Hanrahan, P.: Light field rendering. In: SIGGRAPH Int. Conf. on
Computer Graphics and Interactive Techniques. (1996) 31–42

20. Gortler, S., Grzesczuk, R., Szeliski, R., Cohen, M.: The lumigraph. In: SIGGRAPH
Int. Conf. on Computer Graphics and Interactive Techniques. (1996) 43–54

21. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Interna-
tional Journal of Computer Vision 1 (1988) 321–331

22. Elsgolc, L.E.: Calculus of Variations. Addison-Wesley Publishing Company Inc.,
Reading, Massachusetts (1962)

23. Castleman, K.R.: Digital Image Processing. Uppersaddle River: Prentrice Hall
(1996)

24. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Reading, MA: Addison-
Wesley Publishing Company (1993)

25. Sobel, I.: Neighborhood coding of binary images for fast contour following and gen-
eral array binary processing. Computer Graphics and Image Processing 8 (1978)
127–135

26. Prewitt, J.M.S.: Object enhancement and extraction. In Lipkin, B.S., Rosenfeld,
A., eds.: Picture Processing and Psychopictories. Academic Press, New York (1970)

27. Marr, D., Hildreth, E.: Theory of edge detection. Proceedings Royal Society of
London B 207 (1980) 187–217

28. Torre, V., Poggio, T.A.: On edge detection. IEEE Transactions on Pattern Analysis
and Machine Intelligent 8 (1986) 147–163

29. Canny, J.F.: A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 8 (1986) 769–798

30. Casadei, S., Mitter, S.: Hierarchical image segmentation - Part I: Detection of
regular curves in a vector graph. Internatianal Journal of Computer Vision 27
(1988) 71–100

31. Casadei, S., Mitter, S.: Beyond the uniqueness assumption: Ambiguity representa-
tion and redundancy elimination in the computation of a covering sample of salient
contour cycles. Computer Vision and Image Understanding 76 (1999) 19–35

32. Adams, R., L.Bischof: Seeded region growing. IEEE Transactions on Pattern
Recognition and Machine Intelligence 16 (1994) 641–647

33. Leonardis, A., Gupta, A., Bajcsy, R.: Segmentation of range images as the search
for geometric parametric models. International Journal of Computer Vision 14
(1995) 253–277

34. Pavlidid, T., Liow, Y.T.: Intergrating region growing and edge detection. In:
Proceedings of Computer Vision and Pattern Recognition (IEEE). (1988)

35. Terzopoulos, D., Witkin, A.: Constraints on deformable models: recovering shape
and non-rigid motion. Artificial Intelligence 36 (1988) 91–123

36. Cohen, L.D.: On active contour models and balloons. CVGIP: Image Understand-
ing 53 (1991) 211–218

37. Ronfard, R.: Region-based strategies for active contour models. International
Journals on Computer Vision 13 (1994) 229–251

38. Malladi, R., Sethian, J.A., Vemuri, B.: Shape modeling with front propagation: A
level set approach. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 17 (1995) 158–175

39. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Transactions
on Medical Imaging 7 (1998) 359–369

40. Chakraborty, A., Staib, L., Duncan, J.: Deformable boundary finding in medical
images by integrating gradient and region information. IEEE Transactions on
Medical Imaging 15 (1996) 859–570

41. Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric
snake model for segmentation of medical imagery. IEEE Transactions on Medical
Imaging 16 (1997) 199–209

42. Chakraborty, A., Duncan, J.: Game-theoretic integration for image segmentation.
IEEE Transaction on Pattern Analysis and Machine Intelligence 21 (1999) 12–30

43. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on
Image Processing 10 (2001) 266–277

44. Morel, J.M., Solimini, S.: Variational Methods in Image Segmentation. Birkhauser
(1995)

45. Zabusky, N.J., Overman II, E.A.: Tangential regularization of contour dynamical
algorithms. Journals of Computational Physics 52 (1983) 351–374

46. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algo-
rithms based on Hamilton–Jacobi formulations. Journal of Computational Physics
79 (1988) 12–49

47. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge Uni-
versity Press (1999)

48. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proceedings of
the 5th Internatinal Conference on Computer Vision (ICCV-95). (1995) 694–699

49. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions
and associated variational problems. Communications in Pure and Applied Math-
ematics 12 (1989)

50. Xu, C., Prince, J.L.: Gradient vector flow: A new external force for snakes. In: IEEE
Proceedings Conference on Computer Vision and Pattern Recognition (CVPR).
(1997)

51. McInerney, T., Terzopoulos, D.: Topologically adaptable snakes. In: Proceedings
of the International Conference on Computer Vision. (1995) 840–845

52. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cam-
bridge University Press (2001)

53. Osher, S.: Riemann solvers, the entropy condition, and difference approximations.
SIAM Journal of Numerical Analysis 21 (1984) 217–235

54. Sethian, J.A.: Numerical algorithms for propagating interfaces: Hamilton-Jacobi
equations and conservation laws. Journal of Differential Geometry 31 (1990) 131–
161

55. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic snakes. International Journal of
Computer Vision 22 (1997) 61–79

56. Sethian, J.A.: Curvature and evolutions of fronts. Commmunications in Mathe-
matics and Physics 101 (1985) 487–499

57. McInerney, T., Terzopoulos, D.: T-snake: Topology adaptive snakes. Medical Image
Analysis 4 (2000) 73–91

58. Borgefors, G.: Distance transformations in arbitrary dimensions. Computer Vision,
Graphics, and Image Processing 27 (1984) 321–345

59. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental
equations of image processing. Arch. Rational Mechanics 123 (1993) 199–257

60. Pluempitiwiriyawej, C., Moura, J.M.F., Wu, Y.J.L., Kanno, S., Ho, C.: Stochas-
tic active contour for cardiac MR image segmentation. In: IEEE International
Conference on Image Processing (ICIP) Barcelona, Spain. (2003)

61. Pluempitiwiriyawej, C., Moura, J.M.F., Wu, Y.J.L., Kanno, S., Ho, C.: STACS:
New active contour scheme for cardiac MR image segmentation. submitted for
publication. 25 pages. (2003)

62. Jasinschi, R.S., Moura, J.F.M., Cheng, J.C., Asif, A.: Video compression via con-
structs. In: Proceedings of IEEE ICASSP. Volume 4., Detroit, MI, IEEE (1995)
2165–2168

63. Jasinschi, R.S., Moura, J.F.M.: Content-based video sequence representation. In:
Proceedings of IEEE ICIP, Washington, DC, IEEE (1995) 229–232

64. Jasinschi, R.S., Moura, J.F.M.: Nonlinear video editing by generative video. In:
Proceedings of IEEE ICASSP, IEEE (1996)

65. Jasinschi, R.S., Moura, J.M.F.: Generative video: Very low bit rate video compres-
sion (1998)

66. Jasinschi, R.S., Naveen, T., Babic-Vovk, P., Tabatabai, A.: Apparent 3-D camera
velocity extraction and its application. In: PCS’99. (1999)

67. Jasinschi, R.S., Naveen, T., Babic-Vovk, P., Tabatabai, A.: Apparent 3-D camera
velocity: —extraction and application. EEE Transactions on Circuits and Systems
for Video Technology 10 (1999) 1185–1191

68. Jasinschi, R.S., Tabatabai, A., Thumpudi, N., Babic-Vov, P.: 2-d extended image
generation from 3-d data extracted from a video sequence (2003)

69. Longuett-Higgins, H.C.: A computer algorithm for reconstructing a scene from
two projections. Nature 293 (1981) 133–135

70. Tsai, R.Y., Huang, T.S.: Uniqueness and estimation of three-dimensional motion
parameters of rigid objects with curved surfaces. Transactions on Pattern Analysis
and Machine Intelligence 6 (1984) 13–27

71. Hartley, R.I.: In defense of the eight-point algorithm. IEEE Transactions on
Pattern Recognition and Machine Intelligence 19 (1997)

72. Aguiar, P.M.Q., Moura, J.M.F.: Fast 3D modelling from video. In: IEEE Workshop
on Multimedia Signal Processing, Copenhagen, Denmark (1999)

73. Broida, T., Chellappa, R.: Estimating the kinematics and structure of a rigid
object from a sequence of monocular images. IEEE Trans. on Pattern Analysis
and Machine Intelligence 13 (1991) 497–513

74. Azarbayejani, A., Pentland, A.P.: Recursive estimation of motion, structure, and
focal length. IEEE Trans. on Pattern Analysis and Machine Intelligence 17 (1995)

75. Poelman, C.J., Kanade, T.: A paraperspective factorization method for shape and
motion recovery. IEEE Trans. on Pattern Analysis and Machine Intelligence 19
(1997)

76. Quan, L., Kanade, T.: A factorization method for affine structure from line cor-
respondences. In: IEEE Int. Conf. on Computer Vision and Pattern Recognition,
San Francisco CA, USA (1996) 803–808

77. Morita, T., Kanade, T.: A sequential factorization method for recovering shape
and motion from image streams. IEEE Trans. on Pattern Analysis and Machine
Intelligence 19 (1997) 858–867

78. Costeira, J.P., Kanade, T.: A factorization method for independently moving
objects. International Journal of Computer Vision 29 (1998) 159–179

79. Ayache, N.: Artificial Vision for Mobile Robots. The MIT Press, Cambridge, MA,
USA (1991)

80. Zheng, H., Blostein, S.D.: Motion-based object segmentation and estimation using
the MDL principle. IEEE Trans. on Image Processing 4 (1995) 1223–1235

81. Chang, M., Tekalp, M., Sezan, M.: Simultaneous motion estimation and segmen-
tation. IEEE Trans. on Image Processing 6 (1997) 1326–1333

82. Bergen, J.R., Anandan, P., Hanna, K.J., Hingorani, R.: Hierarchical model-based
motion estimation. In: European Conf. on Computer Vision, Italy (1992) 237–252

83. Golub, G.H., Van-Loan, C.F.: Matrix Computations. The Johns Hopkins Univer-
sity Press (1996)

Fig. 15. An original frame of the “Flowergarden” sequence (top), the depthmap (mid-
dle) – light brightness means “high” depth, while low brightness means “low” depth,
and the segmented (foreground) tree (bottom) using the results of the depthmap.

Integration

Refine P
k

k-1

k-1

k

k
k

Shot Change Detection

kI
, A

k
k

P

P

S

Pasting
Sprite

R
 ,

 T
 ,

 Z

Delay
Frame

kS
k

S

Delay
Frame Refresh

Decider

k-1

I , A
k

Pk

kP

Fig. 16. Overall flow diagram for the layered mosaic generation method based on 3-D
information

Fig. 17. The ‘flowerbed’ layered mosaic for the “Flowergarden” sequence using 150
frames.

Fig. 18. The ‘houses’ layered mosaic for the “Flowergarden” sequence using 150 frames.

Z
K

F Z
K+1

P,R+ + Z
K+2

P
R }{

Z
K

F{Z
K

P{ } Z
K+1

P{ Z
K+1

F }{}} Z
K+2

F }{Z
K+2

P{ }

+{ PZ },R

K+1K
ZF ,RZP

K+2
Z

K+1

F }+{

,R

Fig. 19. Depth map generation block diagram. Each circle represents a depth map.
Using the depth map generated between three consecutive images, i.e., Ik, Ik+1, and
Ik+2, a composited depth map, shown at the bottom layer, is generated in two steps.
Between the top layer and the middle layer a composited depth map is generated from
pairs of depth maps generated between pairs of successive images. Finally, between the
middle layer and the bottom layer, a single depth map is generated by combining the
previous two depth maps.

Fig. 20. Frontal view of the VRML rendering of a 3-D mosaic.

Fig. 21. Top view of the VRML rendering of a 3-D mosaic. We can observe that the
tree protrudes in the depth map because it lies at a smaller depth w.r.t. to the camera
compared to the other parts of the scene.

Fig. 22. Bottom view of the VRML rendering of a 3-D mosaic. The flower bed is
aligned perpendicular to the field of view. We can also observe gaps (black holes) in
the 3-D mosaic because from this viewing angle the voxels are not aligned with the
viewing angle.

Fig. 23. A perspective view of the 3-D shape and texture reconstructed from the box
video sequence.

Fig. 24. The four planar patches that constitute the elemental texture constructs. On
the top, the carpet (floor level). On the bottom, from the left to the right, the three
visible faces of the box: top of the box, the right side of the box, and the left side of
the box.

Fig. 25. Video compression. Top: frame 1 of the box video sequence, Bottom left:
frame 1 of the synthesized sequence for a compression ratio of 575:1, Bottom right:
frame 1 of the synthesized sequence coded for a compression ratio of 317:1.

Fig. 26. Perspective views of the 3-D shape and texture reconstructed from the box
video sequence of Figure 2.

