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Matching Wavelet Packets to
Gaussian Random Processes

Nirmal Keshava and JesM. F. Moura,Fellow, IEEE

Abstract—In this paper, we consider the problem of ap- entropy and rate-distortion and are particularly well suited to
proximating a set of arbitrary, discrete-time, Gaussian random  sjgnal compression; the search proposed in these references

processes by a single, representative wavelet-based, Gaussia ; P e
process. We measure the similarity between the original processesIig simplified by the additivity property possessed by these

and the wavelet-based process with the Bhattacharyya coefficient. COSt functions. For the analysis of stochastic processes, no
By manipulating the Bhattacharyya coefficient, we reduce the comprehensive framework exists for optimally representing
task of defining the representative process to finding an optimal random signals using wavelets, although efforts have been
gggﬁz nnlgttrr:: gff gggz\e’s\l/ztl_l?:ssegngl%epn\;e;rtmo\ib t"’(‘)': ?rshse()%agfc%iﬁg made [5]-[8] to incorporate the statistics of stochastic pro-
algorithm we derive maximizes the nonadditive Bhattacharyya CESSES mtq thg mathemgncal framework of wavelets.
coefficient in three steps: a migration algorithm that determines ~ 1h€ motivation for using Wavelet_ packet bases, however,
the best basis by searching through a wavelet packet tree for stems from three useful properties of wavelet packets.
the optimal unitary matrix of wavelet-based eigenvectors; and \Wavelets can isolate nonstationary behavior in both time and
two separate fixed-point algorithms that der_lve an appropriate frequency and are suited for signal processing applications
set of eigenvalues and a mean vector. We illustrate the method h . d . h H
with two different classes of processes: first-order Markov and WNere transient and nonstationary phenomena occur. Hence,
bandlimited. The technique is also applied to the problem of the desire to represent random processes using wavelets,
robust terrain classification in polarimetric SAR images. as opposed to another arbitrary basis construction, is well
Index Terms—Basis functions, best basis search, BhattacharyyaJUSt'f'ed-_ Second, Wavelt_et packets permit a W_h_0|e ensemble
coefficient, binary detection, classification, nonadditive cost func- of localized representations beyond the traditional wavelet

tion, random processes, wavelet packet. transform. Finally, the key notion of regularity in wavelets
provides a launching point for further investigations in
I INTRODUCTION areas such as radar and medical imaging, where the

. _ notion of smoothness can be adapted to application-specific
S AN alternative to the Fourier transform, the Waveleéharacteristics

transform provides a multiresolution decomposition that

can methodically reveal successive levels of detail in a sign

The wavelet transform, however, is only one of many possib,
transforms that are derived from the same scaling/wavelet fil Elering the general problem of approximatingfamily of

pair. In .[1]’ a family of wavelet packet base§ Is introduced a5 ussian processes, we note the applicability of our technique

generalization of the wavelet transform basis, and an algorithm o L :

L . .. 10 the problem of robust classification, where the inherent

for determining the best basis to represent a deterministic

. : . ._ variability in target signatures requires representative statistical
signal based on entropy is presented. This generalizati ar‘1 ability in target signatures requires representative statistica

" ; . escriptions to be derived from a set of known signatures. In
of the traditional wavelet filter bank structure permits the . Lo

. . order to gauge the quality of the approximation, we use the
representation of a signal by one of many bases, each ttachar Hicient 191 110 t criteria. Unlike it
which is constructed by a unique ensemble of scalings aﬁ attacharyya coefficient [9)], [10] as a cost criteria. ens

translations of the same wavelet/scaling filter pair. close relative (the divergence), the Bhattacharyya coefficient

The idea of developing flexible, wavelet-based represen%[—Ovides an upper bound on the probability of error when

tions to represent deterministic signals is extended in [2] a gtecting the presence of elther one of tV\_IO Processes, th|s
[4], which employ information theoretic cost criteria such adPper _bound is a useful metric for. measuring the StOChaSt',C
similarity between a process and its wavelet-based approxi-

mation. As will be shown later, analytical expressions for the
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process to the selection of the three defining quantities of the
wavelet-based process:

1) its mean vector;

2) its eigenvalues;

3) the associatedV x N unitary matrix of eigenvectors.
Two separate fixed-point algorithms determine the set of
eigenvalues for the wavelet-based covariance matrix and the
accompanying mean vector. The unitary matrix of eigenvectors
for the wavelet-based covariance matrix may be any of the
admissible wavelet packet bases in the tree spawned by a
wavelet/scaling filter pair. Given a value @&f > 2 that is
a power of 2, the number of possible bagé¥") in a dyadic,
orthonormal, wavelet packet tree is

= (1)

N 2 o] Wavelet-based representative process
YN) = <z< )+1) . P P

®  Arbitrary Gaussian process
Given that¢(2) = 2, this number grows very rapidly so that
the task of exhaustively testing each basis quickly becomes —— Bhattacharyya coefficient
unwieldy as NV increases past 8. To avoid this exhaustive
search, we develop a best-basis search constructed around the

Bhattacharyya coefficient. Fig. 1. Model for representative process.
The paper first formulates the relevant mathematical con-

cepts and derives the key expression to optimize in Section II. o .
In Section Ill, we present the complete matching algorithrf/nere p(mi, Zi; 7, 1) is the Bhattacharyya coefficient be-
Section II-A introduces the fixed-point algorithm for deterfWeen(m;,¥;) and(riz, ). Fig. 1 illustrates the mathematical
mining the optimal eigenvalues of the representative proce§8Ncept in (2).

Section 1lI-B discusses the basis migration algorithm for find-

ing the best basis in a wavelet packet tree. Section III4 Bhattacharyya Coefficient

presents the algorithm for determining the optimal mean vec-we seek to simplify the expression in (2). First, we introduce
tor. Using standard Markov and bandlimited processes, quaifie definition of the Bhattacharyya coefficient. For two random
tative results are documented in Section IV-A. To demonstraﬁsﬂ)cessegl and Ta, whose probab|||ty density functions are

the utility of the matching algorithm for multiple processesgenoted byp, (x) and p»(z), the Bhattacharyya coefficient is
Section IV-B presents the results of an algorithm for binafefined by theN-fold integral

detection that utilizes a wavelet-based representative process -
and exploits the definition of the Bhattacharyya <_:oeff|C|e_nt as play, x2) = / p1(2)pa(z) da. 3)
well as the vectors of the wavelet packet basis. Section V —o0

summarizes the results of the entire paper. . .
pap The value ofp is on the closed intervdD, 1].

If the processes are equally probable, real-valudd,

IIl. PROBLEM FORMULATION dimensional, and Gaussian, each having mean veetars
We consider @ Gaussian random  processe@ndm and covariance matrices; and>,, respectively, the
{i[1],...,z[N]},é = 1,...,Q. We collect the N Bhattacharyya coefficieni(m;, ¥;;m, %) is [11]

samples of each process in the vecigr We assume that
the @ Gaussian random processes are equally probable, real-
valued, and parameterized by their meansand covariances
Ei. Let (m, E) = {(ml, 21), (mg, 22), ceey (mQ, EQ)} be

p(my,X1;me, Yo) = ¢ (4)

where . varies from 0 toco and is defined by

the set of@Q means and covariances. 1 g[S+, -1

Our task is to design a single wavelet-based process that H= g(m2 —my) [T} (ma —mq)
represents the&) processesr;,i = 1,...,(. Because the T, 45,
processes are Gaussian, the problem reduces to finding the pair + 1 1 @ (5)
(7, %) corresponding to the wavelet-based process that best 2 VI,

approximates the arbitrary means and covariancesnirn®).
In the context of the Bhattacharyya coefficient [9], [10], th
problem is to find(+z,>:) such that they maximize

Cost Function for Zero-Mean Processe$o proceed with
ﬁ1e maximization of (2), we assume that the means ofJall
processes are equal. This reduces the problem posed in (2) to
A 1@ A only finding the ogtimali to represen{,,...,Xo}. Based
p(m, X;m,2) = 0 Zp(mi,Ei;m,E) (2) on this value for:, an optimal#: is subsequently derived
i=1 from an iterative fixed-point algorithm. For equal means, we
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rewrite (2) as ve
. 12 .
p(E;2) = 3} ;P(Ei;z)- (6) v0

We expand® and ¥; into their eigendecompositions v

S=0.8.0% 7) .

L= Ui-Si-UF, 1<i<Q ®) v
where S and S; are diagonal matrices, and and U; are v
unitary matrices.

Using the analytical definitions in (4) and (5) and sub- 0
stituting the eigendecompositions from (7) and (8) into (6) V3
yields — ¢ Y T

0
N Q 1 1. A ~ ~ 1 v
p(% = 72 5518|718 + UHER, U= (9)

Letting 2(%; 3) = (

p(z-i))Q and retaining only relevant terms

1

— _ — (20) Lowest Scale Middle Scale Highest Scale
(9150318 + UHR, U]~ %)

Fig. 2. Wavelet packet tree fdRS.

The maximization ofp(3; %) is now rephrased as the

equivalent task of minimizing2(%,3) with respect to the D | 8 o] O] Weme o (o dd
same gquantities as befor€&: and S. We constrainl/ to be a {
unitary matrix whose columns are an admissible basis from > i
a wavelet packet tree, such as the one depicted in Fig. 2 for l
IR®. The tree in Fig. 2 is spawned by a scaling/wavelet filter B
pair {cx,dr}, which are quadrature mirror filter banks that Migration | {optenal)
satisfy constraints guaranteeing the orthonormal, translational, Algorithm :
and dilational properties of the scaling functigfi) and the l ¥
mother wavelety(z) [12]. Bt g
! i
Ill. THE COMPLETE MATCHING ALGORITHM Fixed !
We assume zero-mean processes and minifi2e E) as Mﬁ:,'-‘;m ~
given by (10) with respect td/ and S in two steps: 1) an
eigenvalue fixed-point algorithm that minimiz2¢3:; E) with l
respect to5 whenU is fixed and 2) a basis migration algorithm  [j<j+1 g
that uses/ to minimize Q(%;3) when§ is fixed. 2 l
When the processes are not zero-mean, and ahdes e
been determinedj is found by a subsequent algorithm that 1
is discussed in Section llI-C. The pictorial description of
the complete matching algorithm is shown in Fig. 3. The
algorithm starts by using initial guesses for the best eigen- (Nof o, 5y - pdh £) < TOL? 1% o m
vectorsU? and eigenvalues® of the representative process. Algarithm
Subsequent iterations of the basis migration algorithm and the
fixed-point algorithm update the eigenvectors and eigenvalues, Fig. 3. Complete matching algorithm.

based on gradients of the existing system, until the dlfference
between successive approximationsbfall below a desired
tolerance, as measured by the Bhattacharyya coefficient. Onctn this section, we demonstrate an algorithm for determining
¥ has been determined; is then derived through the mearthe set of eigenvalues for a wavelet packet basis that minimizes
vector algorithm. Q(2; ). To do this, we seek to derive a fixed-point expression

A. Optimal Eigenvalues: Fixed-Point Algorithm
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from (2; ¥) that can be iterated to arrive At Continuity

1607

The normalization of (22) by assures that the right-hand

of the fixed-point expression, its partial derivatives, and thede is bounded on the intervé, P). The partial derivatives
equivalency of its range and domain substantiate the existet¢he right-hand side of (22) with respectgp, k. =1,..., N

of at least one fixed point. The proof appears in [13].

can also be shown to be continuous and bounded. Under these

Consider the problem of minimizin@(X;>) when a uni- restrictions, the expression in (22) results in a fixed-point

tary basis matrix’ has been fixed. What remains is to findalgorithm for g; [14], and the optimal;,i = 1,...,

the diagonal matrix of eigenvalue% diaggs, .. ., gn] for

the wavelet-based processthat minimizesQ(3;3) subject
-+ gn = P, where P is a power constraint expression that finds the optimal values far,...

to g1+ g2+ --

N may
be found by an iterative algorithm based on (22).
Using a superscript to denote iteration order, the iterative

ygN is

imposed on the eigenvalues. One useful constraint is to makepressed in matrix form as

P the average trace of the matricEs, ..., %Xq.
In (10), letG = |5|~2, and letV be
1
= 1 (11)
IR
where
v, =S+ U"y;0. (12)

Then, taking partial derivatives &(3; 3) with respect tag;
and setting them equal to zero

ol O0G av
dg; 9y +Gagz (13)
B E P » AL
gi (i, ISklF[Val %)

=0 (15)

where|V}|;; represents théth principal minor of|V;|. Rear-
ranging (13)—(15) yields

4
9i=— (16)
%
where
@ 1 _1
z=y |SK|F V|2 (17)
k=1
Q
V [
71_2Z|5|1| i (18)

Vilz

Both z and z;, i = 1,...,N are functions ofyy, . ..

»gN-

gt P
m=1 n-1 1 .
z}(}f

We have found that an appropriate choice for the starting
valuesg?, ..., g% is provided by the diagonal values of the
matrix A that is obtained fronk,,,

P

gn

=_—— (%%, 0° 24
traceX ) & (24)
1 Q
Yai = 5 R (25)
=1

B. Optimal Eigenvectors: Basis Migration Algorithm

We now consider the optimization complementary to the one
in Section IlI-A: the minimization of2(%,3.) when 5 is fixed
by finding the best unitary matriX/, from a wavelet packet
tree like the one depicted in Fig. 2 flR®. The Bhattacharyya
coefficient is not an additive cost function, i.e., the branches
of the wavelet packet tree cannot be pruned independently and
still lead to an optimum solution. Best-basis search algorithms
have almost exclusively utilized additive cost functions as
a criteria to find the best basis for a desired application
[1], [4], [15]. Additivity allows searches to be systematically
disassembled into smaller units, and the “pruning” that results
quickly eliminates suboptimal branches and, hence, bases,
from further consideration as members of the best basis. Using
(1) and noting that wheW = 8, /(N) =25, N = 16,4(N) =

The expression fog; in (16) does not incorporate the powe76, and whenN = 32,/(N) = 458329, the efficiency that

constraint P:

(19)

N
ng‘, =P

To include the power constraint, define a normalizing consta

k, and rewrite (16) with it:

P

k=cx— (20)

>int En
9 = k= (21)

2
P

S - (22)

2 Zrn 1z

In (22), z; is a function ofgy, ...

results from additivity is valuable a& increases.

However, a large number of desirable distance and cost
measures are not additive. Consequently, for an applica-
tion in which the optimal wavelet packet basis must be

nd the search is neither analytically nor computationally
r}ralghtforward Nonadditive cost measures do not permit the
wavelet packet tree to be pruned irrevocably, i.e., no vector or
basis may be uncategorically eliminated from consideration.
The implication for a best basis search algorithm using a
nonadditive cost measure is that the surface it must traverse
from any starting point may have local extrema.

The alternative we use to minimi£¥%; ) when S is fixed
is to pick an initial basis and allow its vectors to “migrate”
up and down the branches of the tree until it arrives at

JON, and by the definition a new basis that minimizes the expression fui; i) i

of z; in (18), z; is guaranteed to be positive for all values of10). While the nonadditivity of our cost function does not

1 =1,...,N.

permit us to analytically guarantee that we always arrive at
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the optimal basis, our method relies on gradient-based valdls (j, ¢)th element of AdjA/) and the derivative ofM | with
to steer the algorithm toward bases that minimi2€:; >). respect tom,; are
Our observations show that a careful choice of the starting

basis results in a final basis that, if not the best basis, is very [Adj;; = (—1)"7 | M|, (36)
close to being optimal. M| 1y | Ag 37
We introduce a superscript for variables to indicate their omi; (=17 [Mli;. (37)

values at successive iterations of the basis migration algorithm.
Without sacrificing generality, assume tHa?, which is the ~ V? acts as an element-by-element first derivative of the

initial choice for the unitary basis, is populated by vectors gurrentith system given byX?. 6 is N x N and represents

the highest scale of the wavelet packet tree in Fig. 2. the change incurred h¥; due to the exchange of eigenvectors
o 0 o 0 o o o [19] for [4249] in the covariance matrix of the represen-
U= v8| %8 | - |¥X 1 YR]. (26) tative process. WheR? is multiplied element-by-element by

) ) ) 617 and summed, the result yield$, which is the effective
The vertical bars(|) in (26) demarcate vector pairs thalmpact of the migration on thih system. The final summation
are descendants of a common branch in the wavelet pacg{30) combines the impacts from each of thesystems with
tree. Recalling the eigendecompositions in (7) and (8), f%bpropriate weights for each system given by (34).
i =1,...,Q, let The exchange of%49] with [:/9+9] can be accompanied
PN by assigning each of the eigenvalugsand g, to each of the
XP = US(UPSUP)Ui + ;. @7 hew vectors[:/{+9]. However, the new pair of vectors will
be oriented differently than the pair they replace; hence, the
allocation of the total poweg; + g- in the subspace spanned
by [¢949] should be different in order to decrea@e(; ).
In (32), g, andg, are a new distribution of the power in
1 and g when moving from one scale to another. Thagal
Q 1) w0l—312° (28) reallocation of power among vectors on a common branch is
(Zi:l |54 |Xi | ) performed to maximize the similarity betwe&hand ¥ and,
ultimately, enhances the speed of the complete algorithm. A
significant point about this reallocation is that the total power
within a branch is reorganized, yet completely conserved. The
~1 170 70 0 0 0 0 eigenvalue fixed-point algorithm described in Section IlI-A is
Ut=lod R wg Wl o [0k Wk (29) responsible foglobal, optimal redistribution of power in the

After lengthy algebraic manipulations [13], the Ch(,jlm‘:]gigenvalues, i.e.betW(_een all vectorsmhile. maintaining the
in 90(2;2) incurred by exchangindy%49] for [04:2], overall power constraint. The values fgy,: = 1,2 are

X9 is an N x N matrix that designates théh system
comprised by¥;, U°, and S. The equation for2(¥; ) in
(10) can be rewritten as

Q°(%;8) = 8]~

[

Consider the migration of”® to U'*, as pictured in Fig. 2,
so thatU? is defined as

AQ?_Q(E;i) is approximately B0, 0
g; = gt ———(n+ ). (39)
N Q 890(22) tracq [1/)11/)2] Eavg [1/111/)2])
AQL(T;E) =Y 698—0’ (30) ) ) ) )
i=1 i ForU in (26), AQY(%; %), AQY(3; 32), andAQ2 (¥ )
N are determined by selecting the appropriate pairs of vectors
¢ = Z (U605, Ve (k1) (31) from the wavelet packet tree fdg, 6=z, and é-5. Migration
k=1 of vectors to another scale only occurs if its impact is to
A o on decrease2’(%; %), If AzQ°(%;%) > 0, then the migration
by = Z [G70505" = g5953" ] (32) increases°(; 32). If AEQO(E;i) < 0, then the new basis
o =t o will result in a wavelet-based process that is closer to the
Vi = Adj(X7) (33) family of covariances in{Xy,...,%,}, and the migration
0y S—-L(1¢.131 x0 01\~ 3 is justified. The migration to be executed is the one whose
00> %) = 151 (|S7’| H‘X” | +C”]) —.  (34) value of A—,Q%Z;i) is the smallest, and’! is equal to
Je; Q 1 0 01y~ 23 A K
! (2j=1 (|Sj|“ [|Xj| + 6;’]) ) U° modified by the appropriate swap of vectors. However,

if no value ofAi—jQO(E; 32) is less than zero, then none of the
possible migrations decreasg8(3; %), and U = U/°. With
the new bqsisffl, a new migration is initiated by calculating
Adj(0) = | MM (35) V' usingUl ands. .

Inherent in this migration rule, however, is the fact that the
The (5, i)th element of AdjM) is (—1)i*/ times the(¢, j)th €Xpression forAQ(%; ) is only a first-order approximation
minor of M. Let m,; be the(s, j)th element ofM. If |M|;; to the change incurred by2(3; ) when theith and jth
is the (¢, j)th minor of M formed by taking the determinantbasis vectors are replaced. If the approximation fails to hold,
of M after itsith row andjth column have been removedthe migration algorithm may identify false migrations, and

In (33), Adj(-) is the adjoint of the matrix, which, for a
nonsingular matrix/, is related to its inverse by
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o7 o568 are

©.451 ossf

(@) (b) (©)
Fig. 4. lterative results for (a) & 8 Markov process witlk = 0.95. (b) 8x 8 bandlimited process with = 0.35. (c) 16x 16 Markov process witlhk = 0.75.

under these circumstances, finding the best basis and wavelet- IV. RESULTS
based random process becomes difficult. Experiments indicatgyq present our experimental results in two parts. In

that the approximation leading th;;€2(2; 3) remains useful gection |v-A, we consider the problem of matching a single
and intact except under certain situations. These iSsues @I ssian process to a wavelet-based process, and we apply the

discussed in detail in Sections IV and V. complete matching algorithm to common random processes.
The key analytical expressions are specialized from the
C. Optimal Mean Vector Algorithm formulations in Section Ill and appear in [13] and [16].
In this section, we use the results of the alfo illustrate how the algorithm rapidly eliminates bases
gorithms derived in Sections lll-A and 1lI-B to from consideration, intermediate results are presented at each

obtain a mean vectorsn for the representative iteration to indicate the incremental basis migrations and the
process. The same approach used in Section llIlgonvergence of the Bhattacharyya coefficient to its final value.
to determineS is employed here to find#: Derive a A discussion about using wavelets of different regularities
fixed-point expression that can be iterated to yield a valgencludes this part. In Section IV-B, we address the general
of 7 that maximizesp(m, ¥; 7, 32). Continuity of the fixed- case of matching multiple Gaussian processes to a wavelet-
point expression, its partial derivatives, and the equivalenbpsed process in the context of robust terrain classification
of its range and domain substantiate the existence of at lelisPOL-SAR images.
one fixed point. The proof appears in [13].

Having determined:, the representative mean vectaris ) )
found by maximizing (2). Starting with (2), and using (4) and\- Single-Process Matching
(5), letin(j) denote thejth element ofie. Then, taking partial  We consider the problem of matching a wavelet-based

derivatives of (2) with respect td; random process to one arbitrarV-dimensional Gaussian
R o random process. For the following examples, the Daubechies-4
dp(m, 3;m, %) _ _2Zp(m‘ S i) mother wavelet is used to spawn a full dyadic wavelet packet
am(y) ©oe tree. In all cases, the initial basis® was chosen to be the

=1

=1 set of vectors residing on the lowest scale, which is denoted
DIy

X ull + (ms—m)  (39) @S scale 1. _ _ _
2 For the first example, define the entries of arx 8 first-

_ order Markov proces$. as
wherew; denotes a lengtt¥ vector with all zeros, except for

a value of 1 at thejth element. The expression in (39) is a

scalgr quaﬂon gnd is valid for gJl1 < j < N; it can be Sy = Rl 1<i, j<8. (41)
rewritten in matrix form for all values of by replacingu;

by the identity matrix. Setting this quantity equal to zero and

solving forn yields a fixed-point expression whose iterations, d Tabl e th its of th hi
are denoted by a superscript Fig. 4(a) and Table | summarize the results of the matching

algorithm whenx = 0.95. Iterations one through four show
Q e\ rapid increases in the Bhattacharyya coefficient due to the ex-
Mt = Z p(mi, Si; ML, %) < v ) change of basis vectors that occurs. The final five iterations not
i=1 2 shown in Table | do not alter the basis, and the modest increase
in the Bhattacharyya coefficient results from a refinement of

Q N —1
. Zp(mi,zi;mn—l’i) <E7‘, + E) mi|. (40) the eigenvalues by the fixed-point algorithm.

-1

2 The iterative results were compared with an exhaustive

search of all 25 bases in the wavelet packet tree. This ex-

A good starting point for/ is the average value of haustive search confirmed that the final basis in iteration nine
mi,...,MQ. achieved the best match betweEnand 3.

=1
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TABLE | TABLE 11l
BAsIS MIGRATIONS FOR8 X 8 MARKOV PROCESS k = 0.95 BAsIS MIGRATIONS FOR 16 X 16 MARKOV PROCESS k = 0.75
Iteration || Scales of basis vectors | p(Z; f)‘) Iteration Scales of basis vectors p(%; f:‘)
0 {1,1,1,1,1,1,1,1} 0.2547 0 {1,1,1,1,1,1,11.1,1,1,1,1,1.1,1} | 0.4803
1 {1,1,1,1,2,2,2,2} 0.4548 1 {1,1,1,1,1,1,1,1,2,2,2.222.2 2} | 0.7007
2 {1,1,1,1,2,2,3,3} 0.7467 2 {2,2,2,2,2,2,2,2,2.2,22,2,22,2} | 0.7065
4 {1,1,1,1,3,3,3,3} 0.8338 4 {2,2,2,2,3,3,3,3,2,2,2,2,2,2,2,2} | 0.7425
9 {1,1,1,1,33,3,3} 0.8362 5 {2,2,2,2,4/4,3,3,2,2,2,2,2,22 2} | 0.7768
6 {3.3,3,3,4,4,3,3,2,2,2,2,2,2,2,2} | 0.7956
TABLE 1l
BAsis MIGRATIONS FOR8 x 8 BAND-LIMITED PROCESS w = 0.35 8 {3’3,313,4,4,4’4’2’2’2’2’2’2’2’2} 0.8167
Iteration || Scales of basis vectors | p(Z; £¥) 10 (44,3,3,4,4,4,4,2,2,22,222.2} | 08390
0 {1,1,1,1,1,1,1,1} 0.4015 13 {4,4,3,3,4,4,44,22222222} | 0.8394
1 {2,2,2,2,1,1,1,1} 0.5052
conducted, although not exhaustively corroborated. The is-
2 {3,3,2,2,1,1,1,1} 0.5401 sue of computational complexity is addressed at the end of
Section V.
19 {3,3,2,2,1,1,1,1} 0.5842

1) Different WaveletsWe also considered the impact of
changing the scaling/wavelet filter pair that spawns the wavelet
For the second example, consider anx88 bandlimited packet tree. Four different wavelets were used in the complete
process, whose entries are given by matching algorithm to approximate first-order Markov pro-
sin(2rw(i — j)) L<i i<s 42) cesses with) < x < 1, Where{i is_discretizeq i_n increments
W =t J>e of Q.Ol. The results appear in Fig. 5(a). Similarly, Fig. 5(b)
For the case whea — 0.35, Fig. 4(b) and Table I summarizedeplCtS the results when the same four wavelets were used to

. . . approximate band-limited processes having w < 0.50 in
the results of the complete matching algorithm. Iterations Oﬂgrements of 0.01.

and two show rapid increases in the Bhattacharyya coefficien ig. 5(a) and (b) illustrates that wavelets of higher regularity

as the best bas.|s.vec.:tors are founq, and the remaining Iteratl(c.ggﬁsistently yielded better matching results for all values of
increase the similarity only marginally as the wavelet packghdw_ For both cases of processes having lower bandwidths

ba?'r? s;[fu:sti?/onsrtantl.t wer mpared with an exhaust higher values ofs and lower values ofv), the matching
€ lerative resufls were compare an exnaustivi orithm is unable to yield approximations commensurate

search of all 25 bases in the wavelet packet tree. Again, thi . . .
search confirmed that the matching algorithm led to the b%éé:d&g{ﬁrmance achieved for processes having a higher

match betweer® and ¥, yielding the highest value of the
Bhattacharyya coefficient. ) )
A final example using a Markov process illustrates thB- Multiple-Process Matching: POL-SAR
algorithm for N = 16 and demonstrates how the matching In this section, the complete matching algorithm is applied
algorithm may not always find the best basis but may findta the problem of robust classification of land cover types in
basis that is close to being optimal. Wher= 0.75, Fig. 4(c) POL-SAR. This issue was first addressed in [17] and [18]. The
and Table Ill summarize the results of the matching algorithracenario occurs when the statistics describing the target terrains
When compared with the exhaustive tests conducted for eadtange. Variations in frequency, polarization, and observation
of the admissible bases, the result generated in the final ramngle induce changes in the radar-target phenomenology and
of Table IIl ranks 14th out of 676. In the optimal basis, thgield multiple signatures for the backscatter from each terrain
pair of scale-3 vectors in the 13th iteration of Table 11l migratg/pe, making the design of a single classifier that operates suc-
to scale 4; the corresponding value gt; i) is 0.8449. The cessfully on a wide spectrum of input data highly problematic.
matching algorithm was unable to arrive at the optimal basisTo illustrate our technique, we develop rapresentative
because it did not swap these subspaces. The differencaeimain model for each land cover type that serves as an
matching performance, however, is considerably small.  aggregate description for the scattering behavior of a terrain
While exhaustive verification of the matching algorithm bednder different circumstances. As would be expected, the
comes prohibitive forV larger than 16, there is no algorithmicrobustness of a classifier to changes in terrain characteristics
dependence oV that hinders its operation a¥ increases. depends on both the tightness of the original cluster of
Matches for processes withh = 32 were also successfully signatures and the quality of the ensuing approximation. Since

Eij =
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Fig. 5. (a) Bhattacharyya coefficient between first-order Markov processes and wavelet-based approximations as a fungi)dBhafttacharyya coefficient
between bandlimited processes and wavelet-based approximations as a function of

(b)

Fig. 6. (a) P-bandHH image. (b) P-band/V image.

the former is dictated by empirically collected results, wing robustness to changes in polarization would be identical
address the latter constraint using wavelet-based representdtivevariations in any other SAR modality.
processes. To test the performance of the algorithm, wel) Constructing Terrain SignaturesiWe create signatures
use images from the boreal ecosystem atmospheric stddya land cover type in a POL-SAR image by first constructing
(BOREAS) [19]. Fully polarimetric dataHH, HV, VV) was feature vectors from pixels residing in the desired terrain.
collected at three frequencies (P-band, 441 MHz; L-band, 1.Z5e features may be any quantity derived from the central
GHz; C-band, 5.36 GHz) on July 21, 1994. The images wep&el and/or its surrounding pixels. Feature vectors associated
collected from Canadian boreal forests during the AIRSARith a pixel can be as simple as a lexicographic collection
missions and have 1024 rows and 1279 columns. One pixél the raw pixel values surrounding the central pixel, or
corresponds to approximately a 6 112 m rectangle. they may be texture values of several orders derived from a
The experiment we propose utilizé$H and VV images neighborhood of pixels. For our analysis, we demonstrate the
acquired at P-band, which are shown in Fig. 6(a) and (llassification algorithm with feature vectors of length 8 for
Five different land cover types are identifiel;, 75, 75,7,, each terrain containing a collection of eight raw pixel values
and 75. We seek to construct a representative description iof the immediate neighborhood of the pixel of interest.
each terrain type from wavelet$;,: = 1,...,5 from its HH We employ the common assumption that the feature vectors
and VV statistics. We recognize that classifiers generally dor a terrain obey the properties of Gaussianity; hence, to
not require robustness to changes in polarization. Changesstruct a probability density function for the feature vector,
in phenomenology due to variations in incidence angle amee need only determine the mean and covariance of the
frequency are far more critical to classifier design. Howevegature vector. Using pixels from each terrain group, we derive
limitations in available data constrain us to demonstrate oomreans and covariances and calculate the corresponding Bhat-
technique using data acquired at multiple polarizations. Wacharyya coefficients between classes for each polarization.
emphasize, nevertheless, that our algorithmic concept for galiables IV and V summarize this information.
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TABLE IV TABLE VI
BHATTACHARYYA COEFFICIENT VALUES FOR HH IMAGE AT P-BaND BHATTACHARYYA COEFFICIENT VALUES FOR
REPRESENTATIVEPROCESSESCONSTRUCTED FROMP-BAND IMAGES

Ty T; T3 Ta Ts

Ty T, T3 Ty Ts

Ty || 1.0000 | 0.0584 | 0.1728 | 0.0112 | 0.2344

T, | 1.0000 | 0.0690 | 0.0612 | 0.0010 | 0.7223

T, || 0.0584 | 1.0000 | 0.9042 | 0.5850 | 0.0000

T, || 0.0690 | 1.0000 | 0.8457 | 0.2643 | 0.0118

Ts |} 0.1728 | 0.9042 | 1.0000 | 0.4602 | 0.0001

Ts || 0.0612 | 0.8457 | 1.0000 | 0.6859 | 0.0140

T, || 0.0112 | 0.5850 | 0.4602 | 1.0000 | 0.0000

Ty || 0.0010 | 0.2643 | 0.6859 | 1.0000 | 0.0001

Ts {| 0.2344 | 0.0000 | 0.0001 | 0.0000 | 1.0000

Ts [} 0.7223 | 0.0118 | 0.0140 | 0.0001 { 1.0000

TABLE V L . - .
BHATTACHARYYA COEFFICIENT VALUES FOR VV IMAGE AT P-BAND ily yield the highest accuracy for thelH training regions;
however, its performance with respect to th& training
T Ty T3 Ty Ty regions will be suboptimal because of the inherent mismatch
between the classifier and the statistics of the input image.
T, || 1.0000 | 0.0727 | 0.1293 | 0.0057 | 0.2820 The second classifier is the optimdV classifier constructed

from the terrain statistics obtained from th®&/ images. The

T || 0.0727 | 1.0000 | 0.9576 | 0.6010 | 0.0000 performance of both thelH- andVV-based classifiers is also

T, || 0.1293 | 0.9576 | 1.0000 | 0.4752 | 0.0002 gauged by averaging their rates of correct classification on
both theHH and VV images.

T, | 0.0057 | 0.6010 | 0.4752 | 1.0000 | 0.0000 Table VII contains the results for the P-band classifiers
and images. The entries represent the fraction of pixels from

Ts || 0.2820 [ 0.0000 | 0.0002 | 0.0000 | 1.0000 a terrain class in either thélH or VV image that have

been classified correctly by the associated classifier. The
robust average of the wavelet-based classifier exceeds the

2) The Representative Processsing the statistics derived Performance of theHH- and VV-based classifiers. As we

for the five terrains, we use the complete matching algorith?ﬁ(pe_Ct’ for anM—ary_ test, t_he perfor_mance on |nd|v!dual
to generate a representative process for each terrain ciiglgain classes exhibits a wide variation compared with the

i=1 5 from its HH and VV descriptions average and robust average values; the optimal Bayesian
Y . classifier is expected to yield the best aggregate probability of
(miram, Yipam;mirvv, Zipvv) — (Mipw, Xipw)- error over all terrain classes, but there is no statistical guarantee

(43) of performance for individual classes.

The representative process for each terfainpyy, iipvv) is
constructed from the original two processes in the same way
depicted in Fig. 1. V. DiscCussiON

The Daubechies-4 wavelet was used to spawn a full, or-The results documented in Tables I-lll show that the com-
thonormal, dyadic wavelet packet tree. Representative ppdete matching algorithm is able to approximate random pro-
cesses were generated using el and VV statistics for cesses by wavelet-based representations. The algorithm suc-
each terrain. Table VI summarizes the pairwise Bhattacharyy@eds in replacing an exhaustive search of a wavelet packet
coefficients of the wavelet-based, representative processedree for a set of eigenvectors with a fast, iterative, computation-

To gauge the robustness of the representative processesallyesimple procedure. In one case, we observed that although
insert the wavelet-based signatures 1ar 715,173,174, and 7 the algorithm was unable to arrive at the best basis, the final
into a five-class optimal Bayesian classifier. The five trainingplution was nearly as good as the one obtained by the best
regions in both thedH andVV image for each frequency arebasis.
submitted to the classifier, and the rates of correct classificatiomlthough the complete matching algorithm consistently
from both images are summed to ascertain the robustnesgonind the best, or near-best, basis, the quality of the ap-
the classifier when two disparate images serve as the ingubximation sometimes still suffers. Our experiments indi-
The classifier relies on the result 8f — 1 likelihood ratio cated that processes having high bandwidths were better
tests [20] that assume each terrain is equally probable.  approximated by wavelet-based eigenstructures than processes

To provide a benchmark of performance, two additionalith low bandwidths. The conclusion is reinforced by the
classifiers were applied to the set of images correspondingctarves in Figs. 5(a) and (b), which suggest that while wavelet
each frequency. The first is the optimdH Bayes classifier, packet bases may be unsuitable for approximating some low-
which relies on the terrain statistics obtained solely from tHendwidth processes, a wavelet with higher regularity can
HH image; its performance on théH images will necessar- improve the final result.
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TABLE VII
PERFORMANCE OF P-BanD HH, VV, AND WAVELET-BASED CLASSIFIERS
Pixel HH Classifier | VV Classifier | Wavelet-based Classifier
Class HH |4 HH 4% HH | 4%
T 0.7905 | 0.8615 | 0.3610 | 0.8925 | 0.5475 0.9050
Ty 0.8095 | 0.6085 | 0.8285 | 0.8620 | 0.8705 0.7760
Ts 0.4365 | 0.7910 | 0.1530 | 0.2530 | 0.1860 0.4240
Ty 0.9875 | 0.0470 | 0.0215 { 0.7180 | 1.0000 0.4305
Ts 0.7275 | 0.4720 | 0.9180 | 0.8930 | 0.8635 0.7460
Avg. 0.7503 | 0.5560 | 0.4564 | 0.7237 | 0.6935 0.6563
Robust Avg. 0.6532 0.5900 0.6749

When matching single processes, we recognized that toedetermine the number of total Bhattacharyya coefficient
basis migration algorithm occupies the dominant role in thmlculations that are necessary. Pér= 16, the total number
matching algorithm. This is understandable since migration$ wavelet packet bases is 676. The total number of sets of
are also accompanied by a local redistribution of eigenvalueigenvalues that require testing for each basis depends on the
in the associated basis vectors. Intermediate updating of fr@nularity of the discretized interval being searched and the
eigenvalues (assuming the powers of the eigenvalues pever constraint. For the example documented in Table IlI,
locally redistributed in each migration) is unnecessary ungRch basis requires aiVv — 1)-dimensional search, where
the overall algorithm converges to a final basis. Then, ti&@ch dimension investigates the range from QFtowhich
eigenvalue fixed-point algorithm can be iterated to obtain th@ the total power in the process. This example requires an
associated optimal eigenvalues. enormous search, and the order of both the eigenvector and

As noted earlier, the matching algorithm sometimes h&igenvalue searches increases dramaticalliy dascreases. In
difficulty identifying the migrations necessary to arrive at theontrast, the complete matching algorithm requires tests of
best basis. This phenomenon was observed in Table Ill. ¢Rly 13 iterations, where the most significant operation is
some instances, multiple iterations were necessary betwd@® calculation of principal minors, which, in this case, are
basis migrations because the algorithm had trouble findif§términants of 15< 15 matrices.
the migration that increased the Bhattacharyya coefficient.OUr experiments in Section IV-A were conducted when
This can be attributed to the inaccuracy of the first-derivatifBe Starting unitary basig/ 0_ was chosen to be the basis
approximation stated in (33) near regions around the extreM‘ﬁ‘,ose vectors came e.xcluswely from 'the lowest scale in the
and, as stated above, the problem is compounded in proced4@¥elet packet tree. Since any migration of vectors from the
possessing low bandwidths. Consequently, the algorithm ﬁyvest scale tq the next highest scale (or wce-yersa) mvplves
halt before reaching the best basis, but the final result is usual 2 vecto.rs, I IS begt to complete suph a S|.zable migra-
very close to that which would be achieved by the best basio" early in the |tferat|ve proces;—part!culgrly n the |n!t|al
Mechanisms installed in the algorithm prevent migrations i feps—when the impact of possible migrations is relatively

the backward direction toward previous bases and calculate ol a_nd unamb|guous, and the f|rs_t-der|vat|ve apprOX|_m_at|ons
re reliable. Starting bases comprised of vectors residing on

Bhattacharyya coefficient between iterations to assure that fhe :

. N . o . . — .. Nigher scales were also tested, but the basis from the lowest
migration is always in the direction of increasing the similarit .

o S cale almost always provided performance at least equal to all
between the two processes. Generally, this information is only .
. . o . : other selections.

required for the final migrations. Although this entails extra
calculation, it ensures that the migration stays “on track.” In

comparison with the effort required to exhaustively investigate VI. CONCLUSION

each basis in the wavelet packet tree, this feature remainsn this paper, we developed an algorithm that constructs a
insignificant and justifiable. single, wavelet-based process that matches a set of arbitrary,
We address the issue of computational cost by first consifiscrete-time, Gaussiany-dimensional random processes.
ering the cost incurred by an exhaustive search for the simplBsicause of its applicability to detection, our technigue em-
case of single-process matching that appeared in Section IVgloyed the Bhattacharyya coefficient to measure the quality
The exhaustive search for the best set of eigenvectors afdthe approximation and used three separate algorithms to

eigenvalues can be considered separately and then multipldddain the final result.
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Pivotal to the complete matching algorithm is a best-bagis]
search algorithm that finds the optimal set of eigenvectc;[re%]
for the approximation from a wavelet packet tree. In spi
of the complications incurred by the nonadditivity of the
Bhattacharyya coefficient, the algorithm is able to locate tHES]
best or near-best basis consistently through gradient-based
techniques that are computationally simple and inexpensivél7]

Our application of the matching algorithm to the problem of g
robust terrain classification in POL-SAR imagery found that
the representative, wavelet-based terrain models were abldf)
deliver better overall performance when the terrain signatures
varied. Table VII demonstrates this result for P-band images [@b]
Canadian boreal forests acquired at two different polarizations.

The experimental results in Section IV-A demonstrate that

for first-order Markov processes and bandlimited processes,

the matching algorithm consistently finds the best or near-b
basis that yields the best approximation in the Bhattachar
sense. While the curves in Fig. 5(a) and (b) demonstrate t§
low-bandwidth processes are not as well approximated by &
wavelet packet basis as processes with higher bandwidths, g
experimental observation that wavelets of higher regulari
yield increasingly better approximations is a very promisi
result. Just as higher regularity can be proven mathematica
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