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Matching Wavelet Packets to
Gaussian Random Processes

Nirmal Keshava and Jos´e M. F. Moura,Fellow, IEEE

Abstract— In this paper, we consider the problem of ap-
proximating a set of arbitrary, discrete-time, Gaussian random
processes by a single, representative wavelet-based, Gaussian
process. We measure the similarity between the original processes
and the wavelet-based process with the Bhattacharyya coefficient.
By manipulating the Bhattacharyya coefficient, we reduce the
task of defining the representative process to finding an optimal
unitary matrix of wavelet-based eigenvectors, an associated di-
agonal matrix of eigenvalues, and a mean vector. The matching
algorithm we derive maximizes the nonadditive Bhattacharyya
coefficient in three steps: a migration algorithm that determines
the best basis by searching through a wavelet packet tree for
the optimal unitary matrix of wavelet-based eigenvectors; and
two separate fixed-point algorithms that derive an appropriate
set of eigenvalues and a mean vector. We illustrate the method
with two different classes of processes: first-order Markov and
bandlimited. The technique is also applied to the problem of
robust terrain classification in polarimetric SAR images.

Index Terms—Basis functions, best basis search, Bhattacharyya
coefficient, binary detection, classification, nonadditive cost func-
tion, random processes, wavelet packet.

I. INTRODUCTION

A S AN alternative to the Fourier transform, the wavelet
transform provides a multiresolution decomposition that

can methodically reveal successive levels of detail in a signal.
The wavelet transform, however, is only one of many possible
transforms that are derived from the same scaling/wavelet filter
pair. In [1], a family of wavelet packet bases is introduced as a
generalization of the wavelet transform basis, and an algorithm
for determining the best basis to represent a deterministic
signal based on entropy is presented. This generalization
of the traditional wavelet filter bank structure permits the
representation of a signal by one of many bases, each of
which is constructed by a unique ensemble of scalings and
translations of the same wavelet/scaling filter pair.

The idea of developing flexible, wavelet-based representa-
tions to represent deterministic signals is extended in [2] and
[4], which employ information theoretic cost criteria such as
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entropy and rate-distortion and are particularly well suited to
signal compression; the search proposed in these references
is simplified by the additivity property possessed by these
cost functions. For the analysis of stochastic processes, no
comprehensive framework exists for optimally representing
random signals using wavelets, although efforts have been
made [5]–[8] to incorporate the statistics of stochastic pro-
cesses into the mathematical framework of wavelets.

The motivation for using wavelet packet bases, however,
stems from three useful properties of wavelet packets.
Wavelets can isolate nonstationary behavior in both time and
frequency and are suited for signal processing applications
where transient and nonstationary phenomena occur. Hence,
the desire to represent random processes using wavelets,
as opposed to another arbitrary basis construction, is well
justified. Second, wavelet packets permit a whole ensemble
of localized representations beyond the traditional wavelet
transform. Finally, the key notion of regularity in wavelets
provides a launching point for further investigations in
areas such as radar and medical imaging, where the
notion of smoothness can be adapted to application-specific
characteristics.

In this paper, we adapt wavelet packet bases to the task
of approximating a set (one or more) of Gaussian random
processes by a single wavelet-based representation. In con-
sidering the general problem of approximating afamily of
Gaussian processes, we note the applicability of our technique
to the problem of robust classification, where the inherent
variability in target signatures requires representative statistical
descriptions to be derived from a set of known signatures. In
order to gauge the quality of the approximation, we use the
Bhattacharyya coefficient [9], [10] as a cost criteria. Unlike its
close relative (the divergence), the Bhattacharyya coefficient
provides an upper bound on the probability of error when
detecting the presence of either one of two processes; this
upper bound is a useful metric for measuring the stochastic
similarity between a process and its wavelet-based approxi-
mation. As will be shown later, analytical expressions for the
Bhattacharyya coefficient can be optimized to achieve better
approximations. In the same way that information theoretic
measures in [1] and [4] were relevant to signal compression
and quantization, the Bhattacharyya coefficient exhibits unique
properties that are organic to the classical tasks of detection
and classification.

We restrict ourselves to -dimensional, Gaussian random
processes. By rewriting the expression for the Bhattacharyya
coefficient, we can reduce the design of the representative
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process to the selection of the three defining quantities of the
wavelet-based process:

1) its mean vector;
2) its eigenvalues;
3) the associated unitary matrix of eigenvectors.

Two separate fixed-point algorithms determine the set of
eigenvalues for the wavelet-based covariance matrix and the
accompanying mean vector. The unitary matrix of eigenvectors
for the wavelet-based covariance matrix may be any of the
admissible wavelet packet bases in the tree spawned by a
wavelet/scaling filter pair. Given a value of that is
a power of 2, the number of possible bases in a dyadic,
orthonormal, wavelet packet tree is

(1)

Given that , this number grows very rapidly so that
the task of exhaustively testing each basis quickly becomes
unwieldy as increases past 8. To avoid this exhaustive
search, we develop a best-basis search constructed around the
Bhattacharyya coefficient.

The paper first formulates the relevant mathematical con-
cepts and derives the key expression to optimize in Section II.
In Section III, we present the complete matching algorithm.
Section III-A introduces the fixed-point algorithm for deter-
mining the optimal eigenvalues of the representative process.
Section III-B discusses the basis migration algorithm for find-
ing the best basis in a wavelet packet tree. Section III-C
presents the algorithm for determining the optimal mean vec-
tor. Using standard Markov and bandlimited processes, quanti-
tative results are documented in Section IV-A. To demonstrate
the utility of the matching algorithm for multiple processes,
Section IV-B presents the results of an algorithm for binary
detection that utilizes a wavelet-based representative process
and exploits the definition of the Bhattacharyya coefficient as
well as the vectors of the wavelet packet basis. Section V
summarizes the results of the entire paper.

II. PROBLEM FORMULATION

We consider Gaussian random processes
. We collect the

samples of each process in the vector. We assume that
the Gaussian random processes are equally probable, real-
valued, and parameterized by their meansand covariances

. Let be
the set of means and covariances.

Our task is to design a single wavelet-based process that
represents the processes . Because the
processes are Gaussian, the problem reduces to finding the pair

corresponding to the wavelet-based process that best
approximates the arbitrary means and covariances in .
In the context of the Bhattacharyya coefficient [9], [10], the
problem is to find such that they maximize

(2)

Fig. 1. Model for representative process.

where is the Bhattacharyya coefficient be-
tween and . Fig. 1 illustrates the mathematical
concept in (2).

A. Bhattacharyya Coefficient

We seek to simplify the expression in (2). First, we introduce
the definition of the Bhattacharyya coefficient. For two random
processes and , whose probability density functions are
denoted by and , the Bhattacharyya coefficient is
defined by the -fold integral

(3)

The value of is on the closed interval .
If the processes are equally probable, real-valued,-

dimensional, and Gaussian, each having mean vectors
and and covariance matrices and , respectively, the
Bhattacharyya coefficient is [11]

(4)

where varies from 0 to and is defined by

(5)

Cost Function for Zero-Mean Processes:To proceed with
the maximization of (2), we assume that the means of all
processes are equal. This reduces the problem posed in (2) to
only finding the optimal to represent . Based
on this value for , an optimal is subsequently derived
from an iterative fixed-point algorithm. For equal means, we
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rewrite (2) as

(6)

We expand and into their eigendecompositions

(7)

(8)

where and are diagonal matrices, and and are
unitary matrices.

Using the analytical definitions in (4) and (5) and sub-
stituting the eigendecompositions from (7) and (8) into (6)
yields

(9)

Letting and retaining only relevant terms

(10)

The maximization of is now rephrased as the
equivalent task of minimizing with respect to the
same quantities as before: and . We constrain to be a
unitary matrix whose columns are an admissible basis from
a wavelet packet tree, such as the one depicted in Fig. 2 for

. The tree in Fig. 2 is spawned by a scaling/wavelet filter
pair , which are quadrature mirror filter banks that
satisfy constraints guaranteeing the orthonormal, translational,
and dilational properties of the scaling function and the
mother wavelet [12].

III. T HE COMPLETE MATCHING ALGORITHM

We assume zero-mean processes and minimize as
given by (10) with respect to and in two steps: 1) an
eigenvalue fixed-point algorithm that minimizes with
respect to when is fixed and 2) a basis migration algorithm
that uses to minimize when is fixed.

When the processes are not zero-mean, and oncehas
been determined, is found by a subsequent algorithm that
is discussed in Section III-C. The pictorial description of
the complete matching algorithm is shown in Fig. 3. The
algorithm starts by using initial guesses for the best eigen-
vectors and eigenvalues of the representative process.
Subsequent iterations of the basis migration algorithm and the
fixed-point algorithm update the eigenvectors and eigenvalues,
based on gradients of the existing system, until the difference
between successive approximations offall below a desired
tolerance, as measured by the Bhattacharyya coefficient. Once

has been determined, is then derived through the mean
vector algorithm.

Fig. 2. Wavelet packet tree forIR8.

Fig. 3. Complete matching algorithm.

A. Optimal Eigenvalues: Fixed-Point Algorithm

In this section, we demonstrate an algorithm for determining
the set of eigenvalues for a wavelet packet basis that minimizes

. To do this, we seek to derive a fixed-point expression
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from that can be iterated to arrive at. Continuity
of the fixed-point expression, its partial derivatives, and the
equivalency of its range and domain substantiate the existence
of at least one fixed point. The proof appears in [13].

Consider the problem of minimizing when a uni-
tary basis matrix has been fixed. What remains is to find
the diagonal matrix of eigenvalues diag for
the wavelet-based processthat minimizes subject
to , where is a power constraint
imposed on the eigenvalues. One useful constraint is to make

the average trace of the matrices .
In (10), let , and let be

(11)

where

(12)

Then, taking partial derivatives of with respect to
and setting them equal to zero

(13)

(14)

(15)

where represents the-th principal minor of . Rear-
ranging (13)–(15) yields

(16)

where

(17)

(18)

Both and are functions of .
The expression for in (16) does not incorporate the power

constraint :

(19)

To include the power constraint, define a normalizing constant
, and rewrite (16) with it:

(20)

(21)

(22)

In (22), is a function of , and by the definition
of in (18), is guaranteed to be positive for all values of

.

The normalization of (22) by assures that the right-hand
side is bounded on the interval . The partial derivatives
of the right-hand side of (22) with respect to
can also be shown to be continuous and bounded. Under these
restrictions, the expression in (22) results in a fixed-point
algorithm for [14], and the optimal may
be found by an iterative algorithm based on (22).

Using a superscript to denote iteration order, the iterative
expression that finds the optimal values for is
expressed in matrix form as

...
... (23)

We have found that an appropriate choice for the starting
values is provided by the diagonal values of the
matrix that is obtained from

trace
(24)

(25)

B. Optimal Eigenvectors: Basis Migration Algorithm

We now consider the optimization complementary to the one
in Section III-A: the minimization of when is fixed
by finding the best unitary matrix, , from a wavelet packet
tree like the one depicted in Fig. 2 for . The Bhattacharyya
coefficient is not an additive cost function, i.e., the branches
of the wavelet packet tree cannot be pruned independently and
still lead to an optimum solution. Best-basis search algorithms
have almost exclusively utilized additive cost functions as
a criteria to find the best basis for a desired application
[1], [4], [15]. Additivity allows searches to be systematically
disassembled into smaller units, and the “pruning” that results
quickly eliminates suboptimal branches and, hence, bases,
from further consideration as members of the best basis. Using
(1) and noting that when

, and when , the efficiency that
results from additivity is valuable as increases.

However, a large number of desirable distance and cost
measures are not additive. Consequently, for an applica-
tion in which the optimal wavelet packet basis must be
found, the search is neither analytically nor computationally
straightforward. Nonadditive cost measures do not permit the
wavelet packet tree to be pruned irrevocably, i.e., no vector or
basis may be uncategorically eliminated from consideration.
The implication for a best basis search algorithm using a
nonadditive cost measure is that the surface it must traverse
from any starting point may have local extrema.

The alternative we use to minimize when is fixed
is to pick an initial basis and allow its vectors to “migrate”
up and down the branches of the tree until it arrives at
a new basis that minimizes the expression for in
(10). While the nonadditivity of our cost function does not
permit us to analytically guarantee that we always arrive at
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the optimal basis, our method relies on gradient-based values
to steer the algorithm toward bases that minimize .
Our observations show that a careful choice of the starting
basis results in a final basis that, if not the best basis, is very
close to being optimal.

We introduce a superscript for variables to indicate their
values at successive iterations of the basis migration algorithm.
Without sacrificing generality, assume that , which is the
initial choice for the unitary basis, is populated by vectors at
the highest scale of the wavelet packet tree in Fig. 2.

(26)

The vertical bars in (26) demarcate vector pairs that
are descendants of a common branch in the wavelet packet
tree. Recalling the eigendecompositions in (7) and (8), for

, let

(27)

is an matrix that designates theth system
comprised by , , and . The equation for in
(10) can be rewritten as

(28)

Consider the migration of to , as pictured in Fig. 2,
so that is defined as

(29)

After lengthy algebraic manipulations [13], the change
in incurred by exchanging for

is approximately

(30)

(31)

(32)

Adj (33)

(34)

In (33), Adj is the adjoint of the matrix, which, for a
nonsingular matrix , is related to its inverse by

Adj (35)

The th element of Adj is times the th
minor of . Let be the th element of . If
is the th minor of formed by taking the determinant
of after its th row and th column have been removed,

the th element of Adj and the derivative of with
respect to are

Adj (36)

(37)

acts as an element-by-element first derivative of the
current th system given by . is and represents
the change incurred by due to the exchange of eigenvectors

for in the covariance matrix of the represen-
tative process. When is multiplied element-by-element by

and summed, the result yields, which is the effective
impact of the migration on theth system. The final summation
in (30) combines the impacts from each of thesystems with
appropriate weights for each system given by (34).

The exchange of with can be accompanied
by assigning each of the eigenvaluesand to each of the
new vectors . However, the new pair of vectors will
be oriented differently than the pair they replace; hence, the
allocation of the total power in the subspace spanned
by should be different in order to decrease .
In (32), and are a new distribution of the power in
and when moving from one scale to another. Thislocal
reallocation of power among vectors on a common branch is
performed to maximize the similarity betweenand and,
ultimately, enhances the speed of the complete algorithm. A
significant point about this reallocation is that the total power
within a branch is reorganized, yet completely conserved. The
eigenvalue fixed-point algorithm described in Section III-A is
responsible forglobal, optimal redistribution of power in the
eigenvalues, i.e.,between all vectorswhile maintaining the
overall power constraint. The values for are

trace
(38)

For in (26), , and
are determined by selecting the appropriate pairs of vectors
from the wavelet packet tree for , , and . Migration
of vectors to another scale only occurs if its impact is to
decrease . If , then the migration

increases . If , then the new basis
will result in a wavelet-based process that is closer to the
family of covariances in , and the migration
is justified. The migration to be executed is the one whose
value of is the smallest, and is equal to

modified by the appropriate swap of vectors. However,
if no value of is less than zero, then none of the

possible migrations decreases , and . With
the new basis , a new migration is initiated by calculating

, using and .
Inherent in this migration rule, however, is the fact that the

expression for is only a first-order approximation

to the change incurred by when the th and th
basis vectors are replaced. If the approximation fails to hold,
the migration algorithm may identify false migrations, and
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(a) (b) (c)

Fig. 4. Iterative results for (a) 8� 8 Markov process with� = 0.95. (b) 8� 8 bandlimited process with! = 0.35. (c) 16� 16 Markov process with� = 0.75.

under these circumstances, finding the best basis and wavelet-
based random process becomes difficult. Experiments indicate
that the approximation leading to remains useful
and intact except under certain situations. These issues are
discussed in detail in Sections IV and V.

C. Optimal Mean Vector Algorithm

In this section, we use the results of the al-
gorithms derived in Sections III-A and III-B to
obtain a mean vector for the representative
process. The same approach used in Section III-A
to determine is employed here to find : Derive a
fixed-point expression that can be iterated to yield a value
of that maximizes . Continuity of the fixed-
point expression, its partial derivatives, and the equivalency
of its range and domain substantiate the existence of at least
one fixed point. The proof appears in [13].

Having determined , the representative mean vectoris
found by maximizing (2). Starting with (2), and using (4) and
(5), let denote the th element of . Then, taking partial
derivatives of (2) with respect to

(39)

where denotes a length- vector with all zeros, except for
a value of 1 at the th element. The expression in (39) is a
scalar equation and is valid for all ; it can be
rewritten in matrix form for all values of by replacing
by the identity matrix. Setting this quantity equal to zero and
solving for yields a fixed-point expression whose iterations
are denoted by a superscript

(40)

A good starting point for is the average value of
.

IV. RESULTS

We present our experimental results in two parts. In
Section IV-A, we consider the problem of matching a single
Gaussian process to a wavelet-based process, and we apply the
complete matching algorithm to common random processes.
The key analytical expressions are specialized from the
formulations in Section III and appear in [13] and [16].
To illustrate how the algorithm rapidly eliminates bases
from consideration, intermediate results are presented at each
iteration to indicate the incremental basis migrations and the
convergence of the Bhattacharyya coefficient to its final value.
A discussion about using wavelets of different regularities
concludes this part. In Section IV-B, we address the general
case of matching multiple Gaussian processes to a wavelet-
based process in the context of robust terrain classification
in POL-SAR images.

A. Single-Process Matching

We consider the problem of matching a wavelet-based
random process to one arbitrary, -dimensional Gaussian
random process. For the following examples, the Daubechies-4
mother wavelet is used to spawn a full dyadic wavelet packet
tree. In all cases, the initial basis was chosen to be the
set of vectors residing on the lowest scale, which is denoted
as scale 1.

For the first example, define the entries of an 88 first-
order Markov process as

(41)

Fig. 4(a) and Table I summarize the results of the matching
algorithm when . Iterations one through four show
rapid increases in the Bhattacharyya coefficient due to the ex-
change of basis vectors that occurs. The final five iterations not
shown in Table I do not alter the basis, and the modest increase
in the Bhattacharyya coefficient results from a refinement of
the eigenvalues by the fixed-point algorithm.

The iterative results were compared with an exhaustive
search of all 25 bases in the wavelet packet tree. This ex-
haustive search confirmed that the final basis in iteration nine
achieved the best match betweenand .
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TABLE I
BASIS MIGRATIONS FOR8� 8 MARKOV PROCESS: � = 0:95

TABLE II
BASIS MIGRATIONS FOR8� 8 BAND-LIMITED PROCESS: ! = 0:35

For the second example, consider an 88 bandlimited
process , whose entries are given by

(42)

For the case when 0.35, Fig. 4(b) and Table II summarize
the results of the complete matching algorithm. Iterations one
and two show rapid increases in the Bhattacharyya coefficient
as the best basis vectors are found, and the remaining iterations
increase the similarity only marginally as the wavelet packet
basis stays constant.

The iterative results were compared with an exhaustive
search of all 25 bases in the wavelet packet tree. Again, this
search confirmed that the matching algorithm led to the best
match between and , yielding the highest value of the
Bhattacharyya coefficient.

A final example using a Markov process illustrates the
algorithm for 16 and demonstrates how the matching
algorithm may not always find the best basis but may find a
basis that is close to being optimal. When 0.75, Fig. 4(c)
and Table III summarize the results of the matching algorithm.
When compared with the exhaustive tests conducted for each
of the admissible bases, the result generated in the final row
of Table III ranks 14th out of 676. In the optimal basis, the
pair of scale-3 vectors in the 13th iteration of Table III migrate
to scale 4; the corresponding value of is 0.8449. The
matching algorithm was unable to arrive at the optimal basis
because it did not swap these subspaces. The difference in
matching performance, however, is considerably small.

While exhaustive verification of the matching algorithm be-
comes prohibitive for larger than 16, there is no algorithmic
dependence on that hinders its operation as increases.
Matches for processes with 32 were also successfully

TABLE III
BASIS MIGRATIONS FOR16� 16 MARKOV PROCESS: � = 0:75

conducted, although not exhaustively corroborated. The is-
sue of computational complexity is addressed at the end of
Section V.

1) Different WaveletsWe also considered the impact of
changing the scaling/wavelet filter pair that spawns the wavelet
packet tree. Four different wavelets were used in the complete
matching algorithm to approximate first-order Markov pro-
cesses with , where is discretized in increments
of 0.01. The results appear in Fig. 5(a). Similarly, Fig. 5(b)
depicts the results when the same four wavelets were used to
approximate band-limited processes having in
increments of 0.01.

Fig. 5(a) and (b) illustrates that wavelets of higher regularity
consistently yielded better matching results for all values of
and . For both cases of processes having lower bandwidths
(higher values of and lower values of ), the matching
algorithm is unable to yield approximations commensurate
with performance achieved for processes having a higher
bandwidth.

B. Multiple-Process Matching: POL-SAR

In this section, the complete matching algorithm is applied
to the problem of robust classification of land cover types in
POL-SAR. This issue was first addressed in [17] and [18]. The
scenario occurs when the statistics describing the target terrains
change. Variations in frequency, polarization, and observation
angle induce changes in the radar-target phenomenology and
yield multiple signatures for the backscatter from each terrain
type, making the design of a single classifier that operates suc-
cessfully on a wide spectrum of input data highly problematic.

To illustrate our technique, we develop arepresentative
terrain model for each land cover type that serves as an
aggregate description for the scattering behavior of a terrain
under different circumstances. As would be expected, the
robustness of a classifier to changes in terrain characteristics
depends on both the tightness of the original cluster of
signatures and the quality of the ensuing approximation. Since
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(a) (b)

Fig. 5. (a) Bhattacharyya coefficient between first-order Markov processes and wavelet-based approximations as a function of�. (b) Bhattacharyya coefficient
between bandlimited processes and wavelet-based approximations as a function of!.

(a) (b)

Fig. 6. (a) P-band,HH image. (b) P-bandVV image.

the former is dictated by empirically collected results, we
address the latter constraint using wavelet-based representative
processes. To test the performance of the algorithm, we
use images from the boreal ecosystem atmospheric study
(BOREAS) [19]. Fully polarimetric data (HH, HV, VV) was
collected at three frequencies (P-band, 441 MHz; L-band, 1.25
GHz; C-band, 5.36 GHz) on July 21, 1994. The images were
collected from Canadian boreal forests during the AIRSAR
missions and have 1024 rows and 1279 columns. One pixel
corresponds to approximately a 6 m12 m rectangle.

The experiment we propose utilizesHH and VV images
acquired at P-band, which are shown in Fig. 6(a) and (b).
Five different land cover types are identified: ,
and . We seek to construct a representative description of
each terrain type from wavelets, from its HH
and VV statistics. We recognize that classifiers generally do
not require robustness to changes in polarization. Changes
in phenomenology due to variations in incidence angle and
frequency are far more critical to classifier design. However,
limitations in available data constrain us to demonstrate our
technique using data acquired at multiple polarizations. We
emphasize, nevertheless, that our algorithmic concept for gain-

ing robustness to changes in polarization would be identical
for variations in any other SAR modality.

1) Constructing Terrain Signatures:We create signatures
for a land cover type in a POL-SAR image by first constructing
feature vectors from pixels residing in the desired terrain.
The features may be any quantity derived from the central
pixel and/or its surrounding pixels. Feature vectors associated
with a pixel can be as simple as a lexicographic collection
of the raw pixel values surrounding the central pixel, or
they may be texture values of several orders derived from a
neighborhood of pixels. For our analysis, we demonstrate the
classification algorithm with feature vectors of length 8 for
each terrain containing a collection of eight raw pixel values
in the immediate neighborhood of the pixel of interest.

We employ the common assumption that the feature vectors
for a terrain obey the properties of Gaussianity; hence, to
construct a probability density function for the feature vector,
we need only determine the mean and covariance of the
feature vector. Using pixels from each terrain group, we derive
means and covariances and calculate the corresponding Bhat-
tacharyya coefficients between classes for each polarization.
Tables IV and V summarize this information.
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TABLE IV
BHATTACHARYYA COEFFICIENT VALUES FOR HH IMAGE AT P-BAND

TABLE V
BHATTACHARYYA COEFFICIENT VALUES FOR VV IMAGE AT P-BAND

2) The Representative ProcessUsing the statistics derived
for the five terrains, we use the complete matching algorithm
to generate a representative process for each terrain class

from its HH and VV descriptions.

(43)
The representative process for each terrain is
constructed from the original two processes in the same way
depicted in Fig. 1.

The Daubechies-4 wavelet was used to spawn a full, or-
thonormal, dyadic wavelet packet tree. Representative pro-
cesses were generated using theHH and VV statistics for
each terrain. Table VI summarizes the pairwise Bhattacharyya
coefficients of the wavelet-based, representative processes.

To gauge the robustness of the representative processes, we
insert the wavelet-based signatures for , and
into a five-class optimal Bayesian classifier. The five training
regions in both theHH andVV image for each frequency are
submitted to the classifier, and the rates of correct classification
from both images are summed to ascertain the robustness of
the classifier when two disparate images serve as the input.
The classifier relies on the result of likelihood ratio
tests [20] that assume each terrain is equally probable.

To provide a benchmark of performance, two additional
classifiers were applied to the set of images corresponding to
each frequency. The first is the optimalHH Bayes classifier,
which relies on the terrain statistics obtained solely from the
HH image; its performance on theHH images will necessar-

TABLE VI
BHATTACHARYYA COEFFICIENT VALUES FOR

REPRESENTATIVEPROCESSESCONSTRUCTED FROMP-BAND IMAGES

ily yield the highest accuracy for theHH training regions;
however, its performance with respect to theVV training
regions will be suboptimal because of the inherent mismatch
between the classifier and the statistics of the input image.
The second classifier is the optimalVV classifier constructed
from the terrain statistics obtained from theVV images. The
performance of both theHH- andVV-based classifiers is also
gauged by averaging their rates of correct classification on
both theHH and VV images.

Table VII contains the results for the P-band classifiers
and images. The entries represent the fraction of pixels from
a terrain class in either theHH or VV image that have
been classified correctly by the associated classifier. The
robust average of the wavelet-based classifier exceeds the
performance of theHH- and VV-based classifiers. As we
expect, for an -ary test, the performance on individual
terrain classes exhibits a wide variation compared with the
average and robust average values; the optimal Bayesian
classifier is expected to yield the best aggregate probability of
error over all terrain classes, but there is no statistical guarantee
of performance for individual classes.

V. DISCUSSION

The results documented in Tables I–III show that the com-
plete matching algorithm is able to approximate random pro-
cesses by wavelet-based representations. The algorithm suc-
ceeds in replacing an exhaustive search of a wavelet packet
tree for a set of eigenvectors with a fast, iterative, computation-
ally simple procedure. In one case, we observed that although
the algorithm was unable to arrive at the best basis, the final
solution was nearly as good as the one obtained by the best
basis.

Although the complete matching algorithm consistently
found the best, or near-best, basis, the quality of the ap-
proximation sometimes still suffers. Our experiments indi-
cated that processes having high bandwidths were better
approximated by wavelet-based eigenstructures than processes
with low bandwidths. The conclusion is reinforced by the
curves in Figs. 5(a) and (b), which suggest that while wavelet
packet bases may be unsuitable for approximating some low-
bandwidth processes, a wavelet with higher regularity can
improve the final result.
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TABLE VII
PERFORMANCE OF P-BAND HH, VV, AND WAVELET-BASED CLASSIFIERS

When matching single processes, we recognized that the
basis migration algorithm occupies the dominant role in the
matching algorithm. This is understandable since migrations
are also accompanied by a local redistribution of eigenvalues
in the associated basis vectors. Intermediate updating of the
eigenvalues (assuming the powers of the eigenvalues are
locally redistributed in each migration) is unnecessary until
the overall algorithm converges to a final basis. Then, the
eigenvalue fixed-point algorithm can be iterated to obtain the
associated optimal eigenvalues.

As noted earlier, the matching algorithm sometimes has
difficulty identifying the migrations necessary to arrive at the
best basis. This phenomenon was observed in Table III. In
some instances, multiple iterations were necessary between
basis migrations because the algorithm had trouble finding
the migration that increased the Bhattacharyya coefficient.
This can be attributed to the inaccuracy of the first-derivative
approximation stated in (33) near regions around the extrema,
and, as stated above, the problem is compounded in processes
possessing low bandwidths. Consequently, the algorithm may
halt before reaching the best basis, but the final result is usually
very close to that which would be achieved by the best basis.
Mechanisms installed in the algorithm prevent migrations in
the backward direction toward previous bases and calculate the
Bhattacharyya coefficient between iterations to assure that the
migration is always in the direction of increasing the similarity
between the two processes. Generally, this information is only
required for the final migrations. Although this entails extra
calculation, it ensures that the migration stays “on track.” In
comparison with the effort required to exhaustively investigate
each basis in the wavelet packet tree, this feature remains
insignificant and justifiable.

We address the issue of computational cost by first consid-
ering the cost incurred by an exhaustive search for the simplest
case of single-process matching that appeared in Section IV-A.
The exhaustive search for the best set of eigenvectors and
eigenvalues can be considered separately and then multiplied

to determine the number of total Bhattacharyya coefficient
calculations that are necessary. For 16, the total number
of wavelet packet bases is 676. The total number of sets of
eigenvalues that require testing for each basis depends on the
granularity of the discretized interval being searched and the
power constraint. For the example documented in Table III,
each basis requires an -dimensional search, where
each dimension investigates the range from 0 to, which
is the total power in the process. This example requires an
enormous search, and the order of both the eigenvector and
eigenvalue searches increases dramatically asincreases. In
contrast, the complete matching algorithm requires tests of
only 13 iterations, where the most significant operation is
the calculation of principal minors, which, in this case, are
determinants of 15 15 matrices.

Our experiments in Section IV-A were conducted when
the starting unitary basis was chosen to be the basis
whose vectors came exclusively from the lowest scale in the
wavelet packet tree. Since any migration of vectors from the
lowest scale to the next highest scale (or vice-versa) involves

vectors, it is best to complete such a sizable migra-
tion early in the iterative process—particularly in the initial
steps—when the impact of possible migrations is relatively
clear and unambiguous, and the first-derivative approximations
are reliable. Starting bases comprised of vectors residing on
higher scales were also tested, but the basis from the lowest
scale almost always provided performance at least equal to all
other selections.

VI. CONCLUSION

In this paper, we developed an algorithm that constructs a
single, wavelet-based process that matches a set of arbitrary,
discrete-time, Gaussian, -dimensional random processes.
Because of its applicability to detection, our technique em-
ployed the Bhattacharyya coefficient to measure the quality
of the approximation and used three separate algorithms to
obtain the final result.
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Pivotal to the complete matching algorithm is a best-basis
search algorithm that finds the optimal set of eigenvectors
for the approximation from a wavelet packet tree. In spite
of the complications incurred by the nonadditivity of the
Bhattacharyya coefficient, the algorithm is able to locate the
best or near-best basis consistently through gradient-based
techniques that are computationally simple and inexpensive.

Our application of the matching algorithm to the problem of
robust terrain classification in POL-SAR imagery found that
the representative, wavelet-based terrain models were able to
deliver better overall performance when the terrain signatures
varied. Table VII demonstrates this result for P-band images of
Canadian boreal forests acquired at two different polarizations.

The experimental results in Section IV-A demonstrate that
for first-order Markov processes and bandlimited processes,
the matching algorithm consistently finds the best or near-best
basis that yields the best approximation in the Bhattacharyya
sense. While the curves in Fig. 5(a) and (b) demonstrate that
low-bandwidth processes are not as well approximated by any
wavelet packet basis as processes with higher bandwidths, the
experimental observation that wavelets of higher regularity
yield increasingly better approximations is a very promising
result. Just as higher regularity can be proven mathematically
to lead to better approximations of deterministic signals, our
results at least provide empirical evidence that the same is true
for certain classes of random Gaussian signals.
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