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Matrices with Banded Inverses: Inversion Algorithms
and Factorization of Gauss—Markov Processes

Aleksandar Kagic, Member, IEEEand José M. F. Moutdellow, IEEE

Abstract—The paper considers the inversion of full matrices gorithm applies to general matrices, not necessarily symmetric
whose inverses areL-banded. We derive a nested inversion or positive-definite. The nested algorithm uses only the entries
algorithm for such matrices. Applied to a tridiagonal matrix, in the L-band of the full matrix. In other words, the entries

the algorithm provides its explicit inverse as an element-wise . . P
product (Hadamard product) of three matrices. When related to of the matrix outside itd.-band are not used in finding its in-

Gauss—Markov random processes (GMrp), this result provides Verse, when the inverse Isbanded. Again, invoking the GMrp
a closed-form factored expression for the covariance matrix of a analogy, the nested algorithm inverts the covariance matrix of a

first-order GMrp. This factored form leads to the interpretation of  Gauss process when the process is known to be Markov.
a first-order GMrp as the product of three independent processes: With the insight provided by the nested algorithm, we ob-

a forward independent-increments process, a backward indepen-t in three maior results: i) we derive exolicit inver for gen
dent-increments process, and a variance-stationary process. We a ee major results: i) we derive explic erses for gen-

explore the nonuniqueness of the factorization and design it so €ral tridiagonal matrices; ii) we present an original factorization

that the forward and backward factor processes have minimum of GMrp’s as the product of three independent-increment pro-

energy. ) _ o cesses; and, finally, iii) we study the approximation of Gauss
We then consider the issue of approximating general nonsta-oproCesses by Gauss—Markov processes

tionary Gaussian processes by Gauss—Markov processes under tw . - . S
optimglity criteria:pthe Kullbac)ll<—LeibIer distancp()e and maximum Explicit In\{erses of Trldlagor.lql Matr'ceS_App“Cat'on_Of the
entropy. The problem reduces to approximating general covari- nested algorithm leads to explicit expressions for the inverses of
ances by covariance matrices whose inverses are banded. Our in-general tridiagonal matrices, i.é.;banded matrices whefe=
version result is an efficient algorithmic solution to this problem. 1. |n particular, this enables us to write, we believe for the first
We evaluate the information loss between the original process and time 'closed-form expressions for covariance matrices which are
its Gauss—Markov approximation. . - : . : .
. . diagonalized by trigonometric transforms like the discrete co-
Index Terms—Banded matrix, Cholesky decomposition, Gauss— gine transform (DCT) and the discrete sine transform (DST),
Markov processes, inhomogeneous autoregressive processes, Ku”f e., for which these transforms are their Karhunen—Loéve trans-
back—Leibler distance, L-band complement, maximum-entropy =’ R o ] .
method, potential matrix, tridiagonal matrix. forms [1]. The explicit inverses of tridiagonal matrices are given
as Hadamard (i.e., element-wise) products of three matrices.
Factorization of GMrp’s: When we apply this factored de-
|. INTRODUCTION composition to covariances of GMrp’s, we obtain an original
ANDED matrices arise in numerous applications rangin@ctorization of GMrp’s as the product of three independent
from the discretization of partial differential operators t9andom Components: a forward independent-increments
linear autoregressive models for images. When these matrigegcess, a backward independent-increments process, and a
are symmetric and positive-definite, their inverses are covafiariance-stationary random process. This factored representa-
ance matrices of causal or noncausal Gauss—Markov rand@s is striking because it helps separate the impact of boundary
processes (GMrp)In this sense, they are parsimonious descrigonditions (initial and terminal) from the long-term behavior of
tions for GMrp’s, easier to parameterize than the covariancetie noncausal process. The forward component starts from the
the process itself. initial condition of the process, the backward component is a
In this paper, we present an intriguing nested algorithm to iBackward process started from the terminal condition, and the
vert matrices whose inverses are known tdbeanded. The al- variance-stationary component is free at both ends. We exploit
the nonunigueness of the Hadamard factored representation to
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sponds to approximating the original covariance matrix by a cand likewise for the row vectoA (%, 7: j). A principal subma-
variance matrix whose inverse is banded. Our nested algorittim of A = AY; spanning columns (and rows)through j
is a readily available efficient solution to this problem. (1 <i<j< N)isgiven by

Summary of the Paperin Section Il we present the concept A=A g i) =AKG i), ©)
of the L-band extension of a general matrix and then our major _ . .
results on the inverses of matrices wittbanded inverses. The- V€ refer to a _matnx as aﬂ-bal_ﬁded matrixL > 0)_ if the
orems 1 and 2 present the nested algorithm for inversion of slfMents outside the band defined by iith lower diagonal
matrices. Appendix A contains proofs for two lemmas present8§d theLth upper diagonal are zero. A diagonal matrix is thus
in this section. Section 1l applies the nested algorithm to d@-U-Panded matrix. A tridiagonal matrix is ebanded matrix.
rive the explicit inverse for a general tridiagonal matrix. The ins'm'larly' we refer to the band between (ar?d including) e
verse is expressed as the Hadamard product of three matricelOfyfr and theLth upper d|a}gonal of a matrik as th_eL-band
Appendix B we illustrate this inverse for matrices widely useaf_A' The frace of marba is denated byr A, while its deter-
in applications. Section IV applies the results in Section 11l tBlinant is denoted byiet A. y o
solving the optimization problem of factoring a Gauss—Markoy 1 voughout the paper, we add block-partitioned matrices in

random process as the product of three independent procesdB&Verlapping fashion. For this purpose, we develop the fol-

where the sum of the energies of the forward component afgi/ing nested notation shown in (4) at the bottom of this page.

of the backward component is minimal and the third compJ—he_ resulting matrid® in (4) is anL-ban_de_d matrix. The fol-
nent has a covariance with prespecified form, namely, it is vaff¥ing 3 x 3 example of &-banded matrix illustrates the nota-

ance-stationary. Section V studies the approximation of geif" in (4) (on the right-hand side we omit the zero elements)

eral Gauss processes by Gauss—Markov processes, relates -
problem to the approximation of general covariance matric | %! a2 0
by matrices whose inverse Isbanded, and uses the nested ir
version algorithm to provide a prompt solution to this problen
We consider both the Kullback—Leibler distance and the ma | as ag
imum-entropy criterion as optimality criteria. The section als

presents the information loss carried by these GMrp approxin a; as
tions. Section VI summarizes the paper.

azg r+y+z a4

= a3 z| + (Y| + |z 04

Il. BANDED MATRIX ALGEBRA ’ as ag
A. Notation
To avoid cumbersome block-matrix expressions throughout ®)
the paper, we introduce the following notation. We denote a
column vectorz of N elements:y, 2, ---, zn, by B. Theorems
2= 7]1\ — 2 ZN]T. ) The proofs of the next two lemmas are in Appendix A.

Lemma 1: Let R be anN x N matrix whose invers®& ! is

. 1 . ‘
We specify a subvector af = =3, involving elements; through I-banded. Then

zj, wherel < ¢ < j‘g N, by RL_ ] 0 0 0
7 = [z zip1 o0 2T 2 R'- [ M _] = [ N-L }
We denote anV x N matrix A by AL,. We will often use 07 0 0 Ry "™
MatLal? type notation. ByA(i:j, k) we represent the col- 0 0
umn vector of the entries of the matu (¢, &) through(j, k), _ [RN_F]7* 0] |. (6)
2MatLab is a registered trademark of MathWorks. 0 l QT 0]

Al
L+l + A%+1 +

2
AL+2

N—L
AN

L i (4)
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Lemma 2:If R has anL-banded inverséR~!, then the  We use an inductive argument. First the following hold:
inverse[R:] ' of any principal submatrib®’ of R is also o
L-banded, provided that— i > L. det R = det R}, = det Ry E}

i . o ct -
Definition (L-Band Extension):The matrixR is called the L ! Tl
L-band extension of atv x N matrix C, if its inverseR ! is = det Ry_, det[r —C" Ry _,B]

related toC, as shown in (7) at the bottom of this page. =(det Riy_,)H
rpN—L
Theorem 1 (Banded Matrix Inverse TheorenB:! is L- det RY % = det RNT—l Q}
banded if and only iR equals its owrl-band extension. L 2 r )
Proof: Theif is trivially satisfied by the definition of the = det RYZ{ det[r — ¢"RY 1Y
L-band extension. To prove tloaly if direction, we invoke the = (det Rﬁ::f)h. (10)

following inductive argument. Lemma 1 gives

As shown at the end of the proof of Lemma 1 in Appendix A,
the Schur complements of the last elemeriRoind of Ry~ %,

_ . H andh, respectively, (see (103)), are equal. Hence, from the
R-! = Rh_, | _ v last equation above
M Ry~F N-L
(8) Heh— det Ry
det RY L~

From Lemma 2 we have thgR%,_;]* in (8) is L-banded. Replacing this value off in (10), we get
SinceRY;_, has anL-banded inverse, we can further apply
Lemma 1 on[R%_,]7! to express[R%_,]7! in terms of
RL 7Y RYZFYE, and [RYZ27'~!. Successive
alternative application of Lemma 2 and Lemma 1 on

det Ry

det R=det R}, _,——L& 11
Nt det RYZF (1)

Due to Lemma 2, we have thg}, )71 is L-banded. Due to

Ry o] [Riv_a] ™ [Ri ]t Lemma 1, we have again
det RYZL1
proves the theorem. O det Ry | = det R}\_Qmﬁ;:l&l. (12)
e _
Corollary 1.1: If R~ is L-banded, then N2
Successive application of this procedure on
det RY . -det R2,,---det RN ™"
det R = q §+1 d §+2 d Q’—L' ) det Ry _,,det Riy_g, -+, det Ry,
et R7 ,, -det Ry ,,---det Ry
leads to (11). O

Proof: To prove the Corollary, recall the following for-

mula for the product of a block-partitioned matrix: Corollary 1.2: LetR be theL-band complement of aiV' x

N matrix C. Then

det [(?T g} =det A det[D — CTA™!B] tr(R7T'C) =t (CR™) = N. (13)
Proof: Multiply C by (7) and verify that the product has
where we assumed thAt—! exists. ones on the main diagonal. O
- . q
) —1 -1 0
C
- C%'H + C%+2
R =
-1
+ o —1 -1
C%_f 1 - C%_f + N-L
0 - Chv~
L ] (7)
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] . i
o © 4 " 0
, o o) -[o]+fo o0 ) o
R™ = S O O ool 000
o O O o © O O O
0 o 0O
] (15)

Note that Corollary 1.2 asserts only that the diagonal entrigsthe proof of Lemma 1 in Appendix A, we have the following
of (R~1C) are ones. It says nothing about the off-diagonal eequality for a nested pail. + 1 < k < N):
tries of (R~ C) or of (CR™1).

The Banded Matrix Inverse Theorem (Theorem 1) can be

generalized to banded matrices with nonuniform bands. We -1 -1
demonstrate this on an example (the proof of which is very

similar to the proof of Theorem 1). Let the matrRR be a - | CiIr | + ch-L
matrix whose inverse has the following structure: g

S OO O O oo . .
OO0 OO oooc o - _ Y 1 T
Rl={0 0 00 o = 0o oo = O b |1
IR IR R OO oo (14)
O 0O OO . oo o 1 17)
where %" denotes nonzero elements in the malfx“" de- where
notes nonzero elements in the inverse maRixt, and “” de- ke L—1
notes zeros. Then the inverse is given by (15) at the top of this w =[G Clk— Lk~ 1, k) (18)
page. F=—-C(k, k- L: k—1)-[C}L? (19)
Theorem 2 (Decomposition Theorem)et C be an arbitrary det, CE~F
square matrix. There exists a unique malRxwhoseL-band k= dot O L (20)
k—1

equals the-band ofC and whose inversB ! is L-banded. In

other words, there exists a unique mafibsuch that Using (17) in (7), we find factors of the UDL decomposition

Rl = UrDrLr

R{%} R[} " - .

U, Ui
whereR ! is L-banded. (The matriR that satisfies (16) is the
L-band extension of.) Ur = 1
Proof: The proof follows from the uniqueness of the Uy
inverse given by the Banded Matrix Inverse Theorem (The-
orem 1). O
0 1
C. UDL Decomposition r T
0

The UDL decompositioh of R~! whereR is the L-band L,
extension ofC is closely related to the nested representation of
R~! given in (7). By factoring out the right-hand side in (102)

3The UDL decomposition of a matriA is the decompositioh = UDL,
whereU is upper-triangular with ones along the diagodaljs diagonal, and T
L is lower-triangular with ones along the diagonal. 0 Iy 1 (21)
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and The inverses of the blocks in (25) are
. 1 1 LT+l —Pn
Dr = diag D; ) m " G . (22) J:-H = $n+17fj7; Prln x"+lzr;n_ Pn'n
Tn+12n — PnTn Tntlln — PnTn
Here, U;, Dy, and L; are the UDL factors of Ci]7! = Jn :i' (29)
U;D,L;. Clearly,Ug is an upper-triangulak-banded matrix " Yy
while Ly is a lower-triangulat.-banded matrix. Since bothJ” anszﬂ must be principal subblocks dt:

we get from (29)
[Il. I NVERTING TRIDIAGONAL MATRICES

, Lo T for2<n<N-1 (30)
We apply the Banded Matrix Inverse Theorem, Theorem 1 Un  TngiZn — Prin =7 =
in Section I, to calculate the inverse of tridiagonal banded ma- 1 Zn
trices. In Section IlI-A, we provide a numerical procedure to = ; fori<n<N-2 (31)

. . . YUn Tn Zn — PnTn
find these inverses in ord&?(N?). At the end of the same i o

subsection, we discuss the generalizatioh4oanded matrices.

In Section IlI-B, we derive closed-form expressions for the irfforward recursion:

verses of tridiagonal matrices. Examples for several frequentky,y, (26), (28), and (31)= zn+1 = qns1! —
) 1 ~“1 — Un .

. . . , 21 =41,
encountered matrices are in Appendix B. Zn
forl<n<N-1 (32)

Rearranging, we obtain

pnTn

A. Algorithm for Inverting Tridiagonal Matrices backward recursion:
Consider theV x N general tridiagonal matrif —* from (27), (28), and (30)=> =z, = ¢n — i:j:’ TN = qN,
g 0 for2<n<N-1 (33)
L G2 P2 from (28) = y, = xn + 20 — ¢, for2<n<N-—1.
J = ry . e ) (23) (34)
qN-1 PN_1 Solving canonically: from the forward recursion (32) get:alj
0 TN-1 N from the backward recursion (33) get all; from (34) and all

) ) . ] S z, andz,, get ally,,. Substituting allz,,, y,,, andz, into (29),
We derive the inverse of this matrix assuming it exists. From thgyain the tridiagonal part, i.e., thé = 1)-band ofJ. To get
Banded Matrix Inverse Theorem, Theorem 1, we have (24) {@k remaining elements &F, apply the following “filtering”
the bottom of this page), where the subblodks, (1 <n < method. Multiply a row ofJ with a column ofJ—! and use

N —1)andJ7 (2 <n < N —1)in(24) have the form the fact that the product must be an entrylofor example,
. 20 DPn . to get the entrnyd(1, 3), multiply the first row ofJ with the
Dol = Ln xn+1} and [J7]7" =yn. (25)  third column ofJ—* and equate to zero. This gives an equa-

tion for the elemend (1, 3). Repeat this going outward from the
In (25), the unknown variables asg, (2 < n < N),y, (2 < (L = 1)-band ofJ sequentially sweeping all the missing di-
n < N —1),andz, (1 < n < N - 1). By inspection of agonals ofJ. The operation counts for determining the =
(23)—(25), we get 1)-band ofJ and then filling the remaining of are (V) and

L= 26)  gion anO(N?) operation.
TN =gnN (27) 1) Inverting L-Banded Matrices:Let A be anL-banded
Tp—Yn+2n=qn fOr2<n< N-—1. (28) matrix. Decompose\ asA = Q;TQ}, whereQ; and Q.
- _1 T
1 - -
J
Jl=
-1
1 nes -1 -1
JN—l _ JN—I +
0 N-1 J%_l
(24)

O(N?), respectively, which makes the tridiagonal matrix inver-
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are unitary andr is tridiagonal. The complexity of this decom-where we used; = gx andby, = 1. We then get
position isO(L?N) since bothQ; andQ, can be obtained in
closed form withiV — L Householder reflections of sizex L~ from (41), (42), (45), and (29)=

[2]. The inverse is then given bA~! = Q,T'1Q7, where oL bN—nfrn-1 —PnbN—n-1fn—1

we can use the method described in Section Ill-A to invert a ~ "™~ fnx | —rnby—n—1fa-1 bN—n—1fn ’
tridiagonal matrixT'. The operation counts for the factorization fori<n<N-1 (46)
A = QTQ}, the inversionT—!, and the multiplication

A7l = QT IQT areO(L2N), O(N?), andO(LN?), re- I-e., the tridiagonalL = 1)-band ofJ. Using the "filtering” ap-
spectively, making thé.-banded matrix inversion af(LN?) Proach forfilling the rest of the matriX as described in Section

complexity operation. This is useful whén< N. II;—A, we get the closed-form solution for thg, j)th element
of J
( 1 J—1
B. Explicit Inverses of Tridiagonal Matrices T fi,le,jH(—pl), forj>i
We now use the forward and backward recursions in i\ t=i
(32)—(34) to derive explicit inverses for tridiagonal matrices. J(i, j) = { — fi—1bn—i, fori=4 (47)
Define the following forward-recursing and backward-re- In i1
cursing determinants &F~* in (23): 1 fi1bx ‘H(_”) fori > j
ST ’ '
fo=1 and by =1 (35) J
_ _ Collecting in matrix format, the tridiagonal matrik—! has the
h=a and b =qn (36) .
fo=det[J7HE and b, =det[JHN T, nverse
fori<n<N (37) rfo fo fo - Jo
Ix=b (38) . fo i o N
N = VUN- J= Jo f 1 fo o fo
- i i - VI o :
Applying the Jacobi expansion to evaluate these determinants, o : :
gives rise to the following Jacobi determinant recursion for- Lfo fi fo - fnar
mulas: ron—1 -+ by by b
. o 1 : : : :
fn - (_ann—l 7n,—1pn—1fn—27 for 2 S n S N (39) O} f]\, b2 . b2 bl bO
by = qN—nt1bn—1 — "N—ny1PN-ny1bp_2, for2<n < N. ‘ by -+ by by b
(40) L o -+ bo bo bo
- N-1 8
Combining these with the recursions (32)—(34), we get 1 -p1 pp: - [] (-m)
=1
from (39) and (32 =
(39) and ( )‘—; i 1 —p - [] -m)
2y = fori<n<N-1 (41) =2
fnfl ® N—-1
from (40) and (33)b:> 1T —ry 1 ... (—p1)
Tn = % for2<n<N (42) =3
N_n : : : . :
(32), (33), (41), and (42)= Ner Ner one
_an]\f—nfn—l = - (_Zn—l—lfnb]\f—n—l + fn—l—lbl\"—n—l H (—7’1) H (—7’1) H (—7’1) . 1
— b/\r_n_|_1fn_1, for1 <n<N-1 - =1 =2 =3 -
(48)
(43)
from (34), (41), and (42— where® stands for the Hadamard product, i.e., the element-wise
by nifa1 + b — @bn nfrt matrix product. In Appendix B, a number of frequently encoun-
n = BN —nfr_1 ' tered tridiagonal matrices are examined.

for2<n<N-1. (44) Nonuniqueness of the Factorizatiomn Section IV we
explore the representation given by (48) to derive equivalent
Applying the recursion (43) successively to (44), we get factored representations for Gauss—Markov processes. Before
doing that, we show that the factored representation (48) is not

_ Inoibi 4 fvbo — gn v 1bo unique. Because of the relation with Gauss—Markov processes
" bN_nfr-1 that we study in Section IV, we restrict the discussion now to
In symmetric, positive-definite matricelks Accordingly, we take

for2<n<N-1 (45)

- bn_nfr_1’ r; = p; in the expression o~ in (23).
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In fact, there are many possible equivalent representationdial”) boundary conditiorr_; and aright (“terminal”) boundary

W, conditionz, . We assume that (51) is the minimum mean-square
- - 2,; - error realization of the GMrp, [4]. Stacking the processgand
970 %f0 %50 " TFo en, In N-dimensional vectors ande, (51) leads to the matrix
olo Of1 o1 o Ofy equation
2 2 2 2
— | O g g v g
J=|0 {,1 52 52 Jly=c (52)
_O,%O 0}267 ) 0)2072 . 0}267 N1 The driving noise:, is correlated, its covariance being
W .= J-L
f_ 2 2 Y
b, N-1 %h,2 b1 b0 As mentioned before, the covariancexab
: . . . . 2Z = J
© 05,2 05,2 05,1 05,0 ] ]
o}, - ok, ol ai, Factored RepresentationsEquation (48), and more gen-
%70 05’0 05’0 05’0 erally (49), factors the covariance matdxas the Hadamard
- ’ ’ ’ ’ Nl - product of three matrice$V ;, W;, andS, so that each entry
1 —a alay e H (—aq) of J is the product of three quantities. When these three
=1 matrices are positive-semidefinite, it follows that the zero-mean
N-1 GMrp z,, 0 < n < N — 1, with covariance matrixJ can be
—aq 1 —Q2 e H (—au) represented as@oductof three uncorrelated processes
=2
o N-1 Zn =W - Tp - Wh Nen—1, 0<n<N-1 (53)
Qoo —a 1 (—a) |/

whereW is the covariance matrix ab¢ ,, 0 <n < N — 1,
W, is the covariance matrix @by, ny—n-1,0 < n < N —1,

: : : ands is the covariance matrix af,,, 0 < n < N — 1. We now
N-1 N-1 N-1 explore the factorization given by (49) and what it says about

I[IEe [ ] (e 1 the representation (53) of the GMrp.
<=t =2 =2 - The three factors in (49) are highly structured. The first factor
s W ; with its telescoping pattern has the structure of a (forward)

(49) Wiener matrix. The second factdV, has the structure of a
backward Wiener matrix. Finally, the third fact8rhas nor-
malized diagonal entries df, and generalizes the structure of
a geometric matrix. The general entiy j) of a geometric ma-

The factorization (49) is equivalent to (48) if the entriﬁﬁi
in Wy, o7 ; in Wy, ande; in S satisfy the following set of

conditions: trix is of the forma/l*—Jl,
ifibl\f—v‘,—l =03 ;0% n_ii1s for0<i<N—1 Assuming that all these factors are positive-semidefinite
In o (Section IV-A addresses this issue), we associate to each of
1

these matrices special classes of processes. To a Wiener matrix
we can associate a (zero-mean) independent-increment process
(50) whose covariance is that matrix. Wit ;, we associate the
forward independent-increment process ,, that satisfies the
following description:

— fibn—i—2pit1 Ifffc,iffa N_io@iy1, for0<i<N-—-2.

fn

IV. FACTORED REPRESENTATIONS OFGAUSS-MARKOV

PROCESSES W =Wf pe1 + Un, 0<n<N-1 (54)

2 2
We turn our attention now to symmetric positive-definite 00, n =Eu] (55)
tridiagonal matriced . Accordingly,p,, = 7, in (23). Such o5 o =EWw} J=07 ., 1405, (56)
J—1 are potential matrices, i.e., inverses of covariance matrices, 0}2( . =0. (57)

of first order acausal nonstationary Gauss—Markov random

processes (GMrp),, [3] defined on a finite lattice. Conversely, The increments ofu; ,, are the driving process,, which is a
every first-order acausal GMrp has a covariance matrix whogero mean, white process. The process, is started from zero.
inverse is tridiagonal [3]. For simplicity, we take, to be Similarly, we associate to the second facW, a backward
zero mean. Acausal or noncausal GMrp’s can be describediBgependent-increment process v—.—1 described by the dif-
difference equations. For, with potential matrixJ—! given ference equation

by (23), we have Wy, =W, n—1 + Un,s 0<n<N-1 (58)

2

ZnF Pno1Zn—1 + Png1Zng1 = n, 0<n <N 1. (51) o2 . =E[3] (59)

v, N

2 2 2 2
This difference equation is adjustedat= 0 andn = N — 1 o4 n =Elwy ] =04 w1+ 0 (60)
where we need to specify two boundary conditions: a left (“ini- ai _1 =0. (61)
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This is a backward process, started from zero initial conditiom particular, defining the total forward and backward boundary
The increments ofv, ,, arewv,, a zero-mean white process.  error energy as

Finally, to interpret the third facto8, we find the UDL de- N_1
composition ofS~* as 0l = Z (oF i+ot)=0% n_1+0s Ny (69)
1=0
-1 _ 7T
ST =L DL (62) we look for factorizations that minimize this total boundary
whereL is the lower-triangular matrix error energy. We develop this concept further in the next sub-
section.
1 0 0 07
a 1 -+ -~ 0 0 A. Canonical Factored Representations
0 ay . - 0 0 We start by setting up the problem. We are given Mex
L= : (63) N symmetric positive-definite tridiagonal matrdx !, see (23)
. with »,, = p,,. We look for the parameters
0 0 1 0
Lo 0 - - an.; 1] {04, n, Ob s Gnto<n<N—1
andD is a diagonal matrix where such that the representation in (49) is satisfied, and the total
boundary error energy? is minimized. In other words, we
D! =diag[l,1-a?, ---,1—a%_1] (64) search for a very specific factored representation of the process

z, associated witld, one where the sum of the forward and
From (63) and (64), we associate witthe scalar, first-order, backward error processes energy is minimal.

variance-stationary Markov random process This is a constrained optimization problem, since the param-
eters{cf}%’n, o—f’n, @ Yo<n<n -1 Satisfy the relations in (50).
Tp = —Qndn-1+7n (65)  Further, to satisfy the positive semidefinitenes¥of andW,,

the sequence@? , Jo<n<n—1, {07 ,, Jo<n<v—1 are monoton-
ically nondecreasing and positive, while, 1 < i < N —1, are
(66) suchthaS—! > 0 as tested, for example, by Sylvester’s condi-

where

=0
2% B =1 o2 67 tions.
onn =Bl =1 - a5 (67) " We manipulate (50) to derive more explicit relations. Evalu-
or , =E[z}] =1. (68) ating the top equation in (50) at= N — 1, and dividing the top

equation by the bottom equation in (50), we get the following
The above developments suggest that an acausal GMrp rg|ations for the backward variance parameters:
whose associated covarianEdas a tridiagonal inverse can be

represented by the product of three Markov processes: a forward o2, = L ! gr_lbo (70)
independent-increment process; ,, a backward indepen- ’ Ivoof v
dent-increment process, y—_.—1, and a variance-stationary 057 N—(it+1) i1\ DN—Gi41)
processz, (we address the existence of this factorization o2 <p4 ) B oy
b, N—(i+2) i+l N—(i+2)

rigorously in Section IV-A). This representation is interesting
because it describes trecausalprocessz, pinned by two
boundary conditions, one specifiedrat= —1 and the other at Similarly, evaluating the top equation (50)at 0, and dividing

n = N, in terms of thecausalforward process which is pinnedthe top equation by the bottom equation (rewritten at1) in

at the initial time but free at the end time, thnticausalback- (50), we get the relations for the forward variance parameters

for0<i< N -2 (71

ward process which is free at the initial time (of the original ) 1 fobn_1

process) but pinned at the end time (of the original process), 95,0 :E "2 (72)
and, finally, a process that captures the long-term behavior of ) L ThN-L

t_he original process (no pinning at either initial or t_erminal_ ;’f,i _ <%) fi ’ fori<i<N—1. (73)
times). We will refer to these three processes associated with o5 ,_; i) fiz1

the original GMrpz, as theforward boundary process, the
backward boundary process, and thessential component
process (their respective covariance matrices fe, W,,

Because alb% ,,, o7 ., fn, andb, are required to be positive,
we conclude from (71) to (73) that

andS). Likewise, we refer to the increment processgsand & >0.

v, as theforward and backward boundary erroprocesses, pi N o

respectively. From (56) and (60), to guarantee positive semidefiniteness of
The factorized representation of the GMrpin (53) is not W andW,, we must have

unique since the factorization of its covariance matrix in (49) is O-J% ;

not unique either (in fact, in some cases it is not possible to find 21 (74)
factorsW;, W), andS that are all positive-semidefinite; see )
Section IV-A for details). We can exploit this nonuniqueness to T, >1 (75)

derive factorizations that are “most interesting” in some sense. oF .

2
O%i—1
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Using these equations with (71) and (73), we get

iy Jin 1<i<N-1 (76)
pi i

b
G SINZEHD << N - 77)
Di by _;

Solving recursively either (71) or (73), we get the constraint
N—-1
=

I

Pi

bv_1fn-1

T (78)

2 2 _
O N—19%,N-1 = [

Canonical Realization:Combining these relations, we re-

state the optimization problem as follows.

1503

Since each factor in (85) satisfies also (81) and (82), the optimal
{a; } are

T by

Condition (83) is now satisfied if and only #? < 1 for all
1 <4 < N —1because, due to (62)—(648;* > 0if and only
if 7 < 1. If for somek we haveai > 1, then the solution to
the optimization problem (79)—(83) does not exist at all. This
is because? cannot be lower than the square of (86), or else
conditions (81) and (82) would not hold.

The minimum total boundary energy factorization (49) of a
positive-definite covariance matrik(whereJ —! is tridiagonal)
into positive-semidefinite factorsV ;, W,, andS is given by

ai:pi-max{ }, 1<i<N-1. (86)

@ @

N1 the following algorithm:
minimize oZ= )" (02 ;402 ,)=0% N_1T0% n_1
=0 (79) e Compute the forward and backward determi-
. nants of an N x N tridiagonal matrix J=" in
subjectto 0% y 107 v 1= [AHI %} SEAE (23) using Jacobi formulas ( o = pn)
£ N—170, N = i=1 Pi In fraa=01=0
(80) fo=1by =1
2 P AT
Th, N—(i+1) <Oéi+1> b]\r_(i+1) > 1 forf n = ;-, AQ ;
0.2 . . - . b —(i - n = qnJn—1 — Pnt1Jn—2
b, N—(i+2) Dit1 N—(i+2) b, = qJ\7—rz+lbrz—l _p?\’—n-}-lbn—Z
a’ . . ) e Compute an = pn - max{(fn—1/fn), (bn— /bn—n)}
f.i . ; fZ . n Pn n—1 nJ/s N—(n+1) N—n
o2 _<E>f7‘—1217 I<i<N-—-1 for 1<n<N-1,
frimd S eif a2<1lforal 1<n<N-1
(82) compute o7 x_, =0j x_, Using (84)
a; suchtha8—! >0, 1<i<N-—1. (83) compute o7 ,, oi , recursively for
n=20,1,---, N =2 using (70)—(73).
Solution: We solve the optimization problem (79)—(83) by ©ls€ o
first disregarding condition (83). Then we show that this soju- ~ declare that the factorization in (49)
tion is either the solution to the whole optimization problem in- ~ With positive semidefinite factors does
cluding condition (83), or there exists no solution to the opti- "ot exist
mization as posed in (79)—(83). Denote the right-hand side_of €4

(80) by ~. Replacing the value of,i ~—q from (80) into (79),
we rewritec? as

v

2
O'f7 N—1

2 _ 2
O =0f N—1T

We minimize this quantity subject tt)fc ~_1 > 0. Equating the

In some cases (whemn, are of the same sign for all< n <
N — 1), we may impose a further restriction on the total error
energy minimization problem, namely, that the essential com-
ponent factorS in (49) be Toeplitz This factorization is in-
teresting because we can then say that the essential component

first derivative to zero, and using the positive constraint, we g&t is the best wide-sense stationary process fit (in the minimum

Nt 81 by_ IN—
2 ] I % N—1JN-1
g N—1 = ’7 = i — .
d \/_ [i——l IL‘| f]\r

boundary energy sense) to the process whose potential matrix
is J~L. The solution to this optimization problem exists when-
ever the solution to the original optimization problem (79)—(83)
exists. Since the matri® is required to be Toeplitz, the off-diag-

By taking the second derivative, one can check that this uniq%al element ir8 that satisfies positive semidefiniteness of all

extreme is, in fact, the minimum. From (80) it follows that

N—-1

2 2 ;| by 1fnv1
Ol N1 =00 N = Lo INZLINZL O (gg)
b, N—1 fN-1 [71;[1 pi] Fn
To minimizes? = 2,/7, we minimizey? by minimizing
N-1 a
— (85)
Di

three factorsW ;, W, andS is given by thaty,, in (86) with
the largest magnitude, i.e.,
fac1 bN—(n31) }}

it e 2,
87)

max

“= Sign (pl) 1<n<N-1

n

where we assumed that is of the same sign as all othey,,
1 < n < N — 1. The forward and backward independent-

4A matrix A is Toeplitz if A(¢, ) = A(i + 1, j + 1) for anys, j.
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increment process variances are then obtained by recursiv

. .I?
_ 1
solving (70)—(73). oak-A |
= | ST
B. Examples oy 3 | ; ™ el
We now consider several important special cases. j:ﬂ '. !
= i K
Example 1 (DST-Diagonalized Matrix): 3 i
We assume next that the matdx* in (23) is Toeplitz posi- & 1! .
tive-definite, wherey,, = gandp,, =7, = p E o B vt
q D 0 2 ".I : ; T
pqa p = . Q\
-1 _ .. .. = ey .._.-__ _a=T
= ¢ : (88) 2 Bazssa--- U P
; E . o0 e [+ =
0 q D ak r""'C-—-\J-—|-|--|cu L T e B
p q e =0 nHE
o
This matrix is diagonalized by the discrete sine transform (DS r 20
[5]- time n=1,,..20

We are looking to find a factorization like (53) of a process
whose covariance matrix i, and whose essential componenkig. 1. Variance of the forward boundary error process For the optimal
z,, has a Toeplitz covariance mati$x i.e the{oci} in (49) are choice of«, the error variance is maximally concentrated at the beginning of
‘ . S ! the process.
all equal to and given by (87), and whose total boundary error P
energy (69) is minimized.

The solution in (84) gives hence the Toeplitz matri$ that satisfies (80)—(83) and mini-

mizes (79) has the off-diagonal element

N-1 3
2 9 | bn_1fn-1 _ fv—2
OfN-1 =0y, N—1 = [(;) T] . (89) « pr—l . (91)

5 o . .

For the closed-form solution fof;, see Appendix B. It is now gncéo_; ﬁ;gﬁesglil:]tl(ig)lsc\éil'Séig?;ir:‘z;es; irsii\t/lirifg(%%) and
: . . . 2.

simple to determinex using the following lemma. (91) into (70)—(73) and solving recursively.

Lemma 3: For a symmetric Toeplitz-positive positive-defi- We illustrate the properties of the solution with an example.
nite matrixJ ! in (88), the following inequality holds for all LetJ—! be a20 x 20 tridiagonal Toeplitz matrixN = 20) with
integersi > 1: the elements on the main diagonal equaling 1 and the ele-

‘ ‘ ments on the first upper and lower diagonals equalirg0.47.
hi > f”_l. (90) The solution that minimizes the total boundary error energy is
fier = i Qops = 0.7009 ando? | = of x_, = 1.7120. The vari-
Proof of Lemma 3:by induction. Sincd—! > 0, utilizing @nce of the forward boundary error processthat minimizes
Jacobi recursions, we have = qf;_1 — p®fi_» > 0 for all the total boundary error energy is plotted in Fig. 1 along with

i > 9. several other variances of the boundary error process for subop-
Initial Step: timal factorizations (53). We obsgrve from Fig. 1 that not only
is the total forward error enerdy’ " 02 ,, = 0% _; mini-
fo=1 mized, but also the variance term$ ,, are mostly concentrated
fi=q>0sinceJ™" >0 at the beginning of the process, i.e., closest to the beginning
fo=¢>—p?>0sinceJ * >0 boundary, and die as we move away from the boundary. Similar
fi q 1 fo conclusions hold for the backward boundary error process for
== E = W z E = ﬁ the optimal factorization, whose variance dies out as we move
Inductive Step: away in the other direction.
Fir i Example 2 (DCT-Diagonalized Matrix):
> We assume next that the matdx? in (23) is positive-defi-
fi T fia nite and has the form
=qfific1 =P fifice 2 afificr — PP ST 14+p p 0
= fi (a¢fic1 —P*fi2) 2 fic1 (afi — P fic1) p 1 p
fi Fir Jt = 1 (92)
— I Zfi’_l. O o1 p
fit1 Ji 0 p 14p
Combining Lemma 3 with (87), we get whereclearly;, = gv = 14p, g, = g=1for2<n < N—1,
a fn_2 andr, = p, = p. This matrix is diagonalized by the discrete

p = fno1 cosine transform (DCT) [5].
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: opt = 0
i ;
1 20

time n=1,...,20

Fig. 2. Variance of the forward boundary error processfor p = 0.15 For  Fig. 3. Variance of the forward boundary error procegsor p = —0.15.
the optimal choice ofy, the error variance is maximally concentrated at the
beginning of the process.

process has ad.-banded structure [3], Gauss—Markov ap-
e proximations lead to computationally efficient algorithms, see,
e.g., [6]-[8]. We address here the following question. Given

a Toeplitz covariance matri&, and whose total boundary error® Gaussian random process and an ofder 0 th’}t is the
energy (69) is minimized. Gauss—Markov random process of ordethat “best” fits, in

Similarly to proving Lemma 3, we can show by an inductivé®Me sense, the observed Gaussian process? We consider two
argument that optimality criteria, the Kullback-Leibler mean information
-0 (KLMI) and the entropy. The formulations of the problems in
f; 2 fio1 . these two cases are different, but, as we shall see, they lead to
,  foro0<i<N-2 (93)  the same solution.
fix1 p<0 f;

i.e., forp > 0, the sequencéf;/fi+1} is monotonically in-
creasing, and fop < 0 it is monotonically decreasing. Com- ) , .
bining this with (87), we get that the Toeplitz mat6xthat sat- 1 neerem 3 (Maximum Entropy Covariance Extensiobgt

isfies (80)—(83) and minimizes (79) has the off-diagonal elemefrt °€ @n arbitrary non-Toeplitz covariance matrix. &t be a
zero-mean random vector, such thatfhband of its covariance

We look for a factorization like (53) of a process whos
covariance matrix id, and whose essential componepthas

A. Optimal Gauss—Markov Approximation

pr*Q, forp >0 matrix R equals theL-band ofC. The entropy oz}, is max-
a = Snaa (94) imized whenZ}\, is an Lth-order Gauss—Markov vector whose
pﬁ -2 forp<o. covariance matriR is the L-band extension of given by (7).
fo 1+p Proof: This theorem is a special case of the general

If o2 < 1, the solution is valid, and the remaining variabi§§i theorem that establishes the following results: i) a multivariate
ands? ; needed in (49) can be obtained by substituting (89) a®hussian probability density function (pdf) maximizes the
(92) into (70)—(73) and solving recursively. entropy under the giveri.-band covariance constraint, ii)
In Figs. 2 and 3, optimization results are plotted for= the inverse of the covariance matrix isbanded, and iii) the
0.15 andp = —0.15, respectively. The plots show the variancd.-band of R equals theL-band of C. The proof of part i) is
of the process.,, driving the forward independent-incrementvell known and can be found in [9]. Parts ii) and iii) have been
processwy, ,,. Both plots reveal that, for the optimally chosenndependently proved in [10] and [11]. In [12], the theorem
«, the boundary error is minimized. At= 1 (beginning of the is presented in one piece. Combining results i)—iii) with the
process), the variance is largest for the optimal process. Likgecomposition Theorem (Theorem 2), we have thafteand
wise, atn = 20 (end of the process), the variance is smallest faxtension as defined in (7) is the maximum-entropy covariance
the optimal process. This is revealed by the plots of the varianeeension.

for suboptimal choices’, "', anda™ in Figs. 2 and 3. Theorem 4 (Kullback—Leibler Optimal Covariance)et C
be the covariance matrix of a zero-mean Gaussian vettor
LetR be the covariance matrix of thHeth-order Gauss—Markov
approximation vectorZ}\,. The matrixR that minimizes the

In many engineering applications, it is desirable to approkullback—Leibler mean information betweéH, andZ3, is the
imate a discrete-time Gaussian random process by a Gauksband extension o given by (7).
Markov random process of ordér Since the inverse covariance Proof: The proof of the general theorem can be found in
matrix (the potential matrix) of ad.th-order Gauss—Markov [12], where itis presented as a corollary to the Triangle Equality

V. GAUSS-MARKOV APPROXIMATIONS AND INFORMATION
Loss
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Theorem for matrices with banded support. Application of The Z Dl .. Zkz an
orem 2 proves our special case. '
Theorems 3 and 4 both lead to theband extension as the @ @ @
solution to their respective optimizations, but the two optimiza
tion criteria are not the same. In Theorem 3, the mdftiis not
Wy _'( : )_’|
a

assumed to be a covariance of a Gaussian vector and the 0]
mization is done ovedll possible probability density functions.
Contrary to that, in Theorem 4, the matfixis assumed to be the
covariance matrix of &aussiarrandom vector and the optimal

. L Zkz
solution is soughtnlyin the space of Gauss—Markov processes
However, these two criteria are equivalent wi@ns assumed
to be the covariance matrix of a Gaussian vector and the sol ‘ @
tion is confined to Gauss—Markov processes, which is formall
established by the Dual Optimization Lemma [12].

B. Autoregressive Process Interpretation

z

Suppos is the L-band extension of a covariance matiX Fig. 4. Autoregressive filters creating (a) the Gaussian progessid (b) its
SinceR is a symmetric positive-definite matrix, from Sectionf-th-order Gauss-Markov approximatiop.
[I-C we have that the UDL decompositionBf~* (we also refer
to it as the upper Cholesky decomposition) is C. Minimal Information Loss

We define the information loss as the Kullback—Leibler dis-

-1 _ T
R™ = UrDrUg (95) tance between the random vectgy and itsLth-order approx-

where imationz;}\,. If C is the covariance matrix of a Gaussian vector

2% andR is the covariance matrix of the Gaussian approxi-
Y 2y 2 mation vectorz;}\,, the information loss (Kullback—Leibler dis-
Dr =diag[(1/01), -+, (1/oy)] tance) of the approximation is
has positive diagonal entries. The element®Jgf and the (in- 1. detR 1 N
verses of the) diagonal elementts = o2, are given by (18) and I(N) =5 In o5 + 5 tr(CR™ b - 5 O

(20). WhenC is a symmetric positive-definite matrix, we recog-

nize (18) and (20) as solutions to “nonstationary” Yule-Walkef R is the L-band extension oR, then z;}\, is the optimal
equations (normal equations), also provided in [12]. Similar toth-order Gauss—Markov approximation. Due to Theorem 4,
(95), the upper Cholesky decomposition@f* is the information loss is then minimized. Invoking Corollaries 1.1
and 1.2 and the upper Cholesky decompositions (95) and (96),

-1 __ T
C™ =VcAcVg, (96) e get that the minimal information loss is
where
. I(N)=-In — (98)
Ac =diag [(1/A7), -+, (1/X3)]- 2 k:l;[-m AR

Clearly, since the firstL + 1) x (L + 1) principal minor ofR  i.e., the minimal information loss equals the difference of the
andC are identical, we have thaf = A} for k < L+ 1. For entropies of the two uncorrelated Gaussian random sequences
the same reason, the firbt+ 1 columns of Vg andUg are  {owi} and {\,wy} that drive the two autoregressive filters
identical. (a) and (b) in Fig. 4, respectively.

If C is the covariance matrix of a Gaussian vecthy, then It is interesting to contrast the approximation based on the
the L-band extensiolR is the covariance matrix of the optimallow-order L-band extension and the approximation based on
(in the maximum-entropy sensd)th-order Gauss—Markov the low-rank covariance approximation (Karhunen-Loéve de-
approximation vectog} . The upper Cholesky decompositiongomposition). Table | contrasts these decompositions. In the last
of C~! and R~! are canonic forms for representing theow in Table | we characterize the Karhunen—Loéve approxi-
time-varying causal autoregressive filters that generate the pneation as “static,” while we view the band extension as “dy-
cesseg, andz) by filtering a zero-mean unit-variance whitenamic.” This characterization is justified by the typical signal
Gaussian process;. This is shown in Fig. 4. In Fig. 4, the processing scenarios where the two approximations are used.
filter of Fig. 4(a) creates the original vectek, while the filter Typical applications of the low-rank approximation are subop-
of Fig. 4(b) createg ;. The number of tap-weights of filter (a) timal one-shot detection/estimation problems such as the radar
grows linearly with every time instant. Filter (b) is identical taletection problem [13]. Typical usages of the approximations
filter (a) up to (and including) the time instaht= L + 1. For based on low-band extensions are in suboptimal dynamic detec-
all time instantst > L the number of tap weights of filter (b) tion/estimation applications such as the Viterbi algorithm [6], or
is L. Hence, the two filters differ fok > L + 1. the Kalman—Bucy filter [7].
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TABLE |
CONTRASTING THE KARHUNEN-LOEVE LOW-RANK APPROXIMATION WITH THE LOW-BANDWIDTH APPROXIMATION

Karhunen-Loéve Low bandwidth
approximation approximation
matrix decomposition singular value decomp. Cholesky decomp.
C=Qc=cQ¢ C™!=VcAcVE
approximation constraint reduces rank r reduced bandwidth L
distance measure Froebenius-norm distance Kullback-Leibler distance
(approximation quality measure) (energy loss €?) (information loss 1)
decomposition of the
approximation R = PrSRP} R~! = UgDrU}
quality of optimal approximation | €% =tr(2¢) —tr(Sr) | I =In(detAc) — In(detDg)
character static dynamic
VI. SUMMARY where
This paper has presented a novel nested algorithm to invert A=-D-cTA-lp

general matrices whose inverses are known to be banded. E—A !B
This algorithm uses only the entries of the (full) matrix cor- - o
responding to the nonzero entries of its inverse. We apply the F=C A"
nested algorithm to obtain three important results: explic‘i& - . N—L
inverses for tridiagonal matrices; a novel factorization o efnlcl)WWpr.ove Lemma 1. Partition the matrides; andR
first-order noncausal Gauss—Markov processes; and appr&ﬁ- OlloWS.

mations of Gauss processes by Gauss—Markov processes and RL — RL_, B
the corresponding information loss. NTL oty
We believe that our inverses of general tridiagonal matrices RY-L

. . T . RJV_L N—-1 2 100

are the first time such explicit inverses are available. These N = T ’ (100)

expressions when applied to certain matrices provide the
closed-form expressions for the covariances of GMrp’s who¥éth the MatLab notation
Karhunen-Loeve transforms are the discrete cosine transform B_RL(1:N—1N
(DCT) and the discrete sine transform (DST). B=Ry(1: » N)

The inverses of tridiagonal matrices are given as the ele- CY =Rj(N, 1:N —1)
ment-wise (or Hadamard) product of three matrices. When
these are covariance matrices in their own right, they provi&g
an interesting and novel interpretation for noncausal first-ord&¥
Gauss—Markov random processes. The noncausal GMrp is fac- [[R}\,_l]l 0

d likewise forb andc”. Applying the partitioned matrix in-
rse theorem (99) to (100), we get

tored as the product of three independent-increment processe[i.l}\r]’1 - T
a forward process that takes care of the initial condition of 0 0
the GMrp; a backward process that accounts for the terminal 1 l RYy_,J'BCT[RY_ 7' —RL_,]'B

condition of the GMrp; and a variance stationary (free at the — —

boundaries) GMrp. This canonical decomposition of a GMrp as H -c* RL_ ]! 1

a factorization of independent processes is striking in its own (201)

right, being very different from the usual decomposition of

processes as sums of elementary processes, or autoregreé‘é\%

type representations. . RYZETL 0
Finally, we apply the nested algorithm to the problem of [Rﬁr L]_1 - T

approximating Gaussian processes by noncausal GMrp’s and 0 0

compute explicitly the information loss of the approximation. 1 [ RY-E-1p SR -EL _[Rﬁi—f]lb‘|
=7 N—L—
APPENDIX A h —cFRyZ7T 1
PROOFS (102)
Proof of Lemma 1:We recall the matrix-inversion lemmawhere
(see e.g., [14]) for block-partitioned matrices. Assumikg! B
exists H=r—-C"Rjy_|™'B

A B]' [ A'+EA'F -EA! (©9) and
c’ D| —A"'F AT h=r—c"[RYE7" (103)
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are the respective Schur complements- @f (100), see, e.g., APPENDIX B
[14]. Notice that (101) and (102) combine to give (6) if the fol- FREQUENTLY ENCOUNTERED SYMMETRIC TRIDIAGONAL
lowing holds: MATRICES
RY !B = { 0 } (104) We qonside_r fqur examplt_es o_f tridiagonal matrices that are
A [Rﬁjﬁ:f]*lg useful in applications. The first is a well-known example and
QT[R}\LI]—JL =[07 QT[RR;:IL]A ]. (105) we include it just for completeness.
We now prove (104) and (105). Partition the maiR¥,_, as First-Order Stationary Gauss—Markov ProcesBerhaps the
X v only previously known nontrivial example of a tridiagonal ma-
Ry_, = { 7 RN_L} (106) trix whose inverse is known is the matrix
N—1

Applying the partitioned matrix inverse theorem (see e.g., [14?)_1 =1 2

—

on (106), we get 1 —a 0
1 -1 _ 0 0 I —1 — 1+ CYQ —
[RNfl] - |:0 [RRZ%]_1:| + |:F S [I G] (107) . —a 1 +a2 —a
where —a 1+ a? —a
F=-[Ry_{]7'Z 0 —a 1+ a?
= N-1 > ~
G = -YRY~ he
and (110)
S=X-YRNI"'Z whose inverse is the covariance matrix of a first-order stationary
) NI o A__l ~ causal Gauss—Markov process
SinceRy " is a principal submatrix oR},, we have thab is 1 0 o e aN-1
a subvector o3, see (100), i.e., we can write
T « 1 o o :
B = h} : (108) J=| & a 1 a o |. (111)
Multiplying (107) by (108) from the right, we get 1\5—1 o 042 1 o
[Rl ]713 |: 0 :| N |: S—1(£+ Gb) :| (109) Matrix 3 | a e a a 1
. = . . t
N-1l D RY=E]-1 FS—(z + Gb) atrix J is
Since [Ry]™! is L-banded by assumption, the las¥th) (1—a?) xJ;. (112)

column of the left-hand side of (101) has zeros in the first )
N — L — 1 entries. Hence, the same must hold for th&0 find J1, we compute each of the factors in the Hadamard

right-hand side of (101). It follows then that the columiroduct formula (48). For the first two factors, and using the
vector[RY,_,] 1B has zeros in its firstV — L — 1 entries. Jacobi determinant relations (39) and (40), we get that all deter-
Since[RY_,]~'B has zeros in its firstV — L — 1 entries, it Minantsf, =b, =1,0 <n < N—1,andfy = by = 1-a?.
follows from (109) thaS—1(z + Gb) = 0. Then we also have _Fmally, the2th|r_d factor in (48_) is exactly mgtrlx (111). Sb,
FS—1(z + Gb) = 0. Thus (109) actually reads as (104). ThéS 1/(1 — «*) times the matrix in (111), which once replaced

proof of (105) follows from similar arguments. in (112) gives thafl is as in (111). The UDL decomposition for
Finally, we proveH = h. this example is similar in form to the decomposition in (62)—(64)

H=r—C'Riy_ | 'Ry J[Ry_,] B
e N 111 | X Y 0 Discrete Sine Transform (DST):

=r—[0"" Ry {Z RNL:| |:[RN_L —14 . The following symmetric Toeplitz tridiagonal matrik ! is

N—-1 =2

N—-1 . . . . .
N . . . . diagonalized by the discrete sine transform (DST) [5]. Define
Multiplying out the matrices on the right-hand side readllyr:e%\, N K, mat>rlixJ—1las I ( ) 5] !

shows thatd = h.

0 0

Proof of Lemma 2:In the proof of Lemma 1, we es-
tablished that the firstv — L — 1 elements of the vectors
[RY ,]~'BandC”[RL]! are zeros. Hence, only the lowestl ' =
(L+1) x (L +1) principal submatrix of the right-hand side of
(101) is nonzero. Thus the matrix on the right-hand side of (101) 0
is L-banded. SincéR%,] ! is alsoL-banded, it follows from 1
(101) that[R},_,]~! is L-banded too because it is obtained fora= <. (113)
by adding twol-banded matrices. With similar arguments, we
can show thafR3,]~! is also L-banded. Carrying on theseBy inspection, the constants in (23) age=« andp,, =7, =1.
arguments for smaller principal submatrices, we conclude th&te forward and backward determinants of (113) are
every principal submatriR’ of size(L + 1) x (L + 1) or
greater must have ab-banded inversfa. . ) O fno=bn=Up (%) (114)

a 1 1 A

1 o 1 A1 A
. 1 .

1 = — A

1A
« 0 A1
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where (1 2x 0
. v 20 1 A
cos (n—) , forz =0 . .
2 1 A AP for 1
. == , a= .
5111(7? + 1) arccos x for 0 < || < 1 A 1 A
Un(z) = sin arccos x (115) X1 2)
(n+ 1", for [z| =1 K 22 1
Sinh.(n + 1)arc cosh a:’ for [z > 1 (119)
\ sinh arccosh z

is thenth-order Chebyshev polynomial of the second kind [15]3y inspection, the constants in (23) are = r, = py_1 =
Substitutingp,,, 7., fn, andb,, into (47) and (48), we get the rNo1 =2 pn =rmfor2 <mn < N -2 andg, = a. The
closed-form solution fod. This matrix is then a covariance Masorward and backward determinants of (119) are

trix that is diagonalized by the DST. It is the covariance of a

first-order noncausal Gauss—Markov process with zero Dirichlet

boundary conditions, see [1]. fo=bo=1 (120)
o o
Discrete Cosine Transform (DCT): frn =bn=4Uy (5) —3alp_1 (5) ;o forl<n<N -1
The following symmetric tridiagonal matrik—! is diagonal- (121)
ized by the discrete cosine transform (DCT) [5
y (Cen B Iy =by = afr—s — 4fy_s (122)
l1+a 1 0
1 a 1 _ )
J-1_ 1 where U/, (x) is the nth-order Chebyshev polynomial of the
- second kind, see (115). Substituting them into (47) and (48),
« 1 we get the closed-form solution fdr This matrix is the covari-
0 1 1+« ance of a first-order noncausal Gauss—Markov process with zero
1+A A 0 symmetric Neumann boundary conditions, see [3], [1].
A 1 A
1
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.1 A
0 A1+ [1] J. M. F. Moura and M. G. S. Bruno, “DCT/DST and Gauss—Markov
(116) fields: Conditions for equivalencelEEE Trans. Signal Processingol.
. . . 46, pp. 2571-2574, Sept. 1998.
By inspection, the constants in (23) afe = qv = 1+ «, [2] G. H. Golub and C. F. Van LoarMatrix Computations Baltimore,
¢. = afor2 <n < N -1,andp, = r, = 1. The forward - MD: Johns Hopkinstniv. Prless, 1983. . |
: 3] J. M. F. Moura and N. Balram, “Recursive structure of noncausa
and backward determinants of (116) are Gauss Markov random fieldsJEEE Trans. Inform. Theoryol. 38,
@ @ pp. 334-354, Mar. 1992.
fn=bn=Uy (5) + Un1 (5) ) foro<n<N-1 [4] J. W. Woods, “Two-dimensional discrete Markovian field$EEE
(117) Trans. Inform. Theoryol. IT-18, pp. 232-240, Mar. 1972.
[5] A. K. Jain, Fundamentals of Digital Image ProcessingEnglewood
r=by =(14+« 1 — IN— 118 Cliffs, NJ: Prentice-Hall, 1968.
Ia N ( )f]\ SRRASE ( ) [6] A.Kaveicand J. M. F. Moura, “The Viterbi algorithm and Markov noise
where U,,(x) is the nth-order Chebyshev polynomial of the memory,”|EEE Trans. Inform. Theorywol. 46, pp. 291-301, Jan. 2000.

: - : 7] A. Asif and J. M. F. Moura, “Data assimilation in large time varying
second kind, see (115). Substituting them into (47) and (48), We[ multidimensional fields,"EEE Trans. Image Processingol. 11, pp.

get the closed-form solution fak. This matrix is a covariance 1593-1607, Nov. 1999.
matrix that is diagonalized by the DCT. It is the covariance of [8] T. M. Chin, W. C. Karl, and A. S. Willsky, “A distributed and iterative

a first-order noncausal Gauss—Markov process with zero non-  23'2% root a'ggmhm for space-time filterinititomatica vol. 31, pp.
7-82, Jan. 1995.

symmetric Neumann boundary conditions, see [1]. [9] T. M. Cover and J. A. Thomaglements of Information Theary New
. . . York: Wiley, 1991.
Symmetric Boundary Conditions Matrix: [10] R.Grone, C.R. Johnson, E. M. S4, and H. Wolkowicz, “Positive definite
The following matrix J-1 is associated with a first-order completions of partial Hermitian matriced,inear Algebra Appl.vol.
. ) ) . : 58, pp. 109-124, 1984.
Gauss-Markov (acausal) random field defined on a finite Iattlc(?11] H. Lev-Ari and T. Kailath, “Autoregressive models for nonstationary

with symmetric boundary conditions [3] discrete time processes,” IEEE Int. Symp. Informtion ThearCam-
- 9 0 bridge, MA, Aug. 1984.

@ [12] H. Lev-Ari, S. R. Parker, and T. Kailath, “Multidimensional maximum-
2 o 1 entropy covariance extensionEEE Trans. Inform. Theoryol. 35, pp.

. . 497-508, May 1989.
J = 1 : : [13] H.L.Van TreespPetection, Estimation, and Modulation TheoryNew
. York: Wiley, 1968, vol. I.
[14] L. L. Scharf, Statistical Signal Processing: Detection, Estimation and
Time Series Analysis Reading, MA: Addison-Wesley, 1991.

[15] T.J.Rivlin, The Chebyshev PolynomialsNew York: Wiley, 1974.

—
N QO
jol )




