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Matrices with Banded Inverses: Inversion Algorithms
and Factorization of Gauss–Markov Processes
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Abstract—The paper considers the inversion of full matrices
whose inverses are -banded. We derive a nested inversion
algorithm for such matrices. Applied to a tridiagonal matrix,
the algorithm provides its explicit inverse as an element-wise
product (Hadamard product) of three matrices. When related to
Gauss–Markov random processes (GMrp), this result provides
a closed-form factored expression for the covariance matrix of a
first-order GMrp. This factored form leads to the interpretation of
a first-order GMrp as the product of three independent processes:
a forward independent-increments process, a backward indepen-
dent-increments process, and a variance-stationary process. We
explore the nonuniqueness of the factorization and design it so
that the forward and backward factor processes have minimum
energy.

We then consider the issue of approximating general nonsta-
tionary Gaussian processes by Gauss–Markov processes under two
optimality criteria: the Kullback–Leibler distance and maximum
entropy. The problem reduces to approximating general covari-
ances by covariance matrices whose inverses are banded. Our in-
version result is an efficient algorithmic solution to this problem.
We evaluate the information loss between the original process and
its Gauss–Markov approximation.

Index Terms—Banded matrix, Cholesky decomposition, Gauss–
Markov processes, inhomogeneous autoregressive processes, Kull-
back–Leibler distance, -band complement, maximum-entropy
method, potential matrix, tridiagonal matrix.

I. INTRODUCTION

B ANDED matrices arise in numerous applications ranging
from the discretization of partial differential operators to

linear autoregressive models for images. When these matrices
are symmetric and positive-definite, their inverses are covari-
ance matrices of causal or noncausal Gauss–Markov random
processes (GMrp).1 In this sense, they are parsimonious descrip-
tions for GMrp’s, easier to parameterize than the covariance of
the process itself.

In this paper, we present an intriguing nested algorithm to in-
vert matrices whose inverses are known to be-banded. The al-
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1These processes are also commonly referred to in the literature as
Gauss–Markov random fields.

gorithm applies to general matrices, not necessarily symmetric
or positive-definite. The nested algorithm uses only the entries
in the -band of the full matrix. In other words, the entries
of the matrix outside its -band are not used in finding its in-
verse, when the inverse is-banded. Again, invoking the GMrp
analogy, the nested algorithm inverts the covariance matrix of a
Gauss process when the process is known to be Markov.

With the insight provided by the nested algorithm, we ob-
tain three major results: i) we derive explicit inverses for gen-
eral tridiagonal matrices; ii) we present an original factorization
of GMrp’s as the product of three independent-increment pro-
cesses; and, finally, iii) we study the approximation of Gauss
processes by Gauss–Markov processes.

Explicit Inverses of Tridiagonal Matrices:Application of the
nested algorithm leads to explicit expressions for the inverses of
general tridiagonal matrices, i.e.,-banded matrices where
. In particular, this enables us to write, we believe for the first

time, closed-form expressions for covariance matrices which are
diagonalized by trigonometric transforms like the discrete co-
sine transform (DCT) and the discrete sine transform (DST),
i.e., for which these transforms are their Karhunen–Loève trans-
forms [1]. The explicit inverses of tridiagonal matrices are given
as Hadamard (i.e., element-wise) products of three matrices.

Factorization of GMrp’s: When we apply this factored de-
composition to covariances of GMrp’s, we obtain an original
factorization of GMrp’s as the product of three independent
random components: a forward independent-increments
process, a backward independent-increments process, and a
variance-stationary random process. This factored representa-
tion is striking because it helps separate the impact of boundary
conditions (initial and terminal) from the long-term behavior of
the noncausal process. The forward component starts from the
initial condition of the process, the backward component is a
backward process started from the terminal condition, and the
variance-stationary component is free at both ends. We exploit
the nonuniqueness of the Hadamard factored representation to
solve for the optimal factorization of the GMrp in the sense
that the sum of the energies of the forward and backward
components are minimal.

Approximation of Gauss Processes by Gauss–Markov Pro-
cesses:We explore the role of banded matrices and the appli-
cation of the nested algorithm along a third direction, namely,
that of finding Gauss–Markov process approximations to gen-
eral nonstationary Gauss processes. A problem related to this is
that of covariance matrix extension, where it is desired to ex-
tend the covariance of a random sequence beyond a given lag.
The optimal solution to either problem in the sense of the Kull-
back–Leibler distance or the maximum-entropy criterion corre-
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sponds to approximating the original covariance matrix by a co-
variance matrix whose inverse is banded. Our nested algorithm
is a readily available efficient solution to this problem.

Summary of the Paper:In Section II we present the concept
of the -band extension of a general matrix and then our major
results on the inverses of matrices with-banded inverses. The-
orems 1 and 2 present the nested algorithm for inversion of such
matrices. Appendix A contains proofs for two lemmas presented
in this section. Section III applies the nested algorithm to de-
rive the explicit inverse for a general tridiagonal matrix. The in-
verse is expressed as the Hadamard product of three matrices. In
Appendix B we illustrate this inverse for matrices widely used
in applications. Section IV applies the results in Section III to
solving the optimization problem of factoring a Gauss–Markov
random process as the product of three independent processes,
where the sum of the energies of the forward component and
of the backward component is minimal and the third compo-
nent has a covariance with prespecified form, namely, it is vari-
ance-stationary. Section V studies the approximation of gen-
eral Gauss processes by Gauss–Markov processes, relates this
problem to the approximation of general covariance matrices
by matrices whose inverse is-banded, and uses the nested in-
version algorithm to provide a prompt solution to this problem.
We consider both the Kullback–Leibler distance and the max-
imum-entropy criterion as optimality criteria. The section also
presents the information loss carried by these GMrp approxima-
tions. Section VI summarizes the paper.

II. BANDED MATRIX ALGEBRA

A. Notation

To avoid cumbersome block-matrix expressions throughout
the paper, we introduce the following notation. We denote a
column vector of elements by

(1)

We specify a subvector of involving elements through
, where , by

(2)
We denote an matrix by . We will often use
MatLab2 type notation. By we represent the col-
umn vector of the entries of the matrix through ,

2MatLab is a registered trademark of MathWorks.

and likewise for the row vector . A principal subma-
trix of spanning columns (and rows)through

is given by

(3)

We refer to a matrix as an-banded matrix if the
elements outside the band defined by theth lower diagonal
and the th upper diagonal are zero. A diagonal matrix is thus
a -banded matrix. A tridiagonal matrix is a-banded matrix.
Similarly, we refer to the band between (and including) theth
lower and the th upper diagonal of a matrix as the -band
of . The trace of matrix is denoted by , while its deter-
minant is denoted by .

Throughout the paper, we add block-partitioned matrices in
an overlapping fashion. For this purpose, we develop the fol-
lowing nested notation shown in (4) at the bottom of this page.
The resulting matrix in (4) is an -banded matrix. The fol-
lowing example of a -banded matrix illustrates the nota-
tion in (4) (on the right-hand side we omit the zero elements)

(5)

B. Theorems

The proofs of the next two lemmas are in Appendix A.

Lemma 1: Let be an matrix whose inverse is
-banded. Then

(6)

(4)
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Lemma 2: If has an -banded inverse , then the
inverse of any principal submatrix of is also

-banded, provided that .

Definition ( -Band Extension):The matrix is called the
-band extension of an matrix , if its inverse is

related to , as shown in (7) at the bottom of this page.

Theorem 1 (Banded Matrix Inverse Theorem): is -
banded if and only if equals its own -band extension.

Proof: The if is trivially satisfied by the definition of the
-band extension. To prove theonly if direction, we invoke the

following inductive argument. Lemma 1 gives

(8)

From Lemma 2 we have that in (8) is -banded.
Since has an -banded inverse, we can further apply
Lemma 1 on to express in terms of

, , and . Successive
alternative application of Lemma 2 and Lemma 1 on

proves the theorem.

Corollary 1.1: If is -banded, then

(9)

Proof: To prove the Corollary, recall the following for-
mula for the product of a block-partitioned matrix:

where we assumed that exists.

We use an inductive argument. First the following hold:

(10)

As shown at the end of the proof of Lemma 1 in Appendix A,
the Schur complements of the last element ofand of ,

and , respectively, (see (103)), are equal. Hence, from the
last equation above

Replacing this value of in (10), we get

(11)

Due to Lemma 2, we have that is -banded. Due to
Lemma 1, we have again

(12)

Successive application of this procedure on

leads to (11).

Corollary 1.2: Let be the -band complement of an
matrix . Then

(13)

Proof: Multiply by (7) and verify that the product has
ones on the main diagonal.

(7)
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(15)

Note that Corollary 1.2 asserts only that the diagonal entries
of are ones. It says nothing about the off-diagonal en-
tries of or of .

The Banded Matrix Inverse Theorem (Theorem 1) can be
generalized to banded matrices with nonuniform bands. We
demonstrate this on an example (the proof of which is very
similar to the proof of Theorem 1). Let the matrix be a
matrix whose inverse has the following structure:

(14)

where “ ” denotes nonzero elements in the matrix, “ ” de-
notes nonzero elements in the inverse matrix , and “ ” de-
notes zeros. Then the inverse is given by (15) at the top of this
page.

Theorem 2 (Decomposition Theorem):Let be an arbitrary
square matrix. There exists a unique matrixwhose -band
equals the -band of and whose inverse is -banded. In
other words, there exists a unique matrixsuch that

(16)

where is -banded. (The matrix that satisfies (16) is the
-band extension of .)

Proof: The proof follows from the uniqueness of the
inverse given by the Banded Matrix Inverse Theorem (The-
orem 1).

C. UDL Decomposition

The UDL decomposition3 of where is the -band
extension of is closely related to the nested representation of

given in (7). By factoring out the right-hand side in (102)

3The UDL decomposition of a matrixA is the decompositionA = UDL,
whereU is upper-triangular with ones along the diagonal,D is diagonal, and
L is lower-triangular with ones along the diagonal.

in the proof of Lemma 1 in Appendix A, we have the following
equality for a nested pair :

(17)

where

(18)

(19)

(20)

Using (17) in (7), we find factors of the UDL decomposition

(21)
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and

(22)

Here, , , and are the UDL factors of
. Clearly, is an upper-triangular -banded matrix

while is a lower-triangular -banded matrix.

III. I NVERTING TRIDIAGONAL MATRICES

We apply the Banded Matrix Inverse Theorem, Theorem 1
in Section II, to calculate the inverse of tridiagonal banded ma-
trices. In Section III-A, we provide a numerical procedure to
find these inverses in order . At the end of the same
subsection, we discuss the generalization to-banded matrices.
In Section III-B, we derive closed-form expressions for the in-
verses of tridiagonal matrices. Examples for several frequently
encountered matrices are in Appendix B.

A. Algorithm for Inverting Tridiagonal Matrices

Consider the general tridiagonal matrix

...
...

. . .

(23)

We derive the inverse of this matrix assuming it exists. From the
Banded Matrix Inverse Theorem, Theorem 1, we have (24) (at
the bottom of this page), where the subblocks

and in (24) have the form

and (25)

In (25), the unknown variables are ,
, and . By inspection of

(23)–(25), we get

(26)

(27)

for (28)

The inverses of the blocks in (25) are

(29)

Since both and must be principal subblocks of ,
we get from (29)

for (30)

for (31)

Rearranging, we obtain

from (26), (28), and (31)

for (32)

from (27), (28), and (30)

for (33)

from (28) for

(34)

Solving canonically: from the forward recursion (32) get all;
from the backward recursion (33) get all ; from (34) and all

and get all . Substituting all , , and into (29),
obtain the tridiagonal part, i.e., the -band of . To get
the remaining elements of, apply the following “filtering”
method. Multiply a row of with a column of and use
the fact that the product must be an entry of. For example,
to get the entry , multiply the first row of with the
third column of and equate to zero. This gives an equa-
tion for the element . Repeat this going outward from the

-band of sequentially sweeping all the missing di-
agonals of . The operation counts for determining the

-band of and then filling the remaining of are and
, respectively, which makes the tridiagonal matrix inver-

sion an operation.
1) Inverting -Banded Matrices:Let be an -banded

matrix. Decompose as , where and

(24)
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are unitary and is tridiagonal. The complexity of this decom-
position is since both and can be obtained in
closed form with Householder reflections of size
[2]. The inverse is then given by , where
we can use the method described in Section III-A to invert a
tridiagonal matrix . The operation counts for the factorization

, the inversion , and the multiplication
are , , and , re-

spectively, making the -banded matrix inversion an
complexity operation. This is useful when .

B. Explicit Inverses of Tridiagonal Matrices

We now use the forward and backward recursions in
(32)–(34) to derive explicit inverses for tridiagonal matrices.
Define the following forward-recursing and backward-re-
cursing determinants of in (23):

and (35)

and (36)

and

for (37)

(38)

Applying the Jacobi expansion to evaluate these determinants,
gives rise to the following Jacobi determinant recursion for-
mulas:

for (39)

for

(40)

Combining these with the recursions (32)–(34), we get

from (39) and (32)

for (41)

from (40) and (33)

for (42)

(32), (33), (41), and (42)

for

(43)

from (34), (41), and (42)

for (44)

Applying the recursion (43) successively to (44), we get

for (45)

where we used and . We then get

from (41), (42), (45), and (29)

for (46)

i.e., the tridiagonal -band of . Using the “filtering” ap-
proach for filling the rest of the matrix as described in Section
III-A, we get the closed-form solution for the th element
of

for

for

for .

(47)

Collecting in matrix format, the tridiagonal matrix has the
inverse

...
...

...
. . .

...

...
. . .

...
...

...

...
...

...
. ..

...

(48)

where stands for the Hadamard product, i.e., the element-wise
matrix product. In Appendix B, a number of frequently encoun-
tered tridiagonal matrices are examined.

Nonuniqueness of the Factorization:In Section IV we
explore the representation given by (48) to derive equivalent
factored representations for Gauss–Markov processes. Before
doing that, we show that the factored representation (48) is not
unique. Because of the relation with Gauss–Markov processes
that we study in Section IV, we restrict the discussion now to
symmetric, positive-definite matrices. Accordingly, we take

in the expression of in (23).
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In fact, there are many possible equivalent representations

...
...

...
. . .

...

...
. ..

...
...

...

...
...

...
. . .

...

(49)

The factorization (49) is equivalent to (48) if the entries
in , in , and in satisfy the following set of
conditions:

for

for

(50)

IV. FACTORED REPRESENTATIONS OFGAUSS–MARKOV

PROCESSES

We turn our attention now to symmetric positive-definite
tridiagonal matrices . Accordingly, in (23). Such

are potential matrices, i.e., inverses of covariance matrices,
of first order acausal nonstationary Gauss–Markov random
processes (GMrp) [3] defined on a finite lattice. Conversely,
every first-order acausal GMrp has a covariance matrix whose
inverse is tridiagonal [3]. For simplicity, we take to be
zero mean. Acausal or noncausal GMrp’s can be described by
difference equations. For with potential matrix given
by (23), we have

(51)

This difference equation is adjusted at and
where we need to specify two boundary conditions: a left (“ini-

tial”) boundary condition and a right (“terminal”) boundary
condition . We assume that (51) is the minimum mean-square
error realization of the GMrp, [4]. Stacking the processesand

in -dimensional vectors and , (51) leads to the matrix
equation

(52)

The driving noise is correlated, its covariance being

As mentioned before, the covariance ofis

Factored Representations:Equation (48), and more gen-
erally (49), factors the covariance matrixas the Hadamard
product of three matrices , , and , so that each entry
of is the product of three quantities. When these three
matrices are positive-semidefinite, it follows that the zero-mean
GMrp , , with covariance matrix can be
represented as aproductof three uncorrelated processes

(53)

where is the covariance matrix of , ,
is the covariance matrix of , ,

and is the covariance matrix of , . We now
explore the factorization given by (49) and what it says about
the representation (53) of the GMrp.

The three factors in (49) are highly structured. The first factor
with its telescoping pattern has the structure of a (forward)

Wiener matrix. The second factor has the structure of a
backward Wiener matrix. Finally, the third factor has nor-
malized diagonal entries of, and generalizes the structure of
a geometric matrix. The general entry of a geometric ma-
trix is of the form .

Assuming that all these factors are positive-semidefinite
(Section IV-A addresses this issue), we associate to each of
these matrices special classes of processes. To a Wiener matrix
we can associate a (zero-mean) independent-increment process
whose covariance is that matrix. With , we associate the
forward independent-increment process that satisfies the
following description:

(54)

(55)

(56)

(57)

The increments of are the driving process which is a
zero mean, white process. The process is started from zero.

Similarly, we associate to the second factor a backward
independent-increment process described by the dif-
ference equation

(58)

(59)

(60)

(61)
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This is a backward process, started from zero initial condition.
The increments of are , a zero-mean white process.

Finally, to interpret the third factor , we find the UDL de-
composition of as

(62)

where is the lower-triangular matrix

...
...

...
. . .

. . .
...

...
(63)

and is a diagonal matrix where

(64)

From (63) and (64), we associate withthe scalar, first-order,
variance-stationary Markov random process

(65)

where

(66)

(67)

(68)

The above developments suggest that an acausal GMrp
whose associated covariancehas a tridiagonal inverse can be
represented by the product of three Markov processes: a forward
independent-increment process , a backward indepen-
dent-increment process , and a variance-stationary
process (we address the existence of this factorization
rigorously in Section IV-A). This representation is interesting
because it describes theacausalprocess pinned by two
boundary conditions, one specified at and the other at

, in terms of thecausalforward process which is pinned
at the initial time but free at the end time, theanticausalback-
ward process which is free at the initial time (of the original
process) but pinned at the end time (of the original process),
and, finally, a process that captures the long-term behavior of
the original process (no pinning at either initial or terminal
times). We will refer to these three processes associated with
the original GMrp as theforward boundary process, the
backward boundary process, and theessential component
process (their respective covariance matrices are, ,
and ). Likewise, we refer to the increment processesand

as theforward and backward boundary errorprocesses,
respectively.

The factorized representation of the GMrp in (53) is not
unique since the factorization of its covariance matrix in (49) is
not unique either (in fact, in some cases it is not possible to find
factors , , and that are all positive-semidefinite; see
Section IV-A for details). We can exploit this nonuniqueness to
derive factorizations that are “most interesting” in some sense.

In particular, defining the total forward and backward boundary
error energy as

(69)

we look for factorizations that minimize this total boundary
error energy. We develop this concept further in the next sub-
section.

A. Canonical Factored Representations

We start by setting up the problem. We are given the
symmetric positive-definite tridiagonal matrix , see (23)

with . We look for the parameters

such that the representation in (49) is satisfied, and the total
boundary error energy is minimized. In other words, we
search for a very specific factored representation of the process

associated with , one where the sum of the forward and
backward error processes energy is minimal.

This is a constrained optimization problem, since the param-
eters satisfy the relations in (50).
Further, to satisfy the positive semidefiniteness of and ,
the sequences , are monoton-
ically nondecreasing and positive, while, , are
such that as tested, for example, by Sylvester’s condi-
tions.

We manipulate (50) to derive more explicit relations. Evalu-
ating the top equation in (50) at , and dividing the top
equation by the bottom equation in (50), we get the following
relations for the backward variance parameters:

(70)

for (71)

Similarly, evaluating the top equation (50) at , and dividing
the top equation by the bottom equation (rewritten at ) in
(50), we get the relations for the forward variance parameters

(72)

for (73)

Because all , , , and are required to be positive,
we conclude from (71) to (73) that

From (56) and (60), to guarantee positive semidefiniteness of
and , we must have

(74)

(75)
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Using these equations with (71) and (73), we get

(76)

(77)

Solving recursively either (71) or (73), we get the constraint

(78)

Canonical Realization:Combining these relations, we re-
state the optimization problem as follows.

minimize

(79)

subject to

(80)

(81)

(82)

such that (83)

Solution: We solve the optimization problem (79)–(83) by
first disregarding condition (83). Then we show that this solu-
tion is either the solution to the whole optimization problem in-
cluding condition (83), or there exists no solution to the opti-
mization as posed in (79)–(83). Denote the right-hand side of
(80) by . Replacing the value of from (80) into (79),
we rewrite as

We minimize this quantity subject to . Equating the
first derivative to zero, and using the positive constraint, we get

By taking the second derivative, one can check that this unique
extreme is, in fact, the minimum. From (80) it follows that

(84)

To minimize , we minimize by minimizing

(85)

Since each factor in (85) satisfies also (81) and (82), the optimal
are

(86)

Condition (83) is now satisfied if and only if for all
because, due to (62)–(64), if and only

if . If for some we have , then the solution to
the optimization problem (79)–(83) does not exist at all. This
is because cannot be lower than the square of (86), or else
conditions (81) and (82) would not hold.

The minimum total boundary energy factorization (49) of a
positive-definite covariance matrix(where is tridiagonal)
into positive-semidefinite factors , , and is given by
the following algorithm:

� Compute the forward and backward determi-

nants of an N � N tridiagonal matrix J
�1 in

(23) using Jacobi formulas ( rn = pn)

f
�1 = b

�1 = 0

f0 = b0 = 1

for n = 1; � � � ; N

fn = qnfn�1 � p2n+1fn�2
bn = qN�n+1bn�1 � p2N�n+1bn�2

end

� Compute �n = pn � maxf(fn�1=fn); (bN�(n+1)=bN�n)g

for 1 � n � N � 1.

� if �2
n � 1 for all 1 � n � N � 1

compute �2f;N�1 = �2b;N�1 using (84)

compute �2f;n, �2b;n recursively for

n = 0; 1; � � � ; N � 2 using (70)–(73).

else

declare that the factorization in (49)

with positive semidefinite factors does

not exist

end

In some cases (when are of the same sign for all
), we may impose a further restriction on the total error

energy minimization problem, namely, that the essential com-
ponent factor in (49) be Toeplitz.4 This factorization is in-
teresting because we can then say that the essential component

is the best wide-sense stationary process fit (in the minimum
boundary energy sense) to the process whose potential matrix
is . The solution to this optimization problem exists when-
ever the solution to the original optimization problem (79)–(83)
exists. Since the matrix is required to be Toeplitz, the off-diag-
onal element in that satisfies positive semidefiniteness of all
three factors , , and is given by that in (86) with
the largest magnitude, i.e.,

(87)

where we assumed that is of the same sign as all other ,
. The forward and backward independent-

4A matrixA is Toeplitz ifA(i; j) = A(i+ 1; j + 1) for anyi; j.
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increment process variances are then obtained by recursively
solving (70)–(73).

B. Examples

We now consider several important special cases.

Example 1 (DST-Diagonalized Matrix):
We assume next that the matrix in (23) is Toeplitz posi-

tive-definite, where and

...
...

...

(88)

This matrix is diagonalized by the discrete sine transform (DST)
[5].

We are looking to find a factorization like (53) of a process
whose covariance matrix is, and whose essential component

has a Toeplitz covariance matrix, i.e., the in (49) are
all equal to and given by (87), and whose total boundary error
energy (69) is minimized.

The solution in (84) gives

(89)

For the closed-form solution for , see Appendix B. It is now
simple to determine using the following lemma.

Lemma 3: For a symmetric Toeplitz-positive positive-defi-
nite matrix in (88), the following inequality holds for all
integers :

(90)

Proof of Lemma 3:by induction. Since , utilizing
Jacobi recursions, we have for all

.
Initial Step:

since

since

Inductive Step:

Combining Lemma 3 with (87), we get

Fig. 1. Variance of the forward boundary error processu . For the optimal
choice of�, the error variance is maximally concentrated at the beginning of
the process.

hence the Toeplitz matrix that satisfies (80)–(83) and mini-
mizes (79) has the off-diagonal element

(91)

If , the solution is valid, and the rest of the variables
and needed in (49) can be obtained by substituting (89) and
(91) into (70)–(73) and solving recursively.

We illustrate the properties of the solution with an example.
Let be a tridiagonal Toeplitz matrix with
the elements on the main diagonal equaling and the ele-
ments on the first upper and lower diagonals equaling .
The solution that minimizes the total boundary error energy is

and . The vari-
ance of the forward boundary error processthat minimizes
the total boundary error energy is plotted in Fig. 1 along with
several other variances of the boundary error process for subop-
timal factorizations (53). We observe from Fig. 1 that not only
is the total forward error energy mini-
mized, but also the variance terms are mostly concentrated
at the beginning of the process, i.e., closest to the beginning
boundary, and die as we move away from the boundary. Similar
conclusions hold for the backward boundary error process for
the optimal factorization, whose variance dies out as we move
away in the other direction.

Example 2 (DCT-Diagonalized Matrix):
We assume next that the matrix in (23) is positive-defi-

nite and has the form

...
...

.. .

(92)

where clearly , for ,
and . This matrix is diagonalized by the discrete
cosine transform (DCT) [5].
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Fig. 2. Variance of the forward boundary error processu for p = 0:15 For
the optimal choice of�, the error variance is maximally concentrated at the
beginning of the process.

We look for a factorization like (53) of a process whose
covariance matrix is , and whose essential componenthas
a Toeplitz covariance matrix, and whose total boundary error
energy (69) is minimized.

Similarly to proving Lemma 3, we can show by an inductive
argument that

for (93)

i.e., for , the sequence is monotonically in-
creasing, and for it is monotonically decreasing. Com-
bining this with (87), we get that the Toeplitz matrixthat sat-
isfies (80)–(83) and minimizes (79) has the off-diagonal element

for

for
(94)

If , the solution is valid, and the remaining variables
and needed in (49) can be obtained by substituting (89) and
(91) into (70)–(73) and solving recursively.

In Figs. 2 and 3, optimization results are plotted for
and , respectively. The plots show the variance

of the process driving the forward independent-increment
process . Both plots reveal that, for the optimally chosen

, the boundary error is minimized. At (beginning of the
process), the variance is largest for the optimal process. Like-
wise, at (end of the process), the variance is smallest for
the optimal process. This is revealed by the plots of the variance
for suboptimal choices , , and in Figs. 2 and 3.

V. GAUSS–MARKOV APPROXIMATIONS AND INFORMATION

LOSS

In many engineering applications, it is desirable to approx-
imate a discrete-time Gaussian random process by a Gauss–
Markov random process of order. Since the inverse covariance
matrix (the potential matrix) of an th-order Gauss–Markov

Fig. 3. Variance of the forward boundary error processu for p = �0:15.

process has an -banded structure [3], Gauss–Markov ap-
proximations lead to computationally efficient algorithms, see,
e.g., [6]–[8]. We address here the following question. Given
a Gaussian random process and an order , what is the
Gauss–Markov random process of orderthat “best” fits, in
some sense, the observed Gaussian process? We consider two
optimality criteria, the Kullback–Leibler mean information
(KLMI) and the entropy. The formulations of the problems in
these two cases are different, but, as we shall see, they lead to
the same solution.

A. Optimal Gauss–Markov Approximation

Theorem 3 (Maximum Entropy Covariance Extension):Let
be an arbitrary non-Toeplitz covariance matrix. Let be a

zero-mean random vector, such that the-band of its covariance
matrix equals the -band of . The entropy of is max-
imized when is an th-order Gauss–Markov vector whose
covariance matrix is the -band extension of given by (7).

Proof: This theorem is a special case of the general
theorem that establishes the following results: i) a multivariate
Gaussian probability density function (pdf) maximizes the
entropy under the given -band covariance constraint, ii)
the inverse of the covariance matrix is-banded, and iii) the

-band of equals the -band of . The proof of part i) is
well known and can be found in [9]. Parts ii) and iii) have been
independently proved in [10] and [11]. In [12], the theorem
is presented in one piece. Combining results i)–iii) with the
Decomposition Theorem (Theorem 2), we have that the-band
extension as defined in (7) is the maximum-entropy covariance
extension.

Theorem 4 (Kullback–Leibler Optimal Covariance):Let
be the covariance matrix of a zero-mean Gaussian vector.
Let be the covariance matrix of theth-order Gauss–Markov
approximation vector . The matrix that minimizes the
Kullback–Leibler mean information between and is the

-band extension of given by (7).
Proof: The proof of the general theorem can be found in

[12], where it is presented as a corollary to the Triangle Equality
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Theorem for matrices with banded support. Application of The-
orem 2 proves our special case.

Theorems 3 and 4 both lead to the-band extension as the
solution to their respective optimizations, but the two optimiza-
tion criteria are not the same. In Theorem 3, the matrixis not
assumed to be a covariance of a Gaussian vector and the opti-
mization is done overall possible probability density functions.
Contrary to that, in Theorem 4, the matrixis assumed to be the
covariance matrix of aGaussianrandom vector and the optimal
solution is soughtonly in the space of Gauss–Markov processes.
However, these two criteria are equivalent whenis assumed
to be the covariance matrix of a Gaussian vector and the solu-
tion is confined to Gauss–Markov processes, which is formally
established by the Dual Optimization Lemma [12].

B. Autoregressive Process Interpretation

Suppose is the -band extension of a covariance matrix.
Since is a symmetric positive-definite matrix, from Section
II-C we have that the UDL decomposition of (we also refer
to it as the upper Cholesky decomposition) is

(95)

where

has positive diagonal entries. The elements of and the (in-
verses of the) diagonal elements, , are given by (18) and
(20). When is a symmetric positive-definite matrix, we recog-
nize (18) and (20) as solutions to “nonstationary” Yule–Walker
equations (normal equations), also provided in [12]. Similar to
(95), the upper Cholesky decomposition of is

(96)

where

Clearly, since the first principal minor of
and are identical, we have that for . For
the same reason, the first columns of and are
identical.

If is the covariance matrix of a Gaussian vector, then
the -band extension is the covariance matrix of the optimal
(in the maximum-entropy sense)th-order Gauss–Markov
approximation vector . The upper Cholesky decompositions
of and are canonic forms for representing the
time-varying causal autoregressive filters that generate the pro-
cesses and by filtering a zero-mean unit-variance white
Gaussian process . This is shown in Fig. 4. In Fig. 4, the
filter of Fig. 4(a) creates the original vector while the filter
of Fig. 4(b) creates . The number of tap-weights of filter (a)
grows linearly with every time instant. Filter (b) is identical to
filter (a) up to (and including) the time instant . For
all time instants the number of tap weights of filter (b)
is . Hence, the two filters differ for .

(a)

(b)

Fig. 4. Autoregressive filters creating (a) the Gaussian processz and (b) its
Lth-order Gauss–Markov approximation_z .

C. Minimal Information Loss

We define the information loss as the Kullback–Leibler dis-
tance between the random vector and its th-order approx-
imation . If is the covariance matrix of a Gaussian vector

and is the covariance matrix of the Gaussian approxi-
mation vector , the information loss (Kullback–Leibler dis-
tance) of the approximation is

(97)

If is the -band extension of , then is the optimal
th-order Gauss–Markov approximation. Due to Theorem 4,

the information loss is then minimized. Invoking Corollaries 1.1
and 1.2 and the upper Cholesky decompositions (95) and (96),
we get that the minimal information loss is

(98)

i.e., the minimal information loss equals the difference of the
entropies of the two uncorrelated Gaussian random sequences

and that drive the two autoregressive filters
(a) and (b) in Fig. 4, respectively.

It is interesting to contrast the approximation based on the
low-order -band extension and the approximation based on
the low-rank covariance approximation (Karhunen–Loève de-
composition). Table I contrasts these decompositions. In the last
row in Table I we characterize the Karhunen–Loève approxi-
mation as “static,” while we view the band extension as “dy-
namic.” This characterization is justified by the typical signal
processing scenarios where the two approximations are used.
Typical applications of the low-rank approximation are subop-
timal one-shot detection/estimation problems such as the radar
detection problem [13]. Typical usages of the approximations
based on low-band extensions are in suboptimal dynamic detec-
tion/estimation applications such as the Viterbi algorithm [6], or
the Kalman–Bucy filter [7].
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TABLE I
CONTRASTING THEKARHUNEN–LOÈVE LOW-RANK APPROXIMATION WITH THE LOW-BANDWIDTH APPROXIMATION

VI. SUMMARY

This paper has presented a novel nested algorithm to invert
general matrices whose inverses are known to be banded.
This algorithm uses only the entries of the (full) matrix cor-
responding to the nonzero entries of its inverse. We apply the
nested algorithm to obtain three important results: explicit
inverses for tridiagonal matrices; a novel factorization of
first-order noncausal Gauss–Markov processes; and approxi-
mations of Gauss processes by Gauss–Markov processes and
the corresponding information loss.

We believe that our inverses of general tridiagonal matrices
are the first time such explicit inverses are available. These
expressions when applied to certain matrices provide the
closed-form expressions for the covariances of GMrp’s whose
Karhunen–Loève transforms are the discrete cosine transform
(DCT) and the discrete sine transform (DST).

The inverses of tridiagonal matrices are given as the ele-
ment-wise (or Hadamard) product of three matrices. When
these are covariance matrices in their own right, they provide
an interesting and novel interpretation for noncausal first-order
Gauss–Markov random processes. The noncausal GMrp is fac-
tored as the product of three independent-increment processes:
a forward process that takes care of the initial condition of
the GMrp; a backward process that accounts for the terminal
condition of the GMrp; and a variance stationary (free at the
boundaries) GMrp. This canonical decomposition of a GMrp as
a factorization of independent processes is striking in its own
right, being very different from the usual decomposition of
processes as sums of elementary processes, or autoregressive
type representations.

Finally, we apply the nested algorithm to the problem of
approximating Gaussian processes by noncausal GMrp’s and
compute explicitly the information loss of the approximation.

APPENDIX A
PROOFS

Proof of Lemma 1:We recall the matrix-inversion lemma
(see e.g., [14]) for block-partitioned matrices. Assuming
exists

(99)

where

We now prove Lemma 1. Partition the matrices and
as follows:

(100)

With the MatLab notation

and likewise for and . Applying the partitioned matrix in-
verse theorem (99) to (100), we get

(101)

and

(102)

where

and

(103)
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are the respective Schur complements ofin (100), see, e.g.,
[14]. Notice that (101) and (102) combine to give (6) if the fol-
lowing holds:

(104)

(105)

We now prove (104) and (105). Partition the matrix as

(106)

Applying the partitioned matrix inverse theorem (see e.g., [14])
on (106), we get

(107)

where

and

Since is a principal submatrix of , we have that is
a subvector of , see (100), i.e., we can write

(108)

Multiplying (107) by (108) from the right, we get

(109)

Since is -banded by assumption, the last (th)
column of the left-hand side of (101) has zeros in the first

entries. Hence, the same must hold for the
right-hand side of (101). It follows then that the column
vector has zeros in its first entries.
Since has zeros in its first entries, it
follows from (109) that . Then we also have

. Thus (109) actually reads as (104). The
proof of (105) follows from similar arguments.

Finally, we prove .

Multiplying out the matrices on the right-hand side readily
shows that .

Proof of Lemma 2:In the proof of Lemma 1, we es-
tablished that the first elements of the vectors

and are zeros. Hence, only the lowest
principal submatrix of the right-hand side of

(101) is nonzero. Thus the matrix on the right-hand side of (101)
is -banded. Since is also -banded, it follows from
(101) that is -banded too because it is obtained
by adding two -banded matrices. With similar arguments, we
can show that is also -banded. Carrying on these
arguments for smaller principal submatrices, we conclude that
every principal submatrix of size or
greater must have an-banded inverse.

APPENDIX B
FREQUENTLY ENCOUNTEREDSYMMETRIC TRIDIAGONAL

MATRICES

We consider four examples of tridiagonal matrices that are
useful in applications. The first is a well-known example and
we include it just for completeness.

First-Order Stationary Gauss–Markov Process:Perhaps the
only previously known nontrivial example of a tridiagonal ma-
trix whose inverse is known is the matrix

(110)

whose inverse is the covariance matrix of a first-order stationary
causal Gauss–Markov process

...

...

(111)

Matrix is

(112)

To find , we compute each of the factors in the Hadamard
product formula (48). For the first two factors, and using the
Jacobi determinant relations (39) and (40), we get that all deter-
minants , , and .
Finally, the third factor in (48) is exactly matrix (111). So,
is times the matrix in (111), which once replaced
in (112) gives that is as in (111). The UDL decomposition for
this example is similar in form to the decomposition in (62)–(64)
with .

Discrete Sine Transform (DST):
The following symmetric Toeplitz tridiagonal matrix is

diagonalized by the discrete sine transform (DST) [5]. Define
the matrix as

...
...

.. .

. . .
. . .

. . .

for (113)

By inspection, the constants in (23) are and .
The forward and backward determinants of (113) are

(114)
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where

for

for

for

for

(115)

is the th-order Chebyshev polynomial of the second kind [15].
Substituting , , , and into (47) and (48), we get the
closed-form solution for . This matrix is then a covariance ma-
trix that is diagonalized by the DST. It is the covariance of a
first-order noncausal Gauss–Markov process with zero Dirichlet
boundary conditions, see [1].

Discrete Cosine Transform (DCT):
The following symmetric tridiagonal matrix is diagonal-

ized by the discrete cosine transform (DCT) [5]

...
...

. . .

. . .
. . .

. . .

for

(116)

By inspection, the constants in (23) are ,
for , and . The forward

and backward determinants of (116) are

for

(117)

(118)

where is the th-order Chebyshev polynomial of the
second kind, see (115). Substituting them into (47) and (48), we
get the closed-form solution for. This matrix is a covariance
matrix that is diagonalized by the DCT. It is the covariance of
a first-order noncausal Gauss–Markov process with zero non-
symmetric Neumann boundary conditions, see [1].

Symmetric Boundary Conditions Matrix:
The following matrix is associated with a first-order

Gauss–Markov (acausal) random field defined on a finite lattice
with symmetric boundary conditions [3]

...
...

. . .

. . .
. ..

. . .
for

(119)

By inspection, the constants in (23) are
, for , and . The

forward and backward determinants of (119) are

(120)

for

(121)

(122)

where is the th-order Chebyshev polynomial of the
second kind, see (115). Substituting them into (47) and (48),
we get the closed-form solution for. This matrix is the covari-
ance of a first-order noncausal Gauss–Markov process with zero
symmetric Neumann boundary conditions, see [3], [1].
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[6] A. Kavčić and J. M. F. Moura, “The Viterbi algorithm and Markov noise
memory,”IEEE Trans. Inform. Theory, vol. 46, pp. 291–301, Jan. 2000.

[7] A. Asif and J. M. F. Moura, “Data assimilation in large time varying
multidimensional fields,”IEEE Trans. Image Processing, vol. 11, pp.
1593–1607, Nov. 1999.

[8] T. M. Chin, W. C. Karl, and A. S. Willsky, “A distributed and iterative
square root algorithm for space-time filtering,”Automatica, vol. 31, pp.
67–82, Jan. 1995.

[9] T. M. Cover and J. A. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

[10] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz, “Positive definite
completions of partial Hermitian matrices,”Linear Algebra Appl., vol.
58, pp. 109–124, 1984.

[11] H. Lev-Ari and T. Kailath, “Autoregressive models for nonstationary
discrete time processes,” inIEEE Int. Symp. Informtion Theory, Cam-
bridge, MA, Aug. 1984.

[12] H. Lev-Ari, S. R. Parker, and T. Kailath, “Multidimensional maximum-
entropy covariance extension,”IEEE Trans. Inform. Theory, vol. 35, pp.
497–508, May 1989.

[13] H. L. Van Trees,Detection, Estimation, and Modulation Theory. New
York: Wiley, 1968, vol. I.

[14] L. L. Scharf,Statistical Signal Processing: Detection, Estimation and
Time Series Analysis. Reading, MA: Addison-Wesley, 1991.

[15] T. J. Rivlin,The Chebyshev Polynomials. New York: Wiley, 1974.


