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Video Representation with
Three-Dimensional Entities

Fernando C. M. Martins and J®sV. F. Moura,Fellow, |IEEE

Abstract—Very low bit-rate coding requires new paradigms representations are not tailored for content-based access to
that go well beyond pixel- and frame-based video representa- yjideo.

tions. We introduce a novel content-based video representation \;qqe|.hased representations consider video as a sequence
using tridimensional entities: textured object models and pose

estimates. The multiproperty object models carry stochastic in- Of 2-D projections of a three-dimensional (3-D) scene. A set of
formation about the shape and texture of each object present in models and parameters is extracted from the video sequence,
the scene. The pose estimates define the position and orientationsuch that the original video sequence is reconstructed using
of the objects for each frame. This representation is compact. It only this given set of constructs. Semantic coding [1], [2],

provides alternative means for handling video by manipulating oA . h
and compositing three-dimensional (3-D) entities. We call this object-oriented coding [3], [4], and layered representations

representation tridimensional video compositingor 3DVC for [9]-[7] are examples of model-based representations.
short. In this paper, we present the 3DVC framework and Semantic coding assumes that detailed explicit parameter-

describe the methods used to construct incrementally the object jzed 3-D object models are available. Typical examples are

models and the pose estimates from unregistered noisy depth head and shoulderparametric models [8]. Analysis of the
and texture measurements. We also describe a method for video '

frame reconstruction based on 3-D scene assembly, and discus&/[d€0 Sequence leads to adjustments to shape that are para-
potential applications of 3DVC to video coding and content-based Metrically encoded. This technique provides high compression,
handling. 3DVC assumes that the objects in the scene are rigid but does not support free-formed objects.

and segmented. By assuming segmentation, we do not address the Object-oriented coding constructs models from observa-

difficult questions of nonrigid segmentation and multiple object ..
segmentation. In our experiments, segmentation is obtained via tions. These models can be 2-D or 3-D. Musmatral. [3]

depth thresholding. It is important to notice that 3DVC is in- Propose object-oriented analysis—synthesis coding (OBASC),
dependent of the segmentation technique adopted. Experimental a generic model-based representation where objects in the
res_ults_with synthetic and real video sequenc_eswhere compressionscene are described by three parameter sets defining object
ratios in the range of 1:150-1:2700 are achieved demonstrate the oy color, and shape. They construct 2-D models assuming
applicability of the proposed representation to very low bit-rate . . . .
coding. that the scene is composed of planar rigid objects moving
Index Terms—Content-based video handling, model-based video in 3-D. Shape is not explicity exiracted, and the motion
coding, range and image sequence processiﬁg, 3-D object model-between frames is encoded as a_ set of affine mappings, F’”e
ing, video sequence representation. for each planar patch detected in the scene. An extension
using 3-D models is implemented by Ostermann [4] to encode
typical head and shouldergideoconferencing sequences. His
technique assumes the cross section of the subject to be
video representation is the intermediate form into whicélliptical in order to construct 3-D surface models from 2-D
Aa coding system transforms video. The representatisithouettes.
defines the internal structure of the codec, and determinesn a visionary position paper, Bove [9] presents the general
the limitations and capabilities of video handling and conteidea of object-oriented television—‘a computational frame-
access methods. work for a television receiver that can handle digital video
Waveform-based representations describe video as a is€fseveral] forms from traditional motion-compensated trans-
guence of two-dimensional (2-D) signals in time. They leafdrm coders to sets of three-dimensional objects.”
to concepts like transform coding (DCT) and quantization. The 3-D structure of objects is recovered for the purpose
Temporal redundancy is reduced via differential pulse codg data compression by [10] and [11]. Stereo pairs are used
modulation (DPCM) and block motion compensation. Thi construct triangular mesh descriptions of object shape.
representation is successfully incorporated in several standg@ffé proposed methods do not deal with uncertainties in the
video codec’s such as the H.26x series, MPEG-1, and MPE&msorial process. Our approach handles these uncertainties
2. Waveform-based representations have proven very usefdtough the use of volumetric models that convey shape and
but have practically reached their limit in terms of codingextyre, as explained in Section Il.
efficiency. More importantly, being waveform-based, these gyrveys about prior work in model-based representations
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superposition of a set of 2-D mosaic models constructed byTo enable tridimensional handling and access to video
cut-and-paste operations [5]-[7], [14]. Layered representatioc@ntent, and to also yield compact storage, we propose a hovel
generate highly constrained 2-D models that mix motion asgystem to represent video based on 3-D entities: textured object
structure information. An object performing a simple rotatiomodels and pose estimates.

around an axis not parallel to the camera principal axis is notTo explain our approach, we start by considering the dual
consistently represented by a layered 2-D model without majaroblem of generation of realistic synthetic images. First, 3-D
model updates from frame to frame. geometric models with defined surface properties are created

Several researchers address the issues of object modelorgeach of the objects to appear in the scene. Then we
from observations outside the specific realm of video represerssemble a scene by placing object models and light sources
tation. These techniques usually fail to attend the demandiimgspace according to animation motion scripts. Finally, we
requirements of video processing as incremental modelimggsition a virtual camera in the synthetic scene, and render
automatic integration without user interaction, and robustnes# image by computing the light captured by each of the

Early work in object modeling from a sequence of rangeamera sensors after reflecting on the scene components. The
images assumes measurement registration, i.e., that the reldtiveslamental entities for the representation of a synthetic video
position and orientation of the object are known for all framesequence are then the set of 3-D object models and respective
[15]-[18]. motion scripts.

The factorization method of Tomasi and Kanade [19] com- The generation of a representation for video based on 3-D
putes shape and motion from a sequence of intensity imagestities is theinverseproblem of synthetic image generation.
The geometric object model obtained is a sparse set Given a video sequence, the problem is to compute automat-
unorganized points in space. Measurements are taken uridally for each of the objects present in the original scene a
orthography, features are extracted, tracked over time, a$ei of 3-D pose estimates and a 3-D object model representing
organized in a measurement matrix. The singular value decoshape and texture.
position (SVD) of the measurement matrix provides motion We adopt a stochastic voxel-based structure for the object
and shape factorization. For video processing, the numbernaddels that represents free-formed objects, allows incremental
observed views can be as large as the number of video frantesdel updates, and considers sensor uncertainties. The original
Complex objects may also require a large number of featurggdeo sequence is reconstructed by rendering projections of 3-
to be tracked for a proper shape description. Under thddescenes assembled using the 3-D constructs. We call this
circumstances, the computation of principal components fromethod of compositing video with 3-D entitiésdimensional
the measurement matrix via SVD becomes a computationavigleo compositingor 3DVC for short.
hard problem. This technique provides no support for incre-In 3DVC, motion, shape, and texture are explicitly ac-
mental model construction, i.e., the computation of principgbunted for. Each individual element of the set of component
components must be performed whenever a new measuren®ht entities can then be manipulated independently. For
is to be incorporated. example, the shape of an object can be altered independently

Azarbayejani [20] constructs polygonal surface models of the object motion script, or motion scripts modified to
outdoor sequences of buildings from intensity images withogenerate synthetic motion patterns. 3DVC allows the insertion
prior assumptions about shape or pose. Feature extractdnadditional frames by rendering frames with interpolated
and correspondence must be performed by hand, requiringese estimates. This leads to video with higher frame rate
considerable amount of user interaction. Becker and Bove [2)d smoother perceived motion than the original sequence.
propose a technique to extract polygonal models of scened/ideo is represented in 3DVC as a composite of perceptu-
containing orthogonal planes and parallel lines, which agdly meaningful entities. Each object model can be visualized,
typical to man-made environments. Camera calibration is ntd the motion scripts bear physical significance. Object
assumed, but a great deal of human interaction is requiredctgvature, texture moments, and acceleration can be extracted
cluster features and establish cluster correspondences betwie@h the 3-D entities. By accessing the underlying structure of
frames. video, 3DVC creates innovative and flexible ways for editing

Koch [22], [23] presents a system to build 3-D parametrignd accessing the video content. 3DVC synthesizes distinct
surface models without user interface from a sequence \6f€0 sequences by altering the motion scripts and/or object
stereo images. The sequences depict buildings and other nfaadels previously generated. Explorable features of 3DVC
made objects. Surface model construction requires mergifiglude missing frame insertion, variable focus of attention,
sequences of incomplete parametric models, a task that usugfi§t selection, content-based search, and insertion/deletion of
generates shape artifacts. Merging surfaces is a computatightual and real entities.
ally hard problem, as discussed by Turk and Levoy [24]. The paper is organized as follows. Section Il presents the

Curless and Levoy [25] recently showed that surface merdPVC representation framework, and the stochastic structure
ing techniques may fail if the object has high curvature der the object models and measurements. Section Ill is ded-
sharp edges and presented an alternative integration algoriffated to video analysis. This section addresses the methods
based on volumetric models and implicit functions. Their
algorithm assumes accurate alignment of the data sets, dog¥! this paper, “texture” refers to the light captured by a camera after
not handle surface texture, and does not provide support ﬁeélectmg on the object surface. Also known as object radiance, “texture” de-

X . fds on object surface photometric properties and environment illumination
handling sensor uncertainty. conditions.
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For each framel}, the poseg;; of objectyj is estimated
by measurement/model registration. The pose is sequentially
stored in a motion script for the given object. The methods
for incremental object model construction and pose estimation
are considered in Section Il

The video sequenc® is reconstructed in two sequential
steps: recreation of the scert§, by positioning the 3-D
object modelsl’;; in space according to the corresponding
pose estimateg;;, and reconstruction of video framég, by
a ray-casting volume renderer. Both steps are addressed in
Section IV.

Object Model: We adopt a nonparametric volumetric struc-
ture for the object models. This model structure allows rep-
resentation of free-formed objects, permits incremental model
update, and provides efficient spatiotemporal support for data
fusion and storage. This contrasts with the majority of previ-
ous work on 3-D model-based video coding that relies on

, , .y _ parametric surface-based models [13]. Surface models are
Fig. 1. In 3DVC, a video framé, is given by the 3-D object modél ;;,

and the object posé; . usually chosen because they allow the use of well-known
surface renderers as image synthesis tools. For information

. ) ] ~_fusion, however, surface representations present challenging
for incremental object model construction and pose estimatiafiyrface-merging problems [24].

Section IV describes the synthesis of the original video from ¢, nonparametric object model is voxel-based. It is defined
the constructed 3-D entities, i.e., scene assembly and fragae s compact uniform tesselation of 3-D spdte= {c;),

reconstruction. Experimental results are in Section V. Applghere each cellC; represents multiple properties and the
cations of 3DVC to video coding and content-based handlifggex ; spans the compact 3-D space. The object shape is

are in Section VI. Section VII concludes the paper. represented by cell occupanéy(C;), and the object surface
texture is represented by cell textuféC;). Occupancy is a
Il. 3DVC REPRESENTATION FRAMEWORK binary property: a cell”; may either beoccupiedor empty

In 3DVC, a sceneS,, is specified by a set of 3-D entities; Texture may assume any valid value drawn from the color
the object models’,;, and the respective pose estimafes, PalleteC.

as in (1) A nonparametric voxel-based object description is suit-
. able for video representation because free-formed objects are
Sy =T @)},  forj=1,2,--- N (1) supported with selectable spatial resolution, frame rendering

d performance is independent of object and scene complexity,

wherek is the discrete time indey; is the object index, an . .
K % ) and the parallel nature of volume rendering algorithms can be

N is the number of objects in the scene.

Video is a sequence of frames in time. Each frafeis explored [26]'. . .
obtained via perspective projection of a dynamic 3-D scen The tesselation stores a set of conditional probabilities that is

: : o%tained through the integration of the multiple measurement
Sk, as defined in (2) and (3) grids {Wo, - - Ty} as in
Iy, = proj(Si) (2) . .
V={F}, fork=12-..,T ©) P(O) ={P(O(Ci) [{To, -, Wi }), Vi) (5)

whereT" is the number of frames in the video sequede  Holding probability functions instead of current estimates is
Factoring out frames and scenes, 3DVC provides a strygnat maked" a useful representation for Bayesian integration
tured representation for video in terms of 3-D entities as ¥ 5 sequence of measurements. Initial lack of knowledge is
Fig. 1 and in (4) expressed by assigning equiprobable probability distributions.
: > ; The stochastic nature of the object models enables robust
V = {proj{(I'jx, Gx), Vi }], Vk}. @ operation when dealing with incoanistent and noisy measure-
3DVC builds the 3-D object model$';;, incrementally ments or pose estimates. The stochastic representation supports
without user interference. This is accomplished by analysis lobth active exploration and passive integration of sensory
the video sequence, via integration of multiple measuremenista. Model entropy is used to guide exploration if active
in a Bayesian framework. The 3-D object models contagensors are available. A stochastic framework for measurement
stochastic information about the shape and texture of theegration has been considered for the unidimensional case
objects. As more video frames are processed, 3DVC redutss[27]. Deterministic integration does not cope with sensor
model entropy and eliminates redundant information. No prioncertainties and imprecisions in pose estimation. This may
information about the object shape and texture is assumecctmse insertion of persistent holes and fissures in the object
be available. surface.
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Fig. 2. Steps in the construction of a measurement grid. (a) Data are collected in a nonuniform tesselation established by the perspectivegumhole cam
(b) The warped temporary gril is constructed to avoid the perspective nonlinearities. (c) The uniform measureme#t.ggdbtained by unwarping gridf .

Earlier work on sensor fusion for robot navigation ang(i| %), where Z represents the ground truth arid the
object modeling for robotic manipulation have successfulipeasurement. This sensor model is either provided by the
explored a similar stochastic model structure [28]. In visuakensor manufacturer or obtained experimentally.
communications, the probabilistic approach for measurementUniform Measurement Grid:The depth and intensity mea-
integration is seldom used. In [27], the outputs of multiplsurements corresponding to a video frame are organized into an
range-sensing methods are integrated using a probabiligticiliary data structure that we caihiform measurement grid
framework assuming that all observations are registered This preprocessing step greatly simplifies the video analysis
taken along a single direction. 3DVC integrates multipleasks by eliminating later concerns with camera geometry,
unregistered measurements taken from distinct points of viesensor model footprint, and viewing direction.

Preliminary experiments with synthetic data applying the As the sensor output is a set of discrete measurements, each
3DVC model structure to video representations were reportidlividual measuremer(, ¢) corresponds to a volumetric cell
in [29]. in the compact 3-D space. Assuming that data are collected

Measurements\We assume that a range sensor producesising a pinhole perspective camera, the dimensions of each cell
depth mapRk and a coregistered imade By coregistered, we in this 3-D lattice depend on the depth of the cell. Therefore,
mean that the pair of measurements is taken with respectatpinhole perspective camera defines a nonuniform tesselation
the same reference, through the same perspective camera,drgiD space due to perspective nonlinearities; see Fig. 2 for
that for every intensity image pixel, there is a correspondirgy bidimensional example.
depth measurement and vice versa. Dealing directly with these nonuniform tesselations is incon-

The availability of the depth map simplifies the experimentaienient because the tesselations depend on camera geometry
setup. Alternatively, the depth map can be estimated direcind relative object-camera position. Also, model construction
from the video sequence using structure from motion [30]. ¥Would require casting conic rays in distinct directions through
multiple cameras are available, depth is estimated in real timenonuniform voxel grid.
using stereo [23] or for added precision using multibaseline To avoid these difficulties, we collect the information avail-
stereo [31]. Another alternative is to use depth from defocable in each coregistered set of measureméRis ) into a
techniques. These employ a single camera with controllahleiform measurement gridf;, taking into account the camera
focus, and have been successfully implemented in real tigeometry and the sensor model.

[32]. 3DVC supports multiple heterogeneous depth sources asVe define ¥y, the uniform measurement grid associated
detailed in Section IlI-B. with the kth set of measurements, as a compact uniform

A depth mapR is defined as a set of poin{g’} in space. tesselation of the 3-D space. This tesselation is an organized
Similarly, an imagel is an organized set of color or intensityset of cells¥; = {M,} where the index spans the com-
measurement$? }, where each measuremenassumes one pact 3-D space. Each measurement grid dé}l represents
of the colors listed in pallet€. For color images, the palletemultiple properties. Cell occupaney(M;) defines the object
is a set of tridimensional vectors. For gray-level images, it ghape, and cell textur@(M;) represents surface texture.

a set of scalars. Occupancy is a binary property: a cell may be eithecupied

Intensity (or color) images provide information about ther empty Texture values are drawn from the color pallete
texture already mapped on the object surface. Texture infdk- The structure of the measurement grid is similar to the
mation depends on the properties of the surface material, taeucture of the object model described at the beginning of
viewing direction, and the environment illumination. this section. The only difference regards the probabilities each

Sensor Model:A 3-D probabilistic sensor model charactercell carries. A measurement cell/; carries the conditional
izes the uncertainties in the data as measured by the rapgebabilities of the current measurement given cell occupancy
finder. It is given by the conditional probability functionp(i | O(M;) = occupied) and cell emptinesgr | O(M;) =
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Fig. 3. Perspective camera model: viewing frustum in unwarped space. Fig. 4. Perspective camera model: viewing frustum in warped space.

empty). These probabilities are derived from the sensor mode@le define the warping transformation such that the shape
and are fundamental to measurement integration in objedtthe viewing frustum is mapped from a pyramid in the
model construction. Further discussion about the computatioriginal unwarped space to a rectangular orthogonal prism in
and role of these probabilities in measurement integrationtfse warped space; see Figs. 3 and 4. Through this mapping, the
carried out in Section III-B. viewing rays become parallel in the warped giidand reach
The measurement grid is aligned with the sensor principdle retinal plane perpendicularly. This warping cancels the
axis. Given the depth mag and the imagel, and with nonlinear effects of perspective, simplifying the construction
camera calibration and sensor model known, we compute thfethe measurement grid and avoiding generation of artifacts
texture and conditional probabilities for each c#fl, of the in the final object moder .
measurement gridv;, as follows. To construct the auxiliary gridl, we cast a ray parallel
The creation of measurement grifl, is realized in two to the principal axis for each individual measureméritt)
steps. In the first step, the measurement data are used to crgatesversing the warped space through the pditwe update
a warped temporary grid’. The warping is defined to canceltexture and probabilities of occupancy for all cells hit by the
the perspective nonlinearities. In the second step, the warpeghsversing ray.
grid T is unwarped via resampling to generate the uniform As all viewing rays are parallel and aligned with the giid
tesselationV,.. Fig. 2 shows the two steps in the constructioray casting becomes much simpler in the warped space. The set
of a bidimensional measurement grid. Fig. 2(a) presents thiecells from T that gets updated with nontrivial probabilities
nonuniform grid defined by the perspective pinhole camedae to a given pointwise measureméfitt) depends on the
associated with the input data. Fig. 2(b) displays the auxiliaggnsor model footprint. In the warped space, the direction of
warped gridY constructed by placing the individual meathe sensor model is always parallel to the sensor principal
surements in a warped space where all cells have the sam#s, simplifying the identification of the cells affected by
dimension. Fig. 2(c) presents the resulting uniform measukeach individual measurement.
ment grid ¥;, obtained by unwarping gridC. Observe that  After T is constructed, it is unwarped to provide a properly
both grid W, and grid Y are uniform grids. The constructionresampled grid®;,.
of ¥;, could be implemented directly from the data, but the This method for 3-D model generation from measurements
auxiliary grid T simplifies the computation of the probabilitytaken under perspective using an intermediate warped space is
distributions associated with the sensor model that are storadtivated by the shear-warp volume rendering algorithm [33].
in the measurement grid. In a volume renderer, 2-D views are generated from existing
In the perspective pinhole camera model, all visual raysD object models. The measurement grid creation method
reaching pixels in the retinal plane pass through the camgu@sented here is d@nverse volume renderewhere 3-D point
center. For a set of rectangular pixels, the set of visual ray®dels are created based on the available 2-D measurements
forms a pyramid. The section of this pyramid delimited bgnd knowledge about the sensor model.
the focal and retinal planes, shown in Fig. 3, is known as theWe create a distinct measurement giig. for each new
viewing frustum? measurement before integrating the new measurement into the
The warping and unwarping transformations used in meebject model.
surement preprocessing are given by the camera geometryThe video analysis methods proposed for object model
2Frustum: a part of a solid, such as a cylinder or pyramid, between tv%)nStrucFlon .glven a Set.Of unreQIStered measurement ngdS
parallel planes cutting the solid. are detailed in the following section.
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IIl. VIDEO SEQUENCE ANALYSIS distance function that considers surface normals as additional

For each segmented object, the process of model constrGid€S for increased reliability in pose estimation [44].
tion requires two steps for each new measurement: registratiorpther registration and motion estimation methods are bas'ed
and integration. on fgatures and on faptorlzatlon [19]. These methqu require
Measurement registratioror pose estimation, estimates th@€CiSe feature extraction qnd the solgtlon of Iarge-dlme_nsmnal
current position and orientation of the object in 3-D spacangular value decompositions, which are computationally

with respect to an arbitrary model-centered coordinate systeRfPENSive tasks. For surveys on registration methods, refer
jo [39], [45], and [46].

given the current measurement and a 3-D geometric model. ) )
Integration of the registered measurement updates the cur-"/& Propose a method for model-measurement registration

rent model by incorporating the new measurements. The fildgt extends the ICP algorithm. Our method uses texture
task in this step is to map the registered measurement%d shape for pose estimation, and deals with incomplete or

a canonical model-centered referential using the pose edionsistent models. _ _ _
mate computed in the registration step. The actual integration|© consider texture and shape information, we define an
method is heavily dependent on the model structure. DistirlBfercell discrepancy metrid(C;, C;) as

deterministic techniques have been proposed for the integra- ) L L o9

tion of range measurements into surface-based models [24],  4Ci,C;) = (1 = V|75 = 751" + Allts — & (6)
[34]-[36]. Stochastic integration techniques, as the one we

propose in this work, consider a probabilistic sensor modéfhere 7; is the position of cellC; in 3-D with respect to
and are based on Bayesian updating or Kalman filtering [28], model-centered coordinate system, @pds the color of
[29]. In these techniques, redundant measurements helpc® Ci. The parametei controls the relative importance of

reduce overall model entropy, while conflicting or ambiguoughape and texture in the discrepancy criterion. Notice that both
measurements are handled gracefully. positions#; and; must be taken with respect to the same

model centered reference.
Given an arbitrary poseq, the generalized distance

A. Measurement Registration: lterative D(T', ¥y, 7) between a model’ and thekth measurement
Pose Estimation Method U, is defined as

Registration is dual to the problem of computing point
correspondences between overlapping regions of a model and D(I', Wy, §) = Z d(Ci, Mg M) (7)
a measurement grid. Given a set of correspondences, there is {G@D(C:,M;)eSY

a closed-form solution to the pose problem [37], [38]. With

precise correspondences, it is possible to compute a mappigreC; is a cell from model’, M; is a cell from measure-

to juxtapose the new measurement and the existing modBENt¥y, S is the set of correspondenc@s;, M;), and Mg is

This duality highlights the importance of accurate registratidi® mapping derived from the arbitrary pagelt is important

for successful model generation. to notice that the set of correspondenceslso depends on
Registration is usually accomplished by minimizing a co$he poseq.

function based on discrepancy metrics between potentiaiTo handle models that are potentially incomplete, we modify

model-measurement correspondences. Traditional registrafie@ definition of generalized distance presented in (7) to

algorithms use only shape and adopt Euclidean distancesc@gsider only correspondences whose distances lie within a

measure of discrepancy. plausible rangel,,.x as in
Each new measurement must have some overlapping area
with the model in order to allow for the establishment of D(I',V,q) = Z d(Cy, Mg(My)).
a large set of reliable correspondences. This assumption is {@DIC:,M;)€S d<dmaa }
satisfied if motion is small between successive measurements. (8)

The iterative closest point algorithm (ICP), introduced si-
multaneously by several groups [39]-[42], solves the minihis modification removes false correspondences and outliers
mization problem by hypothesizing correspondences to be finem the computation of the generalized distance. As motion
closest points iteratively. An important issue not addressedassumed small, correspondences based on shape cannot be
by most ICP implementations is the handling of incomplet®o far apart. Texture variations due to differences in illumi-
models, where measurement-model correspondences maynation are usually very small. Larger differences in texture,
exist for all individual measurements. This is frequently thas specular reflection highlights, are localized spots that are
case in applications where registration is performed wheonsidered outliers according to this improved criterion. Zhang
models are still under construction. The approach we pres¢f®] successfully applied a similar outlier removal technique
below handles this problem. to pose estimation based only on shape information. In his

Some extensions of ICP reduce the cost of closest poprbposal, the thresholdl,... is determined by identification of
search by operating only on selected features, or by creatihg clusters of outliers and matching points in the distances
search index trees. A fast implementation of the ICP algorithhistogram for every frame. In our experiments, we adopted a
capable of pose estimation at 10 Hz has been reported [4dimpler technique by normalizing the distances to lie between
Recently, ICP has been extended to employ a generaliZ8¢l] and fixing the threshold.
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The pose estimate is the argumept that minimizes the ~ We now consider the estimation of the whole object shape

generalized distance O(T') from a single measuremefit We introduce the notation
o . O) £ {O(C;),Vi} to represent the occupancy state of the
&= argqun{D(F’\Ij’“’q)}' () whole tesselatiort’, given by (17). LetP(O(I') | 7) be the

o ) ] probability distribution of the set of discrete variables given
Pose Estimation AlgorithmBefore the first measurementpy (15)

Wy, the modell” holds no information, so the object position .
p(7 | O)) P(O(I))

and orientation are assumed to be in an arbitrary canonical P(O) | 7) = 2 (15)
position gp. p(7)

For each subsequent measurem@&nt we perform the p(7) = Z p(7| O(T;))P(O(T;)) (16)
minimization in (9). As ICP performs a local minimization, VI, el
a good initial estimate is important to ensure reliable results. O(F) — argmax P(O(I) | 7). (17)
When processing a sequence of measurements under the o)

assumption of small motion between measurements, a good

initial value for pose is the pose estimate obtained from ﬂ#@for:tunage:y, the <Ij|r¢ct gst|mat|or|1 of the occupan:}:y State
previous measuremer_;. or the whole tesselation is a problem doomed by the curse

Binary index trees are useful structures to speed up redgdimensionality. This can be noticed in (16), where the

transactions. To reduce the computational cost of searchiffmalization factop(i”) is a sum over all possible tesselation

for the closest cell, we construct an auxiliary four-dimensiongPnfigurationsI’. As occupancy is a binary property, the
binary tree for the model data number of possible occupancy configurations for a given
. . . ]\T . .
Due to space constraints, the algorithm details are rfgeSelation is2”, where NV is the number of cells in the
reported here. For additional information and experiment@SSelation. Typical tesselation sizes may be on the order of

results regarding the proposed pose estimation method, rdfifions of voxels. To make this problem computationally

to [47]. tractable, we facto?(O(I') | #*) in (15), approximating the
estimation of the occupancy status of each individual cell

B. Measurement Integration: Incremental O(C3) independently as follows:

A~

Object Model Construction O(C;) = argmax P(O(C;) | 7) (18)
We integrate the set of registered measurement grids Oicf)
{(Wo,G), -+, (¥, Z)} into the object modell’, using PO(Cy) | 7) = w7 O(C)) P(O(Ci)) (19)

a Bayesian framework. We construct the mod@}; p(7)

incremen_tally using the previous model versiﬁp and the T4 compute the probability(7 | O(C;)) required in (19), we
new registered measureme(¥yi1,gi+1) @S it becomes resample the measurement giig = {AZ; } using the mapping

available. . . . Mg, derived from the pose estimaik
We consider initially a single measurement. With a uniform
cost function, the optimal Bayes’ estimator for variaBigiven p(7| O(Ci)) = Mg, [p(7 | O(M;))]. (20)

the measurement is the MAP estimatot: [48] Recalling the structure for the measurement d@ridproposed

2 = argmaxp(Z | 7) (10) in Section Il, each cell carries probabilities of measurement
z conditioned to occupancy(# | O(M;) = occupied and
o PO D)p(Z) emptinessp(¥ | O(M;) = empty). These probabilities are
p(Z|7) = ks . (11) . .
(i) computed using the sensor model according to
The conditional probability distributiop(+ | ) is the sensor p(7 | O(M;)) = Z p(7| O(M;),G)P(G) (21)
model previously described. The prior knowledge about the Ge{G(M)}
paramgt_erz LS given by the prior probabilityp(Z). The p(7 | G) = p(7 | Zin) (22)
probability p(+) is a normalization factor.
If multiple measurements, - - -, 7} are available, the MAP where, for a given configuratiot, Z.;, is the depth of the

estimate is computed as follows. We introduce the notationnearest occupied cell.
o A el . Due to sensor uncertainties, captured by the sensor model,
p(Z ) = p(Z [ {70, 7)) 12) 4 single measurement may affect several cells in the object
2y = argmax p(¥ )x. (13) model during integration. Which cells are affected depends on
= the sensor model footprint, on the sensor orientation during
Assuming independent measurements and applying Bayeata acquisition, and on the measurement value. The mea-

theorem, the incremental update rule follows: surement grid is constructed such that the sensing direction is
. > always parallel to one of the tesselation axes, which eliminates
- _ P11 Z) o . . .
(21 = ———p(2);- (14) the concerns regarding sensor model orientation.

P(Thet1) When multiple measurements are available in the form
The estimatez; is computed by (13), and is recursivelyof a single measurement grif, we extend (19) assuming
updated in time through (14). independent measurements and com@@te(C;) | ).
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The integration of a new measurement ghigl, ; is realized the ray hits the first occupied cell in the scene, the color
incrementally. The probability of occupan@{O(C;))r+1 is of the pixel in the projective plane is computed by merging
computed for each cell’; of the modell'y;, according to contributions from all of the light sources in the scene. The

the incremental update rule result is known as the rendering equation solution [49].
P(Uys1 | O(C)) As we have texture information stored in each_ occupied ceII.
PO(C)k41 = P+\I/ 2 P(O(C)) (23) of the scene, whenever a ray reaches an occupied cell, there is
(Wi+1) no need to solve the rendering equation. The solution captured

where the conditional probability?’(W;4; | O(C;)) is com- by th_e video camera was recorded in the object model during

puted from the measurement grigk,; via resampling. The the video analysis phase.

prior probability of occupancyP(O(C;)), is available at  The available camera calibration provic_je{s informgtion about

the current modell’;, and the probabilityP(¥; 1) is a the geometry of the camera frustum. This information is used

normalization factor. to warp the assembled scene. This warp is dual to the one
When multiple distinct sensors are available, we generaliggscribed in Section II, and reduces the overall complexity of

(11) and (22) to consider the corresponding sensor modBl§ rendering process.

pa(72). In summary, to retrieve pixel color for the current 2-D frame
The only cells visible in the process of scene assembly dfém the 3-D scene model, we prewarp the scene grid, and then

the occupied cells. Therefore, only cells that are occupied aftegce parallel rays through every pixel of the 2-D frame. When

the occupancy update need to have their texture updated. 6y ray hits the first occupied cell of the warped scene model,

all occupied cells il 1, we obtain a new texture value bywe read the texture value for this cell.

resampling the measurement grg.; as in

T(C)py1 = Mg [T(M;)g41]- (24) V. EXPERIMENTS

. . : : We implemented the 3DVC analysis and synthesis modules
This texture update policy keeps models consistent with the .
P potcy P b “IC" on a DEC AlphaStation 200 4/233. To demonstrate the

most recent measurement. This may generate some m L tial of 3DVC for vid i theti
updating overhead for moving specular surfaces or whEgtential ot or video representation, we use synthetic
nd real video sequences. In both data sets, the scene is

illumination changes over time. Alternative Bayesian texturd d of a sinale rigid obiect performing 3.D motion i
update policies can be applied to minimize model updat mposed of a singie rigid object periorming 2-L-motion in
ront of a static background.

thus penalizing temporal model consistency. Synthetic Video Sequenc@o create the synthetic se-
guence, we use constructive solid geometry (CSG) primitives,
as cylinders, cones, and disks to define a 3-D object with the

To reconstruct the original video sequence, two major tasksape of a lamp. We create an animation script where the
are performed for every video frame. First, a 3-D synthetmbject performs a rotation around the horizontal axis. This
scene is assembled using information stored in the 3D\M@otion pattern is chosen because it is especially difficult to be
entities for the current frame. Then, the 2-D video frame iseated by waveform-based and layered representations, and
rendered as a perspective projection of the 3-D synthetic scepmvides abundant self-occlusion episodes.

Scene AssemblyA scene is a uniform tesselation of 3-D The synthetic video and range sequence was rendered using
space with structure identical to an object model, as describRdyshadeg50], a raytracer that uses thg-buffer algorithm
in Section Il [49] to generate realistic synthetic images. Théuffer values

A synthetic 3-D scene is assembled by positioning 3-Bre available, providing ground truth depth information. We
object models in space according to the pose estimates fige this sequence to evaluate the performance of 3DVC
the current frame. Due to potential model-scene grid misaligwithout the uncertainties that arise in actual range sensing.
ment, all models are resampled using the scene as samplinghe synthetic coregistered video and range sequence is
grid. For every cell of the scene, occupancy and texture aremposed of 36 frames, each of dimension ¥0Q00 pixels,
computed as an MAP estimate. 8 bits/pixel. Six sample video frames extracted from the

In the process of sequential scene assembly, only modetsnplete sequence are shown in Fig. 5, and the corresponding
that change, either by moving in space or by changing its shagepth maps are shown in Fig. 6.
or texture, are deleted from and reinserted in the syntheticWe specify the geometry of the camera-viewing frustum
scene. Taking into account the visibility of objects in the scenlkrough a set of raytracer parameters. Knowledge of the
with respect to current camera position can further reduce ftinérinsic camera parameters is required to define the warp
cost of scene assembly. mapping required by 3DVC analysis and synthesis methods.

Frame ReconstructionGiven an assembled scefg, the In this experiment, the depth sensor is considered approx-
corresponding frame'}, is reconstructed by computing theimately ideal, and segmentation is obtained by thresholding
scene perspective projection. This is accomplished by a simplepth information. The ideal sensor model is not adopted
fied first-opacity volume renderer operating in warped spact avoid the persistence of spurious artifacts that may arise

In a conventional first opacity volume renderer, for evergue to imprecisions in pose estimation. The parameter
pixel in the projective plane, a ray is cast from the cameia set to 0.1, giving more importance to shape information
center toward the scene passing through the given pixel. Whauring registration because the texture surface of the object in

IV. VIDEO SEQUENCE SYNTHESIS
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(b)

(d) @)

Fig. 5. Selected intensity frames from synthetic video sequence.

sequence are presented in Fig. 9. A comparison with the
original sequence reveals that some artifacts are introduced,
especially near the object edges.

These artifacts are due to two major factors: aliasing and
resampling.Aliasing artifacts are introduced by the discrete
nature of the model. To eliminate them, we must choose
() © voxel dimensions small enough to meet the Nyquist cri-
terion for shape and texture frequencies. This establishes
a tradeoff between model size and spatial resolution. The
object models generated by this experiment are composed of
approximately 4.5x 10° voxels, of which 4879 voxels were
occupied in modell’; and 13986 were occupied in model
I'3p. Resamplingis required because the motion script may
require the model grid to be placed in a nonaligned position
with respect to the scene grid. Proper resampling requires
reconstruction of the field for all new sampling points using
this particular sequence lacks distinctive features. Using theke currently available set of samples. Each reconstruction
assumptions, the stochastic modg| is incrementally built entails taking into account contributions from all samples
according to the method described in Section IIl. available, i.e., one must compute the sum of the values of

In order to visualize the constructed 3-D probabilistic objeet set of sync functions, each centered at one of the voxels
models, we create a visual representation using CSG prithat compose the model. This is a costly procedure, given
itives. For each cellC; of the modell’;, we create a small that the models constructed usually have large voxel counts.
sphere positioned in 3-D space according to the position of tiikis procedure is simplified by local weighted averaging or
cell, with radius proportional to the occupancy probability. Ttrilinear interpolation. These simplifications reduce signifi-
avoid excessive image cluttering, we subsample the grid bgntly the computational cost, but introduce artifacts near the
2 in every direction. Fig. 7 presents a pair of views of thebject edges.
model after the first two frames are registered and mergedReal Video Sequencdn this experiment with real data, we
into the model. We notice that even though modgl is use a video and coregistered range sequence obtained by using
clearly incomplete, it carries sufficient information for thea light stripe range finder with a liquid crystal shutter and a
reconstruction of the two frames already processed. In Fig.ddlor CCD video camera.
the model is observed after 30 frames have been processedo have control of object pose during data acquisition, we
We notice a higher level of model completenesd’ijig when mounted the object of interest at the end effector of a precise
compared tol's. computer-controlled robotic arm. To create the sequence, we

The original video sequence is reconstructed using tdefine a simple motion script where the object performs a
method proposed in Section IV. Samples of the reconstructemimplete 360 rotation around the vertical axis.

(d) ©) ®

Fig. 6. Selected range frames from synthetic video sequence.
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(b)

Fig. 7. Frontal and side views of object mode}, obtained after integration of two frames.

(b)

Fig. 8. Frontal and side views of object modei,, obtained after integration of 30 frames.

(b)

(d) (e)

Fig. 9. Frames reconstructed using object models and pose estimates.

Camera calibration is obtained using a calibration box oéquired to determine the warping mapping used by 3DVC
known size and shape. The calibration procedure produces aneasurement grid creation and frame rendering.
projection matrix that represents the transformation betweenThe coregistered range and video sequence hasx2866
world and image coordinate systems. This information fsxels/frame, 8 bits/pixel. Six sample video frames extracted
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(b) (c)

(d) () ®

Fig. 10. Selected intensity frames from real video sequence.

s
:
i

f%é

(d)

Fig. 11. Selected range frames from real video sequence.

from the complete sequence are shown in Fig. 10, and tagply the 3DVC analysis method to incrementally construct
corresponding depth maps are shown in Fig. 11. the stochastic modd';.

As before, the object is segmented by thresholding depthUsing the same technique for object model visualization
information. The parameteris set to 0.5, giving equal impor- described in the previous experiment, we generate a pair of
tance to shape and texture information during registration. Wiews of the model after two and eight frames are processed;
assume a zero-mean unit variance Gaussian sensor model,thade views are presented in Figs. 12 and 13, respectively. We
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i

(@) (b)

Fig. 12. Frontal and side views of object modél obtained after integration of the first two frames.

¥ gie ud

a1
KA FACE K.

(@) (b)

Fig. 13. Frontal and side views of object model, obtained after integration of all frames.

notice that model’;, is sufficient to reconstruct the alreadypose estimate is represented by six floating-point variables, i.e.,

processed frames. 24 bytes of information. Without further applicable motion
Samples of the video sequence reconstructed by 3DVC arediction via Kalman filtering, or lossless compression, this

shown in Fig. 14. As with the synthetic data, artifacts afdeads to the compression ratio Gfjea1 = (24F,,/SrawF).

introduced near the object edges. Here, F,,, is the number of frames with interframe motion,
F is the total number of frames, arf.,, is the byte count
VI. 3DVC APPLICATIONS for a given input video frame. In our real data experiment,

Video Coding: A video codec based on 3DVC implement§ach frame hasS.,, = 65536 bytes and, as the object
the video analysis module at the transmitting end. The vid§§EPS moving continuously, all frames require transmission
synthesis module reconstructs the video sequence at theethe pose estimate. For this scenario, the codec requires
ceiving end. We send through the channel only the requirigeal = 1 : 2731 = 0.000366 bytes/pixel or a bandwidth
object model updates and pose estimates. of 2.812 kbps/s at 15 frames/s. _ _

The codec achieves high intraframe compression becaus&hanges in environment illumination and objects with spec-
the size of the object model updates reduces as the modiar reflection cause modifications to the surface texture from
becomes complete, and the pose estimate specification requii@@e to frame. Imprecision in pose estimation and range
a small amount of data that is independent of the frame siZZ€Nsing generates ambiguous information that leads to alter-

During model construction, the occupancy entropy détions in occupancy. Due to these factors, models usually do
creases from frame to frame proportionally to the neW@ot reach the ideal steady state, where no update information
information about the model in each frame. If the objeds required, but reach a distinct steady state that requires a
performs a motion pattern that displays the same regionsfegction of the voxels to be updated from frame to frame.
the object in a repetitive fashion, the model entropy and voxel To avoid the overhead of transmitting model update infor-
count reach a steady state after several frames are proces¥@dion every frame, we implement an update policy based
In our experiments with a rotating mug, after the first 3600n model entropy after the model reaches this steady state.
rotation, the model voxel count reaches steady state; ref¥e keep updating the model at the transmitting end every
to Fig. 15. frame. We only transmit information to update the model at

Ideally, after the model reaches steady state, only pose inftre receiving end if the entropy difference between the models
mation is required for reconstruction. A six-degree-of-freedoat the transmitting and receiving ends is larger than a threshold.
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(d) ()

Fig. 14. Frames reconstructed using object models and pose estimates obtained from real data.

Frames where an update is necessary are called keyframes. To
avoid reconstruction of nonkeyframes with incomplete models,
we use a pipeline. The length of the pipeline determines the g
amount of look-ahead allowed for keyframe detection. Once a
keyframe is detected, the model is immediately updated.

The number of voxels to update depends on the motion
between updates. Larger motion implies larger uncertainty in
motion estimates and larger illumination effects. For the real
data sequence example, we observe that, for an interframe
motion of 4%, approximately 5% of the occupied voxels are
updated. This update policy leads to the compression ratio
Cpolicy given by

o

MNumber of Voxels
~ w FN w

—

M+ 24F + Siey Free ; 5 : : ‘ : :
Cpolicy = Cmodel + Cideal + Ckey = S F Y Y 0 i H i H P L H
raw (25) 2 q 3} Fm"ge numtl]:g 12 14 16

where M is the the number of bytes required to transmit theig. 15. Number of occupied and altered voxels in the model over time.
steady-state model oncé; is the number of framesSy., is
the average number of bytes per keyframe, dg, is the
number of keyframes.

terms in (25):Cuodel = (M/SrawF) = 0,014305, Ciey =
In our experiments, after we detect that the model hiSkey Ley /Sraw I7) = 0.006358, andCigear = (M/Srawl’) =
reached steady state, we set the entropy threshold to 5 0366. )
voxels. Updating each voxel independently requires the trans-1 € Cmodel t€rm can be substantially reduced. We used a
mission of 30 bits: 22 bits for addressing and 8 bits for texturBaive addressing scheme to encode the model (22 bits/voxel
Addressing each voxel individually, the transmission of th@ddress), which leads to a lardeé. Octree addressing and
steady model required/ = 337500 bytes. For thel’ = 360 other entropy coding methods will reduce this overhead sig-
frames encoded with the entropy policy, we @&t, = 8 key nificantly. Further, as the number of framésgrows, Cinodel
frames with an average size 8f., = 18 750 bytes/key frame. in (25) becomes negligible. Not accounting for this term, the
The compression ratio for this setup oy = 1 : remaining terms lead to a compression rafiQc, = 1 :
47.55 = 0.02103 bytes/pixel. We analyze each of thel57.29 = 0.006358.
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The Cye, term is a function of the entropy threshold and
scene properties. A higher entropy threshold leads to a smallﬁﬁ
number of keyframes and to a reducgg,. Object surface
and illumination characteristics define the average keyframe
update size. If objects present specular surfaces, a reductih
in the number of keyframes may lead to an increase in
illumination artifacts in the reconstructed sequences. If thesg]
illumination artifacts are not tolerable, th&,.q4.1 t€rm can
still be reduced by extending 3DVC models to carry surfacey)
reflectance properties that can be estimated as in [51]. The
reduction ofCy., leads to the compression ratio Gfje.; = [5]
1: 2731 = 0.000366 bytes/pixel.

In summary, not accounting for the overhead introduce(d?
by the term A4, this experiment shows that a codec base
on 3DVC has a potential compression ratio in the range of
150-2700. [7]

Video Editing and Handling:Using 3DVC, we access the g
3-D structure of the scene. It is possible to insert objects not
present in the scene, change the camera viewpoint, alter t
motion patterns of objects, and even remove objects. [10]

All of these alterations are constrained by model complete-
ness. If the original sequence explored the regions occluded[w
an object, these regions will be visible after the given object is2]
removed. If regions were last observed from a given viewpoint,
it is likely that artifacts will be generated if the current
viewpoint is completely different, especially in the presendé3]
of specular surfaces. These cases would require modeling the
surface properties as in [51]. [14]

Due to space constraints, we explore and demonstrate these
novel methods for video handling and editing enabled l:[¥5]

3DVC elsewhere.
[16]

VII.

We introduce 3DVC, a novel system for compact vided”!
representation that provides a useful description of the 3{y]
structure of the scene. 3DVC decomposes the video sequence
in a Bayesian framework into a set of perceptually meaningful
3-D entities: object models and motion scripts.

3DVC has interesting features: it is robust against sen
noise and estimate uncertainties, accepts explicit knowlezige
about sensor behavior, and allows incremental model con-
struction. 3DVC eliminates interframe redundancy and enabléd!
content-based access to video.

We discuss the applicability of 3DVC to content-baset??
video coding, handling, and editing. Analysis shows thajs
the interframe compression ratio grows with video sequence
length, and also depends on the complexity of scene dynam[i&ﬁ
and object persistence in the scene.

Experiments achieve high-quality results without blockin
artifacts, meeting VLBR bandwidth requirements without ug2>]
ing further applicable intraframe coding.

The proposed video analysis method is a generic tool for
the efficient generation of 3-D textured models from videB
sequences. We currently investigate alternative applicationg
beyond the scope of video coding, e.g., object recognition8
special effects, generation of realistic models for telepresen[:ze,]
virtual manipulation, and 3-D facsimile.

CONCLUSION
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