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Abstract. In numerous content-based video applications, it is important to extract from a video se-
quence a representation for humans in motion. This task is difficult, because humans are not rigid objects
and they are capable of performing a wide variety of actions. However, often, human movements can be
categorized into repetitive and rhythmic patterns of motion. Identifying the motion pattern of a human
significantly alleviates the task of construction of its representation. We propose here a model-based
recognition of the generic posture of human walking in dynamic scenes. We model the human body as
an articulated object connected by joints and rigid parts, and model the human walking as a periodic
motion. The recognition task is to fit the model walker sequence to the walker in the live video (data
walker sequence). We achieve this by determining the period of the data walker sequence and finding
its phase with respect to the model walker sequence. We present promising results of how our system
performs with a live video sequence.
1. Introduction Other approaches to video representation can be
found in [2, 19].

The success of GV in decomposing video in
terms of motion relies on powerful motion estima-
tion and segmentation algorithms. Since motion
estimation for 3-D scenes and for non-rigid objects
is still among the most difficult challenges in the
research area of computer vision and image pro-

Video representation is a key element in a wide
variety of applications such as video coding and
video manipulation (indexing, editing, composi-
tion, and retrieval [2, 9, 10, 11, 20]]. Content-
based representations describe a video according

to its contents such as motion, shape, and texture.
Jasinschi and Moura developed a content-based
video manipulation scheme which they referred to
as generative video (GV) [9, 10]. GV is a video
meta representation. GV decomposes a video se-
quence into constituent entities according to the
relative motion of these entities in the video. For
a video with a dominant background, GV gen-
erates a background world image (or background
template) for the background, and a figure world
image (or figure template) for each moving object.

cessing, GV in [9, 10] is restricted to videos with
rigid objects moving in very constrained environ-
ments.

We explore the representation of non-rigid mo-
tion in the framework of GV. The domain of inter-
est will be restricted to human movements. Our
goal is to create a high-level representation scheme
of human movements in a 3-D dynamic scene. It
involves solving problems of action recognition,
part tracking, part decomposition,and texture re-
covery. Currently, we study human walking. We
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focus on the recognition of human walking in this
work.

We propose a model-based approach to recog-
nize human walking in live videos. We adopt
generic models for the human body and human
walking. The modeling provides a sequence of
walking patterns which we refer to as model walk-
ing sequence. The recognition task is now to fit
the model walking sequence to the walker in the
live video. This is done by searching the model
walking sequence by using a contour-based match-
ing method to find the pattern in the model walk-
ing sequence that best resembles the walker in
each frame.

In Section 2 we illustrate the concept of GV. In
Section 3 we describe our approach and review re-
lated work in tracking and recognition of human
movements. We describe in detail our system in
Sections 4-6. In Section 7 we provide experimen-
tal results. Finally, in Section 8 we conclude the
paper.

2. Generative Video

Generative video (GV) [9, 10] describes video ac-
cording to its contents including motion, shape,
and texture. Figure 1 illustrates GV. Suppose
that there is a video sequence of 4 frames as shown
in the left side of Figure 1. The background is a
house. The house moves relative to the camera
from right to left. The foreground is a car. The
car moves from left to right.

GV decomposes the video into objects with co-
herent motions; thus there are two objects as
shown in the right side of Figure 1. Each object
is described by a template, referred to as a world
image in [9, 10], and a motion script. A template
characterizes the shape and texture of an object.
A motion script describes how an object moves
in the video. This representation is sufficient to
reproduce the original video. Furthermore, it’s
more compact and meaningful than the original
raw video.

Jasinschi and Moura’s experiments in [9, 10]
show that GV is capable of analyzing videos with
2-D rigid motions. Their method requires the
computation of the image velocity (optical flow)
field. They identify the moving objects, includ-
ing the background, from the velocity histograms.

The background motion is assumed to dominate,
corresponding to the dominating peaks of the ve-
locity histograms. After registering the back-
ground, which compensates the background mo-
tion, the residual motions correspond to the mov-
ing objects. In [9, 10] they identify the moving ob-
jects sequentially using this same dominance crite-
rion of the velocity histograms. Finally, they find
and determine if a moving object is rigid by using
an image correlation method.

For a video with a car moving in the foreground
of a street scene as shown in Figure 2 (a), GV
extracts the car and assigns to it a template, as
shown in Figure 2 (b). The techniques in [9, 10]
are restricted to rigid body motions. Figure 3 (a)
shows a video with a human holding a mug walk-
ing front-and-parallel to a camera. Because the
upper body is generally rigid, GV extracts and
assigns to it a template, as shown in Figure 3 (b).
The legs exhibit nonrigid motion and are self-
occlusive. GV in [9, 10] cannot analyze non-rigid
motion; as a result, the moving region correspond-
ing to the lower limbs is labeled as a model failure
region, see Figure 3 (b), which has to be treated
differently.

The goal of this paper is to extend GV to repre-
sent articulated human motion. We focus on hu-
man walking. The challenge lies on the tracking
and recognition of human motion.

3. Approach

Tracking and recognition of humans and their ac-
tions is not a new task in computer vision. Previ-
ous work in this area includes [7, 8, 12, 16, 17].
Most systems in this domain resort to model-
based approaches. They either adopt an apri-
ori model of the human body [7, 8, 12, 16, 17]
or make assumptions on the types of motion of
the human [8, 17]. An early attempt to recognize
human movements is reported by O’Rourke and
Badler [16]. Their system tracks human motion
based on constraint propagation. They adopted a
3-D geometrical model of the body, but used syn-
thesized images to simplify low-level feature ex-
traction.

Hogg [8] considered human walking recognition
in live videos. He modeled both the human body
and the human motion. The human body is de-
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Fig. 1. Generative video (GV).

(b)

Fig. 2. GV’s representation of a rigid object.

scribed as a set of elliptical cylinders; the motion
model is acquired interactively from a prototype
image sequence. A similar approach is taken by
Rohr [17]. Rohr also adopted a cylindrical model
for the human body. However, Rohr modeled the
motion through a time series, averaging the kine-

Fig. 3. GV’s representation of a non-rigid object.

matic data provided by the medical motion studies
conducted by Murray [15].

In recently years, several researchers investi-
gated tracking high degree-of-freedom human mo-
tion [7, 12]. Gavrila and Davis [7] studied track-
ing human movements based on a multi-view ap-
proach. Their model of a human body is con-
structed with super-quadrics and a large number
of degrees of freedom (DOF). The human subjects
can perform unconstrained actions, but need to
wear tight clothes with plain colors in order to
simplify the extraction of the contours of the hu-
man body. Kakadiaris and Metaxas [12] presented
a similar multi-view approach for large number of
DOF tracking of human body, yet they modeled
the body parts of a human as deformable contours.

Due to its complex nature, the human body is
non-rigid, it is capable of performing a wide va-
riety of actions, and can be highly self-occlusive.
3-D systems for tracking and recognition of human
movements are operated either in very controlled
environments or by applying constraints on the
movements. The systems of Gavrila and Davis [7]
and Kakadiaris and Metaxas [12] can track un-
constrained actions, yet they need known initial
posture as a start-up and several static cameras
to provide sufficient views. On the other hand,
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Fig. 4. Block diagram for the recognition system.

Hogg’s [8] and Rohr’s [17] systems can track and
recognize human movements in monocular image
sequences, but they constrain the domain of hu-
man motion to walking, and they require the cam-
era to be stationary.

We propose here a model-based approach to rec-
ognize human walking. Our system is capable of
recognizing the posture of a walking human in a
complex scene. Functionally, it is most closely re-
lated to the work of Hogg [8] and Rohr [17]. How-
ever, the systems of Hogg [8] and Rohr [17] require
a stationary camera, and the human subject walks
front-and-parallel to the camera. Our system al-
lows for camera motion during video capturing.
The task is made more complicated by the cam-
era mobility.

Our system consists of three components: pre-
processing, modeling, and recognition, as shown
in Figure 4. The pre-processing stage isolates the
walker from the background and estimates the po-
sition of the walker. The modeling block con-
tains knowledge about the human body and hu-
man walking. It generates useful measurements
for the recognition step. The recognition step is
the most essential part for analyzing human walk-
ing. It recognizes human walking with assistance
from the modeling block. It estimates the walking
posture by matching edge information extracted
from the real image with edge information derived
from the model.

We describe each of the three components in
detail in the following sections.

4. Pre-Processing

The pre-processing component isolates the walker
from the background and estimates the position
of the walker. Its goal is to extract the walker
and track its torso in every frame of a live video
sequence.

The implementation is based on a detection-
and-pursuit strategy: first, we detect a moving
object with a motion-based segmentation method;
then, we pursue the detected object.

4.1.  Detecting Moving Objects

We assume that the background motion between
two image frames is parameterized accurately by
a 2-D projective transformation. We estimate the
motion of the background for every two consecu-
tive frames. The computation framework is based
on an iterative multiscale approach as described
in Appendix A.

Once the image background motion has been
determined, we register consecutive images using
this motion. As a result, we null the image back-
ground motion; the remaining motion is due to
moving objects. Figure 5 (a) shows a motion de-
tection image. The brighter a pixel is in this mo-
tion detection image, the more likely the pixel
is to belong to a moving object, and vice-versa.
By choosing an appropriate threshold value, we
extract regions corresponding to moving objects
from the motion detection image. As shown in
Figure 5 (b), the result is a binary image, which
we refer to as motion detection template. The
white areas are moving regions.

4.2.  Pursuing A Moving Object

After detecting a moving object, we track the ob-
ject to obtain its motion information. The object
of interest here is a walking human. Experimen-
tal evidence reveals that the motion between the
head and torso of a walking human is negligibly
small; thus we treat these two parts as a single
rigid object. We locate the approximate area of
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Fig. 5. Detecting a walking subject.

the head-and-torso; then track it to obtain its mo-
tion information.

First, we adopt an intuitive method to find a
rectangular bounding box for the walker, see Fig-
ure 6. We assume that the ground is parallel to
the horizontal axis of the image plane. We locate
the two lateral boundaries by projecting vertically
the motion detection template, see the pixel his-
togram in the horizontal direction at the bottom
of Figure 6. This vertical projection is followed by
a horizontal projection, see the pixel histogram in
the vertical direction at the left of Figure 6. We
locate the bounding box from the boundaries of
the histograms of Figure 6. We then assume that
the head-and-torso are approximately confined to
within the upper half of the rectangular box. We
estimate the 2-D affine motion of the head-and-
torso between two consecutive frames. This gives
us the evolution of the 2-D position of the walker
between frames.

The output of the pre-processing step consists
of two parts:

e The first part is a sequence of motion detec-
tion templates. A motion detection template

50
100
150
200

100 200 300

Fig. 6. Identifying the position of a walking subject.
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provides the moving regions corresponding to
the walker in each frame. As can be seen from
the motion detection template shown in Fig-
ure 5 (b), the template is not a complete or
accurate segmentation of the walker. These
templates however will suffice as inputs to
the recognition stage described in Section 6.
The recognition stage uses a contour-based
method. This method requires only informa-
tion about the edges of the walker which re-
side within the white regions in the motion
detection template.

e The second part is the motion information of
the background and the motion information of
the head-and-torso of the walker. These mo-
tions constitute the mapping conditions which
are vital for the synthesis of the model walker.

5. Human Modeling

Human models facilitate the recognition described
in Section 6. There are two major components
to setting up a model for the human walker: (1)
the model of the human body, which provides the
geometrical knowledge about the walker; (2) the
model of the walking, which provides the topolog-
ical knowledge about the walker. We assume that
these two types of knowledge are known apriori.
We use them to synthesize the walker.

5.1.  Modeling the Human Body

3-D Graphical modeling of the human body gen-
erally consists of two elements: a representation
of the skeletal structure (or so-called stick figure),
and a representation of the surface surrounding
the structure. The stick figure is a collection of
segments and joint angles used to specify the po-
sition and the configuration of a human body. The
surface structure describes the outlook, i.e., phys-
ical shape and texture of the human body. A va-
riety of models have been proposed to represent
the human body in human animation [18]. An
elaborate model with more articulated parts and
degrees of freedom as well as a more complicated
surface structure generates a more realistic human
body; the price paid is that it requires a large num-
ber of parameters to represent the human body,
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increasing the complexity of the estimation of the
human movements.

The purpose of our modeling scheme is to gen-
erate the contour information of the walker. The
shape differs from one human to another. It suf-
fices for our purposes to adopt an articulated cone-
shaped model. This model is similar to that of
Marr and Nishihara [14], which was adopted by
Hogg [8] and Rohr [17] in their work. The human
body, represented as a stick figure in Figure 7 (a),
is considered to be composed of 12 rigid parts
(head, torso, plus two primitives of arms and three
primitives of legs). Each part is represented by a
truncated cone with elliptical cross section and a
semi-oval sphere attached to each end of the trun-
cated cone, as shown in Figure 7 (b). Each part
is therefore described by six parameters, see Fig-
ure 7 (b): one for the length of the truncated cone,
lcy, two for the lengths of the major axes of the
ellipses, l¢;1 and l¢;2, one for the ratio of the major
axis to the minor axis of the ellipse, r.;, and an-
other two for the heights of the semi-oval spheres
attached to the ends of the truncated cone, [,
and lgpo.

5.2.  Modeling Human Walking

Our goal is to recognize human movements in
live video. The agreement with actual movements
is important. For describing human locomotion,
there are two basic approaches: kinematic and dy-
namic [4]. The kinematic approach utilizes general

I'el : the ratio of the major axis to
the minor axis of the ellipse.

(b)

Fig. 7. Model of the human body.

biomechanical knowledge or observations on hu-
man locomotion. The dynamic approach regards
the human body as a linked structure. Dynam-
ics like Newton-Euler Mechanics are used to sim-
ulate the movements governed by muscles. This
method requires knowledge of the internal forces
and torques for stimulating the movements. The
kinematic approach is much simpler than the dy-
namic approach, yet it still provides an adequate
representation for human movements. It is there-
fore a more plausible choice for modeling human
motion in live videos.

We adopt the kinematic approach in modeling
the human movements. Previous research in the
biomechanics of human locomotion [15] provides
useful measurements for modeling human walking.
Murray [15] conducted experiments on measuring
gaits of males and females in a wide range of ages
and heights. These results reveal that the move-
ment patterns of different body parts are similar
for different people. Rohr [17] used the average
measurements of the movement patterns [15] in
his work. Encouraged by his results, we adopt the
same set of measurements in modeling the human
walking.

The stick model shown in Figure 7 (a) has 11
joints and joint angles 6;, (i = 1,2,---,11). Mur-
ray [15] considered human walking as an articu-
lated motion with 10 DOF, which are 6; to 6i¢.
In our model, we add an extra DOF, a joint angle
between the neck and the torso, i.e., #1;. Due to
the symmetry of walking, Murray only measured
five joint angles: 6, 63, 05, 67, and 6y. The other
five joint angles are derived by symmetry from
those five measured joint angles. Reference [15]
presents the time series for one cycle, averaged
over 30 normal individuals, for each of these five
joint angles.

We sample these averaged time series at
equally-spaced time instants. We collect these
equally-spaced samples at time instant p in the
model posture vector

O ) L [0a1(p) Oars(p) Ouss(p) ---
o+ Oao(p) Oario(p) 0M11(p)]T

(1)
The time index p € [0,1) of the time series of the
joint angles is usually referred to as the pose.



The joint angle time series are periodic with pe-
riod of 1. Figure 8 shows time series of the joint
angles for the hip and knee, 873 and 6,75, respec-
tively. The joint angle time series are our motion
model (prior knowledge). For live videos with dif-
ferent walking subjects, these series need to be
adjusted. For example, different people, even the
same human with different walking speed, produce
different stride sizes. To make this model more
realistic, we modulate the set of joint angle time
series according to the stride of the walker. We
compute the stride for the data walker in the k-
th frame, wp (k), from the width of the histogram
obtained by vertical projection of the motion de-
tection template, see Section 4. We determine the
stride wys (p) of the model walker at pose p by a
similar procedure. First, we synthesize the model
walker sequence using the body model introduced
in Section 5.1 and the walking model provided by
the joint angle time series described in this sub-
section. For each model walker, we isolate the
model walker from the background to obtain a
body template. We then project vertically the
body template to obtain the stride of the model
walker. It turns out that the model walker of pose
p = 0 has the largest stride.

We define the ratio of the widest stride of the
data walker to the widest stride of the model
walker as the stride ratio, r;,

max wp (k) max wp (k)
1<k<K 1<k<K

" T haxw (): wpr(p =0) @)
0fe%, M\D M\P =

We modify the joint angle time series 6,7; using
the stride ratio r;. The resulting modified joint
angle time series 6y, (p) are given by

s (0ari(p) ; %) ?1%2 5 6)
] e ) &y Iy
Omi(p) = rs01:(p)
ifi € {3,4,7,8,9,10}
] 3)
The modified posture ©,/(p) is defined similarly
to equation (1).

The net result of the modeling block is the syn-
thesis of the model walker sequence. Figure 9 (b)
shows three model walkers at poses 0.3, 0.6, and
0.9. The model walker sequence will be used in
conjunction with the data walker sequence in the
recognition stage of next section.
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Fig. 8. 'Two joint angle time series for walking.

6. Recognition of Human Walking

The task of recognition is to fit the sequence mod-
eling the walking to the walker in a live video. We
achieve this by determining the period of the data
walker sequence and finding its phase with respect
to the model walker sequence.

We defined two types of walkers: the data
walker and the model walker. The data walker,
Wp(k), is detected in the pre-processing step de-
scribed in Section 4 from the live video, where k
is the corresponding frame number. The model
walker, Was(p), is synthesized in the modeling
block using the modified posture, ©7(p), where
p € [0,1) is the pose. Figure 9 (a) shows some
frames of the data walker, Wp(k), k = 10,20, 30,
in a live video sequence. Figure 9 (b) shows
the model walker at different poses, Was(p),p =
0.30,0.60,0.90. The challenge is now to determine
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for each data walker frame Wp (k) what is the pose
of the corresponding model walker W, (p).

Our recognition algorithm is a contour-based
method. Following are two important reasons why
we use a contour-based method: (i) we only have
apriori shape information about the walker and
lack information representing the texture of the
walker; (ii) the edge information is usually more
reliable and robust than the texture information.

Since we track a walker in a dynamic scene, we
expect the edges to be cluttered. To reduce the
noise introduced by these cluttered edges, we con-
sider only edges falling within the motion detec-
tion template, see Section 4. We refer to these
edge images shown in Figure 10 as edge maps,

Wp(30)

(b)

Fig. 9. Frames in data and model walker sequences.

Ep(20)

Ep(10)

Fig. 10. Edge maps for the data walker.

Ep(k). The edge maps Ep(k) are generated by
first applying the Canny edge detector [5] to the
data walker, Wp(k), and then by removing the
clutter using the motion detection template.

Our model of the human body is a generic
cone-shaped model; therefore, the edge maps of
the model walker basically consist of piece-wise
straight lines. The edge maps of the data walker
generated from live video usually have a large
number of cluttered edges and broken edges. It
is difficult to extract straight lines from the edge
maps of the data walker accurately. Therefore, in-
stead of adopting a line-fitting matching method
as in [17], for instance, we propose a matching
method which does not require extraction of high-
level features from the edge maps. Our method
modifies the chamfer matching in [3] as we explain
below.

Given a data walker Wp(k), we estimate the
pose of the corresponding model walker Wy, (p)
by matching the edge information of the data
walker with the edge information of the model
walker. This is done by a generate-and-test ap-
proach. Starting with the data walker Wp(k), we
search the pose space of the model walker, i.e.,
the model walker sequence from p = 0 to p = 1,
to estimate the pose psim (k) corresponding to the
model walker posture that is closest to the data
walker. Closest is defined in terms of maximiz-
ing a similarity measure, s(Wp(k), Was(p)), which
quantifies how close the data walker Wp(k) is to
a model walker Wi (p).

The similarity measure s(Wp(k), War(p)) re-
quires knowledge of an edge map Ep(k) and a
phase map ®p(k) for the data walker Wp(k),
as well as of an edge map Fj/(p), a phase map
®/(p), and a distance map I'js(p) for the model
walker Wis(p) as described next.

6.1. Distance and Phase Maps

For the model walker with pose p, Wy (p), we
create the edge map E)/(p) by using the Canny
edge detector [5]. From the edge map E(p; x,y),
we then construct the distance map Tas(p;z,y),
which indicates the distance of a pixel to its clos-
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Fig. 11. Model walker, and its edge, distance, and phase maps.

est edge pixel. The distance map is defined by

Cuv(pyz,y) =
1— & (§r — mi
(1 —a)+ 5-(dr eglgﬂlllle, (9
i mi <
i min [le, (, y)[| < or
0 otherwise
(4)
where (z,y) is the position of a pixel, a € [0,1], e
is the position of an edge pixel in E/(p), and dp
is a given threshold.
The phase map ® y/(p; z,y) collects the orienta-

tion of the edges in the edge map En(p;x,y). It
is defined by

1 Vy(Wu=G)
Ve (W xG)

if min [le, (z,y)|| < dr
ecEn

tan
0  otherwise
(5)
where V, and V, are the components of the gra-
dient operator and G is a Gaussian lowpass filter.

Figures 11 (b), (c) and, (d) show in gray level
the edge map, the distance map, and the phase
map, respectively, for the model walker with pose
p = 0.4, Wys(0.4), in Figure 11 (a). Note that the
pixel values of the distance map and the phase
map have been linearly converted from [—7, 7] to
[0,255] and from [0, 1] to [0, 255], respectively, for
visualization purposes.

The distance map indicates the distance of a
pixel to its nearest edge. The brighter the gray
level of a pixel is, the smaller is its distance to
its closest edge. The distance map is modified

from the chamfer image [3], which is virtually the
same as our distance map when a = 1 and dr
is sufficiently large. The parameter dr is used to
regulate the potential region, which is defined as
the region consisting of pixels with distances less
than or equal to dp to the contour. Only pixels
inside the potential region have non-zero values.
The parameter « is defined as the sensitivity of
the distance map. The sensitivity is at its lowest
when a = 0. In this case, the intensity of ev-
ery pixel inside the potential region has the same
value, regardless of its actual distance to the con-
tour. The sensitivity increases as « increases.

The phase map is derived from the gradient of a
blurred model walker; it possesses the orientation
information of the edge map. Dark pixels have
a phase close to —m, indicating that their orien-
tations point upward, while bright pixels have a
phase close to 7, indicating that their orientations
point downward. The other edge pixels have ori-
entations in between.

We use these two maps as geometry filters
to measure the geometric similarity between the
model walker and a data walker. As mentioned,
functionally, our distance map is similar to the
chamfer image [3] used for measuring the similar-
ity between two sets of edges. The chamfer match-
ing method in [3] computes the similarity between
two sets of edges by only measuring the distance
between them. It doesn’t consider the orientation
information between these edges, which we believe
is as important as the distance information. Our
phase map provides this information by measuring
the orientation between these two sets of edges.
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Similarly, from the edge map Ep(k) and the
data walker Wp (k), the phase map ®p(k;x,y) for
the data walker is defined by

1V, (Wp*G) .
@D(k,m,y) = tan 1W§*G) if (l’,y) € Ep
0 otherwise

(6)

6.2. Similarity Measure

For the data walker in frame k, Wp(k), we search
the pose space of the model walker, Wy (p),
p € [0,1), to estimate the pose, psim(k), of
the posture which is closest to the data walker
Wp(k), by maximizing a similarity measure
s(Wp(k), W (p))

Psim (k) = arg max s(Wp(k), Wu(p))  (7)
p€[0,1)
The similarity measure s(Wp(k), War(p)) indi-
cates for each pair (k,p), where k is the frame
index and p is the pose, the geometric resemblance
in terms of edges between Wp (k) and Wi (p). It
is defined as

s(Wp(k), W (p)) =
> Su(k,p;2,y) - T (p; 2, y)
(z.y) (8)
> Sulk,piz,y)

(z,y)

where

SM(kapa x,y) =
1 if (z,y) € Ep and
|®p(k;z,y) — Pr(p;a,y)| < da
0 otherwise

where d¢ is a given threshold. We call the pro-
cedure defined by Sy/(k,p;z,y) in the equation
above phase filtering. For each edge pixel of
the data walker Wp(k), phase filtering compares
the phase of each edge pixel of the data walker,
®p(k;z,y), with the phase of its corresponding
pixel of the model walker, ® )/ (p;z,y). As a re-
sult, phase filtering only preserves those edges in
the data walker that have phase (orientation) sim-
ilar to the phase of their corresponding pixels of
the model walker. We then sum the distance val-

ues of those preserved edges to obtain the similar-
ity measure.

We illustrate the matching process in Figure 12.
Figure 12 (a) is the edge map of a data walker. We
match it to the model walker whose distance map
is shown in Figure 12 (b). Figure 12 (c) shows
the edge map of the data walker superimposed
to the distance map of the model walker in Fig-
ure 12 (b). Since the two postures differ from
each other, only a few edges of the data walker
fall within the nonzero region of the distance map.
Also we need to verify if the phase of those edges
falling in the overlap region is similar to the phase
of their counterpart points in the model walker.
Figure 12 (d) shows the result after phase filter-
ing. Since most of the edges of the data walker are
removed during phase filtering, see Figure 12 (d),
the similarity measure is very small. In other
words, the result reveals that the model walker
of Figure 12 (b) is not a good match to the data
walker of Figure 12 (a). Note that phase filtering
has eliminated almost all edges in the intersection
of the legs of the model walker and data walker,
though the distance of those eliminated edges of
the data walker to the edges of the model walker
is very small. If we just used the distance map as
the chamfer matching method does in [3], these
edges would contribute erroneously to the simi-
larity measure.

6.5. Fittest Posture

We search the pose space of the model walker to
find the closest pose, psim (k), for the data walker
in a number of consecutive frames, Wp(k),k =
1,2,---, K, by maximizing the similarity measure
defined in (8); then, determine the period, T}, af
f, ', (in frames/cycle) from the fundamental fre-
quency fp, and the phase, ¢p, (or the pose of the
walker in the first frame of the video) by a line
fitting algorithm

[fp* bp" ] =
argmin > ||psim (), fo(k = 1) + ¢y
k
9)

We designate pgi:(k) a fp (k—1) 4+ ¢p" to be
the fittest pose of the data walker Wp(k), and

O it (k) 4 O (prit(k)) the fittest posture.



(b)

Fig. 12. Illustrating the result of phase filtering.

7. Experiments

We present results on recognizing the posture of a
walker in the Pedro sequence. The Pedro sequence
is a live video of an outdoor scene. We first ap-
ply the pre-processing stage described in Section 4
to extract from each image the walking human,
which we refer to as the data walker. Then, we
apply our recognition algorithm described in Sec-
tion 6 to the first 30 frames of the Pedro sequence.
For each frame of the data walker, the recog-
nition step generates a phase map for the data
walker; then searches the pose space to: synthe-
size a model walker; generate a distance map and
a phase map for the model walker; maximize the
similarity measure to find the closest pose; and,
finally, line-fit the data of the estimated closest
pose for all these 30 frames of the data walker to
determine the frequency and phase of the walking
posture. To test the robustness of our approach,
we estimate the closest pose for the data walker
in each of the 30 frames by searching the entire
pose space with a pose increment of 0.01, in other
words, by best matching to a posture in a sequence
of 100 model walker frames.

Figure 13 shows the results of matching the data
walker of Frame 2. The horizontal axis is the value
of the pose indicated as a percentage of the period
in a walking cycle. The vertical axis is the simi-
larity measure defined in (8). The result suggests
that the model walker with pose of 0.77 is the best
match to the data walker. We may notice in Fig-
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Fig. 13. Similarity measure for the data walker frame 2
in Pedro sequence.

ure 13 that there is another peak centered around
the 0.26 pose, which is about half a period apart
from the major peak. This is due to the symmet-
ric characteristic of walking. This large secondary
peak may cause large errors (or outliers), see be-
low.

We perform the matching mentioned above on
the data walkers for Frame 1 through Frame 30.
The result is shown in Figure 15. As can be
seen, most of the data points scatter around a
straight line except for three outliers, the three
data points corresponding to Frames 14, 18, and
23. The outliers are due to the symmetric charac-
teristic of walking as discussed above. These three
data points will fall within the desired range if we
compensate them by +0.50. We then determine
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frame: 5; pose: 0.82

frame: 20; pose: 0.22

frame: 10; pose:0.95

el

frame: 15; pose: 0.09

Fig. 1/. Recognition results for Pedro sequence.
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Fig. 15. Line-fitting to obtain frequency and phase for
data walker sequence in Pedro sequence.

the period and the phase of the posture for the
data walker by applying equation (9). We obtain
fp = 0.0267 and ¢, = 0.7129. This result shows
that the fittest posture of the walker in frame k
of the Pedro sequence is Oy (k) = Onm(prit(k))
where pri(k) = 0.0267(k — 1) + 0.7129. This in-
dicates that the fittest pose for Frame 1 is pgs(1)
= 0.7129, and that the period of the walking cycle
is T), = 37.45 frames/cycle. We then superimpose
the contour of the approximate model walkers to
their corresponding data walkers. Some of the re-
sulting images are shown in Figure 14. These re-

sults represent very fair recognition of the walking
posture.

8. Conclusions

Content-based representation of human move-
ments in live videos describes video according to
the motion, shape, and texture of the human sub-
ject. It involves solving the problems of action
recognition, part tracking, part segmentation, hu-
man modeling, and texture recovery. In this pa-
per, we focus on action recognition. We propose
a model-based recognition scheme for estimating
the posture of a walking human. We model the
human body as an articulated object connected
by joints and rigid parts, and the human walking
as a periodic motion. We estimate the posture
by matching the edge information obtained from
the live video sequence with the edge information
derived from the model. We test the algorithm
on live video with promising results. In [6], we
extend this work by using the estimated posture
of the action recognition stage described in this
paper as the initial posture for tracking the body
parts of the walking human.



Appendix A

Motion Estimation: Projective Model

Under perspective projection, the projective

transformation

prz + psy + 1
pat + psy + pe
prz + psy + 1

[w’ ] [ piz + pay + pa ] A

provides exact parameters to account for all the
possible camera motions. However, this set of pa-
rameters is difficult to compute. Assume that the
camera’s field of view is relatively narrow [1], the
projective transformation can be approximated
by low-order polynomials such as the pseudo-
perspective transformation

[l”'] _ [fh + (1 + @)z + g3y + qra® +Q8$y]
y' | T L aa+ gz + (14 g6)y + grey + gsy?

(A2)
or the affine transformation

HREE e

y' ag + azz + (1 + ap)y

When the motion is small, the pseudo-
perspective transformation is a good approxima-
tion and it is more stable to compute than the
projective transformation; we therefore estimate
the pseudo-perspective transformation as an in-
termediate step in our algorithm to estimate the
projective transformation parameters.

Figure A.1 depicts the algorithm for estimating
the projective transformation parameters. The
approach is similar to that of Mann and Pi-
card [13]. First, we estimate the 8-parameter
pseudo-perspective transformation by a gradient-
based method, then we determine the 8-parameter
projective transformation from the parameters of
the pseudo-perspective transformation by using a
simple conversion method, and finally we register
the frames with the projective motion parameters.
The three processes are performed iteratively un-
til a satisfactory result is obtained. We implement
this algorithm in a multiscale strategy. We de-
scribe below the estimation algorithm for pseudo-
perspective motion parameters, the conversion al-
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gorithm, and the multiscale implementation strat-
egy.

Motion estimation: (T ggjgg_;g;ﬁ&t F
pseudo-perspective => projecive
g rT Th r
¢}
™ Registration:
h projective model

Fig. A.1. Algorithm for estimating the parameters of the
projective transformation.

Estimation of Pseudo-Perspective Motion

The pseudo-perspective transformation describes
the motion between two consecutive frames as

I(,y,t) L I(z + u(x, @),y + v(x,0),t)  (Ad)

where [u(x, ) v(x, rj’)]T is the motion field

ul| @& |2 -2
{ v ] - [ v =y }
[ @1 + @ + g3y + qrr® + ggxy
— | @4+ a57 + ey + gray + gsy?
(A5)
The model requires the estimation of 8 pa-

. . . o4
rameters. We estimate the image velocity ¢ 4

[(1 @2 @3 Q4 @5 @6 g7 g3]* by minimizing the cost
function

C(q) = Z (I(z,y,t")—I(z+u,y+v,t))* (A6)

(z,y)ER

Under the assumption of small motion, we omit
the higher order terms of the Taylor series expan-
sion of I(z + u,y + v,t). Then, we have

() > (I —ul, —vI,)?

(z,y)ER A
S h-mayp

(z,y)ER

where m(z,y) 4 (I, zI, yI, I, zI, yI, (21, +
d d

wyly) (ayly +y°1,)], I, £ 2gt) g L ollzat),

and I af 81(;;?/@

By denoting the vectors M and I; as
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m(z1,y;) I,
m(z2,y2) I

M = _ L= 7 (A8)
m(zyN,yYN) Ly

we then rewrite equation (A7) as

C(@) = IMq - L||* (A9)

The least squares solution to equation (A9) is

7=-M"M)'M'T1, (A10)

provided that the matrix MTM is invertible.

Conversion from Pseudo-Perspective to Projective

After obtaining a set of pseudo-perspective motion
parameters, we establish the correspondence be-
tween the images. We choose corresponding pairs
of points by applying the pseudo-perspective mo-
tion parameters determined earlier

AEA
Yk Y'k

where Ty denotes the pseudo-perspective transfor-
mation of equation (A5), and k is the index for the
corresponding pairs of points. We assume that

these pairs of points also comply with the projec-
tive motion model, i.e.,

7
y'k B
o oyp 10 0 0 —zpa’y —yna's | &
[ 0 0 0z yr 1 —wky'k _ykylk:

k=1,---,K (Al1)

(A12)

L odf .
where 5 = [p1 p2 ps pa Ps Pe pr psl”, pisi =
1,...,8, are the projective motion parameters de-

fined in equation (Al). Since there are 8 un-
knowns to be determined, we need at least four
corresponding point-pairs. By choosing four cor-
ner points from the image at time ¢, and finding
their corresponding points in the image at time ¢,
we obtain p by solving a system of 8 equations in
8 unknowns.

Multiscale Implementation

We implement the algorithm to estimate the mo-
tion parameters in a multiscale manner. We con-
struct a Gaussian pyramid for each of the two im-
ages g = I(t) and h = I(t'). In this strategy, the
projective motion parameters are determined at
each level of the pyramid and propagated down
to the next finer level. We summarize the whole
procedure as follows:

1. Initialization: Construct an L-level Gaussian

pyramid for each of the two images, g and h.

2. Iteration: Start from the coarsest level, [ = 1.

Perform the following steps in sequence, [ =

1,---, L.

(a) Estimation: Estimate gj, the 8-parameter
pseudo-perspective motion between the
two images, g; and h;.

(b) Conversion: Convert ¢ to p;, the 8-
parameter projective motion.

(c) Iteration: Verify the fitness of the newly
determined projective motion. Repeat the
two steps above till a satisfactory result is
obtained.
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