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ABSTRACT

We propose an energy-based image segmentation al-
gorithm that uses the correlation information among
pixels in the same image as well as the temporal cor-
relation across the images in the sequence. We focus
on MRI sequences that are extremely difficult to seg-
ment on the basis of single images. Our method detects
motion-free objects whose intensities change across the
image sequence. We introduce an energy functional
that exploits the difference in the dynamics of the tem-
poral signals associated with distinct pixels. We de-
velop a level set approach and a region-growing algo-
rithm to minimize the energy functional. Our tests in
a transplantation study show that we successfully ex-
tract automatically the kidneys and their structures in
magnetic resonance (MR) image sequences.

1. INFRODUCTION

We develop signal and image processing algorithms for
non-invasive magnetic resonance imaging (MRI)-based
methods to detect early rejection in organ transplan-
tation. Our algorithms study the time variation pat-
tern of the coneentration of dextran-coated ultra-small
superparamagnetic iron oxide (USPIQ) particles after
injection in the recipients. We study kidney transplan-
tation with Brown Norwegian (BN} and D Agouti (DA)
rats. We focus on isograft rats (BN—BN) and alograft
rats (DA—BN). The time history of the MRI intensity
at each pixel is the renal perfusion signal. We have
developed in [1] and {2} a methodology that detects re-
jection by recognizing when the renal perfusion signals
on transplanted kidneys are significantly distinct from
the perfusion signals on native kidneys. Our method
has produced so far encouraging results. In our previ-
ous study, the pixel selection was carried out manually
across the MRI sequence by a human expert. This lim-
its the selection to just a few pixels. There are a num-
ber of reasons why it is important to track the perfusion
signals over as many pixels as possible: (1) studying
only a few pixels raises risks similar to biopsies—early
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rejection may occur in localized spots that may be eas-
ily missed when undersampling the kidney; (2) a larger
number of pixels provides a needed statistical signifi-
cance in face of the appreciable variability of the MRI
signals; and (3) tracking the perfusion signal across an
MRI sequence requires that the same pixel be identified
across the images in the sequence, a challenge that is a
source of errors. We present our work on automating
the process of pixel selection.

In dynamic MR kidney image sequences, it is par-
ticularly challenging to segment the kidney from its
surrounding soft tissues and other organs. To use all
the information available, we propose a new segmenta-
tion method that uses not only the spatial information
provided by each single image in the MRI sequence but
also the temporal information available, in particular,
the perfusion signal. Qurs is an energy minimization
type approach [3], see section 2: we expand the energy
functional to include space and time (the whole MRI
sequence), see [4], and modify the energy terms to ac-
count for the spatial and temporal correlations. Our
energy functional discerns among different regions in
the MRI sequence by using a geometric inspired ap-
proach. It determines how close or distinet perfusion
signal patterns are from their degree of similarity or
dissimilarity as evaluated by a subspace distance—the
gap metric [5]. We segment the MRI sequence by min-
imizing the energy functional through a level set-based
approach [6] that we develop in section 2. Qur exper-
imental results show that by exploiting both the tem-
poral and spatial information this method successfully
segments the kidneys from other structures.

The paper is as follows. In section 2, we describe
our energy functional and the level set Minimization
algorithm. Section 3 describes the data and the pre-
processing needed to successfully apply the approach in
section 2. Section 4 presents our experimental results
and concludes the paper.

2. ENERGY MINIMIZATION
Figure 1 displays 5 MR images sampled from the entire
image sequence of a BN rat. Besides the kidneys, the
images also display muscles, blood vessels, and other



organs. It is difficult to distinguish from the images the
different anatomical structures. Figure 2 illustrates the
perfusion signals of 3 pixels across the image sequence
respectively located at the cortex, medulla, and muscle.
Here, we normalize the perfusion signal with respect to
the intensity at the same pixel in the first frame. These
dynamic sequences are all quite distinct; for instance,
the intensity of the cortex pixel shows pronounced oscil-
lations, whereas the intensity of the muscle pixel is very
much noise like. This suggests that we can distinguish
between the kidney and other anatomical structures
based on their temporal responses. To quantify this
dissimilarity, we introduce a metric that characterizes
the distance between two dynamic signals.

Subspace distance Let I.(z,y), n = 1,..., N, be the
intensity at pixel (z,y) in MRI frame n, and N the
number of frames in the MRI sequence. As we are
interested in the temporal dynamics, we remove the
mean from the perfusion signal and then collect this
mean removed signal at each pixel {z,y) in the vector

I(I1 y) = [I](SB, y) - f(:,:,y), cany In(m’ y) - f(:c,y)}.

where I(z,y) = ZnN:l L(x,y)/N. Vector I{z,,y7) is a 1-
dimensional subspace in an N-dimensional space IR V.
The distance between two general subspaces S; and Sp
is given by the gap metric {5]

dis (S1,82) =|| P1 — P2 [|2, (1)

where P, and P, are the orthogonal projections onto
the subspaces S; and 8;, respectively. In the simple
case where the vector spaces are 1-dimensional, i.e.,
the vectors v; and vy, the gap metric is simply

dis (vi,v2) = [sin | (2)
given by the magnitude of the sine of the angle 8 be-
tween the two vectors. Instead of 8, we use % to dis-
tinguish between sin® and sin{w — #). We define the
distance function as

. 0

dis? (v, va) = sin? 5 = 1;;‘39 (3)

where cos 8 is the correlation coefficient c(vq, v2):

_ {v1,va)

6= = V1V
cosf = evive) = I T I’

(4)
with{-) denoting the inner product and || - ||z the Eu-
clidean Ly norm.

Energy functional We introduce cur notation first. Let
C be a curve that is the boundary of a set w C Q.
We denote by £2; and Q, the inside and the outside
of the curve C, respectively. Similar to the piecewise-
constant intensity case in image segmentation where
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the image is assumed to be formed by two regions with
distinct intensities values [6], we assume that there are
two regions in the image sequence {I,(:)}1<n<n whose
temporal signals follow closely two different dynamic
profiles. We define our energy functional as

E(C)=p - Length(C) + A f dis* (I(z, ), I')dzdy

g jg dis?(X(z, ), 7°)dedy 5)

where T' is the average perfusion pattern vector in-
side the curve C, while I° is the average perfusion
signal vector outside the curve C. The two distances
dis*(I{z, ), T') and dis*(I(z, ), I°} are computed from
Equations (3) and (4). The parameters A1, Az, and
are positive scalars. The integrals in (5) sum over the
pixels, while the distances in the integrands sum over
the frames in the sequence.

Segmenting the MRI sequence is now equivalent to

minimizing the energy functional (5), as in [3]. In our
energy functional, the first term penalizes the total
length of the boundary, while the last two terms con-
trol the data fidelity. Note that there is no smoothness
constraint term because we restrict the estimation to
be one single vector T for ; and another vector I° for
{%,. The energy functional (5) is notably distinct from
the ones used by other researchers. Not only because
the form of its terms is different from usual, but also
because it exploits the information available: spatially
or intra-image, as well as temporally or across the im-
ages in the sequence.
Level set implementation We develop a level set algo-
rithm to minimize the functional (7). The level set
method provides an efficient way to handle topological
changes. Following for example [6], the level set func-
tion ¢(z, y) is defined as follows: V(x,y) € &, ¢(z, y) >
¥z, y) € Qo, Iz, y) < 0;¥(z,y) € C, ¢{z,y) = 0. So,
the knowledge of the signs of the level set function ¢(-)
is equivalent to segmenting the image. In other words,
the level set function ¢(-) implicitly represents the con-
tour C at time ¢ by

C = {(x, y)ig(t, z,y) = 0}. (6)

Our algorithm is iterative and we update the estimation
of I' and of I°. Lacking space, we expand no further.

3. SEGMENTATION ALGORITHM
Data The experimental data are collected with four
groups of rats: 5 normal BN rats, 5 normal DA rats, 6
allograft rats (DA-—>BN), and 4 isograft rats (BN—BN)
were studied. Fhe rats were bolus injected with dextran-
coated USPIO particles at a dose of 6 mg Fe/kg of body
weight to evaluate first-pass renal perfusion. This dose
was experimentally determined to be the most suitable



within a range, see {2]. All rats underwent 128 consec-
utive snapshot Fast Low Angle SHot (FL.ASH) coronal
dynamic studies in 43 s, on a 4.7-T, 40-cm horizontal
bore Bruker AVANCE DRX MR instrument using a 7-
cm diameter Bruker volume transceiver coil. The field
of view and the section thickness were 6 cm and 2 mm,
respectively, and the image matrix was 64 x 64 pixels.
‘We normalize the signal intensity by the average inten-
sity value on a 3 x 3-pixel region in the psoas major
muscle in the same slice.

Preprocessing Experimentally we observe that the re-
nal perfusion signals at pixels located at the renal cor-
tex are highly correlated with its neighboring pixels,
and likewise for the perfusion signals at pixels in the
kidney medulla; however, the dynamic signals for pix-
els on the muscles are uncorrelated noise like. Based
on the similarity of the renal perfusion patterns at pix-
els of the same tissue, and to smooth out some of the
variation in these signals, we average the correlation
coeflicients over a window of the 8 nearest neighbors at
each pixel. Let A{z,y) stand for the 8 nearest neigh-
bors of pixel (z,y), then

DS

8 (pg)EN (z,y)

&lx,y) = c((z,y), Ipq)) (7)

Thus, we transform the sequence {In(-}}1<n<n into a
single image u(-) that captures the correlations of the
dynamical signals in the neighborhood at each pixel.
Figure 3 {(a) displays the image after preprocessing.
Note that the pixels located at the kidneys are gen-
erally much brighter than the pixels at other organs.
Hierarchical Level set We divide our algorithm into two
parts: initialization and segmentation.

~ Initialization: First we work with the single image
u(-) to discard most of the pixels that are not kidney
pixels. We develop for this single correlation image
a level set algorithm to segment both kidneys. Fig-
ure 3 (b) shows as solid contours the curve C at the
end of this initialization part.

Segmentation: We develop a level set algorithm
that processes the whole image sequence, but work-
ing only with the region inside the curve £ resulting
from the initialization stage, see Figure 3 (b); this level
set algorithm minimizes now the energy [unctional in
Equation (5). Each iteration is divided into two steps.
First, fixing C, find I' and I° that minimize the energy
functional (5). Second, fixing I' and I°, find C that
minimizes (5). To restrict the evolution of the curve C
inside C'™, we force the level set function ¢(t,z,y) to
be always negative outside the curve C™=t,
Region-growing With native and transplanted kidneys,
to assume that there are only two types of renal per-
fusion signals in the regions inside C'™ leads to many

100

errors. To overcome this, we develop a region-growing
method to find an approximate solution to the energy
functional (8). Our region-growing algorithum is as fol-
lows. Initially, each retained pixel is one region in it-
self. For the pth-region R,,, with NV, pixels, the average

temporal sequence is 1
> Uz,y) (8)

==
N,
P (z,y)eR,

The correlation coeflicient c(p, g), computed using Equa-
tion (4), quantifies the similarity between the average
temporal sequences I? and I of the region R, and its
adjacent neighbor Ry, respectively.

At each iteration of the algorithm, we merge the
two neighboring regions with the highest correlation
coefficient between their average temporal sequences.
That is, we merge the region R,- with its neighboring
region R,., such that, (p*, ¢*) maximizes c¢(p,q). By
merging the two regions, we combine the pixels in R,
and R, into one new region R,. and delete R, At
the same time, all the neighbors of R, and R, become
the neighbors of R,«. Finally, the average temporal
sequence for the new region R,- is calculated by the
weighted sum

Ir Ny

— NG‘
T N, +N,

i‘?
TN,

i

9)

The correlation coefficients of the regions affected by
the merging are also updated. The algorithm continues
and a new iteration restarts until the maximum corre-
lation coefficient is below a certain threshold a. We
chose a = 0.90 in this study. Thus, the region inside
Ct is divided into several regions with different sizes.
Among the rats we studied, the first two largest regions
are the cortex of the left and of the right kidneys.

4. EXPERIMENTAL RESULTS

We applied the level set segmentation method described
in section 3 to normal BN rats to extract the renal
cortex from USPIO-enhanced dynamic MR image se-
quences. In our experiments, we chose the parameters
as follows: A; = A = 2500, and ¢ = 80. Figure 3
shows the segmentation results at the end of each part
of our level set algorithm for one of the BN rats. In
Figures 3 (b)and (c), the initial assumed contours are
the circles {dotted lines), and the solid contours are the
final results of Parts 1 and 2, respectively. Figure 3 (d)
shows the extracted cortex by combining the segmen-
tation results from Figures 3 (b) and (c).

We also applied the region-growing algorithm pre-
sented in section 3 to 4 isograft rats and 6 allograft
rats. We illustrate its segmentation performance for
one isograft rat and one allograft rat in Figures 4 (a)
and (b), respectively. We plot the first two largest re-
gions. The stars label the cortex of the right (native)



kidneys, while the circles label the cortex of the left
{transplanted) kidneys. As shown, the first two largest
regions are the cortex of the left and the right kidneys.

The results in Figures 3 and 4 indicate that the
cortex is the most homogeneous region in terms of the
first-pass renal perfusion signal. The automatic seg-
mentation results of the cortex were validated by ex-
perts that showed that they are highly consistent with
their manual segmentations. With the cortex automat-
ically extracted, we can apply to each pixel the geomet-
ric based statistical analysis we proposed in [2] to de-
tect possible graft rejection rather than using an aver-
age signal over a few manually selected pixels as in [2].
This reliability for early detection of organ rejection
that this provides is the theme of future investigations.

In conclusion we describe an energy-based segmen-
tation algorithm that has successfully extracted the
cortex without user intervention. Our experimental re-
sults with 10 normal rats and 10 transplanted rats have
shown that the algorithm performs very well, USPIO-
enhanced dynamic MRI is a powerful methodology in
the study of kidney transplant rejection. Our long-term
objectives are to develop automatic segmentation tools
that can extract the cortex and the medulla from the
MRI sequence, and that can automatically detect pat-
terns of abnormal hehavior of the transplanted kidneys
and provide a quantitative measure of their degree of
rejection.

a0
Frame number

Fig. 2. Normalized renal perfusion signals.
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Fig. 3. Segmentation results of a normal BN rat.

(a) Isograft

{b) Allograft

Fig. 4. Segmentation results for transplanted rats.
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