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ABSTRACT
We propose a subpixel registration algorithm to deal with
the motion induced by breathing for renal perfusion MR
image sequences. Our approach minimizes an energy func-
tional that integrates a motion model and temporal smooth-
ness constraints. We then present a multistage level set
method that segments different kidney structures in the reg-
istered MR image sequence. Tests with a rat kidney trans-
plantation study show that the algorithm successfully com-
pensates for the breathing motion and extracts the kidneys,
cortex, medulla, and pelvis.

1. INTRODUCTION

We develop image and signal processing methodologies for
contrast-enhanced renal perfusion MRI to detect early re-
jection in kidney transplantation. Our approach is to track
the time variation patterns of the concentration of dextran-
coated ultra-small superparamagnetic iron oxide (USPIO)
particles after a bolus injection in the recipients [1]. We use
Brown Norwegian (BN) and D Agouti (DA) rats to study
kidney transplantation with focus on isograft rats (BN→BN)
and allograft rats (DA→BN) [1]. We have developed a
methodology that detects rejection by recognizing when the
renal perfusion signals on transplanted kidneys are signif-
icantly distinct from the perfusion signals on native kid-
neys [1, 2], and an energy-based image segmentation algo-
rithm that uses the spatial correlation among pixels in the
same image as well as the temporal correlation across the
image sequence [3]. Our segmentation method has success-
fully extracted the cortex under the assumption that the kid-
neys are motion-free during the perfusion process. To mon-
itor reliably the function across the entire kidney, we pro-
pose to first compensate for the breathing motion through
registration, then segment the kidneys from the surround-
ing tissues, and ultimately segment within the kidneys their
structures including the cortex, the medulla, and the pelvis.

In dynamic MRI achieving higher temporal resolution
and spatial resolution are in general mutually conflicting
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desirable requirements; because they are perfusion studies,
the temporal resolution should not be compromised, which
results in image sequences with relatively low spatial res-
olution. Figure 1 displays 4 MR images from a perfusion
sequence for an isograft rat. Experimentally, we observe
that the motion caused by breathing is usually head-to-feet
with subpixel displacement. Therefore, motion compensa-
tion is akin to a local registration problem across the im-
age sequence. This problem is made difficult by the rapidly
changing signal intensity and image contrast. Automatic
segmentation of the kidney from its surrounding soft tissues
is a challenging task. It is even more difficult to segment
kidney structures. As shown in Figure 1, it is hard to distin-
guish from each individual image the different anatomical
structures due to their lack of contrast. In our proposed im-
age segmentation scheme, we use the entire MRI sequence
in the segmentation to overcome this difficulty.

The paper is organized as follows. In section 2, we
present our algorithm for subpixel registration. Section 3
describes the segmentation method. Section 4 presents our
experimental results, and section 5 concludes the paper.

2. SUBPIXEL REGISTRATION

The major challenge in registration is that the signal inten-
sity changes rapidly with time. We pose the registration
problem as an energy minimization problem through the in-
tegration of a subpixel motion model and temporal smooth-
ness constraints.
Problem Formulation. Let g(i, j, t) be the intensity at pixel
(i, j) in MRI frame t. Given the observed image sequence g,
we seek to find a motion-free and noiseless image sequence
f such that through a motion transform H , Hf is close to
g, and f is temporally smooth. We use the vec operator that
stacks the columns of each image in the image sequence,
i.e.,

vec (g)= [ g(1, 1, 1) . . . g(Ni, 1, 1) . . . g(1, Nj , 1) . . .

g(Ni, Nj , 1) . . . g(1, Nj , Nt) . . . g(Ni, Nj , Nt) ]T.

Let f = vec(f) and g = vec(g). Given g, we solve for f
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Fig. 1. USPIO-enhanced dynamic MR image sequence

that minimizes

E = (g − Hf)TΣ−1(g − Hf) + α(D1f)TW(D1f)
+β(D2f)TW(D2f), (1)

where H is the motion transform matrix, and Σ is the co-
variance matrix of the noise. Matrices D1 and D2 are the
first order and second order time derivative operators. The
diagonal weight matrix W is derived such that only the in-
tensity oscillations due to the motion and the noise are pe-
nalized, while the intensity oscillations induced by the bolus
injection are preserved. The dimensions of these matrices
are (NiNjNt) × (NiNjNt). In this formulation, the first
term is a data fidelity constraint, and the last two terms im-
pose temporal smoothness constraints. Here, α and β are
positive scalars that control the tradeoffs between the data
fidelity and the temporal smoothness constraints.

Modeling the motion: We adopt a first order motion
model under the assumption that the movement is head-to-
feet (vertical) within one pixel, and that all the pixels along
the same horizontal line i experience the same motion λit.
We illustrate how to model the movement at sub-pixel level
using Figure 2. When the motion is from head to feet by
half a pixel, the intensity of one pixel in the observed image
can be viewed as an equal weighted linear combination of
the intensity of the same pixel and the intensity of its upper
nearest neighbor in the motion-free image.
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Fig. 2. Motion model

Let dt = +1 represent the direction of the motion from
head to feet with respect to the first (reference) image, and
dt = −1 represent the opposite direction, then, ∀j,

g(i, j, t) =
1 + dt

2
λitf(i − 1, j, t) + (1 − λit) f(i, j, t)

+
1 − dt

2
λitf(i + 1, j, t) + n(i, j, t), (2)

where n(i, j, t) represents the white noise at pixel (i, j) at
time t, and λit stands for the amount of the motion of the
ith horizontal line at time t as explained before. Moreover,
we observe that the motion is not uniform across the im-
age. The closer to the diaphragm a pixel is, the larger the
motion it experiences. To capture this, we model the non-
uniformity of the motion by

λit = r(i−1)λt, for 1 ≤ i ≤ Ni (3)

where 0 ≤ λt ≤ 1 is the maximum amount of motion at
time t, and 0 ≤ r ≤ 1 is the decay rate of the vertical
motion, i.e., r = 0.95. The subpixel motion is modeled by
the following Ni × Ni matrix Mt:


1 − λ1t
1−dt

2 λ1t 0
1+dt

2 λ2t
. . .

. . .
. . . 1 − λ(Ni−1)t

1−dt

2 λ(Ni−1)t

0 1+dt

2 λNit 1 − λNit




Let IN stand for the identity matrix of size N ×N , then the
motion transform matrix

H = diag
(
H1 H2 . . . HNt

)
(4)

where Ht = INj
⊗Mt and H1 = INj

⊗ INi
(⊗ stands

for Kronecker product). The covariance matrix Σ is as-
sumed to be diagonal and is given by

Σ = diag
(
σ2

s(1), σ2
s(2), . . . , σ2

s(Nt)
) ⊗ INj

⊗ INi
. (5)

Since the muscle tissue does not take up iron, we use pixels
in the muscle to estimate the variances σ2

s(t).
Temporal smoothness constraints: The first order time

derivative operator D1 and the second order time derivative
operator D2 are

D1 = Dt ⊗ INj
⊗ INi

and D2 = Dtt ⊗ INj
⊗ INi

,

where

Dt =
1

2




−1 1 0
−1 0 1

. . .
. . .

. . .
−1 0 1

0 −1 1




,

Dtt =




−2 2 0
1 −2 1

. . .
. . .

. . .
1 −2 1

0 2 −2




.

The weight matrix W = diag(vec(w)), whose diagonal
element w(i, j, t) is computed by

w(i, j, t) =
1

σ2
t (t)

exp (1/2) exp
(
−p2(i, j, t)

2σ2
t (t)

)

p2(i, j, t) =
1

2m + 1

t+m∑
k=t−m

(g(i, j, k) − ḡm(i, j, t))2



where ḡm(i, j, t) = 1
2m+1

∑t+m
k=t−m g(i, j, k) and m is a

user-defined parameter. The variance σ2
t (t) is estimated

from pixels in the muscle. Larger p2(i, j, t) results in smaller
w(i, j, t) and hence less penalty on the temporal intensity
discontinuities. Thus we can selectively smooth the tempo-
ral signal.
Energy Minimization. Keeping H fixed, we find the solu-
tion f∗ to ∂E

∂f = 0 as

f∗=
[
HTΣ−1H + α

(
DT

1WD1

)
+ β

(
DT

2WD2

)]−1
HTΣ−1g

This needs inverting a (NiNjNt) × (NiNjNt) matrix. In
our study, Ni = Nj = 64, Nt = 128, resulting in a very
large matrix of 219 × 219. Although this is an L-block
banded matrix (L = 2) and highly sparse, its inversion is
a full matrix. To alleviate the computational cost, we seek
to decouple the spatial and temporal correlations in Equa-
tion (1) by introducing an auxiliary vector g̃ = vec(g̃),
where g̃ is a motion-free version of g. Now minimizing the
energy function in Equation (1) is equivalent to minimizing
the following two energy functions

E1 = (g̃ − f)TΣ−1(g̃ − f) + α(D1f)TW(D1f)
+β(D2f)TW(D2f)

E2 = (g − Hf)TΣ−1(g − Hf), g̃ = HTg (6)

Since Σ is diagonal, the energy E1 can be decomposed into
Ni × Nj separate pixel-based optimization problems. On
the other hand, the energy E2 can be decomposed into Nt

separate frame-based optimization problems. The above
two equations are solved iteratively by first assuming that
g̃ is known, find the best estimation for f by minimizing
E1, then assuming that f is known and finding the best es-
timate for H by minimizing E2, hence g̃. At each itera-
tion, the covariance matrix Σ and the weight matrix W are
re-estimated using the updated g̃. The initial condition is
g̃ = g, i.e., the original image sequence. The iteration con-
tinues until Σ can not be reduced further.

3. KIDNEY SEGMENTATION

We extend our work on kidney segmentation in [3] to seg-
ment the kidney into three regions: cortex, medulla, and
pelvis. We propose to distinguish between these kidney
structures using intensity-time information through a mul-
tistage level set approach. At each stage, we assume that
there are two regions in the image sequence whose tempo-
ral signals follow closely two different unknown dynamic
profiles, similar to the piecewise-constant intensity case in
image segmentation [4].

At the first stage, we segment the cortex from the entire
kidney. As we are interested in the temporal dynamics, we
remove the temporal mean from the perfusion signal and
then collect this mean removed time signal at each pixel

(x, y) in the vector f(x, y). Let C1 be the curve that is the
boundary between the cortex and the medulla. We denote
by Ωi

1 and Ωo
1 the inside and the outside of the curve C1,

respectively. We introduce our energy functional as

E(C1) = µ · Length(C1) + λ1

∫
Ωi

1

dis2(f(x, y), f̄ i
1)dxdy

+λ2

∫
Ωo

1

dis2(f(x, y), f̄ o
1)dxdy, (7)

where f̄ i
1 is the average perfusion signal vector inside the

curve C1, while f̄ o
1 is the average perfusion signal vector

outside the curve C1. The distance metric between two vec-
tors v1 and v2 is defined as

dis (v1,v2) =
∣∣∣∣sin θ

2

∣∣∣∣ =

√
1 − cos θ

2
(8)

where cos θ is given by the correlation coefficient c(v1,v2):

cos θ = c(v1,v2) =
〈v1,v2〉

‖v1‖2‖v2‖2
. (9)

〈·〉 denotes the inner product and ‖ · ‖2 is the Euclidean L2

norm. The parameters λ1, λ2, and µ are positive scalars.
The integrals in (7) sum over the pixels, while the distances
in the integrands sum over the frames in the sequence.

In our energy functional, the first term penalizes the total
length of the boundary, while the last two terms control the
data fidelity. We restrict the pixels in Ωi

1 to follow the tem-
poral profile of one single vector f̄ i

1 and the pixels in Ωo
1 to

follow another vector f̄ o
1 . Our energy functional exploits the

spatially or intra-image, as well as the temporally or across
the images, correlations.

At the second stage, to distinguish between the medulla
and the pelvis, we replace Ω1 by Ω2 = Ωi

1 and curve C1

by curve C2, and so on. Segmentation of the kidney struc-
tures is now equivalent to minimizing the energy functional
(7) stage by stage. At each stage k, we minimize the func-
tional (7) iteratively using a level set based method and up-
date the estimation of f̄ i

k and of f̄ o
k , k = 1, 2.

4. EXPERIMENTAL RESULTS

Our data are collected with four groups of rats: 5 BN rats,
5 DA rats, 6 allograft rats, and 4 isograft rats. The rats
were bolus injected with dextran-coated USPIO particles at
a dose of 6 mg Fe/kg body weight to evaluate first-pass renal
perfusion [1]. All rats underwent 128 consecutive snapshot
fast low angle shot coronal dynamic studies in 43 s, on a
4.7-T, 40-cm horizontal bore Bruker AVANCE DRX MR in-
strument using a 7-cm diameter Bruker volume transceiver
coil. The image matrix was 64 × 64 pixels.

Subpixel registration: We obtain excellent results using
the proposed registration algorithm with α = 1, β = 2, and



m = 4 in Equation (1). Figure 3 (a) plots the observed
(thin) and recovered (thick) temporal signals, respectively,
at a cortex pixel. The recovered signal is locally smooth
while preserving the wash-in and the wash-out slopes. Fig-
ure 3 (b) shows the estimated maximum movement dtλt at
each time point, where the sign indicates the direction of
the movement and the magnitude represents the amount of
the movement. If we consider a jump of dtλt from nega-
tive to positive as one breathing cycle, the estimated breath-
ing cycle is 0.96 second, consistent with an average actual
breathing cycle of 1 second for rats under sedation.
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Fig. 3. Experimental results of subpixel registration.

Kidney segmentation: In our experiments, we chose the
parameters in Equation (7) as follows: λ1 = λ2 = 2500,
and µ = 80. It is not necessary to perform simulated an-
nealing for λ1, λ2, and µ, because the sensitivity of the fi-
nal segmentation results to the values of these parameters
is quite low. Figures 4 demonstrates representative segmen-
tation results for the native and the transplanted kidneys.
As shown, the algorithm has successfully located the kid-
neys and segmented each kidney into three regions: the
cortex (outer layer), the medulla (middle layer), and the
pelvis (inner layer). The segmentation results are reason-
ably consistent with the manual segmentations by experts.

(a) (b)
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Fig. 4. Segmentation results. (a)-(b): native kidneys; (c)-
(d): transplanted kidneys.

5. CONCLUSION

We describe a subpixel registration algorithm that has suc-
cessfully corrected the breathing motion in renal perfusion
MRI. We also present an automatic segmentation algorithm
that extracts different kidney structures from the registered
MRI sequence. Our experimental results with normal and
transplanted rats have shown that the proposed algorithms
perform well. These algorithms are very helpful in auto-
matic detection of early rejection in transplanted kidneys.
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