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Abstract

Extracting from o video sequence a representation
for humans in motion has numerous applications.
This task is difficult due to the compler nature of the
human body which is non-rigid and capable of per-
forming a wide variety of actions. We propose here
a model-based approach to tracking human walking in
dynamic scenes. We model the human body as an
articulated object connected by joints and rigid parts,
and describe the human walking as a periodic motion.
The posture of the walker is determined by a recog-
nition scheme that estimates the period and phase of
walking. This result is then used to establish dynamic
constraints for the human posture. These constraints
along with kinematic constraints that govern the link-
age of the articulated human body are then adopted
to facilitate the tracking of the body parts of the hu-
man. The paper illustrates the results of testing our
algorithm with real video.

1 Introduction

Extracting from a video sequence a representation
for humans in motion has numerous applications [4].
It involves solving problems of action recognition, part
decomposition, part tracking, shape recovery, and tex-
ture recovery. These tasks are difficult due to the com-
plex nature of the human body. The human body is
non-rigid, it is capable of performing a wide variety of
actions, and can be highly self-occlusive.

To overcome these problems in tracking humans
and their actions, most systems in this domain re-
sort to model-based approaches. They either adopt
an apriori model of the human body [3, 7, 5, 2] or
make assumptions on the types of motion of the hu-
man [3, 7].

Hogg [3] and Rohr [7] recognized human walking in
real images. They adopted cylindrical models for the
human body, and kinematic data measured from real
walking subjects to model the walking.

Gavrila and Davis [2], and Kakadiaris and
Metaxas [5] tracked 3-D human movements. Gavrila
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and Davis [2] modeled a human body using super-
quadrics. Kakadiaris and Metaxas [5] modeled the
body parts of a human as deformable contours. Their
systems can track unconstrained actions, yet they
need to work in well-calibrated environments and with
several static cameras to provide sufficient views.

Our system accomplishes recognition and tracking
of a walking person in a complex scene. Functionally,
it is most closely related to the work of Hogg [3] and
Rohr {7]. There are two major differences between
our approach and those in [3, 7]: (1) Hogg [3] and
Rohr [7] required that the human subject walks front-
and-parallel to the static camera, while we allow for
camera motion during video capturing. The camera
motion makes the task much more difficult; (2) the
human body and the walking posture described by
Hogg [3] and Rohr [7] are solely based on the prior
model. They don’t compensate for mismatches due to
discrepancies between the model and the data. Our
system adapts the models to the real video data by
estimating the motions.

The method described in this paper consists of four
components: pre-processing, modeling, recognition,
and tracking. The pre-processing stage detects human
subjects and locates their positions. The modeling
step describes the body and the walking. The recog-
nition block recognizes the posture of walkers with as-
sistance from the modeling component. The tracking
tagk tracks human walking using the recognized body
parts as references. Sections 2 to 5 consider each of
these blocks. Section 6 presents experimental results.
Finally, Section 7 concludes the paper.

2 Pre-Processing

The pre-processing component isolates the walker
from the background and estimates the position of the
walker. First, we estimate the motion of the back-
ground for every two consecutive frames. We assume
that the background motion between two consecu-
tive frames is parameterized accurately by 2-D mo-
tion models such as an affine model or a perspective



transformation. In this work, we use the affine model.
The computation framework is based on an iterative
multiscale approach.

Once the image background motion has been de-
termined, we register consecutive images using this
motion. As a result, we null the image background
motion; the remaining motion is due to the walker.
Following this, we detect for each consecutive pair
of registered images the region corresponding to the
walker.

Finally, we track the walker to obtain the position
and height of the walker. Experimental evidence re-
veals that the motion between the head and torso of
a walking person is negligibly small; thus, we treat
these two parts as a single rigid body. We estimate
the 2-D affine motion of the head-and-torso between
two consecutive frames. This gives us the evolution of
the 2-D position of the walker between frames.

3 Human Modeling

Human models facilitate the recognition and track-
ing described in Sections 4-5. There are two ma-
jor components to setting up a model for the human
walker: (1) the model of the human body, which pro-
vides the geometrical knowledge about the walker; (2)
the model of the walking, which provides the topolog-
ical knowledge about the walker. We use these two
types of knowledge to synthesize the walker.
Modeling the Human Body: The purpose of our
modeling scheme is to generate the contour informa-
tion of a walker. It suffices for our purposes to adopt
an articulated cone-shaped model. This model is sim-
ilar to that adopted by Hogg [3] and Rohr [7] in their
work. The human body is considered to be composed
of 12 rigid parts (head, torso, plus two primitives of
arms and three primitives of legs). Each part is rep-
resented by a truncated cone with an elliptical cross
section and a semi-oval sphere attached to each end of
the cone.
Modeling Human Walking: We adopt a kinematic
approach in modeling the human movements. Mur-
ray [6] conducted experiments on measuring gaits of
males and females in a wide range of ages and heights.
Their results reveal that the movement patterns of
different body parts are similar for different people.
Rohr [7] used the average measurements of the move-
ment patterns [6] in his work. Encouraged by his re-
sults, we adopt the same set of measurements in mod-
eling the human walking. We assign every two jointed
parts a joint angle; there are 11 joints and joint angles
6;, (i =1,2,---,11). For each of the joint angles, we
take a set of equally-spaced samples from a walking
cycle of its corresponding average measurement [6] to
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build the model posture © s (p) 4 [Oar1(p) Opr2(p) - - -
Orr10() Oar11(p) ]T where p € [0,1), referred to as the
pose, is the index of the angle series. These series are
periodic with period of 1.

4 Recognition of Human Walking

The goal of our recognition component is to esti-
mate the period and phase of walking. It determines
the posture by matching edge information of the data
walker with edge information of the model walker by
a generate-and-test approach.

We define the walker detected from the real video as
the data walker, Wp(k), where k is the corresponding
frame number, and the walker synthesized from the
model as the model walker, Wy, (p), where p € [0,1)
is the pose.

We introduce a similarity measure that quantifies

how close a data walker Wp is from a model walker
Wys. This similarity measure involves a phase filtering
operation. This is based on constructing a distance
map and a phase map. The distance map indicates the
distance of a pixel to its closest edge pixel. The phase
map describes the orientation information of the edge
map. We use these two maps as geometry filters to
measure the geometrical similarity between the model
walker and a data walker.
Fittest Posture: We find the closest pose, psim (k),
for each of the data walkers in a number of consecutive
frames Wp(k),k = 1,2,---, K, by using the aforemen-
tioned approach; then, determine the period, fp—l, (in
frames/cycle) and the phase, ¢,, (or the pose of the
walker in the first frame of the video) by a line fitting
algorithm.

[ fo ¢p ] =argmin _ |Ipsim(k), fo(k — 1) + ¢p|l
k

(1)
We designate pgi:(k) 4 fo(k — 1) + ¢, to be the

fittest pose of the data walker Wp(k), and O (k) 4
O (prit(k)) the fittest posture. Details can be found
in [1].

The task of the fittest posture estimation is to de-
termine the period and the phase that best character-
izes the posture of the data walker using the model
posture, i.e., O (pyri:(k)). Since the model assumed
is generic and not as yet tuned to the specific values
in the video under study, we expect some level of mis-
match between the model and the data walker.

5 Tracking Human Walking

In order to generate an accurate representation for
the walker, we need to refine our recognition by identi-
fying each body part. The task of the tracking compo-



nent is to construct a data posture ©p(k) 4 [ 0p1(k)
Op2(k) --- Opro(k) 0p11(k) |© where k is the frame
index, which characterizes precisely the posture of the
data walker in the video.

Our tracking component consists of two processes:
a key frame registration which determines the true
posture for some selected key frames, and a gradient-
based tracking algorithm that estimates the true pos-
ture of the walker in each frame by using the deter-
mined posture of a key frame as an initial reference.
Key Frame Registration: We designate the walk-
ers with least occlusions as key frames; thus, walkers
with poses close to 0 and 0.5, whose arms and legs are
widely open, are the candidate frames. We employ a
divide-and-conquer strategy to fine tune the posture
to its true value. The motion of the torso has al-
ready been obtained in the pre-processing stage; only
the body parts of the limbs need to be identified. The
fittest posture provides dynamic constraints which de-
scribe the occlusive relationship of the body parts and
suggest the possible positions of the body parts. We
use the matching method as described in the begin-
ning of this section to determine the posture parame-
ters Op(;)(key), (1 = 1,2,---,11), for a key frame key.

We start the posture estimation from the limb with

the highest visibility. For each limb, we first esti-
mate the posture parameter 6p(.)(key) of the body
part which connects the limb to the torso. Once the
posture parameter is recovered, we go on to estimate
the posture parameter between the newly identified
body part and its jointed body part.
Tracking Algorithm: We adopt a gradient-based
method for estimating the motion of the body parts
between consecutive frames. Dynamic constraints of
the posture and kinematic constraints of the articula-
tion are incorporated to improve stability and reliabil-
ity.

We decompose the human body into 5 parts: head
and torso, and four limbs. Each part therefore con-
sists of two or three rigid segments. We develop an
algorithm to track a multiple-segmented articulated
object. Below is our algorithm for tracking an object
with two segments.

Let I(x,t) be the articulated object at time ¢, as
shown in Figure 1. It consists of two rigid segments
I (x,t) and Ir(x,t). J1(t) and J>(t) are the joints, and
the distance between these two joints is d. We assume
that this articulated object only has two degrees of
freedom, rotating around the two joints. Let I(x,0)
be the reference image, and I(f(x,q),7) be the cor-
responding image of I(x,0) at time 7, where f(x,q)
is the motion of pixel x, which is parameterized by
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Figure 1: The structure of two-segment articulated
object.

‘We obtain
fi(x,q) = R[61]x (2)
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where f1(x,q) is the motion of pixel x in the upper
part; likewise, f2(x,q) is the motion of pixel x in the
lower part, and R[6] is a 2 x 2 rotation matrix.

We want to estimate the motion vector q by mini-
mizing the cost function

Cla) = Y (I(f(x,q),7) — I(x,0))?

xER

4)

We expand I(f(x,q),7) in a Taylor series as follows

I(f(x,q),7) = I(x,0) + 611 + 02129, —

0505, + 71, + h.o.t. (5)

df

q d
where Io :f I191 + 1292, Iiﬂ,‘ :f _yI”; -+ ﬂ?Iiy, Ii
Miax’o‘z Ly g aliéx& I g BIE;;’O) and h.o.t. denotes
T ? v ) Iy .0.t.
the higher order terms. Under the assumption of small

motions, we discard the higher order terms. Then we
have

Clq) = 2(9110 + 02(Iag, — dlay) + TIt)2
xER

(6)

Differentiating the cost function in equation (6) with
respect to q yields the solution
:l -1

[ o, ] Py S Io(tap, — dlzy)
621~ 210(1292 — dI2y) 2(1292 — dIzy)?
| S |
(7

2(1292 —dIzy) It



6 Experiments

We present results on recognizing and tracking the
posture of a walker in the Pedro sequence. The Pe-
dro sequence is a real video of an outdoor scene. We
apply our recognition algorithm to the first 30-frames
segment of the Pedro sequence. We determine the pose
for the data walker in each of the 30 frames by search-
ing the entire pose space, i.e., from 0 to 1, with a pose
increment of 0.01. We perform the matching men-
tioned above on the data walkers for Frame 1 through
Frame 30. We then determine the period and the
phase of the posture for the data walker. We obtain
fp = 0.0267 and ¢, = 0.7129. This result shows that
the fittest pose of the walker in frame k of the Pe-
dro sequence is pyi(k) = 0.0267 (k — 1) + 0.7129. A
detailed example can be found in [1]. We then super-
impose the contour of the approximate model walkers
to their corresponding data walkers. Some of the re-
sulting images are shown in the left side of Figure 2.
After determining the fittest posture, we estimate for
key frames in the sequence the precise posture. This
leads to an accurate segmentation of the human body.
We then use these segmented body parts as initial ref-
erences for tracking the interframe motion. The right
side of Figure 2 shows the tracking results correspond-
ing to the frames in the left side of Figure 2. These
results represent very accurate tracking of the walker.

7 Conclusions

Content-based representation of humans in real
video describes the humans according to their motion,
shape, and texture. It involves solving the problems of
action recognition, part decomposition, part tracking,
shape recovery, and texture recovery. In this paper,
we propose a model-based scheme for tracking human
walking. We model the human body as an articulated
object connected by joints and rigid parts, and de-
scribe the human walking as a periodic motion. We
recognize the human posture by finding the frequency
and phase of walking. We then use these recognition
results along with kinematic constraints to track the
body parts of the human.We obtain accurate results
when applying our algorithm to real video.
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Figure 2: Recognition and tracking results.
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