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ABSTRACT
This paper develops a classification algorithm in the frame-
work of spectral graph theory where the underlying manifold
of a high dimensional data set is described by a graph. The
classification on the data is performed on the graph. The clas-
sifier optimizes an objective functional that combines prior
information with the Cheeger constant. We interpret this ap-
proach as a regularized version of the Cheeger constant based
classifier that we introduced recently. Our derivation shows
that Cheeger regularization removes noise like a Laplacian
based classifier but preserves better sharp boundaries needed
for class separation. Experimental results show good perfor-
mance of our proposed approach for classification applica-
tions.

Index Terms— classification, spectral graph theory, reg-
ularization, Cheeger constant, Laplacian

1. INTRODUCTION

Many practical applications need to classify a given data set
into groups. For example, given an image, clustering its pixels
into regions, or given a set of fingerprint images, grouping
them into different individuals.
The observed data points are usually high dimensional,

but the underlying manifold where the data points lie on is low
dimensional. For example, in a two-class fingerprint database,
each 512×512 image is a data point with 512×512 dimen-
sions; the intrinsic manifold of the whole data set might be a
real line where the origin bisects the data points into binary
classes. The first step when performing classification is to
describe the manifold in a faithful way. Since the unknown
manifold might be nonlinear, Roweis and Saul [1] propose
to approximate the manifold by a graph. The data points are
treated as vertices in the graph, and the graph edges capture
locally the similarities between pairs of vertices. The classifi-
cation is performed on the graph.
Belkin and Niyogi [2] develop a semisupervised classifier

that utilizes the Laplacian eigenmap of the graph. They ex-
press a classifier as a linear combination of low order eigen-
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functions of the graph Laplacian. Then, a partially labeled
data trains the classifier to obtain the optimal linear combi-
nation coefficients, hence the optimal classifier. The operator
selects how many eigenfunctions needed to describe the clas-
sifier; this selection might lead to a nonoptimal classifier. We
propose to design a classifier in a single step that optimizes a
functional consisting of several terms.
Belkin, Niyogi, and Sindhwani [3] develop a classifier

regularized by the graph Laplacian. The Laplacian is a smooth-
ing operator. It reduces noise but blurs sharp boundaries sep-
arating the classes. After running the algorithm, operators ob-
tain a smooth classification function and have to set a thresh-
old for classification. The operator dependent threshold eas-
ily leads to inconsistent results. To overcome this issue, we
propose to adopt the Cheeger constant of the graph as a regu-
larization term in our objective functional.
The objective functional consists of two terms. The first

term considers the prior information provided by human ex-
perts; it penalizes the deviation of the classification function
from prior labels. The second term is a regularization formu-
lated from the Cheeger constant of the graph. We call this ap-
proach the Cheeger regularizationmethod. The Cheeger con-
stant originates from the problem of graph partitioning [4],
which is to find a small as possible subset of edges, called
edge cut, whose removal will separate out a large as possible
subset of vertices. Cheeger regularization not only removes
noise but also evaluates automatically the best boundary, i.e.,
the edge cut, between classes. We expect the Cheeger con-
stant to regularize better than the graph Laplacian.
Well-defined classifiers are integer-valued. An integer de-

notes the class that a data point belongs to. The integer-valued
classifier needs integer programming, so it increases the lev-
els of difficulty. Existing approaches [2, 5] circumvent the
difficulty by relaxing the classification function to be real-
valued. In contrast with these methods, we add constraints
to our minimization problem to force the classifiers to behave
like integer-valued functions.
The organization of this paper is as follows. Section 2

derives the formation of our objective functional and details
the Cheeger regularization method. In Section 3, we show the
application of the Cheeger regularization method to a finger-
print database obtained from the National Institute of Stan-
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dards and Technology (NIST). Finally, Section 4 concludes
this paper.

2. METHOD

Let {x1,x2, · · · ,xN} denote a set of data points. We rep-
resent the whole data set as a graph which approximates the
underlying manifold of the data. A graph G(V, E) has a set
V of vertices and a set E of edges linking the vertices. Each
data point xi corresponds to a vertex vi. We next assign edges
connecting the vertices. In the graph representation, the ver-
tices with similar features are linked together. We define the
distance ρij between pairwise xi, xj as ρij = ‖xi − xj‖.
When the distance ρij is below a predetermined threshold τρ,
the vertices vi, vj are connected by an edge; otherwise, they
are disconnected.
In graph theory, we usually consider weighted graphs.

Since not all connected pairs of vertices have the same dis-
tances, we capture this fact by using a weight function on
the edges. We adopt a heat kernel, suggested by Belkin and
Niyogi [2], to compute the weightWij on edge eij connecting
vertices vi and vj :

Wij =

{
exp

(
−ρ2

ij

σ2

)
, if there is edge eij

0 , if no edge eij

, (1)

where σ is the heat kernel parameter. The weight is large
when the features of two linked vertices are similar. The
weighted graph now is equivalently represented by itsweighted
adjacency matrix W whose elements Wij are the weighted
edges in equation (1). The matrixW has a zero diagonal be-
cause we do not allow the vertices to be self-connected. It is
symmetric sinceWij = Wji.

2.1. Prior Knowledge from Labeling

Assume that the first � data points are labeled by an expert.
For simplicity, this paper considers binary classification. Let
{yi}�

i=1 be the labels, where yi = 1 denotes one class and
yi = −1 denotes the other class. The goal is to find on the
graph G a classification function f : V → {−1, +1}. Al-
though we can choose any two real numbers to represent the
classes, the merit of this choice will be clearer when we dis-
cuss the optimization in Section 2.3.
To estimate the classifier f , we penalize the average quadratic

errors between the desired classifier f and the labels. Hence,
the first term J1(f) of our objective is

J1(f) =
1
�

�∑
i=1

(fi − yi)2 , (2)

where fi = f(vi).

The domain V of the classification function f is discrete,
so we can represent f by a vector

f = [f1, f2, · · · , fN ]T . (3)

The labels and the function on the first � labeled data points
are denoted by vectors

yL = [y1, y2, · · · , y�]T (4)

and
fL = [f1, f2, · · · , f�]T , (5)

respectively. In the sequel, the first objective term J1(f) be-
comes

J1(f) =
1
�
‖fL − yL‖2 , (6)

which captures the prior provided by human experts.

2.2. Cheeger Regularization

The study of the Cheeger constant originates from the prob-
lem of graph partitioning [4]. The task of graph partitioning
is to look for a subset E0 of edges, i.e., an edge cut, whose
removal will partition the vertex set V into two subsets V1 and
V2. The vertex subsets are associated with a measure called
volume. The Cheeger constant C(V1) is defined as the mini-
mal cut-to-volume ratio

C(V1) = min
V1⊂V

|E0(V1, V2)|
vol(V1)

, (7)

assuming that vol(V1) ≤ vol(V2). In equation (7), |E0(V1, V2)|
is the sum of the edge weights in the cut E0:

|E0(V1, V2)| =
∑

vi∈V1,vj∈V2

Wij . (8)

The volume vol(V1) of V1 is defined as the sum of the vertex
degrees in V1:

vol(V1) =
∑

vi∈V1

di , (9)

where the degree di of the vertex vi is defined as

di =
∑

vj∈V

Wij . (10)

Let χ denote the characteristic vector of V1; its compo-
nents χi are defined as

χi =

{
1, if vi ∈ V1

0, if vi /∈ V1

. (11)

We can express the Cheeger constant (7) in terms of the char-
acteristic vector χ, see [5, 6] for details,

C(χ) = min
χ

χT Lχ

χT D1
, (12)
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whereD = diag (d1, d2, · · · , dN ) is a diagonal matrix of ver-
tex degrees, L = D − W is the graph Laplacian, and 1 is a
vector with all components 1.
Now, we can replace the characteristic vector χ with the

classifier f by noting that

χ =
1
2
(f + 1) . (13)

The Cheeger constant becomes

C(f) = min
f

1
4 (f + 1)T L(f + 1)

1
2 (f + 1)T D1

. (14)

The evaluation of the Cheeger constant is equivalent to min-
imizing the numerator and the negative denominator. This
leads to the regularization term J2(f) of our objective func-
tional

J2(f) =
1
2
(f + 1)T L(f + 1) − β(f + 1)T D1 , (15)

where β is a non-negative parameter controlling the weight
on the negative denominator. Using the fact that L1 = 0, the
regularization reduces to

J2(f) =
1
2
fT Lf − β(f + 1)T D1 . (16)

Equation (16) shows that Cheeger regularization is differ-
ent from the Laplacian regularization suggested by Belkin,
Niyogi and Sindhwani [3]. If we adopted the Laplacian regu-
larization, the second objective term J2(f)would be fT Lf . In
equation (16), we can clearly see that the Cheeger regulariza-
tion has one more term than the Laplacian regularization. The
additional term plays the role of seeking for the optimal edge
cut; equivalently, it contributes to sharp boundary preserva-
tion.

2.3. Constrained Optimization

Putting together the prior knowledge J1(f) and the Cheeger
regularization J2(f), we have the objective

J(f) = γ1J1(f) + γ2J2(f) , (17)

where γ1 and γ2 are the non-negative weights.
There are two issues for the optimization. First, an im-

portant concern in J2(f) is to determine the value of β. Ide-
ally, we would like to set β equal to the Cheeger constant
C(f), and let the minimization solve J2(f) = 0. However, the
Cheeger constant varies with respect to the classifier f , so we
can not determine its value before running the minimization.
To overcome this difficulty, we use the bounds of the Cheeger
constant in the minimization. Spectral graph theory [4] upper
and lower bounds the Cheeger constant as

1
2
λ1 ≤ C(f) <

√
2λ1 , (18)

where λ1 is the first nonzero eigenvalue of the graph Lapla-
cian L. Hence, we can constrain 1

2λ1 ≤ β <
√

2λ1 using the
bounds (18) in the optimization formulation. We expect that β
is equivalent to the Cheeger constant when the minimization
reaches the optimal classifier.
Second, the desired classifier is a binary, integer-valued

function. The minimization becomes an integer programming
problem, which is a difficult task. Existing methods [2,5] sug-
gest relaxing the classifier into a real-valued function, but the
relaxation sacrifices the classifier’s accuracy. In other words,
the classifier can take any possible real value, and the operator
has to determine and tune afterwards the threshold for differ-
ent classes. We propose to handle this trade-off by adding
constraints on the relaxed classifier. Recall from Section 2.1
that the classifier components fi should be+1 or−1. We can
enforce the components fi to have absolute value one, namely
f2

i = 1.
We now recast the optimization problem as the following:

minimize J(f) = γ1J1(f) + γ2J2(f), f ∈ R
N

subject to ∀i, f2
i = 1

β <
√

2λ1

β ≥ 1
2
λ1 .

(19)

In the optimization setting (19), J1(f) captures the prior infor-
mation (6) and J2(f) is the Cheeger regularization (16). The
formulation (19) generalizes [2, 3, 5]. When we remove all
the constraints and set β = 0, the optimization reduces to the
Laplacian regularization in [2, 3]. When γ1 = 0 and γ2 = 1,
we need no prior knowledge and rely on the Cheeger constant
to classify the data; the algorithm becomes fully automatic,
similar to but more sophisticated than the isoperimetric ap-
proach in [5].

3. EXPERIMENTAL RESULTS

We implement our algorithm with MATLAB R© on a computer
with a 2.6 GHz CPU and 512 MB RAM. We adopt the opti-
mization algorithm developed in [7] for minimization.
Application to a Fingerprint Database: We apply our

classification algorithm to a NIST fingerprint database. The
database contains 10 classes and each class has 200 images.
Figure 1 displays one sample fingerprint drawn from each
class. To test our algorithm, we run ten trials by randomly
choosing two classes for each trial. The 400 images in each
trial is treated as a given data set. For each class, we label
10 images before running the algorithm. Then, our classi-
fier automatically determines the classes to which the images
belong. In this application, the parameter σ2 is 0.1 for com-
puting the edge weights (1). The weighting parameters γ1, γ2

in the objective functional (19) are set to 1.
The criterion for performance evaluation is defined as the
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Fig. 1. Ten sample images in the NIST fingerprint database.

success rate Ps for correctly recognized data:

Ps =
number of correctly classifed fingerprints

number of all fingerprints
. (20)

Figure 2 shows the success rates for the ten experiments. The
success rates are above 99%. This demonstrates that our de-
veloped classifier performs well.
Comparisons with other Classifiers: We compare our

proposed method with two other schemes developed in the
framework of spectral graph theory. The first method we com-
pare is developed in [2, 3], which is a semi-supervised algo-
rithm with the Laplacian regularization. The second method
is the isoperimetric algorithm developed in [5], which is an
automatic algorithm minimizing only the numerator of the
Cheeger constant (12). The results of these two algorithms
are displayed in Figure 2 as well. The plots show that our pro-
posed Cheeger regularization method has performance better
than or equal to the Laplacian regularization scheme. The
isoperimetric algorithm always has the least success rates in
all the experiments.
We use running time to evaluate algorithm complexity. In

three methods, the graph representations of fingerprint database
are identical. This part needs to compute all pairwise dis-
tances between all images and takes 951 seconds. Performing
classification takes 2.00, 1.95, and 1.11 seconds for Cheeger
regularization, Laplacian regularization, and isoperimetric al-
gorithms, respectively. Although our proposed method has
the longest running time, the successful classification rate trades
off the speed.

4. CONCLUSIONS

This paper proposes a classification algorithm regularized by
the Cheeger constant. Given a data set, we model its underly-
ing manifold by a graph and define a binary classifier on the
graph. The derivation of the classifier is formulated in the op-
timization framework. The objective functional we minimize
consists of two terms. The first term considers the prior label-
ing by a human expert. The second term is a regularization
term derived from the Cheeger constant. Cheeger regulariza-
tion is a generalization of the Laplacian regularization. The
Cheeger regularization not only includes the Laplacian reg-
ularization but also preserves the optimal boundary between
classes.
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Fig. 2. Success rate of classifying fingerprint images using
our proposed algorithm.

The integer-valued classifier introduces addition difficul-
ties for optimizing the objective functional. We relax the clas-
sifier but add constraints to force it behave like an integer-
valued function. The experimental results applied to a NIST
fingerprint database show that our proposed classifier deter-
mines with high accuracy the different classes. The evalua-
tion study demonstrates that the classifier regularized by the
Cheeger constant outperforms other types of classifiers.
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