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Abstract

In this paper, we deal with the problem of estimat-
ing the parameters of noncausal finite lattice Gauss
Markov random fields. We show how the structure of
the potential matrix (the inverse of the field covari-
ance matrix) can be used to specify the valid param-
eter space and formulate a computationally practical
Maximum Likelihood estimation procedure. We also
provide a modification that enables this to generate
accurate parameter estimates from noisy data.

1. Introduction

An important class of statistical models for 2D fields of
spatially distributed data is the family of noncausal fi-
nite lattice Gauss Markov random fields (GMRF’s). A
GMRF may be represented on a finite N x M lattice
through the minimum mean square error representa-
tion [1] written compactly as

AX =2 &~ N(0,0%4), (1)

where X and & are the lexicographically ordered vec-
tors of the NM variables in respectively, the field X,
and the correlated driving noise field e, and A collects
the AR field coefficients. It is apparent that A, which
we call the potential matriz, is the (scaled) inverse of
the field covariance matrix. In [2], the structure and
properties of the potential matrix were used to derive a
framework for recursive processing of noncausal fields.
This has been applied, for example, in image process-
ing, to do optimal recursive image enhancement and
image compression, e.g., [3]. Such applications require
as a preliminary step the estimation of the parameters
of the noncausal GMRF. This is the problem we are
concerned with here.

Optimal parameter estimation in the case of finite
lattice noncausal GMRF’s is handicapped by two prob-
lems: the constrained nature of the parameter space,
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and the large cost of computing the likelihood func-
tion and its gradient. Apart from special cases such as
fields defined on periodic lattices [4], the specification
of the parameter space is difficult. The likelihood func-
tion and its derivatives are extremely costly to compute
because of the intractable nature of the partition func-
tion which takes the form of |A| for GMRF’s. This
problem has lead to the use of suboptimal techniques
such as the coding method [5] and pseudolikelihood [6]
which are not guaranteed to produce a result that lies
in the valid parameter space.

In this paper, we use the structure of the poten-
tial matrix A to specify the valid parameter space, in
section 2, and to obtain a computationally practical
Maximum Likelihood (ML) estimation procedure, in
section 3. In section 4, we modify the ML procedure
to enable us to obtain accurate estimates from noisy
observations. We present experimental results in sec-
tion 5, and in section 6, the conclusions. For proofs
and a more detailed discussion of the results presented
here, as well as for additional results, see [7].

2. Valid parameter space

The valid parameter space for a nondegenerate GMRF
is defined as the region in which the field covariance
matrix is positive definite. From (1), this translates to
the condition 62 > 0, which we assume henceforth, and
the requirement that the potential matrix A be posi-
tive definite. The latter condition may be expressed
through the constraint on the smallest eigenvalue of
A

A1n67\(14) >0 (2)

which defines the valid region for the field potentials or
parameters. When the eigenstructure of A is available
as a function of the field parameters, (2) provides the
exact description of the parameter space. When this
is not available, we decompose A into symmetric com-
ponents with known eigenvalues and bound the space
using these.
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First order fields: In the case of first order (near-
est neighbor) fields, with parameters (3, and f, rep-
resenting, respectively, the strength of the horizontal
and vertical nearest neighbor interactions, the poten-
tial matrix A can be expressed as

A=IN®@B+Sv®C ()
where ® represents the Kronecker product,
B=1Iu~puSm, C=-B,I, (4)

Igxisthe K x K identity matrix, and Sk, (K =N, M),
depends on the boundary conditions (b.c.). The eigen-
values of A are given by

A3 (A) = 1= BuXi(Sn) ~ Bad;(Sar), ©)
for1 <i< N, 1< < M, where {;(Sk)} are

the eigenvalues of Sk,(K =N, M). Examples of b.c.,
usually from the PDE literature, are Dirichlet (Free),
Asymmetric Neumann, Symmetric Neumann, and Pe-
riodic, see [2]. We call the resulting fields, Dirichlet,
variational, symmetric, and periodic, respectively, and
consider all but the last named here. The eigenvalues
of Sk are given (for 1 < k < K) by

2 cos 5% for Dirichlet fields
Sk) = K31
A(Sx) { 2 cos Q‘;KIM for variational fields ©)
and for symmetric fields,
2coshfx1  when k = k]
2cosh6ry when k = k2
Ak(Sk) =< —2cosh6r; when k = k3 M
—2cosh > when k = k4
2cosfx for all other k
where {0, : 1< &k S K,k # k1,k2,k3, k4} are the
K — 4 solutions of
2K +1)8 ~ kx] + 4 tan=—t 3510260 _ (8)
1-3cos28 7

+ +
and — gy, — G5 are the 4 roots of
sinh(K + 1)§ — 6 sinh(K — 1)0 + 9sinh(K ~ 3)8 = 0. 9)

Using (6) and (7) in (5) and applying (2), we obtain
the region in (Bn, By) space that corresponds to the
valid parameter space for each of these fields.

1. The parameter space for the first order Dirichlet
field is defined by

T T 1
F1 M+1 < 3 (10)
2. The parameter space for the first order variational
field is defined by the 4 inequalities:

|,@v]cosN + |Bn| cos

Bo + B < % (11)

By — Bn cos% < %, (12)

Br ~ By cos% < %, (13)
—ﬂvcos% - ﬂhcos% < :17 (14)

3. The parameter space for the first order symmetric
field is defined by

1Bl cosh 8% + |Ba| cosh 83, < % (15)

with 0% = max{6fy1, 0k2}, where * Or1, s Or2 are the
4 solutions of (9).

Higher order fields: In [7], we show that the po-
tential matrix A, for a pth order field may be defined
recursively as

Ap = Ap_y + A, (16)

where A,_; is the potential matrix for the (p—1)th or-
der field, and Ap contains the coefficients for the new
interactions and can be decomposed using a special
class of matrices known as interaction matrices whose
eigenvalues are derived analytically. For general fields,
where Apin(Ap) may not be available, (16) enables us
to derive a recursively generated bound on the param-
eter space through the relationship

/\min(Ap) 2 A"1'"1("41:—1) + Amc’n(Ap) (17)

and the eigenvalues of the interaction matrices, see [7].

3. Parameter estimation

Let 6 denote a vector containing the field potentials.
Maximum Likelihood (ML) estimation requires the
minimization, with respect to (6,02), of the negative
log likelihood

1 1
~ar PO+ 737

which is obtained by scaling — In P(X) by (1/NM)
and removing the constants.

First order fields: Fora first order field, § = (Bn, B).
Using the structure of A from (3), (4), the quadratic

XTAX can be expressed as

XT A(8) %,

L(X/6,0%) = %[111 o? —

T XTAR = C3 — 280 + BuCE), (18)
where
1 A 2
G = W;;z"’ (19)
] ) , N]—M—l N
Cf = NI 2 ; Ti5Tijp1 + Ch.b‘) (20)
1 N-1

=

Cc: = —M-< er,ﬂ;n,; + C:Ab.) (21)
i=1 j=1

[

1]

<
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with correction terms CF, and CZ, given by
h.b. b 8

0 Dirichlet
Che. = LN (22 + 27 ) variational
Yo (®ingi2 + zim_17i M) symmetric

0 Dirichlet
b = %Eﬁl(xf, + %) variational
sz=1 (21,52, + TN-1,2N,;) symmetric

C§ may be interpreted as the sample power, Cf and
C? as, respectively, the sample horizontal and vertical
nearest neighbor correlations.

The partition function term in L(.), In|A|, can be
computed at a cost of O(N M) using the eigenvalues of
A from (5) since the determinant of a matrix is given
by the product of its eigenvalues. Using this fact along
with the relationship in (18), we can express L(.) as

L(X/Bh, Bo,0%) = §In0” + 525[C§ — 28xCF; — 28,C7)
— 95 Lorer oiey In(1 = BoXi(Sn) — Bri(Sm)). (22)

For an efficient search of the parameter space, we need
the gradient of L(.),

ﬂ_ A,(Sm) Y3
B M _ZI,Z_: (1= BoAi(Sn) = BuX;(Sum)) o2
Xi(Sw) Cy
ZNM .z_;,z, (1= BoXi(Sn) — Buri(Sm)) o2
oL 1 z z
ﬁ = ﬁ 2( 2)2 [Co 2ﬂhch - Zﬂvcv ]

The partial derivative with respect to o2 provides an
explicit solution for the ML estimate,

o? = G5 ~2BuC + B.CY),
which substituted into (22) reduces L(.) to

(23)

L(X/ B, v, 0*(Bn, B.)) = 3 10(CF — 264G, ~ 26,C3)

N M
- 2]\;M DD (1 = BoXi(Sw) ~ BrAi(Su)),

=1 j=1

a function of By, By, only, where for convenience we
have removed the constant term.

Conjugate gradient search: The ML estimates are ob-
tained using the Polak-Ribiere conjugate gradient
search method, e.g., [8]. The parameter space con-
straints are incorporated in the bracketing procedure
that precedes each line minimization. Since the com-
putation associated with each evaluation of L(.) or its
gradient is only O(N M), the ML estimation procedure
is computationally practical.

Higher order fields: For higher order fields, the same
conjugate gradient search procedure may be used with

the appropriate parameter space constraints. However,
the computation of In|A| in evaluating L(.) is a major
concern. A further complication is the gradient of L,
with the partial derivative with respect to each field
parameter £, having the form

:;; lM trace(A™! Ap) — (24)
where C? is the sample covariance of lag 7. This ex-
pression is computationally intractable because it re-
quires the inversion of a NM x N M matrix. We solve
both these problems by exploiting the recursive frame-
work derived in [2]. In particular, the recursive frame-
work is used to compute the partition function expe-
ditely and to provide the basis for a fast Monte Carlo
sampling procedure that estimates the gradient. The
gradient estimation is made possible by reformulating
(24) as the difference between an expectation and a

sample value:

oL _ E(C}-0CF
a6 o2

(25)

where E{.} is the expectation operator. At any point
in the parameter space, an estimate of the gradient is
obtained from (25) by applying the recursive structure
in [2] to rapidly synthesize a set of field samples which
are then used to estimate E{C%}. Consequently, we
are able to formulate and implement a computation-
ally practical and accurate conjugate gradient search
procedure to provide the ML parameter estimates for
noncausal fields of arbitrary order, see [7] for details.

4. Estimation from noisy data

In many applications, e.g., image enhancement [3], the
field parameters have to estimated from noisy data.
We present below a modification to the ML estima-
tion procedure from section 3 that provides accurate
parameter estimates from observations

Vii=%ij+ni; 1SiSN 1<j<M (26)
contaminated by additive white Gaussian noise
(AWGN) n; ; that is independent of the field variables
z; . The noise variance o2 is assumed to be known or
estimated separately from the flat or less busy regions
of the field.

The terms C§, Cy, C¥, are defined for the observed
field Y using the appropriate definitions in (19)—(21).
Substituting (26) into (19)—(21), and approximating
the summations as expectations, we get for first order
fields:

(27)
(28)

2
Cbt + On,

0
C;f+{ o2
;78

CY =~
Dirichlet or symmetric

C! = o
variational
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Table 1: Results for ML estimation from 30 samples of
1st order Dirichlet field with N = M = 32, §, = 0.27,
By = 0.225, 0* = 1.0, and MML estimation from samples
corrupted by AWGN with o2 = 0.196 (SNR = 10db).

noiseless (ML) | noisy (MML)
< Bn> 0.268026 0.264472
< By > 0.225250 0.228506 .
<o?> 0.995672 0.999266
var(Bn) 0.000302 0.000338
var(8,) | 0.000317 0.000328
var(o?) 0.001871 0.003625

2 (29)

0 Dirichlet or symmetric
% variational

C! = Cf+{

The approximations in (27)—(29) should be used with
caution at low SNR, (0db and lower) where instability
may occur as the noise variance becomes the dominant
component in the observation sample power.

The modified Maximum Likelihood (MML) proce-
dure for estimation from the noisy data consists of two
steps. In the first step, the noiseless data terms C%,
Ci, C§, in the negative log likelihood function (22) and
its gradient are approximated from their noisy data
counterparts using (27)—(29). In the second step, the
ML procedure from section 3 is used as before to ob-
tain the parameter estimates. Note that in the case
of Dirichlet fields the approximations in (27)-(29) are
valid for arbitrary order, see [7].

5. Experimental results

Thirty 32 x 32 samples of a first order Dirichlet field
were generated recursively using the framework in [2].
We computed ML estimates from each sample using
the procedure described in section 3. The mean (< . >)
and variance (var(.)) of the estimates for each param-
eter are provided in Table 1. As a comparison, the
pseudolikelihood (PL) estimate [6] was computed for
each sample. In more than a quarter of the cases (8
out of 30), the PL estimates were outside the valid
region defined by (10). This emphasises the fact that
the pseudolikelihood estimate is not guaranteed to pro-
duce valid parameters. This is a major concern when
the fields are highly correlated, as is often the case
with images, and the true parameters are close to the
boundary of the valid region.

Continuing the experiment, white Gaussian noise
with variance 02 = 0.196 (chosen to get SNR, ~ 10db)
was added to each sample and the MML procedure
was used to estimate the parameters from each noisy

sample. The mean and variance of the estimates are
given in Table 1. The MML procedure is shown to
work well, providing accurate estimates of the param-

eters at moderately low SNR (10db). In [3], MML is
applied as part of an image enhancement algorithm.

6. Conclusions

The structure of the potential matrix provides the
means for specification of the valid parameter space
and computationally feasible expressions for the likeli-
hood function and its gradient, leading to the formu-
lation of a computationally practical ML estimation
procedure. A simple approximation allows this to be
used with noisy data. For clarity, most of the results
presented here are stated explicitly in terms of first or-
der fields. See [7] for the extension to fields of arbitrary
order.
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