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ABSTRACT

Shape reorientation is a critical step in many image process-
ing and computer vision applications such as registration,
detection, identification, and classification. Shape reorien-
tation is a needed step to restore the correct orientation of
a shape when its image is subject to an arbitrary rotation
and reflection. In this paper, we present a robust method
to determine the standard “normalized” orientation of two-
dimensional (2D) shapes in a blind manner, i.e., without any
other information other than the given input shape. We in-
troduce a set of orientation indicator indices (OII) that use
low order central moments of the shape to monitor the ori-
entational characteristics of the shape. Because these OII’s
use only low (up to third) order moments, they are robust
to noise and errors. We show with examples how we bring
consistently a given shape with an unknown arbitrary orien-
tation to its standard normalized orientation using the OII.

1. INTRODUCTION

In image processing and computer vision applications, the
shapes of objects are obtained and analyzed for registration,
detection, identification, and classification. Many research
efforts are directed to finding the correct orientation of the
input shape prior to feeding it into such further processing.

We have developed the point-based reorientation algo-
rithm (PRA) [1] and the variable-size window orientation
indicator index (∆-OII) [2] that remove the orientational
ambiguity from any shape distorted by an arbitrary orien-
tation. The two algorithms are combined in a complete
and efficient solution to the shape orientation problem, the
PRA-∆-OII algorithm [2]. In this paper, we introduce the
extended OII (X-OII). This new OII is resilient to error
and noise, especially when there is an unexpectedly large
amount of error or noise added to the shape.

∗The first author performed the work while at Carnegie Mellon Univer-
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In section 2, we briefly review some of the past research
efforts on shape reorientation. In section 3, we introduce
three orientation indicator indices that we use to remove the
orientation ambiguity in the shape: the orientation indicator
index (OII), the variable-size window OII (∆-OII), and the
extended OII (X-OII). We illustrate the good performance
of these new measures of orientation with experimental ex-
amples. Section 4 summarizes the paper.

2. SHAPE ORIENTATION

There are an extensive number of published efforts to deter-
mine the orientation of shapes. A good set of existing tech-
niques are reviewed in [3]; these techniques are shown to
fail for some test shapes. The Shen-Ip symmetries detector
[4] that survives these tests is concerned with the problem
of detecting both the reflectional and rotational symmetry
axes of a shape. The algorithm requires the computation of
many high order generalized complex (GC) moments of the
shapes.

In [1], we introduce the concept of intrinsic shape of
an object as an invariant to the class of affine and permu-
tation distortions of a shape, and summarize a blind algo-
rithm to recover the intrinsic shape—BLAISER. The key
step in BLAISER is the reorientation of the shape, which is
solved with the point-based reorientation algorithm (PRA).
The PRA provides a complete solution to the shape reori-
entation problem. The PRA is also an efficient algorithm
whose complexity is O(N logN) where N is the number
of feature points (pixels) in the given shape (binary tem-
plate of the object). In practice, the locations of the feature
points may be measured inaccurately due to the finite reso-
lution of the input device and background noise. The PRA
may be sensitive to such disturbances.

In the next section, we introduce a set of orientation in-
dicator indices (OII) that are moment-based measures of the
shape orientation. We use these OII’s to develop a robust
shape orientation algorithm.
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3. ORIENTATION INDICATOR INDEX

We now introduce the orientation indicator index (OII) that
monitors the orientation of the shape. The OII uses a series
of low order central moments of the input shape. Moment-
based techniques are more robust to errors than point-based
techniques such as the PRA. The OII is computed from up
to third order central moments of the shape. We have chosen
the third order moments because higher order moments are
generally more sensitive to noise and other sources of error.

We start in subsection 3.1 with a definition of the OII
using the third order central moments. Then, in subsec-
tion 3.2, we introduce the ∆-OII, the variable-size window
OII. Finally in subsection 3.3, we generalize the concept
and introduce the extended orientation indicator index, X-
OII. We illustrate with examples how these OII’s apply to
the shape orientation problem.

3.1. OII

We represent a 2D shape X as the collection of x- and y-
coordinates, (x, y), falling inside the shape. The represen-
tation can be either continuous or discrete. We define the
OII of shape X as

OIIX =
√

m2
30 + m2

03 (1)

where mpq is the (p + q)th order central moment of X. If
the shape X is rotated about its center of mass by an angle
θ, we define the OII of the rotated shape Xθ by

OIIXθ =
√

m̄2
30 + m̄2

03 (2)

where

m̄30 =
N∑

k=1

( cos θ · xk + sin θ · yk)3 (3)

m̄03 =
N∑

k=1

(− sin θ · xk + cos θ · yk)3,

using the notation of a discrete shape representation consist-
ing of N feature points. An OII plot is generated by rotating
the shape by an angle θ and computing the OII at each ro-
tated position over the rotation range of θ ∈ [0, 2π). From
(1) and (2), we deduce the following properties of the OII.
Property 1: The OII plot is periodic in θ with period T =
π/2. That is OIIXθ = OIIX(θ+ π

2 )
for ∀ θ ∈ [0, 2π).

Property 2: The OII plot has four peaks in the rotation
range of θ ∈ [0, 2π).
Property 3: If two shapes differ from each other by a rota-
tion angle of φ, their OII plots are circularly shifted versions
of each other by the same angular displacement φ.
Property 4: If two shapes are reflected versions of each
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(d) OII plot of Rotated Shape

Fig. 1. Examples of OII

other about the x–axis, their OII plots are identical.
The second property requires a lengthy algebraic derivation
to prove. After the derivation, we find that the OII plot is a
cosinusoidal function of the rotation angle θ with a period
T = π/2. That is,

OIIXθ =

√
3
4

ρ cos (4θ − λ) + τ (4)

where

ρ =

√
(M1 − M3)2

4
+ M2

2

λ = arctan
(

2M2

M1 − M3

)

τ =
5M1 + 3M3

8

and

M1 = m2
30 + m2

03

M2 = 2(m21m30 − m12m03)
M3 = 2(m12m30 + m21m03) + 3(m2

21 + m2
12).

The OII plot represented by Equation (4) has four peaks
over the range θ ∈ [0, 2π), which of course simply confirms
Properties 1 and 2.

We illustrate the usage of the OII with simple examples.
We first choose the test shape X to be the binary image of
an airplane as shown in Fig. 1 (a). The test shape is rotated
over the rotation range θ ∈ [0, 2π). At each rotated position,
the OII value is computed and plotted. The OII plot that
results after the full rotation is shown in Fig. 1 (b). As we
expect, the plot is a cosinusoidal function of the rotation
angle θ with a period T = π/2. Fig. 1 (c) shows the same
test shape rotated by an angle π/4 rad. The OII plot of this
rotated shape is shown in Fig. 1 (d). Observe that this plot
is circularly shifted by the angle π/4 with respect to the OII
plot shown in (b).
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The reorientation of a shape is achieved by first gener-
ating the OII plot. According to (4), there exist four peaks
in the OII plot that represent four unique rotational orienta-
tions of the shape. We can bring any shape to one of its four
unique orientations by bringing any peak in its OII plot to
the origin θ = 0.

There are twomajor weaknesses in the method described
above. The first limitation is that the method fails to resolve
the reflectional ambiguity of the shapes as stated in Prop-
erty 4. Another very significant shortcoming is that the OII
plot becomes flat over the entire rotation range θ ∈ [0, 2π)
for certain shapes. When the OII plot is flat, there is no peak
in the OII plot and the determination of the orientation is no
longer possible. See the theorem below that states this fact.

Theorem 1 The OII plot of a shape is flat at zero if all of the
third order central moments of the shape, m30, m03, m21,
and m12, are zero.

3.2. Variable-size Window OII

In this section, we discuss the variable-size window OII (∆-
OII). The ∆-OII is defined simply as the OII computed only
from the portion of the shape falling within a 2π

∆
–window

where ∆ = 4k for an integer k, i.e., we use windows of
sizes π/2, π/4, π/8, and so on. The 2π

∆ –window is the region
of the coordinate plane enclosed between the positive x–
axis and the straight line through the origin that makes an
angle 2π

∆
rads with the x–axis. That is, the window contains

all points (x, y) where x > 0 and y ≤ x tan ( 2π
∆

).
The ∆-OII of the shape X is defined as

∆-OIIX =
√

µ2
x + µ2

y (5)

where
µx =

∑
k∈R

x3
k and µy =

∑
k∈R

y3
k, (6)

and R is the region that contains the points{xk, yk : (xk, yk) ∈
X, ∀xk, yk ∈ 2π

∆ –Window}. The third order central mo-
ments µx and µy as computed for the ∆-OII are never zero.
This is because every 2π

∆
–window is located within the first

quadrant of the coordinate plane where the coordinate val-
ues of the points (xk, yk) are greater than zero. The ∆-OII
plot, unlike the OII plot, never becomes flat at zero.

Two examples of the ∆-OII plot are shown in Fig. 2.
These are two of the shapes that cause failure on many ex-
isting methods. We observe that the ∆-OII plot obtained
from each of these shapes is (i) not flat and (ii) exhibits the
rotational symmetry of the shape by its periodicity, i.e., the
fold number of the shape is equal to the periodicity of the
plot.

We briefly describe the algorithm for shape reorienta-
tion using the ∆-OII. Readers are referred to [2] for details.
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Fig. 2. Examples of ∆-OII

The basic idea is as follows. Since the ∆-OII plot is a func-
tion of the rotation angle over the full range [0, 2π), if we
locate a unique peak point of the plot and reorient the shape
(i.e., rotate and reflect) until this unique point is brought to
the origin at θ = 0, the shape can be uniquely reoriented. To
achieve this, we first determine the fold number of the shape
by plotting the ∆-OII plot of the shape, generating an auto-
correlation of the ∆-OII plot, and counting the peaks with
the magnitude of 1 in the autocorrelation plot. Then, we
pick out the non-periodic portion corresponding to one pe-
riod of the ∆-OII plot and denote it as L. We find the unique
element in L by selecting the one with the largest value. If
there is more than one such element, we resolve the tie by
comparing the ∆-OII values of their right-side and left-side
neighbors in the ∆-OII plot. Since L is non-periodic, we are
guaranteed to resolve the tie and come up with a unique ele-
ment in L. However, any unexpectedly large error and noise
in the ∆-OII plot can disturb the correct result of the com-
parison process. A new method that works without these
comparison steps will be beneficial. After the comparison
steps are processed and we locate the unique element in L,
we perform an appropriate rotation and reflection to bring
the shape to a unique orientation.

Every time we rotate the shape by an angle θ, the ∆-OII
value at the rotated position is computed from a different
portion of the shape that falls within the 2π

∆
–window. This

makes it difficult to derive the exact mathematical expres-
sion of the ∆-OII as a function of the rotation angle θ as
we did for the OII. We tested the ∆-OII-based algorithm
against an extensive database with two hundred symmetrical
and non-symmetrical shapes [4] and verified that it correctly
resolves all rotational and reflectional symmetries present.
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3.3. Extended OII

The ∆-OII in (5) solves the problems exhibited by the OII in
subsection 3.1. However, the ∆-OII involves cumbersome
and error-prone steps like comparing the ∆-OII values of
the given shape at different rotational positions. The ex-
tended OII (X-OII) that we introduce now removes these
steps.

So far, we have used only the third order central mo-
ments m30 and m03 of the shape in the OII and the ∆-OII.
For the normalized or compact shapes [5], the first and sec-
ond order shape moments are normalized to m10 = m01 =
0, m20 = m02 = 1, and m11 = 0. Hence, when com-
puting the OII in (1) for these compact shapes, the lowest
order moments we are left to work with are the third order
moments: m21, m12, m30, and m03. When applying the ∆-
OII, however, we are free to use moments of all orders, in
particular, the lower order moments, m10, m01, m20, m02,
m11, m21, and m12, since these are now computed only
within a 2π/∆ window, and so their values are not à priori
fixed. This is what we do with the X-OII that we introduce
next. The X-OII provides additional degrees of freedom in
choosing the moments and is very useful in resolving, for
example, reflection-symmetric shapes: either an individual
moment can be used to generate the corresponding X-OII
plot, or a few related moments can be combined to create a
new measure of orientation as has been done in (1) and (5).

We give an example of processing reflection-symmetric
shapes using the X-OII. When a shape is reflectionally sym-
metric, we have multiple peaks with the same ∆-OII values
within the non-periodic portion L of the ∆-OII plot. We
now explain how to avoid the comparison steps involved
with the ∆-OII. Consider the airplane shape in Fig. 3 (a) that
is symmetric with respect to reflection about the x-axis. The
∆-OII plot of this shape with a π

2 –window, shown in (b),
has two peaks due to the symmetry of the shape. To choose
one unique element of the ∆-OII plot, we need to compare
the ∆-OII values of the right-side and left-side neighbors of
these two peaks. We employee the X-OII and generate two
extra plots using µ30 and µ03 computed in the π

2 –window,
as shown in (c) and (d). This can avoid the cumbersome
comparison steps: The peak in the µ30 plot corresponds to
the right-side peak in the ∆-OII plot, while the peak in the
µ03 plot corresponds to the left-side peak. With this new
index, X-OII, we can simply work with the µ30 plot, for
example, and choose consistently the right-side peak in the
∆-OII plot as the unique element.

4. CONCLUSION

The paper introduces moment-based measures of orienta-
tion, OII, ∆-OII, and X-OII. We explore their properties
and show that they remove the full orientation ambiguity
including both rotation and reflection in all cases tested.
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Fig. 3. Examples of X-OII

These OII’s use low order moments and are robust to er-
rors and noise. The extended OII (X-OII) is free of the
error-prone steps of the other two OII measures and works
especially better on the shapes with reflectional symmetry.
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