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ABSTRACT

The task of detection optimization in sensor networks is hindered

by the large computational cost of evaluating the performance cri-

teria, e.g. the probability of making wrong decisions. We present

an approach that avoids these obstacles by considering a rather

accurate approximation to computing the detection performance.

We propose the saddlepoint approximation and provide results that

demonstrate its high accuracy and low complexity. The results are

used to show that, for a range of problems, the optimal fusion rule

is equivalent to a simple majority rule.

1. INTRODUCTION

The design of reliable and efficient sensor networks is attracting

attention in recent years. Many factors are important in designing

the sensor network, including the sensing performance, network

lifetime, or communication bandwidth. Coupling this with the ex-

panding network size leads usually to ill-conditioned optimization

problems requiring extremely large computational resources. In

this paper, we consider the problem of globally optimizing sensor

networks with respect to the error detection performance. We con-

sider a parallel-fusion architecture in which all sensor nodes send

their local decisions to a fusion center. The aim is to develop a

practical approach for optimizing both the local detectors at the

sensor nodes and the (global) fusion rule such that the overall de-

tection error is minimized.

Finding the global fusion rule is essentially a combinatorial

problem that requires repeated evaluation of the performance mea-

sure. For a given fixed network structure, i.e., given set of local de-

tectors and fixed global fusion rule, the computation of the perfor-

mance criterion should be both, fast and accurate. Unfortunately,

the average probability of error criterion that is usually adopted

is extremely costly to compute. In this paper, we develop an ap-

proximation to the average probability of error that is both simple

to compute and accurate. We adopt the saddlepoint approxima-

tion [1], which has been used in many applications such as op-

tical detection, bootstrapping, and queuing analysis. We use the

Lugannani-Rice version, which is one of the most popular forms

of the saddlepoint approximation [1]. In the sequel, we will re-

fer to it interchangeably as the Lugannani-Rice or the saddlepoint

approximation.

Although based on asymptotic expansions, the saddlepoint ap-

proximation is highly accurate even for small problems (e.g., net-

works with few number of sensors). In addition, the saddlepoint

approximation avoids complexity bottlenecks since it is based on
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Fig. 1: Parallel fusion network.

only a few simple expressions. This contrasts with exact evalua-

tion methods, which have complexity of order 2 1, where is

the number of sensors and is the number of bits quantizing the

local decisions at each sensor. The simplicity of the saddlepoint

approximation enables us to address the problem of network de-

sign, in particular, of finding the optimal global fusion rule. Due

to space limitations, we will only show in this paper some results

on network optimization, presenting the details elsewhere.

We study the accuracy of the saddlepoint approximation by

showing the impact of the conditions under which the decision

variables become lattice variables. The saddlepoint approxima-

tion is then used to globally optimize a network of 100 sensors.

We show that, when the noise is Laplacian (a heavy tail distribu-

tion), the optimal fusion rule reduces to a very simple and intuitive

rule—the majority rule, that generalizes to the -ary problem the

usual binary majority rule. This may not be the case for other

types of noise, for example, for Gaussian noise, except for small

networks such as those considered in [2].

In section 1, we present the model and state the problem. In

section 2, we present the optimal fusion rule and discuss the sta-

tistical distribution of the decision variables. Ways for evaluating

the exact detection performance along with their complexity are

presented in section 3. Section 4 describes the saddlepoint approx-

imation and presents bounds for its accuracy. Finally, we present

numerical results and concluding remarks in section 6.

2. MODEL AND PROBLEM STATEMENT

Fig. 1 depicts a network of sensors collecting scalar measure-

ments 1 2 in an environment that takes one of two pos-

sible states, 0 and 1. Each sensor processes its own measure-

ment independently using a -threshold scalar quantizer to form

a local -ary decision {1 2 }, = 1 2 .
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Each local classification is encoded into = dlog2 e bits then
the local messages from all sensors are transmitted to a single fu-

sion center. The fusion center makes the final binary decision

about the true state {0 1}. Our aim in this binary detec-
tion problem is to optimize the local quantizers and the fusion rule

such that the average probability of error = Pr( 6= ) is
minimized.

We consider a Bayesian formulation in which the probabilities

0 = Pr( 0) and 1 = Pr( 1) are known apriori. The local
measurements are assumed to be independent and identically

distributed (i.i.d) with known density functions 0( ) = ( | 0)
and 1( ) = ( | 1) under 0 and 1, respectively. We further

assume that the likelihood ratio 1( ) 0( ) is monotonic in .

Under these assumptions, optimal local decision rules are nothing

but scalar quantizers of the real measurements

We also assume that the local quantizers are identical. While

this might not be necessarily optimal, Tsitsiklis in [3] showed that

the performance loss due to this assumption is negligible when

the number of sensors is large. Also, the numerical study in [2]

shows that this statement holds even for small networks. We as-

sume that the number of quantization thresholds = 1.
In this case, the "identical quantizers" assumption implies that

all sensor nodes share the same vector of quantization thresholds

= ( 1 2 ), 1 2 · · · . Extension to the

general case ( 1) is straightforward, though at the ex-
pense of computational complexity.

3. OPTIMAL FUSION

Given the above assumptions, the optimal fusion rule for a particu-

lar local classification vector u = ( 1 2 ) is essentially
a likelihood ratio test of the form [4]

=
=1

1

0
log

0

1
, (1)

where = log Pr( | 1)
Pr( | 0)

is the log likelihood ratio (LLR) of

making a decision , and is the fusion threshold. The LLR

is a discrete random variable that takes one of possible values

, = 1 2 , and has a conditional probability mass

function (pmf) given by

= Pr( = | ) =
1

( )

under hypothesis , where 0 = , = + , and =
log( 1 0) is the LLR of an classification (making a local

decision in favor of ).

The decision rule in (1) can also be written as a weighted ma-

jority rule

=1

1

0
(2)

where is the number of sensors making a = classifi-

cation and is the LLR value of that classification as defined

above. Note that, for predefined local quantization thresholds, the

LLRs , = 1 2 , can be computed from the mea-

surement densities. On the other hand, {0 1 },
= 1 2 , are discrete random variables with unknown

distributions, but their sum should be .

4. EXACT PROBABILITY OF ERROR

A globally optimal detector minimizes the average probability of

error = 0 0 + 1 1 where = Pr( 6= | ) is
the probability of error under hypothesis . One approach for

computing uses the fact that the fusion center only cares about

the counts of distinct decisions as in (2). The probability of error

under is given by

=

1 2 =1

( )
=1

1

=1

such that

=1

= and

=1

if =0

if =1
(3)

The sum in the last equation considers all possible ways of select-

ing integers such that their sum is equal to . The number of

such combinations is equal to + 1 . Using Stirling’s approx-

imation and assuming À , the number of terms in (3) is on

the order of 1. This is not appropriate for practical use ex-

cept when and are small. The difficulties become even more

prominent when we consider using such exact formulas in sensor

network optimization.

5. SADDLEPOINT APPROXIMATION

Saddlepoint techniques are powerful tools to derive accurate ap-

proximations to densities and tail probabilities of sums of random

variables. In this section, we use the saddlepoint technique to ap-

proximate the tail probabilities of =
=1

in order to com-

pute the average probability of error . In what follows, we drop

the subscript from and use instead. Before presenting the ap-

proximation we need to define the cumulant generating function

and its derivatives, which are used in the saddlepoint approxima-

tion. Under hypothesis , we define the moment generating func-

tion of given by

( ) = =
=1

where denotes the expectation. The cumulant generating func-

tion of and its first and second derivatives are given by

( ) = log ( )
0( ) = ( ) = 1( ) ( )
00( ) = 2 ( ) 2 = ( ) 2( ) 1( )

2 ( )

( ) =
=1

( )

The Lugannani-Rice formula is one of the most popular and easy

forms of the saddlepoint approximation. In the context of our prob-

lem, the Lugannani-Rice formula approximates the error perfor-

mances 0 and 1 as follows

0 = Pr( ) ' ( ) + ( ) 1 1

1 = Pr( ) ' ( ) ( ) 1 1
(4)

= Sgn(ˆ) 2(ˆ (ˆ)) (5)

= ˆ 00(ˆ) (6)
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where ( ) is the normal density function, ( ) = ( ) ,

is the normal right-tail distribution, Sgn( ) denotes the sign of

and ˆ is the saddlepoint given by the unique solution to the saddle-

point equation 0(ˆ) = , which can be solved using standard

numerical univariate root finding algorithms. Care should be taken

when evaluating the various quantities in the above expressions as

it should be carried out under the appropriate hypothesis. In other

words, the values of (ˆ) 00(ˆ) and the saddlepoint ˆ

used to evaluate 0 are different from those of 1.

The form presented in (4), (5), and (6) is often used to approxi-

mate the tail probabilities of sums of continuous random variables.

For this reason we refer to it as LR-Cont (i.e., the continuous form

of the Lugannani-Rice approximation). However, the problem that

we are considering involves the sum of discrete random variables

. So, the question is: is it still a good approximation to when

the random variables are discrete? Applying the same approxi-

mation above for discrete random variables has been justified by

Booth et al. [5] by showing that the relative error of the approxima-

tion decays rapidly as the number of samples grows. It is shown

in [5] that, in almost all cases, the relative error is ( 1 2) or
( 1) when = 5 6 or 6, respectively ( = ( )

means that 0 when , while = ( ) means
that is bounded when ). Recall that the sensor nodes

produce local decisions based on local -ary classifiers where

is the number of local quantization levels given by = 2
and is the number of bits per sensor. No similar justification

has been shown in [5] for the cases of = 3 4 (correspond-
ing to ternary and quaternary sensor nodes, respectively) although

numerical results in the following section show that the approxi-

mation performs well for those cases also. The case of = 2
(binary sensor nodes) is a little different since the distribution of

becomes always lattice valued as we explain next.

The log likelihood ratio random variable is lattice distributed

when every possible value of it ( = 1 ) can be rep-

resented in the form + , where is an integer and 6= 0.
When = 2 (binary sensors), it is easy to see that is always

lattice regardless of the values of 1and 2. When 2, the
distribution of can also be lattice, but only under specific condi-

tions on the noise distribution and the quantization thresholds. The

reason for raising the issue of lattice versus non-lattice conditions

is two fold. First, it can be shown that when is lattice the fu-

sion rule in (1) can be replaced with a simple majority rule, which

makes its decisions based on the integer sum of the received local

classifications {1 2 } as follows

=1

1

0
log

1

0
( 1 + ) , (7)

This brings another complexity reduction, which may be neces-

sary for power and complexity constrained sensors nodes. Second,

when the random variable is lattice-valued there are other forms

of the saddlepoint approximation that are specific for lattice-valued

variables. One such approximation is obtained by using the same

equations as before ((4) and (5)) but where is replaced now with

=
1
(1

ˆ
) 00(ˆ) (8)

where is the lattice span. This particular form has a relative

error of ( 1) for any provided that is lattice distributed.

We refer to this approximation as LR-Latt (i.e., the lattice form of

the Lugannani-Rice approximation). This approximation is valid

only at the lattice edges. For example, in the following section, we

consider a lattice case in which = 4 (quaternary sensors) and
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Fig. 2: Relative error of the saddlepoint approximation as a func-

tion of the number of sensors.

the values of , = 1 4, are symmetric about zero with a
span of . To approximate 0 = Pr( 0) for that example,
the LR-Latt formula should be evaluated at = 2.

In addition to its high accuracy, the saddlepoint approxima-

tion is much more practical than the exact approach. Evaluating

the probability of error given the local quantization threshold

requires computing few simple expressions in addition to finding

the saddlepoint ˆ, which can be obtained using numerical univari-
ate techniques, a much simpler task than the exact evaluation in

Section 4, which has a computational complexity on the order of
1, where = 2 . We use this fast, accurate, and sim-

ple saddlepoint approximation in an optimization algorithm that

searches for the optimal local quantization thresholds as will be

illustrated in the next section. Recall that, for the problem consid-

ered in this paper, optimality of the fusion rule is ensured by using

the likelihood-ratio test in (2).

6. NUMERICAL RESULTS

We present numerical results to illustrate the accuracy of the pro-

posed approximation and clarify the difference between the lattice

and the non-lattice conditions. We also present an application to

the problem of global network optimization. To model the obser-

vations, we consider an additive noise model = + , where

is the signal mean under = 0 1 and is a zero-mean

noise with known distribution and variance 2. Here, we assume

1 = 0 = = 1 and that the hypotheses are equally likely to
occur, i.e., 0 = 1 = 1 2. A network of quaternary ( = 4)
sensors is used to detect the true state of nature.

Example 1We illustrate the accuracy of the proposed approx-

imation in a low-SNR environment. The noise is assumed to be

Gaussian and the SNR is 10 dB (SNR= 10 log10
2 2). The

local quantization thresholds are fixed at = ( 3 0 3). Fig. 2
shows how the relative error of the LR-Cont approximation decays

as the size of the network grows and that it performs well even for

very small networks (relative error is less than 1%).
Example 2 Here, we demonstrate the difference between lat-

tice and non-lattice conditions and evaluate the performance of

both forms of the saddlepoint approximation. The noise is as-

sumed to be Laplacian with variance 2 = 10 (SNR= 10 dB).
The network size is fixed at = 101 while the local quantiza-
tion thresholds are varied to examine situations where the distrib-

ution falls into a lattice. Specifically, a symmetric threshold vector

= ( 0 ) is used and the value of is varied from 0 to 1.

In implementing the LR-Latt approximation, we assume the span

of the lattice to be = 2 1 Fig. 3 compares the relative
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Fig. 3: Comparison between the continuous and the lattice ver-

sions of the saddlepoint approximation.
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Fig. 4: Exact right-tail probability at different thresholds under

lattice and non-lattice conditions.

error of the LR-Cont and LR-Latt approximations (relative error

= |( )exact ( )approx| ( )exact). The figure demonstrates the
advantage of the LR-Cont approximation for most of the range ex-

cept around = 0 65. To explain this, notice that at

Latt =
2

2
log

1

2
1 + 1 + 8 2 2

' 0 651 (9)

the values of belong to a lattice with span = 8
2 Latt '

0 5822. This is further illustrated in Fig. 4, where the exact proba-
bilityPr( ) is plotted when the local quantization threshold
= Latt ' 0 651 (corresponding to the lattice case) and when

the quantization threshold is set to an arbitrary value = 0 5. The
network size is fixed at = 101 while the fusion threshold is

varied from 2 to 2 (i.e. changing the priors 0 and 1). The plot

clearly illustrates the regular wide jumps for the lattice case. In

contrast, when = 0 5, the jumps become irregular and closely
spaced. As the number of sensors is increased the jumps be-

come even closer (not shown here due to space limitation).

Example 3 We illustrate the application of the proposed ap-

proximation to the problem of global optimization of sensor net-

works. Using the same setup as in Example 2, where the noise

is assumed to be Laplacian, we find the optimum local quanti-

zation threshold optim = ( optim 0 optim) that minimizes the
global detection error. The proposed Lugannani-Rice approxima-

tion (LR-Cont) of the error performance is embedded in an algo-

rithm to solve this optimization problem numerically for a wide

range of operating SNR and the results are shown in Fig. 5. Inter-

estingly, the optimum thresholds optim coincide with the uniform
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Fig. 5: Optimum thresholds optim obtained through numerical op-

timization when the noise is Laplacian. These coincide with the

value of Latt in (9).

quantization thresholds Latt obtained from (9) ( Latt corresponds

to uniform quantization of the LLR). This shows that, for this ex-

ample, which involves Laplacian noise, the optimal thresholds lead

to a lattice-valued LLR and, hence, the simple majority rule in

(7) is optimal. This is not necessarily true for other distributions.

Results (not shown here) show that when the noise is Gaussian,

the optimal thresholds lead to a non-lattice , in which case the op-

timal fusion rule (1) may not be equivalent to the simple majority

rule in (7) except for some special cases such as the small networks

considered in [2]. Note, however, that the techniques proposed in

this paper can be applied with high accuracy and low complexity

regardless of whether is lattice or not. To verify the results in

Fig. 5, we prove elsewhere that, asymptotically when

and SNR dB, the optimum threshold is = 2 3; and
when SNR + the optimum threshold approaches 2. These
agree with the limits of (9) as SNR ± and are close to the

numerical results in Fig. 5 (we assumed that = 1).
Conclusion The cooperation of a network of distributed sensors

has many potentials although, individually, each sensor may not

accomplish much. It is impressive to see how the collaboration of

100 sensors caused the error rate to drop down to 10 4, even under

harsh conditions with an SNR of only 10 dB in the last exam-
ple. The approximation proposed here simplifies the task of global

optimization of such powerful networks without jeopardizing the

performance. It enable us to optimize various networks ranging

from the very small, with few number of sensors, to the very large,

with a number of sensors in the thousands or even millions.
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