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APPLICATION TO KALMAN-BUCY FILTERING
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ABSTRACT

We investigate the properties of block matrices with block
banded inverses to derive efficient matrix inversion algo-
rithms for such matrices. In particular, we derive the fol-
lowing: (1) a recursive algorithm to invert a full matrix
whose inverse is structured as a block tridiagonal matrix;
(2) a recursive algorithm to compute the inverse of a struc-
tured block tridiagonal matrix. These algorithms are exact.
They reduce the computational complexity respectively by
two and one orders of magnitude over the direct inversion
of the associated matrices. We apply these algorithms to
develop a computationally efficient approximate implemen-
tation of the Kalman-Bucy filter (KBf) that we refer to as
the local KBf. The computational effort of the local KBf is
reduced by a factor of I? over the exact KBf while exhibit-
ing near-optimal performance.

1. INTRODUCTION

A major issue that precludes the application of sophisti-
cated signal processing algorithms in computer vision or
in the physical sciences in general is the large dimension
of the state vector. In typical image-based applications, for
example, the dimension of the state vector is on the order of
the number of pixels in the image, typically 10° elements.
The covariance matrices associated with an optimal filter
applied to such problems have dimensions on the order of
10° x 10%. The storage and the subsequent manipulation of
such large matrices as required by the optimal filters is pro-
hibitive, necessitating the use of a sub-optimal approach.
The paper investigates the use of structured banded ma-
trices to derive near-optimal implementations of the Kalman-
Bucy filter (KBf), [1]. We study block banded matrices
and derive important properties that relate the constituent
blocks of the block banded matrix to the block entries in
its inverse, which is a full matrix. These inter-relationships
between the block entries result in recursive algorithms for:
1. inverting a full matrix whose inverse is block banded;
2. computing the inverse of a block-banded matrix.
For tridiagonal block matrices, Algorithm 1 reduces the
computational complexity by two orders of magnitude over
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the direct inversion of a full matrix whereas Algorithm 2
provides savings of one order of magnitude.

The block properties alluded to in our discussion above
are used to derive a sub-optimal implementation of the KBf,
referred to as the local KBf, that provides computational
savings by a factor of I? over the direct KBf defined on
an I x I image field. We approximate the inverse of the
error covariance matrix, i.e., of the information matrix, by
a block banded matrix. Banded approximations to infor-
mation matrices correspond to modeling the error field as
a reduced order Gauss Markov random field (GMrf). The
estimate provided by the local KBf follows closely the esti-
mate provided by the exact KBf.

The paper is organized as follows. In section 2, we derive
three relevant results for matrices with block tri-diagonal
banded inverses. In section 3, we present efficient algo-
rithms to invert such matrices and band-limited block tridi-
agonal matrices. In section 4, we apply the band-limited
approximation to develop the local KBf and illustrate the
validity of the approximation through an experiment. In
section 5 we conclude the paper.

2. BLOCK BANDED MATRICES

Consider a positive-definite, symmetric matrix P represented
by its (I x I) constituent blocks P = {P;;}, 1 < 4,5 < I.
The matrix P has dimensions of (IZ x I?). We assume the
inverse of P, A = P7! is block banded. Such matrices
occur in several applications like in Gauss Markov random
fields (GMrf), where P is the covariance matrix and the
inverse A is referred to as the information or potential ma-
trix. For first order GMrf, the potential matrix A is tridi-
agonal and highly structured, [2]. In the paper, we restrict
ourselves to covariance matrices P with block tridiagonal
inverses.

The Cholesky factor U of the inverse, P~ = UTU, has
the following upper bidiagonal block structure

up 0, 0 0 0
0 U O 0 [1]
0 0 U Os 0
0 0 Ur-:x O1a
0 0 0 U



Matrix U is upper block bidiagonal. Its inverse U™! has
the following structure

Urt o2 x % *
0 Ut ox x x
. 0 0 Ut o *
v = . )
0 0 Uil x
0 0 o Ut

where the notation # stands for unknown entries. The diag-
onal block entries of U~! are the inverse of the correspond-
ing diagonal blocks of U. The lower triangular block entries
in U™! are all zero blocks. These features are used to derive
the following results where we show how to obtain, [3]:

(a) the block entries {U;, O;} of the Cholesky factor U
from the blocks {P;;} and {Pii41} of the diagonal
and first upper diagonal of the covariance matrix P;
(b) the block entries {P;;} of P from the block entries
{U;, 0} of the Cholesky factors of P~!; and
(c) the off-diagonal entries P;j, 1 <i<I,i+2<j<1I
from the main diagonal blocks P;; and the first upper
main diagonal blocks P11 of P.
Result 1: Given the blocks {P;;} and {Pii4+1} of a covari-

ance matrix P with a block tridiagonal inverse, the blocks
{Ui, O;} of the Cholesky factor U = chol(P) are given by

Ur= chol ((P;)™Y) (3)
Us= chol (Pi — Piy1P3N; 1 Ply) ™)

_ -1 T 1 T\T (4)
Oi = _(I)i+1i+1pii+lUi )

for1<i<(I—1)

where chol(-) means Cholesky’s factorization.
Proof: From the equality

P=UTU)", weget PUT =U. (5)

Now, replace U by its value in (1), substitute U~! from (2),
and express P as {P;;}, 1 <1,7 < I. Then we multiply out
the left hand side of (5) and equate the diagonal and lower
diagonal block entries on the left and the right hand sides,

paUl = Uit (6)
PiUj + Pin0] = (U))7"6y (M
for 1<i<(-1), 1<j<i.

Equation (3) is obtained directly by rearranging terms in (6).

To derive (4), we substitute i = £+ 1 and j = £ in (7),

Pl+u’U¢"r + Pl+1(+1O(T 0.

®)
On rearranging (8), the bottom equation in (4) is verified.
To prove the expression for U; substitute i=j=~¢in (7),

9

from which the equality for Uy in (4) can be derived by sub-
stituting for O, and rearranging.

Result 2: Given blocks {U;, O;} of the Cholesky factor U =

PiU{ + PO =

(U™
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chol(P) where P has a block tridiagonal inverse:
(a) The main diagonal blocks Pi;, 1 < i < I of P can be
obtained recursively from the following expressions

Pir (Ufu)™ (10)
(U,-"‘Ui)"l + (Ui_IOi)R+li+l (Ui—loi)T(n)

for (I—-1)>i>1.

P;

(b) The remaining upper triangular blocks Pjiyx, 1 <1 <
(I —1),1<k<(I-1),are given by

itk—-1

Py = ( H (- U:IOT)) Piriyr  (12)
or alternatively, for 1 <i< (I —-1), i+1) <3< I, by
j-2
Py = ([[(-v70)) Py B ()

Proof: Equation (10) follows directly by rearranging terms
in (6). We prove (12) by induction. Due to lack of space,
we do not include here the proof of (13). It follows the same
lines as that of (12). Finally, we prove expression (11).
Case 1: Equation (12).

In (8), right multiply by U[T, take the transpose on both
sides, and rearrange, to get

Puti = (=U{'0¢)Pryien (14)
which is equation (12) for k£ = 1.
By the induction step, (12) is valid for k = p, i.e.,
i4p—1
Pure = (I (-07'00)) Papirer  (15)

We now prove equation (12) for k = p + 1.
With i = £+ p+ 1 and 7 = £ in equation (7) and following
the steps that led to (14), we get

Purorn = (—U7'0d)Prrespn (16)
Substituting for Pry1¢4p+1 from equation (15) with s = £+1
proves equation (12) for k = p + 1.
Case 2: Equation (11) follows by right multiplying (9) by
U[T, and substituting for P4, from Result (12).
Result 3: Given the main diagonal and the upper diagonal
blocks {P;;} and {P;i+1} of the covariance matrix P with
block tridiagonal inverse, the upper triangular blocks P;;,
1<i1<1,i+2<j<1I, are given by

Jji—2

(H(P:JITHP,HT)T) Py B (7

=i

P; =

Proof: Result 3 is derived from (13) by expressing the
product ( ~- Uy 1O,-) in terms of the main and the upper
diagonal blocks of P using (8).



3. INVERTING BANDED MATRICES

In this section, we use Result 1 to derive an algorithm for in-
verting a full matrix, P, whose inverse is block tridiagonal.
Result 2 is then used to solve the converse problem, i.e.,
inverting a block tridiagonal matrix. Since in both cases,
we are dealing with symmetric matrices, we compute only
the diagonal and the upper triangular blocks.

Algorithm 1: Inverting matrices that have tridiagonal block
inverses. Using the notation introduced in section 2, Algo-
rithm 1 computes A = P~ from P as follows.

Step 1: Compute P;',1<i< 1.

Step 2: Calculate the product terms UFU;, UFO; and
070, 1 < i < (I-1), using the following recursive expres-
sions

UiTUi = (Pii - ii+1Pi:—lli+1R€+l)—l (18)
ul'o; ~(UUs) Pisi PRhin (19)
0{0i = ~PjiinPis (U70:). (20)
The only other product term needed to compute A is
vfu, = P (21)

Equations (18)-(21) follow directly from Result 1.
Step 3: The diagonal block entries A;; and the upper di-
agonal entries, Aji41, 1 <7 < (I—1), are given by

UEHUi_H + O,,T,HOH] (22)
Aiin Ul o;. (23)

The top left block A1 equals U Uy. The lower diagonal
blocks Ai+1; = A%, . Since A is a tridiagonal block matrix,
the remaining blocks in A are all zero blocks, 0.

Equations (22)-(23) are derived by expanding the ex-
pression A = U7 U in terms of the constituent blocks.

By counting the number of operations, it can be verified
that the above algorithm is O(I*), a reduction of I? over
the direct inversion of the covariance matrix P.

Aivriipn =

I

Algorithm 2: Inverting tridiagonal block matrices. Fol-
lowing the notation of section 2, Algorithm 2 computes P
from A or its Cholesky factors {U;, O;} as described below.
Step 1: Compute U; ', 1 <i< T

Step 2: Compute the product terms

Uruy™ =u7'u7T  and U0,

Step 3: We use Result 2 to derive alternative expressions
for the main diagonal block entries, P;; and for the entries
on the upper diagonals Pi;+x, £ > 1. The lower right main
diagonal block entry is given by

(U;FUI)—I. (25)

The remaining diagonal blocks, P;;, are computed recur-
sively by starting from ¢ = I —1 and decrementing ¢ till
¢ =1 in the following expression

Pi = (UFU) ™" + (U710:) Piyaina (U720:) 7 (26)

The upper diagonal entries Piiyx, 1 < ¢ < (I — 1) and
1 < k < (I—1), are given by

Piye = (-UT'0:)Phiisx. 27
Algorithm 2 highlights the following important points:

1<i<T (24)

Py =

1. The diagonal blocks can be found directly from {U;, O;}
without computing any off diagonal blocks, P;;, i # j.

2. In general, the block entries on the n’th diagonal,
k = n, can be computed from {U;, O;} and the blocks
on the diagonal just before it, k = (n—1).

3. Computing each entry on the main diagonal is of
O(I®). Since there are I blocks on the main diag-
onal, the operation count for computing all entries
on the main diagonal is of O(I*).

4. The total number of blocks on the n’th diagonal,
k = n, is (I—n). If the block entries on the pre-
ceeding diagonal, £k = (n — 1), are known, the total
computations for the n’th diagonal are (I —n)O(I?).

5. Inverting A using Algorithm 2 is of O(I®), an im-
provement of I over the direct computation of P.

3.1. Local KBf: Banded Matrix Approximation

In this section, we present an approach for approximating
the covariance matrix computation in the Kalman-Bucy fil-
ter (KBf). We describe our approximate filter in the con-
text of filtering random fields that evolve with time. In
other words, we have image fields defined on a grid whose
temporal dynamics follow a certain discretization of a par-
tial differential equation. The image fields are stacked in
a long vector — the state vector. The key to our approach
is approximating the inverse of the error covariance ma-
trix (the information matrix) by a block banded matrix.
This corresponds to modeling the error field in the spatial
dimensions at each point in time as a reduced-order non-
causal Gauss Markov random field (GMrf). For a first order
GMrf approximation, the information matrix is modeled by
a tridiagonal block matrix. In [4], it is proved that these are
GMrf approximations that optimize the Kullback-Leibler
mean information distance criterion.

Our approximation algorithm uses Result 3. Instead of
updating the entire covariance matrix at each time itera-
tion we update only a few diagonals of the error covariance
matrix. For a first order GMrf approximation, only the
main diagonal block entries P;; and the upper main diag-
onal block entries P;;;, are updated. Any other blocks,
P;;’s if required may then be obtained directly from the
Pi;’s and the P;;4,’s using Result 3. Since fewer blocks are
updated, the local KBf requires less computations. In fact
for the problem defined below, the computations are re-
duced by two orders of magnitude on the linear dimension
of the grid.

We illustrate our approach by applying the banded ma-
trix approximation to computing the error covariance ma-
trix in a KBf problem. Our experiment shows how the
estimates of the approximate KBf - the local KBf - closely
tracks the optimal estimates. To be able to compute the
optimal estimates, we need to run the exact KBf. Due to
this, we run our experiment intentionally on a grid of di-
mensions 11 x 11 for which the optimal KBf is of O(10%)
and is still computationally feasible.
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Figure 1: Mean Square Error (MSE) for the local KBf and
for the optimal KBf.
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4. LOCAL KBF

To examine the effect of our approximation, consider ap-
plying the KBf to the following dynamic problem

Ou on _ Oov On

ot klyv+k2ax =X, s +klyu+k20y =0(28)
on Ou ov _
E + kag:; +kaa—y' =0 (29)

where (u, v, ) are the coupled fields to be estimated, (z,y,t)
are the independent spatial and time variables, (k1, k2, k3)
are constants, and X is the input forcing term assumed
Gaussian. The dynamical model considered above is used
frequently in thermodynamics and other flow problems.

Starting with two different initial conditions, the dy-
namical model, (28)-(29), is discretized using a leap-frog
finite difference scheme and propagated forward in time.
The resulting fields provide the starting point for the KBf
experiment. One set of fields simulates the real world fields
that we are trying to estimate from which the data is ob-
served. The other set is used as the initial conditions in the
optimal and the local implementations of the KBf.

The measurement model is given by

y(t) = H()n(t) +w(t) (30)

where H(t) corresponds to the time-varying observation
matrix and w(t) is the observation noise, assumed Gaus-
sian. We assume that data is available only for the field
along a few known rows and that at each time iteration, dif-
ferent sets of rows are observed. This property defines the
structure of H(t) and makes the measurements extremely
sparse. Such sparsity arises in remote sensing applications
with satellite observations.

Figure 1 shows the evolution over time of the mean
square error (MSE) for the image field 7 for the two KBf’s.
The solid line near the bottom represents the estimation
error of the optimal KBf and the dotted line represents the
estimation error of the local KBf. We include in Fig. 1 the
MSE when no data is assimilated. This is represented by
the semisolid oscillating line near the top. As it can be
observed, the optimal and the local KBf’s reduce signifi-
cantly the error. More importantly, the local implementa-
tion follows closely the optimal KBf showing that the GMrf
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Figure 2: Comparison of the error covariance matrices for

the local and for the optimal KBfs as a function of time.

approximation is actually a very reasonable approximation.

To measure the closeness of the error covariance matrix
of the local KBf to the optimal error covariance matrix,
we plot in Figure 2 the approximation errors, defined as
Il P, optimal ~ Fsuboptimal || /I? where we use the Frobe-
nius norm and I = 726. Figure 2 shows that after a short
transient the difference between the error covariance matri-
ces of the optimal KBf and its local approximation is small.

5. SUMMARY

We have presented several important properties for a block
banded matrix that relate its constituent blocks to the block
entries of its inverse. These properties are used to derive
efficient algorithms to invert band-limited matrices and to
invert matrices whose inverse are known to be block banded.
The algorithms provide computational savings of up to two
orders of magnitude. We applied these algorithms to de-
velop a sub-optimal implementation of the Kalman-Bucy
filter (KBf) that approximates its error covariance matrix
at each time step by a matrix whose inverse is block-banded.
We call this approximate filter the local KBf. The result-
ing local KBf reduces the computational complexity by two
orders of magnitude of the linear dimension of the field. As
illustrated by an experiment, the local KBf follows the stan-
dard KBf closely and exhibits near-optimal performance.
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