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Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

{haotian, moura}@ece.cmu.edu

ABSTRACT

This paper introduces three new classes of structured
regular (n, 2, k) LDPC codes with girth 12, 16, and 20,
respectively. These codes are systematically constructed,
well structured, and have uniform row and column weights,
which make them able to greatly simplify the implementa-
tion of LDPC coders. Their large girth improves their de-
coding performance. Simulation results compare their bit
error rate (BER) performance over additive white Gaussian
noise (AWGN) channels with randomly constructed LDPC
codes. When concatenated with error-correcting codes such
as Reed-Solomon codes, LDPC codes with j = 2 are promis-
ing for data storage and other applications.

1. INTRODUCTION

LDPC codes, i.e., Gallager codes [1], can achieve near-
optimum performance in AWGN channels [2] when iter-
atively decoded by the sum-product algorithm [3]. Since
short cycles in a Tanner graph prevent the sum-product al-
gorithm from converging, the girth of the graph is an impor-
tant factor to consider in the design of LDPC codes.

Gallager proved in his original work, [1], that the typical
(n, j, k) LDPC codes with column weight j ≥ 3 have a
minimum distance that grows linearly with block length n
for given j and row weight k, and that the minimum dis-
tance of an (n, j, k) LDPC code with j = 2 grows loga-
rithmically with n. However, when compared with j ≥ 3,
LDPC codes with column weight j = 2 have several advan-
tages: their encoders and decoders are simpler to implement
since they have lower computation complexity and storage
complexity; and they have better block error statistics prop-
erties as pointed out recently by Song, Liu, and Kumar [4].
When concatenating them with error-correcting codes such
as Reed-Solomon codes, these properties make LDPC codes
with j = 2 promising for data storage and other applica-
tions.
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In reference [4], Song, Liu, and Kumar have constructed
4-cycle-free and 6-cycle-free (n, 2, k) LDPC codes based on
Disjoint Difference Sets(DDS). Kou, Lin, and Fossorier [5]
construct four classes of (quasi-)cyclic LDPC codes with
girth 6 based on finite geometries of lines and points of Eu-
clidean and projective geometries over finite fields. Ref-
erences [6, 7] present LDPC codes with column weight 3
based on balanced incomplete block designs (BIBD) with
girth 6, i.e, with no cylces of lenght 4. Here we construct
codes with girth up to 20, much larger than all these codes
described in the literature.

This paper introduces three new classes of structured
regular (n, 2, k) LDPC codes with girth 12, 16, and 20, re-
spectively. These methods serve as a basis for constructing
codes of large girth and j ≥ 3.

Preliminaries We will use the expression “K-cycle-free”
code to refer to LDPC codes with no cycles of length L ≤
K, i.e., to codes whose girth is K + 2. In contrast, “free of
K-cycles” codes will describe an LDPC code with no cy-
cles of length K. Note that “free of K-cycles” codes may
have cycles of length shorter than K.

Let H be the parity check matrix of an LDPC code with v
parity check equations, i.e., H is v × n. We represent these
parity check equations by a set X of v points. We call X
the point set of the LDPC H matrix. For LDPC codes with
column weight j = 2, each column of the H matrix is rep-
resented by an edge between two points in the set X that
correspond to the two nonzero elements in this column. We
call the resulting graph the structure graph for the LDPC H
matrix and refer to the graph by GH or simply G. Figure 1
shows a 6-cycle in both the H matrix of an (n, 2, k) LDPC
code and its structure graph.

The structure graph helps to identify cycles in the LDPC
H matrices. Two distinct edges between two nodes in a
structure graph stand for a 4-cycle. A 6-cycle is a triangle
comprising three points and three edges between any two
points. An 8-cycle is a loop composed of four points and
four tail-biting edges. The pattern is similar for cycles with
length greater than 8. Figure 2 shows examples of cycles
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Fig. 1. A 6-cycle in an H matrix and its structure graph.
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Fig. 2. Examples of cycles with length 4, 8 and 10.

with length 4, 8, and 10, where the positions of the points
are flexible, i.e., changing their positions will not affect the
relationship among them.

In sections 2, 3, and 4, we describe the construction of
(n, j, k) LDPC codes with girth 12, 16, and 20, respec-
tively. Simulation results and analysis are shown in section
5. Finally, section 6 concludes the paper.

2. (n, 2, k) LDPC CODES WITH GIRTH 12

The basic idea in our design of (n, 2, k) LDPC codes with
girth 12 is to partition the points in the point set X of a
structure graph into two subsets such that no edge connects
points in the same subset, and only edges between points
in different subsets remain. To automate the construction,
we introduce constraints that guide the selection of edges so
that the resulting LDPC codes have girth 12.

Fact 1 Let v = 2p be even and partition the point set X
of H into two subsets X1 and X2 of equal size. If edges
connect only points in different subsets then the correspond-
ing (n, 2, k) LDPC codes are free of (4m + 2)-cycles, for
m = 1, 2, ....

Proof: A (4m + 2)-cycle can be represented by a loop
comprising of (2m+1) points and (2m+1) tail-biting edges.
For any specific m > 1, assume that there exists a (4m+2)-
cycle in an LDPC code constructed by Fact 1, and let A be
a component point in this (4m + 2)-cycle with neighbor-
ing points B and C in the loop, respectively, as shown in
figure 3. Without loss of generality, assume point A to be
in subset X1. There are two paths between A and C: The

Subset XSubset X1

A
B

CThis line 

does not 

exist.

2

Fig. 3. Absence of (4m + 2)-cycles.

shorter path with length 1 and the longer path with length
2m. Along the longer path, C must be in the same subset
X1 where A is since the longer path has an even number
of edges and each edge is between two points in different
subsets. We know that there is no edge between two points
in the same subset, hence the shorter path between A and C
cannot exist. This contradicts the assumption, so (4m + 2)-
cycles do not exist.

LDPC codes constructed by Fact 1 have no cycles with
length 6 and 10, and they are also free of 4-cycles, since
there is at most one edge between any two pints. By adding
additional constraints on the selection of edges to avoid the
existence of 8-cycles, we obtain LDPC codes with girth 12.

With reference to figure 4, we consider the point set X =
{a1, ..., a8, b1, ..., b8} of an LDPC H matrix and divide it
into subsets X1 = {a1, ..., a8} and X2 = {b1, ..., b8}. The
points in each subset are aligned in a vertical line. The
reader should note that figure 4 repeats twice the set X
(left and right of the figure). The points in subsets X1 and
X2 are sequentially referred to as ai and bj , respectively,
1 ≤ i, j ≤ v/2 = p. By Fact 1, each edge is between two
points ai ∈ X1 and bj ∈ X2. We introduce next concepts
needed in our construction: slope of an edge, scissors, scis-
sors width, base, admissible slope pair and admissible slope
set.
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Fig. 4. Edges with specific slopes.

Definition 1 (slope) The “slope” s of an edge between points
ai ∈ X1 and bj ∈ X2 is defined as s = j − i.
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Slopes take values in the range −(p− 1) ≤ s ≤ (p− 1),
where p is the number of points in each subset. Hence, there
are (2p − 1) possible slopes. Note that we have assigned
the points in subset X1 as reference points when calculating
the slopes. The number of possible edges with slope s is
(p − |s|). Figure 4 gives examples of edges with slope +2
and −4 when p = 8.

Definition 2 (scissors) Two edges with a common end point
in subset X1 compose a “scissors.”

Figure 5 illustrates the scissors structure. It is composed
of one point (ai) in X1 and two points (bj and bq) in X2.

Definition 3 (scissors width) The “scissors width” w is the
distance between bj and bq, i.e., w = |j − q|.

Let the slope of the edge between ai and bj be sij , and
the slope of the edge between ai and bq be siq . Then the
scissors width is also equal to |sij − siq|, as shown in fig-
ure 5.

In a graph, 8-cycles are composed of 4 points and 4 tail-
biting edges. Since there is no edge between any two points
in the same subset, 8-cycles are only of a single structural
form: two scissors with a common width, which is called
“double scissors structure,” as shown in figure 6.

Definition 4 (base) The “base” of a double scissors struc-
ture is defined as the vertical distance between the high-
est point and the lowest point among these four component
points.

Figure 6 illustrates graphically the concept of base. It
follows immediately from its definition that the base of a
double scissors structure must be smaller than p = v/2.

Definition 5 (admissible slope pair) A slope pair (si, sj)
is an “admissible slope pair” iff

si = −sgn(sj) · (p − |sj |).

Definition 6 (admissible slope set) A set A of slopes is an
“admissible slope set” iff all the slopes in A can be parti-
tioned into admissible slope pairs.

Each admissible slope pair (si, sj) corresponds to (p −
|si|)+(p−|sj |) = p edges, and increases the degree of each
point in X by 1. This means that each admissible slope pair
corresponds to p columns of the H matrix, and increases
the weight of each row by 1. Note that the slope 0 itself
is equivalent to an admissible slope pair. This way, we are
able to guarantee the consistence of the row weights, as well
as the column weights.

Construction 1 ((n, 2, k) LDPC codes with girth 12) To con-
struct regular (n, 2, k) LDPC codes with girth 12 choose
only edges with slopes from an admissible slope set A. The
slopes in A are carefully selected to avoid the existence of
8-cycles, i.e., when selecting arbitrarily two different pairs
of slopes, (s1, s2) and (s3, s4) from A, one of the following
two conditions must be satisfied:
(1) |s1 − s2| �= |s3 − s4|;
(2) If |s1 − s2| = |s3 − s4|, i.e., if they form a double scis-
sors structure, then the base of the double scissors structure
must be greater than or equal to p.
Hence, if we find a desired admissible slope set A, we obtain
an LDPC code with girth 12.

a1

a2

a3

a4

a5

1

1
1

1

1

1
1

1

1
1

1

1

1
1

1

1
1

1

1

1
1

a6

a7

1

1
1

1

1

1
1

b
b7

1

1
1

1

1

1

1

1

1

1
1

1

1

b1

2b
3b
4b
5b
6

1

slope = 0 slope = -1, 6 slope = 2, -5

Fig. 7. The H matrix of an (n, 2, k) LDPC code with
girth 12 when v = 14.
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Fig. 8. (n, 2, k) LDPC codes with girth 12: code rates and
block lengths under different v.

We provide a simple example. For v = 14, we can
obtain A = {0,−1, 6, 2,−5}. The corresponding H ma-
trix is shown in figure 7 where the points ai, 1 ≤ i ≤ 7,
represent the first 7 rows in the H matrix, and the points
bj , 1 ≤ j ≤ 7, represent the last 7 rows. The H matrix
is well structured and is completely determined by v and
A. Figure 8 gives the available code rates and block lengths
under different values of v, where v, n, and r are the num-
ber of parity check equations, the block length, and the code
rate, respectively.

3. (n, 2, k) LDPC CODES WITH GIRTH 16

This section describes briefly the construction of a class
of (n, 2, k) LDPC codes with girth 16 and code rate 1/2.
Please refer to [8] for details.

Assume the number of parity check equations v = 8p.
We divide these points into 8 subsets of equal size, and the
points in each subset are aligned in a vertical line. These
subsets, X0,X1, ...,X7, comprise a loop, and each point
within subset Xi can only connect to points in the previous
or next subset, i.e., Xmod(i−1,8) or Xmod(i+1,8), and cannot
connect to points in the same subset Xi. The overall struc-
ture graph looks like a cylinder, and we call it a cylinder
structure. Figure 9 gives an example of the cylinder struc-
ture.

X2

X1
X3

X4

X5

X0

X7

X6

Fig. 9. A cylinder structure.

There are two types of cycles in a cylinder structure.

Type I includes the cycles that pass all the 8 subsets around
the cylinder structure. The minimal length of this type of
cycles is 16, so they are of no interest to us. Type II in-
cludes cycles with points in some of the 8 subsets, but these
subsets must be consecutive. In a cylinder structure, since
each point in a subset can only connect to points in the next
subset or the previous subset, any cycles of type II must
be composed of an even number of 2m of edges, which
means that the length of the cycles must be 4m, where m is
any integer greater than 1. Therefore, we need not consider
4m+2-cycles. Figure 10 gives an example of type II cycles.
If we can avoid the existence of 8-cycles and 12-cycles, we
get LDPC codes with girth 16.

X0 X1 X2 X3 X4 X5 X6 X7

a

b

Fig. 10. Type II cycle in a cylinder structure.

Section Si represents all edges between two neighboring
subsets Xi and Xmod(i+1,8), and corresponds to an admissi-
ble slope set Ai. Each edge in section Si must have a slope
in Ai. To avoid the existence of 8-cycles and 12-cycles, we
can find only two admissible slope pairs, i.e., 4 slopes, for
each admissible slope set Ai. In this case, the degree of each
point in the structure graph is 4, i.e., the row weight of the
H matrix is 4, so the code rate is 1/2.

We develop a “Viterbi-like” algorithm to find out the 8
admissible slope sets. Please refer to [8] for details of the
algorithm. With a different value of v, we can obtain a class
of LDPC codes with girth 16. To make sure there is a solu-
tion, v must be large enough. Simulations point out that the
minimal value of v is 160, i.e., p = 20. Each solution corre-
sponds to an H matrix of LDPC codes with girth 16. These
H matrices are well structured and completely determined
by p and the admissible slope set A0,...,A7. Figure 11 gives
the H matrix when v = 2400, n = 4800, and r = 1/2.

4. (n, 2, k) LDPC CODES WITH GIRTH 20

By a modified version of the previous method, we can ob-
tain (n, 2, k) LDPC codes with girth 20 and code rate 1/3.

Assume v = 10p, and divide the v points into 10 subsets
of equal size. Then we can establish a cylinder structure
with 10 sections. Now our task is to find 10 admissible slope
sets, i.e., A0, · · · ,A9, to avoid cycles with length smaller
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Fig. 11. The H matrix for an (n, 2, k) LDPC code with
girth 16 when n = 4800 and r = 1/2.
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Fig. 12. The H matrix for an (n, 2, k) LDPC codes with
girth 20 when n = 5955 and r = 1/3.

than 20. The admissible slope sets with even index include
two admissible slope pairs, and the admissible slope sets
with odd index include only one admissible slope pair. In
this case, the degree of each point is 3, i.e., the row weight
of H matrix is 3, so the code rate is 1/3.

We use the same “Viterbi-like” algorithm to find out the 10
admissible slope sets. The number of points v should also
be large enough. Simulations point out that the minimal
value of v is 130, i.e., p = 13. Figure 12 gives the H matrix
when v = 3970, n = 5955, and r = 1/3.

5. SIMULATION RESULTS

In simulations, we employed sum-product decoding, as
presented in [3], over AWGN channels, and we adopted the
rate-adjusted signal to noise ratio as shown in [9].

Figure 13 compares the bit error rate (BER) performance
of an LDPC code with girth 12 with that of a randomly con-
structed (n,2,k) code. Both codes have block length 4270
and code rate 6/7. The two codes have similar performance
in low SNR region. In high SNR region, the codes with
girth 12 outperforms the randomly constructed code by 0.5dB
at BER= 10−5.
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Fig. 13. BER performance comparison between LDPC
codes with girth 12 and randomly constructed LDPC codes.
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Fig. 14. BER performance comparison between LDPC
codes with girth 16 and randomly constructed LDPC codes.

Figure 14 compares the BER performance of an LDPC
code with girth 16 with that of a randomly constructed (n,2,k)
code. Both codes have block length 4368 and code rate 1/2.
The randomly constructed code has better performance in
the low SNR region. I the high SNR region, the code with
girth 16 outperforms the randomly constructed code by 1.1dB
at BER= 10−5.

Figure 15 compares the BER performance of an LDPC
code with girth 20 with that of a randomly constructed (n,2,k)
code. Both codes have block length 4395 and code rate 1/3.
The randomly constructed code has better performance in
the low SNR region. In the high SNR region, the code
with girth 20 outperforms the randomly constructed code
by 0.8dB at BER= 10−5.

For LDPC codes with column weight 2, the minimum
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Fig. 15. BER performance comparison between LDPC
codes with girth 20 and randomly constructed LDPC codes.

distance dmin = g/2, where g is the girth. In the high
SNR region, dmin is the dominant factor for BER perfor-
mance. Therefore, LDPC codes with large girth outperform
randomly constructed codes. For low SNR, the performance
depends not only on the girth but also on the cycle length
distribution. We speculate that, in figure 14, the randomly
constructed code does have cycles with length lower than
16, but possibly the number of cycles of length 16 is smaller
than the number of the cycles of lenght 16 of the girth 16
code that we designed. This may overwhelm the benefit it
gains from its large girth. This is an interesting phenomenon
that deserves further study and shows that when designing
a code careful consideration should be given to the SNR re-
gion where they are to operate.

6. CONCLUSION

In this paper, we present three classes of regular (n, 2, k)
LDPC codes with girth 12, 16, and 20. These codes are
systematically constructed, and their H matrices are well
structured and completely represented by a set of integers
(parity check numbers and slopes). In the high SNR region,
the codes with large girth have better BER decoding perfor-
mance than that the performance of randomly constructed
codes over AWGN channels.
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