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ABSTRACT

Automatic generation of textured object models from a sequence of range and color images requires two major
tasks: measurement registration and measurement integration. Measurement registration is the estimation of the
current position and orientation of the object in 3D space with respect to an arbitrary fixed reference, given the
current measurement and the 3D object model under construction. Measurement integration is the updating of
the 3D object model using the current registered measurement.

In this paper we present an iterative 3D-3D registration technique that uses both texture1 and shape informa-
tion available in the 3D object models and the 3D measurements. The proposed technique handles probabilistic
models that are potentially incomplete before the measurement integration step. Measurements are acquired via
a sensor characterized by a probabilistic sensor model. The object models are constructed automatically without
user interaction. Each model is a compact uniform tessellation of 3D space, where each cell of the tessellation
represents shape and texture in a probabilistic fashion. Free formed objects are supported and no prior knowledge
about the object shape, texture or pose is assumed. Traditional registration methods consider only shape and
geometric information. We consider texture information as an additional evidence by defining a generalized inter-
cell distance measure that considers both the relative positioning of cells in space and the texture discrepancy
between cells. Experimental results demonstrate the efficiency and robustness of the proposed method. The use-
fulness of texture in registration is highlighted in a comparison with results obtained considering only geometric
information.

Keywords: 3D-3D registration, 3D pose estimation, 3D object modeling, Textured geometric models, Range
and image sequence processing.

∗Work of first author partially supported by CNPq - National Council for Scientific and Technologic Development, Brazil.
1 Throughout this paper the term “Texture” refers to the light captured by the camera after reflecting on the given object surface.

Also known as object radiance, “Texture” depends on object surface photometric properties and environment illumination.
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1 INTRODUCTION

The problem of 3D-3D registration arises in several applications, particularly where accurate 3D geometric
object models must be constructed from a sequence of non-registered range and color images. Examples of such
applications are map construction for navigation, model based object recognition, computer assisted surgery,
product inspection, and model based representations for video.

In general, the process of model construction requires two steps for each new measurement: Registration and
Integration. Measurement registration is the problem of estimating the current position and orientation of the
object in 3D space with respect to an arbitrarily fixed coordinate system, given the current measurement and a
3D geometric model. Registration is a problem dual to the problem of computing point correspondences between
overlapping regions of the object model and the current measurement. Given a set of point correspondences,
there is a closed form solution to the pose problem.1,2 With precise correspondences it is possible to compute a
mapping to juxtapose the new measurement to an existing object model. This duality highlights the importance
of accurate registration for successful model generation from observations.

Registration is usually accomplished by minimizing a cost function based on discrepancy metrics between
potential model-measurement correspondences. Traditional systems use only shape information and adopt Eu-
clidean distances as measure of discrepancy. Our system employs a novel generalized distance that uses both
shape and texture information.

Each new measurement must have some overlapping area with the model in order to allow the establishment
of a large set of reliable correspondences. This assumption is satisfied if data is acquired such that motion is
small between successive measurements. This is usually the case when data is acquired at video rates.

The Iterative Closest Point Algorithm (ICP), introduced simultaneously by several groups, solves the discrep-
ancy minimization problem by hypothesizing correspondences to be the closest points iteratively.3–6 An important
issue not addressed by most ICP implementations is the handling of incomplete models, where measurement-model
correspondences may not exist for all individual measurements. This is frequently the case in applications where
registration is performed when models are still being constructed. The proposed algorithm handles incomplete
models.

Some extensions of ICP reduce the cost of closest point search by operating only on selected features, or by
creating search index trees. A fast implementation of the ICP algorithm capable of pose estimation at 10Hz has
been reported.7 Recently, ICP has been extended to employ a generalized distance function that considers surface
normals as additional cues for increased reliability in pose estimation.8

Other registration and motion estimation methods are based on features and on factorization. These methods
require precise feature extraction and the solution of large dimensional singular value decompositions, which are
computationally expensive tasks. For surveys on registration methods please see references.3,9,10

Measurement integration, is the process of altering the model according to the contributions of the new reg-
istered measurement. The first task in this process is to map the registered measurement to a canonical fixed
reference frame using the pose estimate computed in the registration step.

The actual integration procedure is heavily dependent on model structure. Distinct deterministic techniques
have been proposed for the integration of range measurements into surface based models.11–14 Stochastic integra-
tion techniques consider a probabilistic sensor model and are based on Bayesian updating or Kalman filtering.15,16

In these techniques, redundant measurements help to reduce overall model entropy, while conflicting or ambiguous
measurements are handled gracefully. We are primarily interested on representations for video using compact
textured 3D models, i.e., geometric models that also carry texture information to allow a perceptually acceptable
image reconstruction.



In this paper we propose and demonstrate the efficiency of an iterative 3D-3D registration technique based
on shape and texture information, capable of handling potentially incomplete models. The paper is organized
as follows: Section 2 describes the information used by the registration method. In section 3 we describe the
proposed 3D-3D registration method. The algorithm description and some relevant implementation details are
discussed in section 4. In section 5, the experimental results that illustrate the efficiency of the proposed method
are presented. Section 6 concludes the paper.

2 AVAILABLE INPUT DATA

The proposed registration method computes a pose estimate for an object in the scene given a set of measure-
ments and a 3D object model. In this section, we describe the input data required by the proposed registration
method.

2.1 Depth and Intensity Measurements

Each measurement with a light stripe range sensor produces a depth map R and a co-registered image I .
By co-registered we mean that the pair of measurements is taken with respect to the same reference, through the
same camera, and for every intensity image pixel there is a corresponding depth measurement and vice versa.

A range measurement R is considered a set of points {�r} in space. Similarly an image I is defined as an
organized set of color or intensity measurements {�t} , where each measurement �t can assume one of the colors
listed in pallete C . For color images the pallete is a set of tridimensional vectors, and for gray level images it is
a set of scalars. A 3D probabilistic sensor model p(�r |�z) characterizes the uncertainties in data obtained through
the range finder. This sensor model can be obtained experimentally.

Intensity (or color) images provide information about the texture already mapped to the object’s shape.
Texture information depends on surface material properties, viewing direction, and environment illumination.

2.2 3D Object Model Structure

The tridimensional non-parametric object model is voxel based. It is defined as a compact uniform tessellation
of 3D space Γ = {Ci} , where each cell Ci represents multiple properties. Object shape is represented by cell
occupancy O(Ci) and object surface texture is represented by cell texture T (Ci) . As before, occupancy may
assume the value of occupied or empty , while texture may assume one of the valid values in the color pallete C .

Each cell Ci stores a probability distribution for occupancy, i.e., p(O(Ci) = occupied |{Ψk}) that is obtained
through the integration of multiple measurement grids Ψk . Holding probability distributions instead of current
estimates is what makes Γ a useful representation for Bayesian integration of a sequence of measurements. Initial
lack of knowledge is expressed by assigning equiprobable probability density functions.

Earlier work on sensor fusion for robot navigation and object modeling for robotic manipulation have success-
fully explored this stochastic model structure.15 For details about incremental object model construction please
refer to prior work on model-based video representations by Martins and Moura.16



3 PROPOSED POSE ESTIMATION TECHNIQUE

This section presents our method to compute the pose estimate given a set of measurements and a 3D
object model. The process of 3D-3D registration requires the following two steps for each new measurement.
Measurement pre-processing : The available depth and intensity measurements are organized into a uniform
measurement grid. This pre-processing step greatly simplifies the other two tasks in video analysis by eliminating
later concerns with camera pose, geometry, and sensor model. Measurement Grid-Model registration : This step
computes the current object pose given both the current measurement grid and the 3D geometric model under
construction.

3.1 Measurement Preprocessing - Construction of a Uniform Measurement Grid

The measurement grid Ψ is an auxiliary data structure that contains all the information and only the
information available in a given pair of range R and co-registered intensity I measurements.

The creation of a uniform measurement grid is a preprocessing step that greatly simplifies the registration by
eliminating later concerns with camera pose, camera geometry and sensor model. As the sensor output is a set
of discrete measurements, each individual measurement (�r ,�t) corresponds to a volumetric lattice in the compact
3D space. Under the assumption of a pinhole perspective camera, the size of each corresponding lattice depends
on the depth, please see figure 1. Therefore, a pinhole perspective camera defines a non-uniform tessellation of
3D space due to perspective non-linearities.

Dealing directly with these non-uniform tessellations is inconvenient because the tessellation depends on
camera geometry and relative object-camera position; and model construction would require computationally
complex raycasting and resampling.

To avoid these difficulties, we collect the information available in the co-registered measurements (Rk , Ik) into
a uniform measurement grid Ψk , as in figure 2, taking into account the camera geometry and the sensor model.

We define a measurement grid Ψ as a compact uniform tessellation of 3D space Ψ = {Mi} , where shape is
represented by the probability distribution of occupancy p(O(Mi) = occupied |(R, I )) and texture is represented
by cell texture T (Mi) . Occupancy is a binary property, such that a cell may be either occupied or empty . The
color pallete C . contains valid values for texture.

With camera calibration and sensor model assumed known, the range R and the image I are used to compute
the probability of occupancy p(O(Mi ) = occupied |(R, I )) and the mapped texture T (Mi) for each cell Mi of
the measurement grid Ψ .

The generation of the measurement grid Ψ is realized in two steps. First, the measurement data are used
to create a warped temporary grid Υ . Then the grid Υ is unwarped and resampled to generate the uniform
tessellation Ψ . The mapping between Υ and Ψ is defined such that the camera frustum (a pyramid of
rectangular base) in the uniform grid Ψ is mapped to a rectangular orthogonal prism in Υ . As we assume a
perspective pinhole camera model, in Ψ all rays that reach pixels in the retinal plane pass through the camera
center forming the camera frustum. Through this warping, these rays become parallel in Υ and reach the retinal
plane perpendicularly. This mapping is used to cancel the effects of perspective and provide a properly resampled
grid Ψ constructed from measurements taken using a perspective camera.

This method of 3D model generation is a reversed version of the shear-warp volume rendering algorithm,
where instead of synthesizing 2D views from 3D models, 3D volumetric representations are created from 2D
measurements.12



Figure 1: The perspective pinhole camera model es-
tablishes a non-uniform tessellation of the 3D space.

Figure 2: The uniform measurement grid avoids deal-
ing with perspective non-linearities.

3.2 Measurement Grid - Model Registration

The proposed method for 3D-3D registration is an extension of the ICP algorithm that uses texture and shape
for pose estimation and deals with incomplete or inconsistent models.

To consider texture information, we define an intercell discrepancy metric d(Ci , Cj ) as:

d(Ci , Cj ) = (1 − λ)‖ �ri − �rj ‖2 + λ‖ �ti − �tj ‖2 (1)

where �ri is the position of cell Ci in 3D with respect to a canonical fixed coordinate system, and �ti is the color
of cell Ci . The parameter λ controls the relative importance of shape and texture in the discrepancy criterion.
The discrepancy metric d(Ci , Cj ) is a generalized distance between two textured cells in 3D space, where both
positions �ri and �rj must be taken with respect to the same arbitrarily fixed reference.

Given an arbitrary pose �q , the generalized distance D(Γ , Ψk , �q) between an object model Γ and the k th

measurement grid Ψk is defined as:

D(Γ , Ψk , �q) =
∑

{(i ,j )|(Ci ,Mj )∈S}
d(Ci ,M�q(Mj )) (2)

where Ci is a cell from model Γ , Mj is the corresponding cell from measurement grid Ψk , S is the set of corre-
spondences (Ci , Mj ) , and M�q is the mapping derived from the arbitrary pose �q . The set of correspondences S
may also depend on the pose �q .

To handle models that are potentially incomplete, we modify the definition of the generalized distance pre-
sented in equation 2 to consider only correspondences whose distances lie within a plausible range dmax as in
equation 3.

D(Γ , Ψk , �q) =
∑

{(i ,j )|(Ci ,Mj )∈S,d<dmax}
d(Ci ,M�q(Mj )) (3)

This modification removes false correspondences and outliers from the computation of the generalized distance.
As the motion is assumed small, correspondences based on shape cannot be too far apart. Texture variations
due to differences in illumination are usually very small. Larger differences in texture, as specular reflection
highlights, are localized spots that are considered outliers according to this improved criterion. Similar outlier
removal techniques have been successfully applied to pose estimation based only on shape information.6



The pose estimate is then given by the argument �qk that minimizes the generalized distance:

�qk = arg min�q{D(Γ , Ψk , �q)} (4)

4 ALGORITHM

The proposed 3D-3D registration method leads to the minimization problem in equation 4. The ICP algorithm
solves the minimization problem by iteratively alternating between the following assumptions.

First the algorithm assumes the object pose known in order to compute the model-measurement correspon-
dences as the closest points. Then it assumes the set of point correspondences known in order to compute the
closed form solution for pose.

Before the first measurement Ψ0 , the model Γ holds no information. The object is assumed to be initially
in an arbitrary canonical pose �q0 that will be used as a fixed canonical reference.

To compute the pose estimate �qk for the subsequent measurements Ψk , the minimization in equation 4 must
be solved. We propose the following extension of the iterative ICP algorithm to solve the minimization problem:

begin

Initial pose �q := Initial guess �qk−1

while Generalized distance D(Γ , Ψk , �q) > ξ and Iteration counter K < Kmax

Compute set of correspondences S as the set of points in model Γ
closest to the registered measurements M�q (Ψk ) .

Compute new pose estimate �q as the closed form solution for pose
given by the set of correspondences S .

end
end

4.1 Initial Guess for Pose Estimation

As the algorithm performs a local minimization, a good initial estimate is important to ensure reliable results.
When processing a video sequence with small interframe motion, a good initial estimate for pose for a given frame
Fk is the pose estimate computed for the previous frame �qk−1 .

4.2 Algorithm Parameters

Parameter λ controls the relative importance of shape and texture in the discrepancy criterion in equation 1.
If initial estimates for pose are not precise and object texture presents fine details, the lack of spatial smoothness
in texture may become a potential hazard to algorithm reliability. To overcome this problem, it is possible
to adopt the following schedule for increasing λ in order to speedup convergence and increase the quality of



the final results. At the beginning, more weight is given to shape, i.e., λ ≈ 0 . As the generalized distance
D(Γ , Ψk , �q) reduces, λ is progressively increased, with more strength given to texture in order to fine tune the
pose. Alternative scheduling policies can be devised to suit distinct setups.

Parameter dmax is the threshold for outlier removal in equation 3. This parameter controls which measure-
ments are considered for registration. A larger value for dmax entails that more measurements will be considered
in the computation of the generalized distance.

Two parameters control the stopping criterion of the main iterative loop. Parameter ξ is the precision
component in the criterion. It is usually a small number used as a threshold on the generalized distance to stop
the iterations when reached. Parameter Kmax is the iteration count threshold. It assures that the loop finishes,
even if the precision bound ξ is not reached.

4.3 Four Dimensional Binary Tree

Binary index trees are useful structures to speedup read transactions. To reduce the computational cost of
searching for the closest cell, we construct an auxiliary index tree for the model data.

For grey level textures, a four dimensional binary tree is adopted, where three of the dimensions are related
to shape via the spatial coordinates �ri = (xi , yi , zi) and the fourth dimension is associated with texture ti . All
variables are normalized to span the interval [0 , 1 ] .

The tree is constructed as follows. All cells in the model are initially associated with the root node. For a given
tree node, and corresponding data cluster, the means and variances of all variables (xi , yi , zi , ti) are computed.
The variable with largest variance among the four variables is chosen as a node discriminant. The mean of the
node discriminant is then used to partition the data in two clusters. This discriminant selection and partitioning
procedure is recursively repeated until clusters are small enough for an efficient linear search. The only values
stored in the tree node are the node discriminant variable name, the value of the discriminant’s mean, and two
pointers to nodes in the following layer.

For a given measurement cell M�q (Mj ) , searching for a nearest model cell Ci becomes a process of navigation
through the index tree, followed by a linear search on the cluster pointed by the leaf node. If the cell Ci lies near
the border with other clusters, those neighboring cells are also included in the linear search to increase precision
in the matching.

For color textures, we similarly construct a six dimensional binary tree with 3 dimensions related to shape
and 3 dimensions related to texture color components (Yi , Ii , Qi) .

5 EXPERIMENTAL RESULTS

We use a raytracer to generate synthetic sequences with available ground truth for pose and controllable
environment conditions. Real data sequences acquired using a laser stripe range finder are used to test the
proposed method in a real indoors setup.

The first experiment uses LuxoSr , a synthetic sequence of a lamp performing a rotation around the horizontal
axis. The complexity of shape, lack of distinctive surface texture, and self-occluding motion pattern lead to a
challenging pose estimation problem.



Figure 3: Error in pose estimation for all frames of LuxoSr.

(a)

frame 3 frame 14 frame 16 frame 19 frame 34 frame 37

(b)

Figure 4: (a) Top row contains frames rendered positioning the object LuxoSr according
to ground truth pose information. (b) Bottom row contains frames rendered positioning
the object LuxoSr according to pose estimates obtained by our pose estimation algorithm.

To analyze the efficiency of the proposed method, we plot the generalized distance D obtained after conver-
gence for each of the frames in the LuxoSr sequence. This plot is presented in figure 3.

To show how precise these results are, we construct two distinct video sequences using the object model
constructed from observations and two distinct motion scripts. The first motion script is composed by the
available ground truth pose information, while the second motion script is composed by pose estimates obtained
using the method we propose.

Snapshots of the rendered sequences are presented in figure 4. Figure 4a contains selected frames extracted
from the video sequence rendered using ground truth pose information and figure 4b contains the same six
snapshots rendered using pose estimates computed using the proposed algorithm. The similarity between the of
snapshots, illustrates the precision of the proposed registration method. According to figure 3, the worst pose
estimation result in this experiment occurs for frame 19 . Comparing the snapshots for frame 19 in figure 4, we
observe that the result obtained by the proposed registration method is very precise.



Additional experiments with the same object performing different motion scripts, including translation only
and simultaneous translation and rotation generate estimates with similar accuracy.

The second experiment uses Cylinder, a synthetic sequence of a marble textured cylinder with semi-spherical
caps rotating around the vertical axis. Snapshots of the object moving according to the ground truth pose
information are presented in figure 6a.

The goal of this experiment is to evaluate the usefulness of texture in pose estimation. The Cylinder sequence
was chosen because, for the described motion pattern, the shape of the object is a highly ambiguous cue for pose
estimation. The ambiguity is such that pose estimation using the original ICP algorithm leads to results that are
not reliable, as presented in figure 6c.

The quantitative contribution of texture information to the efficiency of the pose estimation method is pre-
sented in figure 5, where the generalized distance D upon convergence is plotted for each of the frames in the
Cylinder sequence. The experiment is repeated for several values of the parameter λ , that controls the impor-
tance of texture in the pose estimation criterion. We observe that the average error in pose estimation decreases
as we increase the importance of texture in the discrepancy metric by increasing the value of λ in equation 1.

For a qualitative evaluation of the results, snapshots of a sequence rendered using the pose estimates obtained
using our proposed method are presented in figure 6b. A comparison with the ground truth snapshots from
figure 6a, illustrates the precision of the proposed technique. Comparing the results obtained using our method
presented in figure 6b and the outcome of the ICP algorithm presented in figure figure 6c, we observe that our
method outperforms ICP, that only relies on shape information.

The final experiment uses Mug, a real data sequence of a mug rotating around its principal axis. The ambiguity
of the shape is not as extreme as in the second experiment, and texture is not as uniform as in the first experiment.
The light stripe range finder generates a depth map and a co-registered intensity image sequence. The output of
the range finder is corrupted by noise and the mug handle generates several self-occlusion episodes.

Selected frames from the original video sequence are presented in figure 7, while figure 8 presents the same set
of frames reconstructed using the object model constructed from observations and the pose estimates obtained
using our proposed method. A comparison between the object position in corresponding snapshots reveals the
precision of the proposed method.

6 CONCLUSIONS AND FUTURE WORK

A novel 3D-3D registration method that uses shape and texture has been proposed. The efficiency and robust-
ness of the method have been confirmed via experiments with synthetic and real data. Significative performance
enhancement is observed with respect to the original ICP algorithm.

To further improve on pose estimation, we currently investigate the use of stochastic occupancy distributions
and sensor model knowledge to enhance precision and reduce processing time.
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Figure 5: Error in pose estimation for all frames of Cylinder for distinct values of λ .
The average generalized distance decreases as λ increases the importance of texture in
the discrepancy criteria.

(a)

(b)

frame 1 frame 45 frame 85
(c)

Figure 6: (a) The top row presents selected frames rendered positioning object Cylinder
using the ground truth pose reference. (b) The middle row contains frames rendered
positioning the object Cylinder according to pose estimates computed using our proposed
method. (c) The lower row has frames rendered positioning the object Cylinder according
to pose estimates computed using the ICP algorithm.



Figure 7: Selected frames from original video sequence Mug.

Figure 8: Frames rendered using object models and pose estimates obtained by applying the
proposed method to the video sequence Mug.




