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Abstract—In many applications envisioned for wireless
sensors, physical variables governed by continuous, distributed
dynamics need te be monitored and controlled. Spatial and
temporal irregularities in sampling available from the wireless
nodes are usually inconsistent with the application require-
ments. In this paper we propose virtual sensor-actuator arrays
to address this problem and consider the problem of estimating
values of physical variables at points other than the wireless
node locations. We use reduced-order models of the physical
dynamics to generate these estimates. Model parameters are
estimated using parametric system identification technigues.
The concepts are illustrated for the problem of estimating
temperatures based on circuit models of thermal dynamics.
Results are presented from experiments using actual data
collected by a wirel'ess sensor network.

I. INTRODUCTION

Large-scale wireless sensor/actuator arrays are envisioned
as being useful in a variety of applications ranging from
wide-area monitoring and surveillance to control of flexi-
ble space structures. A number of research programs are
focusing on the development of lower-level protocols and
middleware services that take care of network formation,
timing synchronization, calibration and real-time quality-
of-service. Even when these problems are solved, signal
and information processing algorithms will be needed to
deal with the temporal and spatial irregularities inherent in
the information from these networks. We are developing
information processing middleware that will make it pos-
sible for application-domain algorithms to be implemented
without having to deal explicitly with the irregularities in the
physical data and the physical device array. The goal is to
make it possible for application algorithins to be written as
if the sensing and actuating devices are located as desired in
the application design model. We call this a virtual sensor-
actuator array (VSAA).

This paper presents a first step toward realizing VSAAs.
We use physical models to produce real-time estimates
of the values of a distributed field at points where there
are .no sensors. These estimates are based on a subset
of sensors surrounding each peint of interest. Figure 1
illustrates our approach. We first construct for the real
world a detailed parameterized physical model M(#) with
unknown parameters §. In this model M(F), we assign as
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inputs [/ the measurements at a subset of the sensors and
as outputs Y the measurements at the remaining sensors.
Then we estimate by system identification the values of
the unknown parameters # based on the measured inputs
U and measured outputs Y. Based on the resulting model
M(é), we can calculate the output ¥ at the locations of
interest, where no sensor is available. By utilizing the cut
set concept and the Substitution Theorem, see p. 28 and
pp. 129-130, [1], respectively, a reduced model M,.(6,)
with unknown parameters ), is derived from the detailed
model M(0). We assign U’ = (U%,Y°) as the inputs
to the reduced model, where UC and YC are a subset
of the inputs U and outputs Y of the real world, and ¥’
as its oulputs. By system identification, we obtain again a
reduced model M,.(8,) with estimated parameters 6, that
can be used subsequently to estimate the outputs Y at the
locations of interest for arbitrary inputs U™,
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Fig. 1. Approach diagram.

The following section describes lumped-parameter mod-
els for a physical world of thermal capacities and flows.
Section III presents our approach to identify model pa-
rameters for estimating temperatures at locations without
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sensors. The approach is illustrated in Section IV using
data collected with a wireless sensor array in the Intelligent
Workplace at Carnegie Mellon University. The concluding
section discusses our current research directions.

I, THERMAL MODELS

Monitoring and control in buildings is an important
application for large arrays of wireless sensors and actuators
[2), [3]. Heating and cooling strategies optimize the comfort
of the people in a building subject to constraints on power
and total energy consumption. The problem is that sensors
st be distributed in 2 building in some way that is
convenient for making sure they will not be tampered with
and the HVAC actuators are fixed by the construction of the
building. Consequently, the building control system often
optimizes the comfort objectives at the sensor locations,
rather than where the users are currently located. If large-
arrays of wireless sensors are used, it may be possible to
have much better knowledge of the temperature distribution
in the building, but that still does not address the problem
of matching the information to the conirol objectives.

In this paper we consider the problem of estimating the
temperature at locations in a building different from where
sensors are placed. Temperature dynamics are governed
by partial differential equations (PDEs) characterizing the
thermal effects of convection, conduction, and radiation.
Electrical circuit equivalents for these dynamics are stan-
dard for simulating the thermal properties of buildings [4],
[5]. More recently, there has been considerable research
into methods for creating effective, parsimonious lumped
parameter models of thermal dynamics using equivalent
electrical circuits to characterize the thermal properties of
IC and MEMS components [6], [7]. [8]. These compact
models are developed using a combination of physical
insight and empirical data, often obtained from simulations
of detailed CFD (computational fluid dynamics) models
of the thermal properties of IC packages. Physical insight
suggests the basic circuit structure that should be used, and
the empirical data is used to estimate appropriate values
for the parameters in the circuit model. OQur approach is
motivated by this approach.

To model thermal dynamics in a building using circuit
components, voltage sources model constant temperature
elements, such as the ambient external temperature, and
current sources model sources of radiant heat. Capacitors
model thermal capacity and resistors model thermal con-
duction effects. The actual values of these circuit elements
are derived by system identification techniques rather than
from first principles.

We explain our approach with respect to the rectangular
room whose layout is shown in Figure 2, The heat transfers
and conduction-convection effects are modeled by the elec-
trical circuit shown in Figure 3. In this figure, the outside
ambient temperature gives rise to 8 identical voltage sources
labeied by T,. Resistors Fop, k = 1,...,8 represent the
conduction effects across the walls, between the outside

and the inside of the walls. Resistors Ry;; and capacitors
Cuwy, where 4,7 = 1,...,8, and ¢ is indices adjacent
lo j, represent the conduction effects and the thermal
capacity along the walls. The resistors R;;,7 = 1,...,8
represent the combined conduction and convection effects
between the walls and the air inside the room. Capacitors
Cid = 1,...,4 represent the thermal capacity of each
of the room divisions. Finally, the resistors Ry, Rz, Ra4,
and R4, represent the heat transfers by conduction and
convection between the air in the four subdivisions of the
room.

*Twt *Tw2
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"Twi *Tws

Fig. 2. Layout of studied room.

Fig. 3.

RC network for studied room.

ITI. SYSTEM IDENTIFICATION

We assume that temperature sensors are placed at nodes
T through T 5, and also at nodes labeled Ty, T5, and T3,
see Figure 2. No temperature sensor is placed at node Tj.
Our goal is to predict the temperature at node T}.
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By the substitution theorem [1] in circuit theory, we know
that the dynamical behavior of the circuit is not affected
if we insert voltage sources in nodes T, through T,g
whose values are exactly the time series measured by the
sensors placed at these nodes. Further, we note that the
outer dashed line drawn over the circuit in Figure 3 is a
cut set. From these considerations, if we are only interested
in the dynamical behavior inside the cut set (dashed line),
we can simplify the circuit in Figure 3 to that in Figure 4.
In this circuit, we have eliminated the sources representing
the outside ambient temperature T, and the corresponding
resistors Ro;,7 = 1,...,8, the wall resistors R,;, and the
capacitors Cy;5,7 = 1,...,8.
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Fig. 4. Detailed model.

This is justified by the cut set concept and the Substitution
Theorem [1] as follows. The RC network shown in Figure 3
is a nonplanar circuit. We redraw the RC network as a
three-layer structure: the top layer is a resistor network,
the bottom layer is just the ground, and the middle layer
is composed of capacitors and voltage/current sources that
are between the nodes in the top layer and the ground.
Assume the node Ty is of interest. We can choose a cut set
in the top layer to make sure that if the branches in the cut
set are removed the resulting inner subcircuit SCy includes
the node Ty. Assume the selected cut set is the set of all
the branches crossed by the outer {or inner) dashed line in
Figure 3. In the resulting inner subcircuit SC, let N7 be
the set of all the nodes associated with the branches in the
cut set. In this example, Ny={T,; | i =1,2,...,8}. The RC
network in Figure 3 is equivalent to the structure in Figure 5,
where: the subcircuit SC is the resulting inner subcircuit
if the branches in the cut set are removed; subcircuit SCy
is the outer subcircuit of the original circuit; wu;, ug, ...,
. are all the nodes associated with the branches in the cut
set, i.e., Ny={uy, uo, ..., un b and Cq, Co, ..., C, are the
capacitors between these nodes and the ground. Suppose
we know the voltages at all the nodes in Ny, ie., ui(2),

uz(t), ..., un(t). Branches (uy, ground) can be replaced
by voltage sources of value ux(t), £ =1,2,...,n, leading
to the circuit shown in Figure 6, where the subcircuits SCy
and SC are connected by a subcircuit of only the n voltage
sources. If we duplicate these voltage sources and divide the
whole circuit into two parts, as shown in Figure 7, we get
two independent circuits. Subcircuits SC1 and SC2 have the
same external sources in both Figure 6 and 7. Therefore, the
voltages at the nodes inside SC; and SCs are not altered,
in particular, the voltage at the node of interest (73) is not
altered.
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Fig. 5. Equivalent structure of the RC network.
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Fig. 6. Circnit after applying the Substitution Theorem.
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Fig. 7.

Substitution Theorem: Two independent circuits.

We now work with the circuit in Figure 4. The geal is
to estimate from the time series measured by the sensors
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in T,,4,7 = 1,...,8, acting as inputs, and the time series
measured by the sensors in Ty, T», and Ty, acting as outputs,
all the unknown parameters in the circuit of Figure 4. We
adopt a state-space mode} for the RC-circuit. The state space

is represented by the four temperatures Ty, k = 1,...,4
(voltage at the capacitors Cr,k=1,...,4)
Xn = [Tin, - Tanl T, o)

where time is indicated by the subscript n. The input vector
in the state equation collects the measured temperatures:

Up = [Twln: e ,Tan]T. 2)

The output vector is

Yn — [Tlm Tan, T3n]T, &)

since we assume as stated before that we place sensors at
positions Ty, T5, and Tj.

From standard Kirchoff Current and Voltage Laws [9],
we can determine the state and output equations

Xn+1 — Axﬂ + Bun, ¥Yn — an + Wy (4)

where A, B, C are matrices with appropriate dimensions, in
ourcase Ais 3 x 3, Bis 3 x 8, and € is 3 x 4. We note
that C is a known matrix given by

C=(L 0), %)

where I3 is the 3 x 3 identity matrix. The entries in the
mode! matrices A and B are either 0 or expressed in terms
of the unknown resistors and capacitors in the network of
Figure 4. We do not present the structure of the matrices
here.

From the sensor measurements, with T,;, adopted as
inputs, § = 1,...,8, and n = 1,..., N, where N is the
total number of measurements collected by each sensor,
and the sensor measurements ;4,7 =1,2,3,n=1,...,N
acting as outputs, we can estimate the network parameters
by standard techniques from identification theory, e.g.,
[10]. We use least squares and Guass-Newton algorithms
implemented in MATLAB m = pem(data, mi), where mi
is the initial model with the user-defined model structure
and the initial values of the parameters to estimate, data is
an iddata object that contains the input/output data, and m is
returned as the best fitting model with estimated parameters
in the model structure defined by mz [11].

Reduced Model Once the network R and C parameters
have been identified, we can derive the detailed network
of Figure 4 with the source Tyn,f = 1,...,8, and
n = 1,..., ¥ and predict the temperature at location Ty
where there is no sensor. In a real-life application, the
number of locations where it may be desirable to predict
the temperature but where no sensors are placed may be
large, and it may be impractical to run the detailed model
in Figure 4 in real time. Instead we derive for each of
the desired locations a reduced model. We illustrate the
approach by developing for our renning model of Figure 4
this reduced model for location TY.

To predict the temperature at the node T} of the circuit of
Figure 4, given the measurements at T,;,7 = 1,...,8 and
T;,7 = 1,2,3, we derive a reduced model for the model
in Figure 4. To do that, we observe that the dashed-point
line in Figure 4 represents a cut set. Like before, we can
replace the circuit of Figure 4 by the reduced circuit in
Figure 8 where the sensor measurements 73,75, 73 and
Twe and T+ are modeled now as known sources, and
the temperature at node Ty is modeled as the output of
the circuit. We use the measured data T3,, Ton, T35, Twen,
and T, and the temperature time series Ty, predicted
at 7 from the detailed model in Figure 4 to estimate the
unknown parameters in the model of Figure 8. This is again
an identification problem for a dynamical system for which
we use the same MATLAB routine indicated previously to
estimate the parameter values.

Ty

8T .
Fig. 8. Reduced model.

IV. VIRTUAL SENSING IN THE INTELLIGENCE
WORKPLACE

We apply the approach in sections II and III to the
Carnegie Mellon Unversity Intelligent Workplace (IW). The
layout of the workplace is shown in Figure 9. We placed 10
Crossbow, Inc. wireless “motes” with temperature sensors
at the locations labeled s; through sip in Figure 9. Due to
transmission errors between the motes and the base station,
and other problems, about 6 percent of the readings were
lost. These gaps in the time series were filled by linear
interpolation.

Note that sensors s; through sy are placed at the periph-
ery of the IW. We will use these to monitor and control
the temperature inside the IW. Figure 10 indicates the
detailed network model, playing the role of the network
in Figure 4 for the IW. To identify the unknown parameters
in this network model, we consider sensors sz and sg as
output sensors in the first phase of the method presented
in section II, while sensors s; through s; are treated as
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Fig. 9. Floor layout of the IW building and deployment of motes.

the inputs. Location syp is where we want to predict the
temperature, and, like in section III, it is not used in this
phase of the study. The state and output equations for the
model are as follows:

Xp41 = Axn + Bun, ¥Yn = an + Wn (6)

where G
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Fig. 11. Reduced RC network thermal model for the TW.

With the network in Figure 10 now identified, we use
it to estimate the temperature at location Ti5. We then
derive for this location a reduced model. Again, this reduced
model needs to be identified. We proceed as described in
section ITI. First, we identify an appropriate cut set that
encircles location s1q. This cut set is indicated by the dashed
line in Figure 10. The resulting reduced model is indicated
in Figure 11. In this reduced model the measurement in sen-
SOTS S2, 83, 56, S8, and sg act as inputs, and the temperature
time series predicted with the detailed model of Figure 10
at sjp act as outputs. We use these input and output time
series to estimate the parameters of the reduced model of
Figure 11.

Figures 12 and 13 compare the actual temperature mea-
surements in sensor sg and sg, with the prediction of these
temperatures when we drive the detailed network model
of Figure 10, after it has been identified, with the inputs
s; through s7. We note that, of the about 4,000 samples
available, only the first half are used to identify the network
parameters; the second half is used for testing. The plots
show very good agreement between the actual and predicted
temperatures at both locations sg and sg.

Figure 14 shows similar plots for location s5. We
emphasize that the temperature readings by the sensor sqg
placed at location sjg were NOT used to identify either
of the models in Figure 10 or Figure 11. The agreement
displayed in this Figure between the actual readings and
their prediction across the 4000 samples (except for wild
variations in the real measurements that are attributed to
malfunctioning of the sensors between readings 2600 and
2800) demonstrates the methodology presented in this paper
can successfully predict the temperature field at locations
other than the ones where we have physically placed our
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Fig. 12. Actual temperature and estimated temperature at location sg for
the TW.
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Fig. 13. Actual temperature and estimated temperature at location sg for
the TW.

V. CONCLUSIONS

This paper presents a first step in realizing virtual sensor-
actuator arrays in which middleware produces data from
physical sensor-actuator arrays that is compatible spatially
and temporally with the requirements of the application
layer, In particular, we consider the problem of estimat-
ing the values of a physically distributed field at points
where there are no sensors. Our approach is to construct
parameterized models motivated by physical considerations
and to use empirical data to estimate the model parameters.
For the case of temperature estimation, we demonstrate the
method using experimental data collected by a network of
wireless sensors in the Intelligent Workplace at Carnegie
Mellon University.

Our current research aims to extend the approach pro-
posed in this paper to deal with more complex distributed
environments and to consider temporal as well as spatial
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Fig. 14. Actual temperature and estimated temperature at location s19
for the IW.

irregularities. Key issues are how to combine the goals
of obtaining effective models and effective estimates from
the real-time data, and how to incorporate all available
information (e.g., time of day and the state of environ-
mental conditions). We are also investigating methods for
distributing the computation of the estimates throughout the
network.
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