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Abstract—In this paper we study distributed average consen- change) and the transmitted data is corrupted by additive
sus type algorithms in sensor networks with random network link  noise. This happens, for example, in an erasure network,
failures and communication channel. Specifically, the network where the transmissions are occasionally lost, and, in the

links fail randomly across iterations, and communication through f ful t . the data is distorted d
an active link incurs additive stochastic noise. We consider the ¢@S€ OF @ SUCCessiul tfransmission, the data i1s distorte ue

A — N'D algorithm for distributed average consensus under such t0 channel imperfections. We show that under the modelling
imperfect communication scenario. Using results from the theory assumptions considered in the paper, the- A'D algorithm

of controlled Markov processes and stochastic approximation, |eads to almost sure (a.s.) convergence of the sensor state
we show that the A — A'D algorithm leads to consensus of the vector sequence to theonsensus subspadkthe expected

sensor states. In particular, all the sensor states converge a.s. to a . . .
finite random variable 6, the latter being an unbiased estimate of network is connected, i.eAo(EL) > 0, where L is the

the desired average. We explicitly characterize the resulting the random network Laplacian matrix. In other words, the sensor

mean-squared error (m.s.e.) and show that the m.s.e. can be madestates reach consensus asymptotically, and converge a.s. to the

arbitrarily small by tuning certain parameters of the algorithm.  same finite random variable. Thé — N"D algorithm consists

But, reducing the m.s.e. in this way, decrease the convergence rateqt gistriputed linear iterations, where each sensor updates its

of the algorithm, and we obtain an interesting trade-off between . . . . ,
current state by a weighted fusion of its current neighbors

the m.s.e. and the convergence rate of the algorithm. Our results ’ . s :
show that the sensor network topology plays a significant role in States (which are distorted when they reach it) and these fusion

determining the convergence rate of these algorithms. weights decrease to zero in an appropriate way, as time pro-
Index Terms— Distributed Consensus, Random Link Failures, gresses. We show that thé — AD algorithm falls under the
Communication Noise, Topology, Laplacian. purview of controlled Markov processes and the convergence

analysis uses stochastic approximation techniques. We explic-
itly characterize the mean-squared error (m.s.e.) between the
|. INTRODUCTION desired average and the resulting consensus value reached by

Distributed computation in sensor networks in the contefte sensors and show that, by properly tuning the fusion weight
of signal processing and control is a well-studied field witRequence, the m.s.e. can be made arbitrarily small. However,
an extensive body of literature (see, for example, [1] for earfgducing the m.s.e. in this way, decreases the convergence
work.) A problem that has received renewed interest recently'@e of the algorithm and we find an interesting trade-off
average consensus. It computes iteratively the global aver&@§éween the m.s.e. and the convergence rate. In this context,
of distributed data in a sensor network by using only locdfe note that [4] also uses a decreasing sequence of weights
communications. In [2], a continuous time state update mod€l consensus in presence of additive noise, but considers a
was adopted for consensus and the results were extende{X@f network topology, while we allow the topology to vary
situations involving switching sensor network topology antfndomly simultaneously. Also, our approach is much more
delayed communication. In [3], the problem of designing thgeneral and applies to a wider range of situations, for example,
optimal link weights were addressed for a fixed sensor netwd#Rta dependent noise etc., as will be detailed in the paper.
topology, the optimality criterion being the convergence rate We comment briefly on the organization of the paper. In
of the consensus algorithm. Sections Il we summarize relevant spectral graph theoretic

The A — N'D algorithm addresses the case, where, simJ€sults, required for the development of the paper. The av-
taneously, the network links fail randomly (random topolog§rage consensus problem with additive noise and random

ink failures is treated in Section Ill, where we present the
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vergence rate. We suggest generalizations of our approachhe desired average(see, for example, [3].) However, in the
Section VII. Finally, Section VIII concludes the paper. imperfect communication case, where the network links fail
randomly and communication is corrupted by additive noise,
the nodes have access only to a random subset of neighboring

In this section we summarize several spectral graph theoredtates and in the event of an active communication, the
properties to be used in the paper. We model the sens@msmitted data is corrupted by additive noise. In a situation
network as a graph; = (V, E), whereV is the set of sensor like this, we denote the status of a potential network link
nodes, with|V| = N. The edge set is the set of inter-sensdretween sensorsand! at an iteratiort, by an erasure random
links (which may be random because of link failures) andariable,e,,;(i) (we assume,,;(i) = e;,()), where

Il. ALGEBRAIC GRAPH THEORY

is denoted byE. The connectivity structure imposed by the . . . .
. _ 1 if sensorsn and! communicate at iteration
network can be represented by a symmeWix N adjacency e, (i) = :
: . 0 otherwise
matrix, A, given by 8)
4, -1 if (n,l) € E 1 Then, the data available to sensofrom sensor at iteration
"= 0 otherwise @) ;s given by
The neighborhood of sensay, 2,,, is defined as Yni(3) = en1(4)(21(3) + v (i) 9)
Q,={leV ]l eE}, nel[l---N] (2) where,v,;(7) denotes the additive stochastic channel noise.

The distributed average consensus algorithm needs to be modi-

fied to accommodate such imperfect communication scenarios

and to this end, we propose the— N'D algorithm for average

L=D-A 3) . . . .
consensus in the presence of random inter-sensor link failures

where, D = diag(d; - - - dy) is the diagonal matrix of node and communication channel noise.

degrees. By construction, the Laplaciarnis symmetric posi-

tive semidefinite and we arrange its eigenvalues as

and its degree ag,, = |Q2,,|. We define the graph Laplacian
matrix, L, as

0=X(L) < Xo(L) <--- < An(L) (4) A-ND Algorithm : Recall from egn. (9), the data available
o ) _ to sensom from sensol at iteration: is given byy,,;(¢). The
The multiplicity of the zero eigenvalue is equal to the numbeg _ Ar¢ s given by the following set of iterations:
of connected components of the network, and, in particular,

for a connected graph,(L) > 0. The second eigenvalue,zn(i+1) = [1— a(i)dn (i) zn(i) + (i) Y en(i) (i)
A2(L) is referred to as the algebraic connectivity or the Fiedler I#n
value of the network. References [5], [6], [7] provide detailed +vn(i)), 1<n<N (10)

treatment of graphs and their spectral theory. where,{a(?) };>0 is an appropriately chosen sequence (to be

[1l. PROBLEM FORMULATION - ALGORITHM A-ND explained later) weights. The above set of iterations for the

- — N'D algorithm can be written in a compact form as
In distributed average consensus, the sensor nodes start v“\%th N g P

some initial set of values{z,(0)}1<,<ny (Which may be x(i 4 1) = x(i) — a(i) [L(1)x(i) + n(7)] (11)
measurements of some real process), and iteratively comput% _

their average. The iterations are distributed, so that, at edt initial state asx(0) and

iteration, a sensor can access only the states of its neighbors n(i) = — Zezk(i)vzk(i), 1<I<N,i>0 (12)
for updating its current state. We define the vector of initial vy

sensor states as ‘ . . .
The {L(7)};>0 is a random sequence of Laplacian matrices,

x(0) = [£1(0) - - - zx (0)]T € RV*! (5) given by,
and the corresponding average as Lon(i) = { Zkin.enk(z) if n= l (13)
1 —eni(?) otherwise
r=—17x(0) (6) : :
N Clearly, the convergence properties of the- A'D algorithm

where1 is the vector of ones. In the case of perfect commis determined by the statistical properties of the random
nication (static network, no channel noise), the sensors magplacian sequence,L(i)}:>o (or, equivalently the erasure
update their states according to the following linear iterationBfoCess, {€,(7) }nx1, i>0, and the additive noise process,
Ui (1) bnr, i>0. We show that, under fairly broad assump-
Tn(i+1) = (1 = dpa)an(i) + o Z (i) () t{ionsf )o}n ;ihese stochastic processes, theysensor states ?each
ety consensus asymptotically and converge a.s. to a finite random
If the network is connected and the weight is chosen variable, arbitrarily close to the desired averag@ a mean-
appropriately, the above sequence of iterations convergesstpared sense. We state the assumptions as follows:



1) Random Network Failure: The graph Laplacians are  V (i,x), i > 0, z € RV*! by

L(i) =L+ L(i), Vi >0 14) LV (i,x)=E[V(i+1,x(@+1))|x(G)=x]—V(i,x) Ezs)
23

where{L(%)}i>o isasequenceofindependentidenticallydisNOW suppose there exists a non-negative function

tributed (i.i.d.) Laplacian matrices with medn= E [_L(z’)]_, V(,x), i > 0, = € RN and a setB C RN
such that\, (L) > 0. Note that, during the same iteration, .." o following properties:

we are not restricting the link failures to be independent,
i.e., they may be correlated. In other words, for a fixgthe ) ‘

erasure random variable§s,.; (i)}, may be correlated to i>07;2‘f4(3) V(i,x) >0, Ve >0 (24)
each other, but independent across iterations. ) N ) ,

2) Independent Noise SequenceThe additive noise Vi(i,x) =0, x € B, ,}Er}gfglo)v(”x) =0 (25)

{vn1(?) }1<ni<n, >0 is an independent sequence
whereV, (B) = {z € RV*! | inf,cpp(z,y) > €}

Evy(i)]=0, V1<n,I<N, i>0 (15) 2)
supE [vy, (§)] = 1 < 0o (16) LV (i,%) < g (i) (1+ V (i,x) — (i) p(i.x)  (26)
From egn. (12), it then follows that where (i,x) ,i > 0, x € RV*! is a non-negative function
such that
E[n(i)] = 0, Vi, supE [[In(@)[?] =n < N(N - 1)u < o0 inf ¢ (i,x) >0, Ve >0 (27)
? (17) 1, xEV.(B)
3) Persistence Condition 3)
i) >0, Y a(i) =00, Y a®(i) <o (18) a(i),g(i) >0, Y a()=o0, Y g(i)<oo (28)
i>0 i>0 i>0 i>0

This condition, commonly assumed in the adaptive contrdhen, the Markov procesgx;};>o with arbitrary initial dis-
and adaptive signal processing literature, assumes that thleution converges a.s. to B as— oo.
weights decay to zero, but not too fast. Examples of such

sequences include Proof: The proof is detailed in [8] and builds on [9

Recall the consensus subspa€e given in egn. (20). We

a(i) = %, 05<p<1 (19) now show that the under thd — N'D algorithm the sensor
_ t states reach consensus a.s., or, in other words, the sensor states
We define the consensus subspateas approach the consensus subspace with probability one. We
C={zecRY |z =al, acR} (20) formalize this in the following theorem.

In Section 1V, we show that, under thé — A'D algorithm, Theorem 2Consider thed — N'D distributed average consen-
the state vector sequencgx (i)}i>0, converges a.s. to thesus algorithm given in Section Ill with arbitrary initial state
consensus subspack In other words, there exists a finitex(0) € RV*!. Then,

random variabled, such that
P ['lim p(x(i),C) = o} =1 (29)
P [‘lim x (i) =01] =1 (21) i—o0
e where, p(-) is the standard Euclidean metric.
The m.s.e(, is then given by
9 Proof: Clearly, the state vector sequendgk(i)}i>o,
C=E[0-7] (22) generated by thed — N'D algorithm is a Markov process,
and this is explicitly characterized in Section V. under the assumptions stated in Section Ill. We now use
Theorem 1 to prove the result. To this end, we define the

stochastic potential function,
IV. CONSENSUS- A.S. CONVERGENCE OFA-ND

ALGORITHM V(i,x) = xT Lx (30)

We state a theorem on the convergence of Markov procdédere.L, is the mean Laplacian matrix, defined in eqn. (14).

sample paths, which will be used to prove the a.s. convergedd®": Py taking = C in Theorem 1, it can be shown that
of the A — N'D algorithm. all the assumptions in Theorem 1 are satisfied (see, [8]) and

the theorem follows. [ ]

Theorem 2 shows that with probability one, the sensor states
Theorem 1Consider a Markov proces$x (i)};>0 on RV*1.  reach consensus asymptotically, i.e., they eventually merge
Define the operatof, which acts on non-negative functiongo the consensus subspack,In the following theorem, we



strengthen this notion and show that the sensor states, Rot., o (i) < oo, we have
only approacltC, but in fact, converge a.s. to a finite random ., . -
variabled. E [z5,4(1)] <% + N2 ZG (4) (41)
§>0
Thus, the sequenderay(i) }i>o is anL,-bounded martingale,
Theorem 3Consider thed — N'D distributed average consen-and converges a.s. to a finite random variadlésee, [10].)
sus algorithm given in Section Il with arbitrary initial stateThis, together with egn. (32) implies that
x(0) € RV*1, Then, there exists an almost sure finite real
random variabled such that P lim x(7) =01 =1 (42)

71— 00

P {Iim x(1) = 91} =1 (31) and proves the theorem. [ |

V. MEAN-SQUARED ERROR
Proof: We first note that the a.s. consensus implied by In Section IV we have shown that under tbé— N'D

Theorem 2 is equivalent to the statement, algorithm, the sensor states reach consensus a.s. and converge
P [hm x(i) = xavg(i)1:| -1 (32) ' a f|n|te.random variable. Viewing 6 as an estimate
of the desired average, we now investigate its statistical
where {zayg(i) }i>0 is the sequence of instantaneous averagggoperties. In other words, we would expeftto possess

11— 00

given by desirable properties, including unbiasedness and small mean-

Tavgli) = ilTX(Z-) (33) ;quared error (m.s.e.). To this end, we note that from eqgn. (35)

N it follows

We now show that, there exists a finite random variahle E[zag(i)] =7, Vi >0 (43)
such that, pli N 34 Since, the sequencéray(i)}i>0 converges tod in Lo, it

Pl Tavg(i) = } - (34) converges also i, and we have
The average update is then given by the following recursion: E[)] = }HEOE [Zavg (4)] (44)

Tavg(i + 1) = Zavg(i) — (0)0(i), zag(0) =7 (35) =

where 1 Thus, 6 is an unbiased estimate of the desired average

n(i) = —1"n(), Vi (36) To compute the m.s.& (see eqn. (22)), we note that the

N sequence of non-negative functiofgyg (i) — r)? converges
and n a.s. to(f — r)°. Hence, by Fatou's lemma,
E[@(i)] =0, E[[(0)] < - (37) , ,
N E[9 —r]” < liminf E [zag (i) — 1] (45)

(This follows by multiplying both sides of eqn. (11) by
L17 and noting that1”L(i) = 0, Vi, from the properties Using exactly similar manipulations, as used in the derivation

of Laplacian matrices.) It can be shown (see, [8]) that tH¥ edn. (41), it can be shown that

sequence{zay(i) }i>0, iS @ martingale with respect to the N2 o
filtration 1 E [ravg (i) — r]” < Nz goa (4), Vi (46)
J=Z
Fi=0{x(0),{L(j)}o<j<i: {n () }o<j<i} ~ (39) Combining egns. (45,46) it follows that
We now have ¢ < % ZQQU) @)
E[224i+1)] = Ezagi) — a@)n(i)’ j20

which gives an explicit upper bound on the m.s.e. From
(i eqgn. (47), we note that, for a givenand V, the bound on the
< E [a:2 (Z-)] + % (40) noise variance( can be made arbitrarily small by properly

avg
_ . scaling the weight sequencén(j)};>0. As an example,
where we have used the independence assumptions gpfsider the weight sequence, B

egn. (37). Continuing the recursion and using the fact that 1

alg) = e
() .

1A filtration, F, is a non-decreasing sequence of sigma algebras. . . . _— . "
stochastic procesgz (i)} >0, is  adapted, iz () is F; measurable for élearly, this choice ofy(i) satisfies the persistence conditions

eachi. An integrable procesgz () };>0, which is adapted to a filiratioF, ~ Of eqn. (?) and, in fact,

is a martingale if 2
Elz(i+1)|F] = 2(i) as. (38) Zaz(j)zzizl

2
>0 >

o
—
~.
= =
=
—
=]
o
—~
=
=
P

= E [xgvg(i)] +a

N
~—
3

A



Then, for anye > 0, the scaled weight sequenq@(j)}jm, More general cases of correlated noise or link failures (across
B iterations) may be handled by this approach, by possibly

a(j) = ———— V6€N augmenting thetate so that the resulting process is a Markov
Vim(j+1) process w.r.t. the new state. Also, in this case, the potential

will guarantee that < . However, reducing the m.s.e. byfunctionV'(-) needs to be modified accordingly. The approach
scaling the weights in this way will reduce the convergenéteveloped in this paper applies to other cases of imperfect

rate of the algorithm; this trade-off is considered in Section VEommunication in sensor networks, see, for example, [12],
where we develop a randomized algorithm for average con-

VI. CONVERGENCERATE vS M.S.E. TRADE-OFF sensus with quantized inter-sensor communication.
In this section, we present an informal study of the rate at

which the sensor states reach consensus, or the convergence VIII. CONCLUSION

rate of the state vector sequende(i)};>o, to the random In this paper, we consider the distributed average consensus
vector 1. A detailed convergence analysis can be done Ipyoblem, when simultaneously inter-sensor communication
invoking the ODE method (see [11]), which we skip here. Fdinks fail randomly and communication through an active link
preciseness and clarity, we present a simpler convergence mateirs additive noise. We show, that, if the mean network
analysis, involving the mean state vector sequence only. Frisnconnected, thed — N'D algorithm leads to a.s. consensus

the asymptotic unbiasedness#fit follows that of the sensor states. We explicitly characterize the resulting
lim E ()] = r1 4g) M-S-€ and find an interesting trade-off between the m.s.e. and
Paiey x(@)] = (48) the convergence rate of the algorithm. In other words, the

m.s.e can be made arbitrarily small, though at a cost of lower
convergence rate. Finally, we note, that the approach used in
[Ex(i) —r1|| — 0 (49) this paper, may be applied to other problems of distributed
computation in sensor networks with imperfect inter-sensor
Az ] communication, for example, distributed load balancing in
tually the case, as the(i)'s decay to zero), it can be showny,rajiel processing, distributed network flow etc. These may

We now study the rate at which

: _ 5 o
Then, assuming thaty(:) < (@)@’ Vi (this is even-

that (see, [8]) provide avenues of further research and we would like to
IE [x(3)] — r1|| < (G—AZ(E)(ZOSJ.SH a(j))) IE[x(0)] —r1| PUrsue these in the future.
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