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Abstract— In this paper we study distributed average consen-
sus type algorithms in sensor networks with random network link
failures and communication channel. Specifically, the network
links fail randomly across iterations, and communication through
an active link incurs additive stochastic noise. We consider the
A−ND algorithm for distributed average consensus under such
imperfect communication scenario. Using results from the theory
of controlled Markov processes and stochastic approximation,
we show that theA−ND algorithm leads to consensus of the
sensor states. In particular, all the sensor states converge a.s. to a
finite random variable θ, the latter being an unbiased estimate of
the desired average. We explicitly characterize the resulting the
mean-squared error (m.s.e.) and show that the m.s.e. can be made
arbitrarily small by tuning certain parameters of the algorithm.
But, reducing the m.s.e. in this way, decrease the convergence rate
of the algorithm, and we obtain an interesting trade-off between
the m.s.e. and the convergence rate of the algorithm. Our results
show that the sensor network topology plays a significant role in
determining the convergence rate of these algorithms.

Index Terms— Distributed Consensus, Random Link Failures,
Communication Noise, Topology, Laplacian.

I. I NTRODUCTION

Distributed computation in sensor networks in the context
of signal processing and control is a well-studied field with
an extensive body of literature (see, for example, [1] for early
work.) A problem that has received renewed interest recently is
average consensus. It computes iteratively the global average
of distributed data in a sensor network by using only local
communications. In [2], a continuous time state update model
was adopted for consensus and the results were extended to
situations involving switching sensor network topology and
delayed communication. In [3], the problem of designing the
optimal link weights were addressed for a fixed sensor network
topology, the optimality criterion being the convergence rate
of the consensus algorithm.

TheA−ND algorithm addresses the case, where, simul-
taneously, the network links fail randomly (random topology
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change) and the transmitted data is corrupted by additive
noise. This happens, for example, in an erasure network,
where the transmissions are occasionally lost, and, in the
case of a successful transmission, the data is distorted due
to channel imperfections. We show that under the modelling
assumptions considered in the paper, theA−ND algorithm
leads to almost sure (a.s.) convergence of the sensor state
vector sequence to theconsensus subspaceif the expected
network is connected, i.e.,λ2(EL) > 0, where L is the
random network Laplacian matrix. In other words, the sensor
states reach consensus asymptotically, and converge a.s. to the
same finite random variable. TheA−ND algorithm consists
of distributed linear iterations, where each sensor updates its
current state by a weighted fusion of its current neighbors’
states (which are distorted when they reach it) and these fusion
weights decrease to zero in an appropriate way, as time pro-
gresses. We show that theA−ND algorithm falls under the
purview of controlled Markov processes and the convergence
analysis uses stochastic approximation techniques. We explic-
itly characterize the mean-squared error (m.s.e.) between the
desired average and the resulting consensus value reached by
the sensors and show that, by properly tuning the fusion weight
sequence, the m.s.e. can be made arbitrarily small. However,
reducing the m.s.e. in this way, decreases the convergence
rate of the algorithm and we find an interesting trade-off
between the m.s.e. and the convergence rate. In this context,
we note that [4] also uses a decreasing sequence of weights
for consensus in presence of additive noise, but considers a
fixed network topology, while we allow the topology to vary
randomly simultaneously. Also, our approach is much more
general and applies to a wider range of situations, for example,
data dependent noise etc., as will be detailed in the paper.

We comment briefly on the organization of the paper. In
Sections II we summarize relevant spectral graph theoretic
results, required for the development of the paper. The av-
erage consensus problem with additive noise and random
link failures is treated in Section III, where we present the
A−ND algorithm and the underlying assumptions. We prove
the a.s. convergence of theA−ND algorithm in Section IV.
The m.s.e. is explicitly characterized in Section V, while
Section VI studies the trade-off between m.s.e. and the con-



vergence rate. We suggest generalizations of our approach in
Section VII. Finally, Section VIII concludes the paper.

II. A LGEBRAIC GRAPH THEORY

In this section we summarize several spectral graph theoretic
properties to be used in the paper. We model the sensor
network as a graph,G = (V, E), whereV is the set of sensor
nodes, with|V | = N . The edge set is the set of inter-sensor
links (which may be random because of link failures) and
is denoted byE. The connectivity structure imposed by the
network can be represented by a symmetricN ×N adjacency
matrix, A, given by

Anl =
{

1 if (n, l) ∈ E
0 otherwise

(1)

The neighborhood of sensorn, Ωn, is defined as

Ωn = {l ∈ V | (n, l) ∈ E} , n ∈ [1 · · ·N ] (2)

and its degree asdn = |Ωn|. We define the graph Laplacian
matrix, L, as

L = D −A (3)

where,D = diag(d1 · · · dN ) is the diagonal matrix of node
degrees. By construction, the LaplacianL is symmetric posi-
tive semidefinite and we arrange its eigenvalues as

0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN (L) (4)

The multiplicity of the zero eigenvalue is equal to the number
of connected components of the network, and, in particular,
for a connected graph,λ2(L) > 0. The second eigenvalue,
λ2(L) is referred to as the algebraic connectivity or the Fiedler
value of the network. References [5], [6], [7] provide detailed
treatment of graphs and their spectral theory.

III. PROBLEM FORMULATION - ALGORITHM A-ND

In distributed average consensus, the sensor nodes start with
some initial set of values,{xn(0)}1≤n≤N (which may be
measurements of some real process), and iteratively compute
their average. The iterations are distributed, so that, at each
iteration, a sensor can access only the states of its neighbors
for updating its current state. We define the vector of initial
sensor states as

x(0) = [x1(0) · · ·xN (0)]T ∈ RN×1 (5)

and the corresponding average as

r =
1
N

1T x(0) (6)

where1 is the vector of ones. In the case of perfect commu-
nication (static network, no channel noise), the sensors may
update their states according to the following linear iterations:

xn(i + 1) = (1− dnα)xn(i) + α
∑

l∈Ωn

xl(i) (7)

If the network is connected and the weightα is chosen
appropriately, the above sequence of iterations converges to

the desired averager (see, for example, [3].) However, in the
imperfect communication case, where the network links fail
randomly and communication is corrupted by additive noise,
the nodes have access only to a random subset of neighboring
states and in the event of an active communication, the
transmitted data is corrupted by additive noise. In a situation
like this, we denote the status of a potential network link
between sensorsn andl at an iterationi, by an erasure random
variable,enl(i) (we assumeenl(i) = eln(i)), where

enl(i) =
{

1 if sensorsn and l communicate at iterationi
0 otherwise

(8)
Then, the data available to sensorn from sensorl at iteration
i is given by

ynl(i) = enl(i)(xl(i) + vnl(i)) (9)

where, vnl(i) denotes the additive stochastic channel noise.
The distributed average consensus algorithm needs to be modi-
fied to accommodate such imperfect communication scenarios
and to this end, we propose theA−ND algorithm for average
consensus in the presence of random inter-sensor link failures
and communication channel noise.

A-ND Algorithm : Recall from eqn. (9), the data available
to sensorn from sensorl at iterationi is given byynl(i). The
A−NC is given by the following set of iterations:

xn(i + 1) = [1− α(i)dn(i)] xn(i) + α(i)
∑

l 6=n

enl(i) (xl(i)

+vnl(i)) , 1 ≤ n ≤ N (10)

where,{α(i)}i≥0 is an appropriately chosen sequence (to be
explained later) weights. The above set of iterations for the
A−ND algorithm can be written in a compact form as

x(i + 1) = x(i)− α(i) [L(i)x(i) + n(i)] (11)

with initial state asx(0) and

nl(i) = −
∑

k 6=l

elk(i)vlk(i), 1 ≤ l ≤ N, i ≥ 0 (12)

The {L(i)}i≥0 is a random sequence of Laplacian matrices,
given by,

Lnl(i) =
{ ∑

k 6=n enk(i) if n = l

−enl(i) otherwise
(13)

Clearly, the convergence properties of theA−ND algorithm
is determined by the statistical properties of the random
Laplacian sequence,{L(i)}i≥0 (or, equivalently the erasure
process,{enl(i)}n6=l, i≥0, and the additive noise process,
{vnl(i)}n 6=l, i≥0. We show that, under fairly broad assump-
tions on these stochastic processes, the sensor states reach
consensus asymptotically and converge a.s. to a finite random
variable, arbitrarily close to the desired averager in a mean-
squared sense. We state the assumptions as follows:



1) Random Network Failure: The graph Laplacians are

L(i) = L + L̃(i), ∀i ≥ 0 (14)

where{L(i)}i≥0 is a sequence of independent identically dis-
tributed (i.i.d.) Laplacian matrices with meanL = E [L(i)],
such thatλ2

(
L

)
> 0. Note that, during the same iteration,

we are not restricting the link failures to be independent,
i.e., they may be correlated. In other words, for a fixedi, the
erasure random variables,{enl(i)}n6=l, may be correlated to
each other, but independent across iterations.
2) Independent Noise Sequence: The additive noise
{vnl(i)}1≤n,l≤N, i≥0 is an independent sequence

E [vnl(i)] = 0, ∀1 ≤ n, l ≤ N, i ≥ 0 (15)

sup
n,l,i

E
[
v2

nl(i)
]

= µ < ∞ (16)

From eqn. (12), it then follows that

E [n(i)] = 0, ∀i, sup
i
E

[‖n(i)‖2] = η ≤ N(N − 1)µ < ∞
(17)

3) Persistence Condition:

α(i) > 0,
∑

i≥0

α(i) = ∞,
∑

i≥0

α2(i) < ∞ (18)

This condition, commonly assumed in the adaptive control
and adaptive signal processing literature, assumes that the
weights decay to zero, but not too fast. Examples of such
sequences include

α(i) =
1
iβ

, 0.5 < β ≤ 1 (19)

We define the consensus subspace,C, as

C =
{
x ∈ RN×1 | x = a1, a ∈ R}

(20)

In Section IV, we show that, under theA−ND algorithm,
the state vector sequence,{x (i)}i≥0, converges a.s. to the
consensus subspaceC. In other words, there exists a finite
random variable,θ, such that

P
[

lim
i→∞

x (i) = θ1
]

= 1 (21)

The m.s.e,ζ, is then given by

ζ = E [θ − r]2 (22)

and this is explicitly characterized in Section V.

IV. CONSENSUS- A.S. CONVERGENCE OFA-ND
ALGORITHM

We state a theorem on the convergence of Markov process
sample paths, which will be used to prove the a.s. convergence
of theA−ND algorithm.

Theorem 1Consider a Markov process,{x (i)}i≥0 onRN×1.
Define the operatorL, which acts on non-negative functions

V (i,x) , i ≥ 0, x ∈ RN×1 by

LV (i,x) = E [V (i + 1,x (i + 1)) |x (i) = x]− V (i,x) a.s.
(23)

Now suppose there exists a non-negative function
V (i,x) , i ≥ 0, x ∈ RN×1 and a setB ⊂ RN×1

with the following properties:

1)
inf

i≥0,x∈Vε(B)
V (i,x) > 0, ∀ε > 0 (24)

V (i,x) ≡ 0, x ∈ B, lim
x→B

sup
i≥0

V (i,x) = 0 (25)

whereVε (B) = {x ∈ RN×1 | infy∈B ρ (x, y) ≥ ε}.
2)

LV (i,x) ≤ g (i) (1 + V (i,x))− α (i)ϕ (i,x) (26)

whereϕ (i,x) , i ≥ 0, x ∈ RN×1 is a non-negative function
such that

inf
i,x∈Vε(B)

ϕ (i,x) > 0, ∀ε > 0 (27)

3)

α (i) , g (i) > 0,
∑

i≥0

α (i) = ∞,
∑

i≥0

g (i) < ∞ (28)

Then, the Markov process{xi}i≥0 with arbitrary initial dis-
tribution converges a.s. to B asi →∞.

Proof: The proof is detailed in [8] and builds on [9].
Recall the consensus subspace,C, given in eqn. (20). We

now show that the under theA−ND algorithm the sensor
states reach consensus a.s., or, in other words, the sensor states
approach the consensus subspace with probability one. We
formalize this in the following theorem.

Theorem 2Consider theA−ND distributed average consen-
sus algorithm given in Section III with arbitrary initial state
x(0) ∈ RN×1. Then,

P
[

lim
i→∞

ρ(x(i), C) = 0
]

= 1 (29)

where,ρ(·) is the standard Euclidean metric.

Proof: Clearly, the state vector sequence,{x(i)}i≥0,
generated by theA−ND algorithm is a Markov process,
under the assumptions stated in Section III. We now use
Theorem 1 to prove the result. To this end, we define the
stochastic potential function,

V (i,x) = xT Lx (30)

where,L, is the mean Laplacian matrix, defined in eqn. (14).
Then, by takingB = C in Theorem 1, it can be shown that
all the assumptions in Theorem 1 are satisfied (see, [8]) and
the theorem follows.
Theorem 2 shows that with probability one, the sensor states
reach consensus asymptotically, i.e., they eventually merge
to the consensus subspace,C. In the following theorem, we



strengthen this notion and show that the sensor states, not
only approachC, but in fact, converge a.s. to a finite random
variableθ.

Theorem 3Consider theA−ND distributed average consen-
sus algorithm given in Section III with arbitrary initial state
x(0) ∈ RN×1. Then, there exists an almost sure finite real
random variableθ such that

P
[

lim
i→∞

x(i) = θ1
]

= 1 (31)

Proof: We first note that the a.s. consensus implied by
Theorem 2 is equivalent to the statement,

P
[

lim
i→∞

x(i) = xavg(i)1
]

= 1 (32)

where,{xavg(i)}i≥0 is the sequence of instantaneous averages,
given by

xavg(i) =
1
N

1T x(i) (33)

We now show that, there exists a finite random variableθ,
such that,

P
[

lim
i→∞

xavg(i) = θ
]

= 1 (34)

The average update is then given by the following recursion:

xavg(i + 1) = xavg(i)− α(i)n(i), xavg(0) = r (35)

where
n(i) =

1
N

1T n(i), ∀i (36)

and
E [n(i)] = 0, E

[
n2(i)

] ≤ η

N2
(37)

(This follows by multiplying both sides of eqn. (11) by
1
N 1T and noting that,1T L(i) = 0, ∀i, from the properties
of Laplacian matrices.) It can be shown (see, [8]) that the
sequence,{xavg(i)}i≥0, is a martingale with respect to the
filtration 1

Fi = σ{x (0) , {L(j)}0≤j<i, {n (j)}0≤j<i} (39)

We now have

E
[
x2

avg(i + 1)
]

= E [xavg(i)− α(i)n(i)]2

= E
[
x2

avg(i)
]
+ α2(i)E

[
n2(i)

]

≤ E
[
x2

avg(i)
]
+

α2(i)η
N2

(40)

where we have used the independence assumptions and
eqn. (37). Continuing the recursion and using the fact that

1A filtration, F , is a non-decreasing sequence of sigma algebras. A
stochastic process,{z (i)}i≥0, is F adapted, ifz (i) is Fi measurable for
eachi. An integrable process,{z (i)}i≥0, which is adapted to a filtrationF ,
is a martingale if

E [z (i + 1) |Fi] = z (i) a.s. (38)

∑
i≥0 α2 (i) < ∞, we have

E
[
x2

avg(i)
] ≤ r2 +

η

N2

∑

j≥0

α2(j) (41)

Thus, the sequence{xavg(i)}i≥0 is anL2-bounded martingale,
and converges a.s. to a finite random variableθ (see, [10].)
This, together with eqn. (32) implies that

P
[

lim
i→∞

x(i) = θ1
]

= 1 (42)

and proves the theorem.

V. M EAN-SQUARED ERROR

In Section IV we have shown that under theA−ND
algorithm, the sensor states reach consensus a.s. and converge
to a finite random variableθ. Viewing θ as an estimate
of the desired averager, we now investigate its statistical
properties. In other words, we would expectθ to possess
desirable properties, including unbiasedness and small mean-
squared error (m.s.e.). To this end, we note that from eqn. (35)
it follows

E [xavg(i)] = r, ∀i ≥ 0 (43)

Since, the sequence{xavg(i)}i≥0 converges toθ in L2, it
converges also inL1, and we have

E [θ] = lim
i→∞

E [xavg(i)] (44)

= r

Thus, θ is an unbiased estimate of the desired averager.
To compute the m.s.e.ζ (see eqn. (22)), we note that the
sequence of non-negative functions(xavg(i)− r)2 converges
a.s. to(θ − r)2. Hence, by Fatou’s lemma,

E [θ − r]2 ≤ lim inf
i→∞

E [xavg(i)− r]2 (45)

Using exactly similar manipulations, as used in the derivation
of eqn. (41), it can be shown that

E [xavg(i)− r]2 ≤ η

N2

∑

j≥0

α2 (j) , ∀i (46)

Combining eqns. (45,46) it follows that

ζ ≤ η

N2

∑

j≥0

α2(j) (47)

which gives an explicit upper bound on the m.s.e. From
eqn. (47), we note that, for a givenη andN , the bound on the
noise variance,ζ can be made arbitrarily small by properly
scaling the weight sequence,{α(j)}j≥0. As an example,
consider the weight sequence,

α(j) =
1

j + 1
, ∀j

Clearly, this choice ofα(i) satisfies the persistence conditions
of eqn. (??) and, in fact,

∑

j≥0

α2(j) =
∑

j≥1

1
j2

=
π2

6



Then, for anyε > 0, the scaled weight sequence,{α̃(j)}j≥0,

α̃(j) =
√

6εN√
ηπ(j + 1)

will guarantee thatζ ≤ ε. However, reducing the m.s.e. by
scaling the weights in this way will reduce the convergence
rate of the algorithm; this trade-off is considered in Section VI.

VI. CONVERGENCERATE VS M.S.E. TRADE-OFF

In this section, we present an informal study of the rate at
which the sensor states reach consensus, or the convergence
rate of the state vector sequence,{x(i)}i≥0, to the random
vector θ1. A detailed convergence analysis can be done by
invoking the ODE method (see [11]), which we skip here. For
preciseness and clarity, we present a simpler convergence rate
analysis, involving the mean state vector sequence only. From
the asymptotic unbiasedness ofθ, it follows that

lim
i→∞

E [x(i)] = r1 (48)

We now study the rate at which

‖Ex(i)− r1‖ −→ 0 (49)

Then, assuming that,α(i) ≤ 2

λ2(L)+λN (L)
, ∀i (this is even-

tually the case, as theα(i)’s decay to zero), it can be shown
that (see, [8])

‖E [x(i)]− r1‖ ≤
(
e−λ2(L)(∑

0≤j≤i−1 α(j))
)
‖E [x(0)]− r1‖

(50)
Eqn. (50) shows that the rate of convergence depends on
the topology through the algebraic connectivityλ2

(
L

)
of the

graph and through the weightsα(i). Eqns. (50) and (47) show
a tradeoff between the m.s.e. and the rate of convergence at
which the sequence{E [x(i)]}i≥0 converges tor1. Eqn. (50)
shows that this rate of convergence is closely related to the
rate at which the weight sequence,α(i), sums to infinity. For a
faster rate, we want the weights to sum up fast to infinity, i.e.,
the weights to be large. In contradistinction, eqn. (47) shows
that, to achieve a smallζ, the weights should be small.

VII. G ENERALIZATIONS

We now comment on extensions of theA−ND algorithm
to accommodate more general additive noise processes and
link failures. The algorithm can be immediately extended
to the case of data-dependent noise (in other words, the
distribution ofn(i) depends onx(i)), provided that

E [n(i) | x(i)] = 0 a.s.∀i (51)

Clearly, in this case the process{x(i)}i≥0 remains Markov,
and the analysis goes through.

Regarding the link failure model, we assumed that the fail-
ures are independent across iterations, but may be correlated
across different links at a particular iteration. This can be
extended similarly to data dependent link failures, provided
that

E
[
L̃(i) | x(i)

]
= 0 a.s.∀i (52)

More general cases of correlated noise or link failures (across
iterations) may be handled by this approach, by possibly
augmenting thestate, so that the resulting process is a Markov
process w.r.t. the new state. Also, in this case, the potential
functionV (·) needs to be modified accordingly. The approach
developed in this paper applies to other cases of imperfect
communication in sensor networks, see, for example, [12],
where we develop a randomized algorithm for average con-
sensus with quantized inter-sensor communication.

VIII. C ONCLUSION

In this paper, we consider the distributed average consensus
problem, when simultaneously inter-sensor communication
links fail randomly and communication through an active link
incurs additive noise. We show, that, if the mean network
is connected, theA−ND algorithm leads to a.s. consensus
of the sensor states. We explicitly characterize the resulting
m.s.e. and find an interesting trade-off between the m.s.e. and
the convergence rate of the algorithm. In other words, the
m.s.e can be made arbitrarily small, though at a cost of lower
convergence rate. Finally, we note, that the approach used in
this paper, may be applied to other problems of distributed
computation in sensor networks with imperfect inter-sensor
communication, for example, distributed load balancing in
parallel processing, distributed network flow etc. These may
provide avenues of further research and we would like to
pursue these in the future.
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