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Abstract— We consider the design of the topology of the com-
munication graph G = (V, E) supporting distributed decision
in sensor networks with N = |V | sensors. The numberM of
links connecting the sensors, i.e., the number of edges|E| = M
in the graph G, is fixed. We assume a simple binary decision
test where the data may be spatially correlated. The global
detector performs a threshold test on a weighted fusion of the
local likelihood ratios, which can be computed in a distributed
fashion using a consensus algorithm. The graph topology plays a
central role in the convergence speed of the distributed detector.
Exhaustive search over the class of possible communication
networks is unrealistic. Our solution is constructive. We first
reduce this topology design to a spectral graph optimization
problem; specifically, to designing the topology that maximizes
the ratio γ of the algebraic connectivity to the largest eigenvalue
of the graph Laplacian. Borrowing results from spectral graph
theory, we show that for the class of non-bipartite Ramanujan
graphs γ ≥ γmin . The importance of this inequality is that γmin ,
asymptotically, is an upper bound onγ for most classes of graphs.
The paper discusses the commonly used explicit constructions of
Ramanujan graphs and their impact on the convergence speed of
distributed consensus. In particular, it shows that these graphs
perform much better even for finite values of N than highly
structured networks, or small world type graphs, or Erdös-Reńyi
random networks.

I. I NTRODUCTION

We consider the problem of distributed decision making
in sensor networks with spatially correlated sensor measure-
ments. Each sensor computes a local statistic based on the
observed data. The final decision is computed by fusing all the
local statistics. Distributed detection is a well-studied problem,
and much work has been done on designing the optimal
global fusion rule for different detection scenarios (see [1],
[2], [3] for a detailed discussion on these.) Previous work
on distributed detection assumes a parallel (centralized) or
sequential decision fusion architecture, which is unrealistic
in many applications. For example, a parallel architecture
assumes the existence of a central hub to which all the local
data are communicated directly and then a final decision
is made. Such a fusion scheme is prone to failures of the
fusion center or to communication bottlenecks that render it
inoperative. Sequential architectures suffer from low conver-
gence speed of the data fusion process, and is sensitive to
failure of any intervening node. On the other hand, all-to-all

connectivity, leading to a complete graph, may not be possible
because of communication constraints. This discussion shows
that the inter-sensor connectivity network is an important
design issue. We study the problem of designing the optimal
network topology (in the sense of the convergence speed of the
decision fusion algorithm) when we constrain the number of
inter-sensor communication links. In particular, we consider a
simple binary hypothesis test with spatially correlated sensor
measurements in a Gaussian environment. Under such cir-
cumstances, the optimal global detector performs a threshold
test on a weighted average of the local (sensor) observations.
Using a distributed consensus algorithm (see [4], [5]) for
computing averages on a graph, we show that each local
sensor iteratively achieves the performance of the optimal cen-
tralized detector. Thus, through local communication among
the sensors (defined by the connectivity graph), we attain
performance equivalent to the global detector using centralized
fusion. The convergence speed of the detection algorithm
is directly related to that of the consensus algorithm. We
have studied previously the problem of designing the optimal
network topology (under a given constraint on the number of
links) leading to the fastest convergence rate of the consensus
algorithm, see [6], [7], [8]. In this paper, we consider the
case of correlated sensor measurements and show that the
convergence properties of the local detector depends on the
eigenratioγ between the algebraic connectivity and the largest
Laplacian eigenvalue of the connectivity network. Specifically,
maximizing the convergence speed is equivalent to finding the
network with largestγ, which meets the constraint on the
number of links. Using results from spectral graph theory, we
establish a significant lower bound onγ for the class of non-
bipartite Ramanujan graphs, and through various arguments
and numerical studies show that these graphs are essentially
optimal with respect to the convergence speed.
A brief outline of the rest of the paper follows. Section II
summarizes elementary spectral graph theory concepts, needed
for the development of the paper. Section III formulates the
main distributed detection problem, while Sections IV and V
relate the convergence speed to the eigenratioγ. Sections VI
and VII discuss some results from spectral graph theory,
which motivate the use of non-bipartite Ramanujan graphs.
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Section VIII gives explicit constructions of Ramanujan graphs
available in the literature, while Section IX presents numerical
studies. Finally, Section X concludes the paper.

II. ELEMENTARY SPECTRAL GRAPH THEORY

We define a graphG = (V, E) as a 2-tuple, whereV
denotes the set ofN vertices andE the set ofM edges.
There exists an edge between verticesn and l, if they can
communicate with each other directly, and denote it by the
unordered pair(n, l) ∈ E. The connectivity pattern of the
graph is given by anN × N symmetric matrix, called the
adjacency matrixA, defined as

An,l =
{

1 if (n, l) ∈ E
0 otherwise

(1)

We define the neighborhoodΩn, of noden as

Ωn = {l ∈ V : (n, l) ∈ E} (2)

The degree of a noden is the number of its neighbors and is
given by

dn = |Ωn| (3)

We define the LaplacianL of the graph as

L = D −A (4)

where, D = diag(d1, ..., dN ). It can be shown thatL is a
symmetric positive semidefinite matrix (see [9]), and hence
we can arrange its non-negative eigenvalues as

0 = λ1(L) ≤ λ2(L) ≤ ... ≤ λN (L) (5)

The multiplicity of the zero eigenvalue is equal to the number
of connected components ofL and thus, for connected graphs,
λ2(L) > 0, see [9]. Unless otherwise stated, every graph in
this paper is assumed to be connected.

III. PROBLEM FORMULATION

We consider a simple binary hypothesis testing problem
with spatially correlated sensor measurements. Specifically,
we assume a shift-in-mean Gaussian detection problem, with
equal covariance matrices on both hypotheses. Thus, denoting
by y ∈ RN×1 the vector of sensor measurements, we have

underHp : y = mp + ξ, p = 0, 1 (6)

where we assumem1 = −m0 = m and

ξ ∼ N (0,K) (7)

where, 0 ∈ RN×1 is the vector of all zeros andK is a
positive definite covariance matrix. For simplicity, we consider
a minimum probability of error detection problem, with equal
prior probabilities. It can be shown from standard detection
theory (see [10]) that, in such a situation, the optimal global
test is given by

l(y) =
2
N

mT K−1y ≷H1
H0

0 (8)

where, l(y) is the sufficient global statistic. Defineω =
[ω1...ωN ]T as

ωT = 2mT K−1 (9)

Then, from eqn.(8), it follows that the global statistic can be
written as an average of local statistics. In other words,

l(y) =
1
N

N∑
n=1

ln(yn) (10)

whereln(yn) = ωnyn, i = 1, ..., N, are local statistics.

IV. D ISTRIBUTED AVERAGE CONSENSUSALGORITHM

Let x(0) ∈ RN×1 be the vector of initial sensor measure-
ments or states. We define the vector of averages as

xavg = r1 (11)

where1 ∈ RN×1 is the vector of ones andr = 1
N 1T x(0).

The distributed average consensus algorithm computes the
averager at each sensor, starting from an initial statex(0) =
[x1(0)...xN (0)]T , using linear distributed iterations of the
form (see [4])

xn(i+1) = Wnnxn(i)+
∑

l∈Ωn

Wnlxl(i), n = {1, ..., N} (12)

Collecting theN equations in (12) in matrix-vector form

x(i + 1) = Wx(i) = W i+1x(0) (13)

where the sparsity pattern ofW is determined by the under-
lying connectivity network. In particular, forn 6= l, Wnl = 0,
if (n, l) /∈ E.
The consensus algorithm converges if

lim
i→∞

‖ x(i)− xavg ‖2= 0 (14)

for any initial state vectorx(0) ∈ RN×1. In other words,
convergence occurs if

lim
i→∞

W i =
1
N

J (15)

whereJ = 11T . It turns out that, for a given network, the
choice of the edge weights in eqn.(14) plays an important
role in determining the convergence rate of the algorithm. We
consider the case of optimum equal weights (see [4]) in this
paper in which the weight matrix is

W = I − αL (16)

with
α =

2
λ2(L) + λN (L)

(17)

where L is the network Laplacian matrix (see [4] for other
weight design techniques.)
It can be shown that (see [6]) with such a weight assignment
we have

‖ x(i)− xavg ‖2 ≤ ρi ‖ x(0)− xavg ‖2 (18)



whereρ is given by

ρ =
1− λ2(L)/λN (L)
1 + λ2(L)/λN (L)

=
1− γ

1 + γ
(19)

For connected graphs,|ρ| < 1 and we have convergence
(see [6]). From eqns.(18 and 19) it follows that, for faster
convergence,ρ should be as small as possible, which in turn
implies thatγ should be as large as possible. In other words,

fast convergence⇒ small ρ ⇒ largeγ (20)

V. PERFORMANCEBOUNDS FORDISTRIBUTED

DETECTION

From eqn.(10), we note that the global sufficient statistic
is an average of local statistics. This means that the global
statisticl(y) can be computed using the distributed averaging
algorithm. For this, we set the initial state vector to the local
statistics, i.e., we start the consensus algorithm with

x(0) = [l1(y1)...lN (yN )]T (21)

The state update is given by

x(i + 1) = Wx(i) (22)

whereW is given by eqn.(16). At any timei, we consider the
following test at sensorn,

xn(i)
H1

≷
H0

0 (23)

wherexn(i) is then-th component ofx(i). Let Pn
e (i) denote

the probability of error of the corresponding test. Also, letPe

be the probability of error of the optimum global test (see
eqn.(8).) Then, from Section IV, it follows

lim
i→∞

Pn
e (i) = Pe, n = 1, ..., N (24)

The convergence speed ofPn
e (i) is determined by the conver-

gence speed ofxn(i) to the global statisticl(y), and thus by
the factorγ.
For the simplified case ofm = µ1 and K = σ2I, we now
establish a bound onPn

e (i) in terms ofγ. It can be shown
that (see [6])

Pe = erfc

(
µ
√

N

σ

)
(25)

where erfc(z) = 1√
2π

∫∞
z

e−z2/2dz. Also, it can be shown that
(see [6])

Pe ≤ Pn
e (i) ≤ erfc

(
µ
√

N

σ
√

1 + ρ2i(N − 1)

)
(26)

where ρ is given in eqn.(19). Eqn.(26) shows that the lo-
cal detector achieves the performance of the optimal global
detector if ρ < 1, and, further, that the smallerρ is, the
faster the convergence. From eqn.(20), it follows that for fast
convergenceγ = λ2(L)/λN (L) should be as large as possible
and hence the topology design problem may be stated as

maximizeγ (27)

where the maximization needs to be carried out over the class
of networks meeting the given constraint on the number of
links.

VI. SPECTRUM OFREGULAR GRAPHS ANDRAMANUJAN

GRAPHS

In this section, we state a few results from spectral graph
theory, which motivate the use of non-bipartite Ramanujan
graphs as a candidate for optimal topology.
A regular graphG with N vertices and degreek is a graph with
number of verticesN , where all vertices have the same degree
k. We now state some well-known facts about the spectrum of
regular graphs. LetGN,k be ak-regular graph onN vertices.
Then, we can arrange the eigenvalues of its adjacency matrix
A as (see [11])

k = λ1(A) ≥ λ2(A) ≥ ... ≥ λN (A) ≥ −k (28)

In particular, the multiplicity of the eigenvaluek is equal
to the number of connected components of the graph, and
λN (A) = −k iff the graph is bipartite (see [11].) From
eqn.(28) it follows that

|λj(A)| ≤ k, ∀j ∈ {1, ..., N} (29)

It can be shown that, fork-regular graphs, the Laplacian
eigenvalues (see eqn.(5)) are related to those of the adjacency
matrix by

λj(L) = k − λi(A) (30)

We call an eigenvalue of magnitudek a trivial eigenvalue.
We now state a well-known theorem by Alon and Boppana
(see [12]).

Theorem 1Let {GN(m),k}m≥1 be a family of k-regular
graphs, where the number of verticesN(m) →∞ asm →∞.
Also, letλ(Am) denote the magnitude of the largest non-trivial
eigenvalue of the adjacency matrixAm in absolute value.
Then,

lim inf
m→∞

λ(Am) ≥ 2
√

k − 1 (31)

Thus, assuming that the limit exists, we have, for any family
of k-regular graphs, where the number of verticesN →∞,

lim
N→∞

λ(A) ≥ 2
√

k − 1 (32)

A k-regular graph is called Ramanujan if (see [13])

λ(A) ≤ 2
√

k − 1 (33)

It follows from eqns.(28 and 30) that for a (connected) non-
bipartite Ramanujan graph of degreek (see [6])

λ2(L) ≥ k − 2
√

k − 1 (34)

λN (L) ≤ k + 2
√

k − 1 (35)

Hence, for (connected) non-bipartite Ramanujan graphs,

γ =
λ2(L)
λN (L)

≥ k − 2
√

k − 1
k + 2

√
k − 1

(36)



In the sequel, whenever we mention Ramanujan graphs, we
actually refer to connected non-bipartite Ramanujan graphs.
Also, as mentioned earlier, all the graphs considered in this
paper are connected.
There exist explicit constructions of infinite families of non-
bipartite Ramanujan graphs (see [13]), and each graph of the
family satisfies the lower bound onγ given in eqn.(36). It
follows from eqn.(31) that this lower bound is in fact an
asymptotic (in the number of nodesN ) upper bound onγ
for families of k-regular graphs (see [6]), and hence the class
of non-bipartite Ramanujan graphs are optimal asymptotically
among the class ofk-regular graphs. This suggests that the
non-bipartite Ramanujan graphs are suitable candidates for
topology design in large sensor networks.

VII. R EGULAR VS NON-REGULAR GRAPHS

In this section, we present an inequality relatingγ to the
degree distribution of graphs, which shows that heterogeneity
in the degree distribution does not favor large values ofγ. We
recall two results from spectral graph theory. For any graph
G with N vertices, let us define

dmin = min(dj , j ∈ {1, ..., N}) (37)

where,dj is the degree of thej-th node (see eqn.(3).) Also,

dmax = max(dj , j ∈ {1, ..., N}) (38)

In other words,dmin anddmax are the minimum and maximum
degrees ofG respectively. Then, we have (see [14])

λ2(L) ≤ N

N − 1
dmin (39)

and
λN (L) ≥ N

N − 1
dmax (40)

From eqns.(39) and 40) it follows that, for any graphG,

γ =
λ2(L)
λN (L)

≤ dmin

dmax
(41)

Eqn.(41) shows that, for graphs with large heterogeneity
(large spread) in degree distribution, the value ofγ is small
and hence such networks are not good from the point of view
of consensus algorithms.

VIII. E XPLICIT CONSTRUCTIONS OFRAMANUJAN

GRAPHS

In this section, we provide constructions of Ramanujan
graphs available in the literature. Explicit constructions of
infinite families of Ramanujan graphs exist for the case,
where k − 1 is a prime (see [13], [15]) or a prime power
(see [16]). In this paper, we consider two constructions of
non-bipartite Ramanujan graphs based on Lubotzky-Phillips-
Sarnak (LPS) (see [13]), and call them LPS-I and LPS-II. First
we summarize some concepts from algebra, needed for the
development of the rest of the paper. We also briefly outline

the procedure of Cayley graph construction, which provides a
way of constructing regular graphs using group theory.

A. Algebraic Concepts

We start with the definition of a group (see [17].)

Definition 2 (Group) : We define a groupX to be a non-
empty set of elements, equipped with a binary operation “.”,
satisfying the following properties:

1) a.b ∈ X, ∀a, b ∈ X (closure property)

2) a.(b.c) = (a.b).c, ∀a, b, c ∈ X (associative property)

3) There exists an elemente ∈ X, called the identity
element, such thata.e = e.a = a, ∀a ∈ X

4) For eacha ∈ X, there exists an elementa−1 ∈ X, called
the inverse ofa, such thata.a−1 = a−1.a = e

We are now in a position to describe Cayley graphs as follows.

Cayley Graphs: We start with a groupX, consisting of
N elements and ak-element symmetric subset,S ⊂ X (by a
symmetric subset we mean,s ∈ S ⇒ s−1 ∈ S.) The setS
is often called the set of generators in the literature. We now
form a graphG = (V,E) from X, by choosing the vertex
setV = X, and(u, v) ∈ E iff vu−1 ∈ S. It follows that the
graphG, formed in this way, isk-regular (see [18]).

We now summarize some number theory concepts, required
in the sequel.

Definition 3 (Congruence): The statementa ≡ b mod (n)
implies thata− b is divisible byn.

Definition 4 (quadratic Residue): We call a is a quadratic
residue modulob, if there exists an integerc, such that
c2 ≡ a mod (b).

Definition 5 (Legendre Symbol): We define the Legendre
symbol

(
a
p

)
for an integera and a primep as

(
a

p

)
=





0 if p dividesa
1 if a is a quadratic residue modulop

−1 if a is a quadratic non-residue modulop
(42)

For the LPS-I construction, we also need to describe the
Projective Special Linear group PSL(2,Z/qZ).

PSL(2,Z/qZ): The set Z/qZ = {0, 1, .., q − 1} is the
field of integers moduloq, whereq is a prime. We start by
considering the set of2×2 matrices with entries from the field
Z/qZ, such that determinants are non-zero quadratic residues
modulo q. We then can define an equivalence relation on
this set, where two matrices belong to the same equivalence
class, if one is a non-zero scalar multiple of the other (here



scalar refers to an element of the fieldZ/qZ.) The set of all
these equivalence classes is the group PSL(2, Z/qZ), see [19].

We are now in a position to give the non-bipartite Ramanujan
graph constructions as follows.

B. LPS-I Graphs

Let us take two unequal primesp and q, congruent to 1
modulo 4, such that the Legendre symbol

(
p
q

)
= 1. Let X

be the Projective Special Linear group, PSL(2,Z/qZ). It can
be shown that|X| = q(q2−1)

2 (see [13].) The LPS-I graph
is a Cayley graph over the groupX of order N = |X|
and degreek = p + 1. The set ofp + 1 generators for this
construction is given as follows. We choose an integeri, such
that i2 ≡ −1 mod (q) (the fact thatq is a prime congruent
to 1 modulo 4 guarantees the existence of such ani.) Also,
let β = (a0, a1, a2, a3) be a solution of the equation of the
diophantine equation

a2
0 + a2

1 + a2
2 + a2

3 = p (43)

It can be shown from a theorem by Jacobi (see [13]) that there
arep+1 solutions of this equation, witha0 > 0 and odd, and
aj even forj = 1, 2, 3. To each such solutionβ we assign a
2× 2 matrix, β̃, in PSL(2,Z/qZ) as

β̃ =
(

a0 + ia1 a2 + ia3

−a2 + ia3 a0 − ia1

)
(44)

Thesep + 1 matrices form the generator setS, and the LPS-I
graph is produced by the action ofS on PSL(2,Z/qZ). The
graph G produced in this way is a connected non-bipartite
Ramanujan graph, with number of verticesN = q(q2−1)

2 and
degreek = p + 1. As an example of an LPS-I construction,
we may choosep = 13 andq = 17. It follows thatp andq are
congruent to 1 modulo 4 and

(
p
q

)
= 1. In this case, we get

a connected non-bipartite Ramanujan graph of degreek = 14
and orderN = 2448.
The only drawback with the LPS-I graphs is that the number
of vertices grows asO(q3) and becomes very large even for
moderateq. We now consider another construction from [13],
which we call LPS-II, for which the number of vertices grows
only linearly.

C. LPS-II Graphs

Starting with two unequal primesp and q, with
(

p
q

)
= 1,

we form the Projective Line,P 1(Fq), as

P 1(Fq) = {0, 1, ..., q − 1,∞} (45)

which contains the field of integers moduloq, with an ad-
ditional symbol∞. The LPS-II graph is produced by the
action of the setS of p + 1 generators (considered in the
LPS-I construction) onP 1(Fq) in a linear fractional way. The
graphs, thus obtained, are connected non-bipartite Ramanujan
with degreek = p+1 and number of verticesN = q+1. Fig. 1
shows an LPS-II graph withN = 62 andk = 6 (obtained by
choosingp = 5 andq = 61.)

Pajek

Fig. 1. LPS-II graph with number of verticesN = 62 and degreek = 6
(figure generated using software Pajek.)

Methods for the explicit construction of infinite families of
Ramanujan graphs constitute an active research field and there
are constructions for arbitraryN andk, which are Ramanujan
with very high probability. As an example see [20], which
uses a new type of graph product to construct good expander
graphs.

IX. N UMERICAL STUDIES

In this section we present numerical studies on the con-
vergence properties of different networks, with respect to the
distributed detection problem. In Section V, we have shown
that the local probability of error,Pn

e (i), at each sensorn,
converges to the global probability of error,Pe. We define
Tc to be the number of iterations (averaged over all nodes)
required to converge to within10% of the global probability
of error. The comparison metric among different probabilities
is then the convergence speed,Sc, given by

Sc =
1
Tc

(46)

For a graphG with N vertices andM edges, we define the
average degreekavg as

kavg =
2M

N
(47)

It is to be noted that, fork-regular graphs, the average degree,
kavg = k. We now compare the convergence properties of the



non-bipartite Ramanujan graphs (in particular LPS-II graphs)
with those of regular ring lattice networks, random Erdös-
Reńyi networks, and small world (Watts-Strogatz) networks.
We first give a brief description of these graphs.

A. Regular Ring Lattice (RRL)

These are highly structuredk-regular graphs where theN
vertices are arranged on a circle, and each vertex is connected
to its k/2 nearest neighbors on either side.

B. Erdös-Reńyi graphs (ER)

These are obtained by randomly choosing (uniformly)M =
Nkavg

2 edges out ofN(N−1)
2 possible edges (see [21]).

C. Watts-Strogatz (WS-I)

These are small-world networks. A WS-I graph withN
vertices and average degreekavg is constructed by randomly
rewiring the edges of an RRL graph withN vertices and
degreekavg, with a rewiring probability0 ≤ pw ≤ 1 (see [22].)
All the comparison studies are based on a detection environ-
ment with the following parameters (see Section V):

m = µ1, K = σ2I (48)

with a −25 dB SNR (signal-to-noise ratio).
Fig. 2 compares the convergence properties of LPS-II

graphs with RRL graphs. We plot the ratio of the convergence
speeds, i.e.,

Sc(LP S−II)

Sc(RRL)
, for different values of the number

of vertices N , keeping the average degreekavg = 18. It
follows from the plot that the LPS-II graphs perform orders
of magnitude better than the RRL graphs, and, in particular,
the relative performance of the LPS-II graphs over the
RRL graphs increases steadily with increasingN . In Fig. 3
we compare the LPS-II graphs with the Erdös-Reńyi (ER)
graphs. Here, also, we keepkavg = 18 and vary the number
of nodes. Since the ER constructions are random, for each
N , we generate 250 different graphs, and plot the maximum,
average, and minimum. We note that the LPS-II graphs
perform much better than these random graphs, even for
finite values ofN , and the performance becomes better with
increasing N . Finally, in Fig. 4 we compare the LPS-II
graphs with WS-I small world graphs. Specifically, we fix
the number of vertices atN = 6038 and average degree at
kavg = 18 and generate WS-I graphs for different rewiring
probabilitiespw. Here, also, we note that the LPS-II graph
performs better than the best WS-I graph (see [6] for more
detailed numerical studies.)
These numerical studies show that the non-bipartite
Ramanujan graphs (in particular, the LPS-II graphs)
outperform topologies with nearest neighbor connectivity,
completely random networks, and graphs with small-world
type of connectivity, in terms of convergence speed. We
see that the relation betweenγ and the degree distribution,
given in eqn.(41), plays an important role in explaining the
superiority of Ramanujan graphs over the random networks.
Specifically, it points out that graphs with heterogenous
degree distributions (for example, Poisson, power-law tailed),
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Fig. 2. Ratio of convergence speed of LPS-II graphs to RRL graphs for
different values ofN andk = 18.

cannot have very high values ofγ.

X. CONCLUSIONS

In this paper, we study the problem of topology design
for distributed detection in sensor networks. We reduce the
connectivity network design problem to a spectral graph
design problem, which shows that optimizing convergence
speed is equivalent to maximizing the eigenratioγ. Using
results from spectral graph theory, we show that the class
of non-bipartite Ramanujan graphs are essentially optimal,
in an asymptotic sense (in the number of sensors.) We also
analytically establish the fact that a large heterogeneity
in degree distribution does not favor good convergence
rates. Hence, random networks with Poisson or power-law
degree distributions are not optimal from the point of view
of convergence speed. We supplement these facts through
numerical studies, which show that, even for finite values of
the number of sensorsN , the non-bipartite Ramanujan graphs,
outperform topologies with nearest neighbor connectivity,
completely random networks, and networks with small-world
properties.
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