IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Figure—Ground Segmentation from Occlusion
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Abstract

Layered video representations are increasingly popular, see [1] for a recent review. Segmentation of moving
objects is a key step for automating such representations. Current motion segmentation methods either fail to segment
moving objects in low textured regions or are computationally very expensive. This paper presents a computationally
simple algorithm that segments moving objects even in low texture/low contrast scenes. Our method infers the moving
object templates directly from the image intensity values, rather than computing the motion field as an intermediate
step. Our model takes into account thigidity of the moving object and thecclusionof the background by the
moving object. We formulate the segmentation problem as the minimizationpehalized likelihoodcost-function
and present an algorithm to estimate all the unknown parameters: the motions, the template of the moving object,
and the intensity levels of the object and of the background pixels. The cost function combriireesraum likelihood
estimation term with a term that penalizes large templates. The minimization algorithm performs two alternate steps
for which we derive closed-form solutions. Relaxation improves the convergence even when low texture makes it
very challenging to segment the moving object from the background. Experiments demonstrate the good performance

of our method.
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|I. INTRODUCTION

Modern content-based video representations demand efficient methods to infer the contents of video sequences,
like the shape and texture of objects and their motions. Some existing methods lead to good results, see for
example [2], [3], but require extensive human interaction. Fully automatic methods continue to be lacking and are
of major interest. This paper considers the automatic segmentation of moving objects from a video sequence.

Motivation Segmentation of image sequences into regions with different motions is of interest to a large number
of researchers. There is the need for segmentation methods thsivgrke and perform well, in particular, when
the moving objects contain low-textured regions or there is low contrast between the object and the background.
We present here a computationally simple method that performs well under these conditions: low-texture and
low-contrast. Our algorithms use as a key assumption that the moving objedtigiidrebjects.

Several papers on video coding develop computationally simple algorithms for motion segmentation by processing
two consecutive frames only. They predict each frame from the previous one through motion compensation [4].
Because their focus is on compression and not in developing a high level representation, these algorithms fail to
provide accurate segmentation, in particular with low textured scenes; regions with no texture are considered to
remain unchanged. For example, we applied the algorithm in [5] to segment a low textured moving object, a car, in
a traffic video clip; see Fig. 1 where we show on the left two frames of this video clip. The template of the moving
car as found by the algorithm in [5] is on the right of Fig. 1. As we see, due to the low texture of the car, the
regions in the interior of the car are misclassified as belonging to the background, leading to a highly incomplete

car template.

Fig. 1. Motion segmentation in low texture.

Related work Background-estimation methods are very appealing approaches to segmentation of moving objects
due to their simplicity. These methods infer the moving object template by subtracting the input image from
a previously estimated background image [6], [7], [8], [9], [10], [11]. They generally estimate the background
from the data by attempting to classify each pixel as either foreground or background. Although background-
estimation succeeds in many relevant situati@ng, surveillance applications [12], it requires robust estimation of
the background, which limits its application. Their major failing is that generally they do not exploit the structure
of the object—they are usually pixel-wise independent.

In computer vision, commonly, motion-based segmentation copes with low textured scenes by coupling motion-

based segmentation with prior knowledge about the scenes as in statistical regularization techniques, or by combining
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motion with other attributes. For example, [13] uses a Markov Random Field (MRF) prior and a Bayesian Maximum

a Posteriori (MAP) criterion to segment moving regions. The authors suggest a multiscale MRF to resolve large
regions of uniform intensity. In [14], the contour of a moving object is estimated by fusing motion with color
segmentation and edge detection. In general, these methods lead to complex and time consuming algorithms. Another
approach to object segmentation uses active contours [15], [16], including methods that describe the contour as the
level set of a real-valued function defined in the image domain [17], see also [18], [19] for applications to bioimaging.
Besides edge information, some of these methods also account for prior models on the intensity values of the image
inside and outside the contour [20], [21]. These methods, as the pioneering work of Mumford and Shah [22], estimate
the contour of the object by minimizing a global cost function, thus leading to robust estimates. The computational
cost is their major drawback—the minimization of the cost function resorts to calculus of variations [23] with the
contour evolving according to partial differential equations [24], which makes the algorithms rather expensive.

Irani, Rousso, and Peleg use temporal integration. They average the images by registering them according to
the motion of the different objects in the scene [25], [26]. After processing a number of frames, each of these
averaged images should show only one sharp region corresponding to the tracked object. This region is found
by detecting the stationary regions between the corresponding averaged image and the current frame. Unless the
background is textured enough to blur completely the averaged images, some regions of the background can be
classified as stationary. In this situation, the method in [25], [26] overestimates the template of the moving object.
This is particularly likely to happen when the background has large regions with almost constant color or intensity
level.

Layered models [27], [28], [29], [30], [31], [32], [33], [34] brought new approaches to the segmentation of moving
objects. Tao, Sawhney, and Kumar proposed a filtering approach where a 2-D Gaussian shape model is updated
from frame to frame [30]. This work was extended to the case where the background is described by a set of layers
rather than a single one [34]. In contrast to online filtering, Jojic and Frey proposed an offline approach to infer
flexible templates [32]. They use probabilistic learning to estimate robustly the state of the system. Since the exact
posterior for the problem results intractable, they use variational inference to compute a factorized approximation
and non-linear optimization techniques coupled into an EM algorithm [35].

Proposed approachLike the simple background-estimation algorithms, our approach exploits the fact that the
moving object occludes the background. We formulate segmentation in a global way, as a parameter estimation
problem and derive a computationally simple algorithm. Because in many interesting situations the 2-D shape of
the moving object does not change significantly across a number of consecutive feamemjoving cars, see
Fig. 1, we exploit the objeatigidity. In the paper we show howacclusion+rigidityenable a computationally simple
algorithm to jointly estimate the unknown background and rigid shape of the moving object directly from the image
intensity values.

Our segmentation algorithm is derived as an approximationgeralized likelihoodPL) estimate of the unknown
parameters in the image sequence model: the motions; the template of the moving object; and the intensity levels

of the object pixels (object texture) and of the background pixels (background texture). The joint estimation of
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this complete set of parameters is a very complex task. Motivated by our experience with real video sequences,
we decouple the estimation of the motions (moving objects and camera) from that of the remaining parameters.
The motions are estimated on a frame by frame basis and then these estimates are used in the estimation of the
remaining parameters. Then, we introduce the motion estimates into the penalized likelihood cost function and
minimize it with respect to the remaining parameters.

The estimate of the texture of the object is obtained in closed form. To estimate the texture of the background
and the template of the moving object, we develop a fast two-step iterative algorithm. The first step estimates the
background texture for a fixed template—the solution is obtained in closed form. The second step estimates the
object template for a fixed background—the solution is given by a simple binary test evaluated at each pixel. The
algorithm converges in a few iterations, typically three to five iterations.

Our penalized likelihood cost function balances two terms. The first term isMdrémum Likelihood ML) cost
function. It is a measure of the error between the observed data and the model. The second term measures the
size of the moving object,.e., the area of its template. The minimum of the first teiire, the ML estimate, is
not always sharply defined. In fact, for regions with low texture, the likelihood that this region belongs to the
background is very similar to the likelihood that it belongs to the moving object. The penalization term addresses
this difficulty and makes the segmentation problem well-posed: we look fosthallesttemplate that describes
well the observed data.

The penalization term has a second very relevant impact—it improves the convergence of the two-step iterative
segmentation algorithm. Usually, with iterative minimization algorithms, it is important to have a good initial guess
in order for the algorithm to exhibit good convergence. In our algorithm, we adopt a relaxation strategy for the
weight of the penalization term. This enables us to avoid computationally expensive methods to compute the initial
estimates. Our experience shows that this strategy makes the behavior of the algorithm quite insensitive to the initial
guess, so much so that it suffices to initialize the process with the trivial guess of having no moving bbject,
every pixel is assumed to belong to the background.

Although related to the work of Irani, Rousso, and Peleg [25], [26], our approach models explicitgdhesion
of the background by the moving object, and we use the frames available to estimate the moving object template
rather than just a single frame. Even when there is little contrast and the color of the moving object is very similar
to the color of the background, our algorithm resolves accurately the moving object from the background, because
it integrates over time existing small differences. Our approach also relates to the work of Jojic and Frey [32] in
the sense that both approaches model the occlusion of the background by the moving object. However, our work
is concerned wittrigid shape, in contrast with [32] that is concerned wikxible shape. We can then exploit the
rigidity of the object to derive a vergimplealgorithm that estimates with high accuracy the shape of the moving
object, where all steps admit closed-form solutions. Although our work applies only to rigid moving objects, the
simplicity of our algorithm enables us to consider more general class of motions—translations and rotations—
than [32] that restricts the motions to single pixel translations. A final comment on our approach regards offline

versus online and real time. Our approach, as [32], builds the object template by processing several frames. This
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leads to an inherent delay so that we can accumulate a sufficient number of frames to resolve template ambiguities
and to achieve high accuracy. The number of frames, and the corresponding delay, depends on the level of contrast
between the moving object and the background and on the object texture; it may be acceptable or not acceptable
in close-to-real time applications. In several sequences we tested, this humber is on the order of tens of frames,
requiring buffering the video from a fraction of a second to a few seconds. For example, with the “road traffic”
video clip in section V, the maximum delay ist frames.

Paper organization In section I, we state the segmentation problem. We define the notation, develop the
observation model, and derive the penalized likelihood cost function. In section Ill, we address the minimization
of the cost function. To provide insight into the problem, we start by studying the ML estimation probkem,
when no penalizing term is present; we detail a two-step iterative method that minimizes this ML term of the cost
function. Section IV deals with penalized likelihood estimation. We discuss when ML estimation is ill-posed and
address the minimization of the complete penalized likelihood cost function. In section V, we describe experiments
that demonstrate the performance of our algorithm. Section VI concludes the paper.

The model used in the paper and described in section Il was introduced in [36]. Preliminary versions of the

ML-estimation step were presented in [36], [37], [38].

Il. PROBLEM FORMULATION

We discuss motion segmentation in the contexiGafnerative VidedGV), see [39], [40], [41], [42]. GV is a
framework for the analysis and synthesis of video sequences. In GV the operational units are not the individual
images in the original sequence, as in standard methods, but rather the world images and the ancillary data. The
world images encode the non-redundant information about the video sequence. They are augmented views of the
world—background world image—and complete views of moving objects—figure world images. The ancillary data
registers the world images, stratifies them at each time instant, and positions the camera with respect to the layering
of world images. The world images and the ancillary data are the generative video representation, the information
that is needed to regenerate the original video sequence. We formulate the moving object segmentation task as
the problem of generating the world images and ancillary data for the generative video, [39], [40], [41], [42],
representation of a video clip.

Motion analysis toward three-dimensional model-based video representations are treated in [43], [44].

A. Notation

We describe an image by a real-valued function defined on a subset of the real plane. The image space is a
set{I: D — R}, wherel is an image,D is the domain of the image, anR is the range of the image. The
domainD is a compact subset of the real plaRé, and the rangeéR is a subset of the real linR. Examples of
images in this paper are the franfein a video sequence, denoted by, the background world image, denoted

by B, the moving object world image, denoted @y and the moving object template, denotedbyThe imaged ;,
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B, andO have rangeR = R. They code intensity gray levélsThe templateT' of the moving object is a binary
image,i.e, an image with rang& = {0, 1}, defining the region occupied by the moving object. The domain of the
imagesly andT is a rectangle corresponding to the support of the frames. The domain of the background world
imageB is a subsefD of the plane whose shape and size depends on the camera maio®, is the region of

the background observed in the entire sequence. The dofaifi the moving object world image is the subset

of R? where the templatd takes the valud, i.e, D = {(z,y) : T(z,y) = 1}.

In our implementation, the domain of each image in the video sequence is rectangularly shaped with its size
fitting the needs of the corresponding image. Although we use a continuous spatial dependence for commaodity, in
practice, the domains are discretized and the images are stored as matrices. We index the entries of each of these
matrices by the pixel$z, y) of each image and refer to the value of imdgat pixel (z, y) asI(z,y). Throughout
the text, we refer to the image product of two imagksand B, i.e, the image whose value at pixék, y)
equalsA(z,y)B(z,y), as the imageAB. Note that this corresponds to the Hadamard product, or elementwise
product, of the matrices representing imagesand B, not their matrix product.

We consider 2-D parallel motionse., all motions (translations and rotations) are parallel to the camera plane. We
represent this type of motions by specifying time varying position vectors. These vectors code rotation-translation
pairs that take values in the group of rigid transformations of the plane, the special Euclidean group SE(2). The
image obtained by applying the rigid motion coded by the vegioto the imagel is denoted byM (p)I. The
image M (p)I is also usually called the registration of the imaaccording to the position vectgs. The entity
represented byM(p) is seen as a motion operator. In practice, they) entry of the matrix representing the
image M (p)I is given by M(p)L(x,y) = I(fs(p: x,y), f,(p: z.y)) where f.(p;z,y) and f,(p; z,y) represent
the coordinate transformation imposed by the 2D rigid motion. We use bilinear interpolation to compute the intensity
values at points that fall in between the stored samples of an image.

The motion operators can be composed. The registration of the irhvé@e)I according to the position vectey
is denoted byM(qp)I. By doing this we are using the notatiayp for the composition of the two elements
of SE(2),q andp. We denote the inverse qf by p#, i.e, the vectorp? is such that when composed withwe
obtain the identity element of SE(2). Thus, the registration of the im&ge)I according to the position vectgs”
obtains the original imagé, so we haveM (p#p)I = M (pp#)I = I. Note that, in general, the elements of SE(2)
do not commutej.e, we haveqp # pq, and M(qp)I # M(pq)I. Only in special cases is the composition of
the motion operators not affected by the order of their application, as for example when the motmasy are
pure translations or pure rotations.

The notation for the position vectors involved in the segmentation problem is as follows. The pgatepresents
the position of the background world image relative to the camera in fraAnighe vectorq; represents the position
of the moving object relative to the camera in frarfie

IFor simplicity, we take the pixel intensities to be real valued, although, in practice, they are integer valued in thg0rangé5]. The
analysis in the paper is easily extended to color images by specifying color either by the perceptual attrighteess hue andsaturation

or by the primary colorsed, green andblue, see [45].
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B. Observation model

The observation model considers a scene with a moving object in front of a moving camera with 2-D parallel
motions. The pixel(z, y) of the imagel; belongs either to the background world imaBeor to the object world
imageO. The intensityI;(xz, y) of the pixel (z,y) is modeled as

Ij(z,y) = M(p})B(z,y) [1 - M(a})T(z,y)| + M(a})O(x,y) M(a})T(z,y) + We(z,y), (1)

whereT is the moving object templatgyy and gy are the camera pose and the object position, Wg stands
for the observation noise, assumed Gaussian, zero mean, and white.

Equation (1) states that the intensity of the piXel,y) on frame f, I+(z,y), iS a noisy version of the true
value of the intensity level of the pixglz,y). If the pixel (x,y) of the current image belongs to the template
of the object, T, after the template is compensated by the object posiiien, registered according to the vec-
tor qf, then ./\/l(q?»&)T(x,y) = 1. In this case, the first term of the right hand side of (1) is zero, and the
image intensityl;(z,y) reduces to a noisy version of the second term. This second tamﬁq}‘?&)O(x,y), is
the intensity of the pixel(z,y) of the moving object. In other words, the intensify(z,y) equals the object
intensityM(q}‘?&)O(x,y) corrupted by the nois@V(z,y). On the other hand, if the pixél:, y) does not belong
to the template of the object/,\/l(q}‘?&)T(x,y) = 0, the pixel belongs then to the background world imd8e
registered according to the inverpé of the camera position. In this case, the intendityz, y) is a noisy version
of the background intensil}A/l(p}‘?&)B(x,y). We want to emphasize that, rather than modeling simply the two
different motions, as usually done in other approaches that process only two consecutive frames, expression (1)

models theocclusionof the background by the moving object explicitllso, equation (1), which composites the

image in the sequence by overlaying on the background image the image of the moving object at the appropriate
position, assumes that the object is opaque. Transparency could be taken into consideration by affecting the middle
term in (1) with a transparency index. We do not pursue this here.

Expression (1) is rewritten in compact form as
1; = {M@E})B [1- M(af)T| + M(a})0 M(af)T+W,} H, )

where we assume thd§(x,y) = 0 for (z,y) outside the region observed by the camera. This is taken care of in
equation (2) by the binary imagH whose(x,y) entry is such thaH(x,y) = 1 if pixel (z,y) is in the observed
imagesI; or H(z,y) = 0 if otherwise. The imagd is constant with valud.

Basically, the model in (2) describes the images in the sequence as a noisy version of a collage of 2-D images:
the background, described by the background world imBgand the moving object, described by the object world
image O. This model, which we have proposed in [36], [37], [38] is similar to the one used by Jojic and Frey
in [32] to capture flexible moving objects. We will see that modeling the templatef the moving object as a
fixed binary matrix, i.e., that the object is rigid, enables us to develop a very simple segmentation algorithm.

In (2), each image in the sequence is obtained by first registering the background with respect to the camera

position, as given by, then registering the object with respect to the background, as giveqybgand, finally,
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by clipping the composite of the background plus object by the field of view of the camera—opgfatdince
the background is first registered according to the camera motion, the clipping opHEratoes not depend on the
frame indexf.

Fig. 2 illustrates model (2) for 1-D framek;(x), wherex is now a scalar. The top plot, a sinusoid, is the
intensityB(x) of the background world image. The templ&éx) of the moving object is shown on the left of the
second level as the union of two disjoint intervals. The intensity 1€¥ét) of the moving object is also sinusoidal,
and is shown on the right plot on the second level. The frequency of this sinusoidal intensity is higher than the
frequency of the background intensiB/(x). The camera windowH is the interval shown in the third level. It clips
the region observed by the camera. The two bottom curves show two frinsesll,. They are given by a noise-
free version of the model in expression (2). In between these two frames, both the camera and the object moved:
the camera moved pixels to the right, corresponding to the background motion in the opposite direction, while the
object moved3 pixels to the right relative to the camera. The observation model of expression (2) and the illustration
of Fig. 2 emphasize the role of the building blocks involved in representing an image seqiignde< f < F'}
according to the generative video framework, [39], [40], [41], [42].

B(x)
T(z) O(x)
/—\/—\ /AVANASN
H(z)
\
Il(SC)
IQ(SC)

Fig. 2. lllustration of the 1-D generative video image formation and observation model.

C. Energy minimization: Penalized likelihood estimation

Given F frames{I;, 1 < f < F'}, we want to estimate the background world im&jethe object world imag®,
the object templatd’, the camera posdp, 1 < f < F'}, and the object positiongy ¢, 1 < f < F'}. The quantities
{B,0,T,{ps},{as}} define the generative video representation, [39], [40], [41], [42], the information that is
needed to regenerate the original video sequence.

The problem as stated may be very difficult. As an example, consider that the object moves in front of a
constant intensity backgrounde,, the background has no texture. This image sequence is indistinguishable from

an image sequence where the object template is arbitrarily enlarged with pixels whose intensity equals the intensity
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AGUIAR AND MOURA: FIGURE-GROUND SEGMENTATION FROM OCCLUSION 9

of the background. Without additional knowledge, it is not possible to decide whether a pixel with intensity equal
to the background intensity belongs to the background or to the moving objectno algorithm can segment
unambiguously the moving object. Although extreme, this example illustrates the difficulties of segmenting objects
from backgrounds that have large patches with low texture (see the example in Fig. 1).

To address this issue, we assume that the object is small. This is in agreement with what the human visual
system usually implicitly assumes. We incorporate this constraint into the segmentation problem by minimizing a
cost function given by

Cpr, = Cur, + OzAI‘G&(T) , (3)

where Cyyy, is the ML cost function, derived belowy is a non-negative weight, andirea(T) is the area of the
template. Minimizing the costp;, balances the agreement between the observations and the modelC{tgrm

with minimizing the area of the template. The temnArea(T) can be interpreted as a Bayesian prior and the
cost function (3) as the negative log posterior probability whose minimization leads to the Maximum a Posteriori
estimate, as usual in Bayesian inference approaches [46]. It can also be motivated through information-theoretic
criteria like Akaike's AIC [47] or the Minimum Description Length principle [48]. Different basic principles lead

to different choices for the parameterbut the structure of the cost function is still as in (3). Statisticians usually

call the generic form (3) genalized likelihoodPL) cost function [49]. Our choice for the weight is discussed

in section IV.

From the observation model (2) and the Gaussian white noise assumption, the likelihood is given by

p(B,O, T {ps,as} {I;}) = [[ N (Ls(z,9); MPF)B(2,9)[1-M(a})T(2,9)] + M@} )O(@,y) M@ T(w,9),0%) . @
fiz,y

By maximizing the logarithm of the likelihood (4), we derive the ML term of the penalized likelihood cost
function (3) ad

F
= [ [ > {15(2,9) = MEF)B(.9) [1 - M@} T, v)] - M@})O@,y) M) T )} H, ) dedy, )

where the inner sum is over the full set 6fframes and the outer integral is over all pixels.

The estimation of the parameters of (2) using fidrames rather than a single pair of images is a distinguishing
feature of our work. Other techniques usually process only two or three consecutive frames. We use all frames
available as needed. The estimation of the parameters through the minimization of a cost function that involves
directly the image intensity values is another distinguishing feature of our approach. Other methods try to make
some type of post-processing over incomplete template estimates. We process directly the image intensity values,
through penalized likelihood estimation.

By describing the shape of the moving object by the binary tempBtaeve are able to express the ML cost
function as in (5),.e, in terms of an integral whose region of integration is independent of the unknown shape.

This enables developing a computationally simple algorithm to estimate the shape of the object. The same type of

2We use a continuous spatial dependence for simplicity. The variablesdy are continuous whilg is discrete. In practice, the integral is

approximated by the sum over all the pixels.
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idea has been used in the context of the single-image intensity-based segmentation problem, for example, Ambrosio
and Tortorelli [50] adapted Mumford and Shah theory [22] by using a continuous binary field instead of a binary
edge process.

The minimization of the functional’p1, in (5) with respect to the set of generative video constry@sO, T}
and to the motiond{ps},{as},1 < f < F} is still a highly complex task. To obtain a computationally feasible
algorithm, we simplify the problem. We decouple the estimation of the mot{dms } , {qs},1 < f < F'} from
the determination of the generative video constrydds O, T}. This is reasonable from a practical point of view
and is well supported by our experimental results with real videos.

The rationale behind the simplification is that the motion of the object (and the motion of the background) can be
usually inferred without knowing precisely the object template. To better appreciate the complexity of the problem,
consider an image sequence with no prior knowledge available, except that an object moves with respect to an
unknown background. Even with no spatial cues, for example, if the background texture and the object texture are
spatially white noise random variables, the human visual system can easily infer the motion of the background
and the motion of the object from only two consecutive frames. However, this is not the case with respect to the
template of the moving object; to infer an accurate template we need a much higher number of frames that enables
us to easily capture thegidity of the object across time. This observation motivated our approach of decoupling
the estimation of the motions from the estimation of the remaining parameters.

We estimate the motions on a frame by frame basis using a simple sequential method, see [37] for the details. We
first compute the dominant motion in the image, which corresponds to the motion of the background. Then, after
compensating for the background motion, we compute the object motion. We estimate the parameters describing
both motions by using a known motion estimation method, see [51]. After estimating the motions, we introduce the
motion estimates into the penalized likelihood cost function and minimize with respect to the remaining parameters.
Clearly, this solution is sub-optimal, in the sense that it is an approximation to the penalized likelihood estimate of
the entire set of parameters, and it can be thought of as an initial guess for the minimizer of the penalized likelihood
cost function given by (5). This initial estimate can then be refined by using a greedy approach. We emphasize that

the key problem we address in this paper is finding the initial guess in an expedite way, not the final refinement.

I1l. M INIMIZATION PROCEDURE

In this section, we assume that the motions have been correctly estimated and are known. In reality, the motions are
continuously estimated. Assuming the motions are known, the problem becomes the minimization of the penalized
likelihood cost function with respect to the remaining parametees, with respect to the template of the moving

object, the texture of the moving object, and the texture of the background.

A. Two-step iterative algorithm

Due to the special structure of the penalized likelihood cost function, we can express explicitly and with no

approximations involved the estima@ of the texture of the object world image in terms of the templBteDoing
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this, we are left with the minimization of'p;, with respect to the templat® and the texture of the background
world imageB, still a nonlinear minimization. We approximate this minimization by a two-step iterative algorithm:

() in step one, we solve for the backgroullwhile the templateT is kept fixed; and (ii) in step two, we solve

for the templateT while the background is kept fixed. We obtain closed-form solutions for the minimizers in
each of the steps (i) and (ii). The two steps are repeated iteratively. The vatug;oflecreases along the iterative
process. The algorithm proceeds till every pixel has been assigned unambiguously to either the moving object or
to the background.

The initial guess in iterative algorithms is very relevant to the convergence of the algorithm—a bad initial guess
may lead to convergence to a local optimum. As an initial guess, we may start with an estimate for the background
like the average of the images in the sequence, including or not a robust statistic technique like outlier rejection,
see for example [52]. The quality of this background estimate depends on the occlusion level of the background in
the images processed. In [37], we propose a more elaborate technique that leads to better initial estimates of the
background. However, sophisticate ad-hoc methods to recover the background result in computationally complex
algorithms. In this paper, instead of using these algorithms, we use a continuation niethade relax the cost
function. We start from a cost for which we know we can find the global minimum, and then we gradually change
the cost, keeping track of the minimum, to end at the desired cost function. Due to the structure of the penalized
likelihood cost function (3), the continuation method is easily implemented by relaxing the weigistin annealing
schedulese.g, stochastic relaxation [53]. We start with a high value fosuch that the minimum of the cost (3)
occurs at’f‘(x,y) = 0, V,,,—it is clear from (3) that this is always possible. Then, we gradually decreased
minimize the corresponding intermediate costs, till we reach the desired cost and the correct segmentation. In
section IV, we discuss the impact of the final valuecof

To provide good insight into the problem, we start by studying the cost function (3) when there is no penalty
term,i.e, whena = 0. The problem reduces to minimizing the tei@r,, i.e, the ML cost function given by (5).

This we do in the remaining of this section. In section IV, we come back to the general penalized likelihood cost

function; we will see that the ML-analysis extends gracefully to penalized likelihood estimation.

B. Estimation of the moving object world image

We express the estima@ of the moving object world image in terms of the object templ&teBy minimiz-
ing Chy, in (5) with respect to the intensity valu®(x, y), we obtain the average of the pixels that correspond to

the point(z, y) of the object. The estimat® of the moving object world image is then
. 1 &
O=T=> Mapl;. (6)
f=1

This compact expression averages the observatloregistered according to the motiayy of the object in the
region corresponding to the templdieof the moving object.

We consider now separately the two steps of the iterative algorithm described above.
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C. Step (i): estimation of the background for fixed template

To find the estimatd of the background world image, given the templdtewe register each term of the sum
of Cyr, in (5) according to the position of the camepg relative to the background. This is a valid operation

because”\, is defined as a sum over all the spdde;, y)}. We get
2
Cnw = //Z (ps)Is — [1 —M(pfq’f)T] — M(psq})O M(pfq?)T(w,y)} M(ps)Hdzdy.  (7)

Minimizing the ML cost functionCyy, given by (7) with respect to the intensity valuB(z,y), we get the
estimateﬁ(x,y) as the average of the observed pixels that correspond to the @ixg) of the background.

The background world image estimaeis then written as
Y [1 - M(pfq}"»&)T] M(p )1y

B |
Yies [1 - M(pfq}"»&)T] M(ps)H

(8)

The estimateB of the background world image in (8) is the average of the observaligneegistered ac-
cording to the background motiop;, in the regions{(x,y)} not occluded by the moving objecte., when
M(pfq?&)T(I,y) = 0. The termM(p;)H provides the correct averaging normalization in the denominator by
accounting only for the pixels seen in the corresponding image.

If we compare the moving object world image estimzﬁegiven by (6) with the background world image
estimateB in (8), we see thaO is linear in the templatél’, while B is nonlinear inT. This has implications

when estimating the templaf€ of the moving object, as we see next.

D. Step (ii): estimation of the template for fixed background

Let the background world imagB be given and replace the object world image estinﬁt@iven by (6) in
expression (5). The ML cost functiof’y;, becomes linearly related to the object templ@teManipulatingCr,

as described next, we obtain

Cymr = // T(z,y) Q(z,y) dz dy + Constant , 9

where Q, which we call thesegmentation matrjxs given by

Q(xay):Ql(xvy)_QQ(xvy) ) (10)
Fof-1
Qi(z,y) = % D> MlapTs(z,y) — M(ag)Ty (=, y)]° (11)
f=2g=1
F 2
=3 [Mlapts(e,y) - M(ap})Bla,y)| (12)
f=1

On first reading, the reader may want to skip the derivation of expressions (9) to (12) and proceed till after

equation (21) on page 13.
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Derivation of expressions (9) to (12)Replace the estima® of the moving object world image, given by (6), in

expression (5), to obtain

al 1 F 2
Cur = //Z {I—M(p}é&)B 1= M@})T| - FZM(q?&qg)IgM(q?&)T} Hdrdy. (13)
=

g=1
Register each term of the sum according to the object posiianThis is valid becaus€'vy, is defined as an

integral over all the spacg(x, y)}. The result is

CmL = //Z{ (as)Iy —M(prjf)B] +

In the remainder of the derivation, the spatial dependence is not important here, and we simplify the notation by

F

M(asp?)B — % > M(qy)I,

g=1

2
T} M(qy)H dz dy . (14)

omitting (z, y). We rewrite the expression fary, in compact form as

F F 2
1
CumL = // Cdzdy, where C= fgl { [If - Bj} + | By — I ggil T, T} Hy, (15)
Ir = M(apIs(e,y), By =M(aspf)B(z,y), and  H; = M(ap)H(z,y). (16)

Manipulating C under the assumption that the moving object is completely visible inEhienages TH; =

T, V), and using the left equality in (19), we obtain

F
C=T {Z [27;8; — B}] — %

f=1

2}+2F:[1,—B,} ;. (17)

f=1

F
g=1

The second term o€ in (17) is independent of the templatB. To show that the sum that multipli€F is the

segmentation matriQ) as defined by expressions (10), (11), and (12), wetesing the notation introduced in (16):

F
Z Z I +17 25T, — Y |27+ BF —21;8By] . (18)
j 2 g=1 f=1
We now need the following equalities:
F 2 F F F -1 F
Nzl =YD 157, and D D> [+ =(F-1)> 1. (19)
g=1 f=19=1 f=29=1 g=1

Manipulating (18), using the two equalities in (19), we obtain

F F f-1
Q=) [21;B; - B}] —% {2134—2221,»19] : (20)
F=1

g=1 f=2g9=1

The following equality concludes the derivation:

F F f—1
> 1, ZzhzZZz,z (21)
g=1 f=2g=1

|
We estimate the templaf€ by minimizing the ML cost function given by (9) over the templdis given the

background world imag®. It is clear from (9), that the minimization af'y1, with respect to each spatial location
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of T is independent from the minimization over the other locations. The tem@‘ahat minimizes the ML cost

function Cyi1, is given by the following test evaluated at each pixel:

T(m,g) =0
Qi(z,y) < Qz(z,y) - (22)
T(z,y) =1

The estimate of the template of the moving object in (22) is obtained by checking which of two accumulated square
differences is greater. In the spatial locations where the accumulated differences between eachfi@mEs

and the background/l(quj&)B are greater than the accumulated differences between each pair of co-registered
framesM(qy)I; and M(q,)I,, we estimatéf‘(:c, y) = 1, meaning that these pixels belong to the moving object.

If not, the pixel is assigned to the background.

The reason why we did not replace the background world image estﬁgteen by (8) in (5) as we did with the
object world image estimat® is that it leads to an expression fohy,, in which the minimization with respect to
each different spatial locatidf (z, y) is not independent from the other locations. Solving this binary minimization
problem by a conventional method is extremely time consuming. In contrast, the minimizatiéf;ofover T
for fixed B results in a local binary test, which makes our solution computationally very simple. This closed-form
solution is rooted on our assumptionrgid shape, which contrasts to tfiexible shape model and the probabilistic
learning approach of [32], where the solution is not in closed form.

We illustrate the template estimation step for a sequence of 1-D frames obtained with the generative video
building blocks of Fig. 2. We synthesized an image sequence by using the model in (2). The camera position was
chosen constant and the object position was set to increase linearly with time. The frame sequence obtained is
represented in Fig. 3. Time increases from bottom to top. From the plot of Fig. 3 we can see that the background

is stationary and the object moves from left to right.

frame sequence

space

Fig_.l_3. 1-D image sequence synthesized with the generative video constructs of Fig. 2. Time increases from bottom to top.
he evolutions of the matrice€); and (32 (in this experiment,Q; and Q- are vectors because the frames

are 1-D) are represented by the plots in Fig. 4. The left plot represents the evolutiQn, afhile the right plot
represent€),. Time increases from bottom to top. At the beginning, when only a few frames have been taken into

account, the values df); and Q. are small and the test (22) is inconclusive. As more observations are processed,
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the absolute value of the difference betwd®n and Q- rises and the test becomes unambiguous, see the evolution
of the segmentation matriQ) = Q; — Q2 shown on the left plot of Fig. 5. When enough frames were processed,

Q takes high positive values for pixels that do not belong to the template of the moving object, and negative values
for pixels belonging to the template, see the shap&adh the top of the left plot of Fig. 5 (the straight line at the

bottom represent€) = 0) and the template of the moving object in Fig. 2.

space Space

Fig. 4. Evolution ofQ; and Q2 for the image sequence of Fig. 3. Time increases from bottom to top.

test

time

Space space
Fig. 5. Template estimation for the image sequence of Fig. 3. Left: evolution of the segmentation@aRight: template estimates. Regions
classified as belonging to the object template are light. Regions classified as not belonging to the template are dark. Middle grey regions

correspond to the test (22) being inconclusive. In both plots, time increases from bottom to top.
On the right plot of Fig. 5, we show a grey level representation of the evolution of the result of the test (22). Time

increases from bottom to top. Regions classified as belonging to the object template are light. Regions classified
as not belonging to the template are dark. Middle grey regions correspond to the test (22) being inconclusive.
Note that, after processing a number of frames, the regions are either light or dark, meaning that the test (22) is
unambiguous at every spatial location. The right plot of Fig. 5 illustrates the convergence behavior of the template
test—the estimates of the template of the moving object confirm the statement above about the evolution of the
segmentation matrik) in the left plot of Fig. 5,.e,, we see that the sequence of estimates of the template converges
to the true template, represented in Fig. 2.

The top row of the right plot in Fig. 5 shows the final estimate of the template of the moving object. It is equal

to the actual template, represented in Fig. 2. In this example, the template of the moving object is the union of two
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disjoint intervals. We see that the segmentation algorithm recovers successfully the template of the moving object

even when it is a disconnected set of pixels.

IV. PENALIZED LIKELIHOOD

As anticipated in section Il when we formulated the problem, it may happen that, after processingtadable
frames, the test (22) remains inconclusive at a given pixel), i.e, Q1(z,y) ~ Qz(x,y). In other words, it is
not possible to decide if this pixel belongs to the moving object or to the background. This ambiguity comes
naturally from the fact that the available observations are in agreement with both hypothesis. We make the decision
unambiguous by looking for themallesttemplate that describes well the observations, through penalized likelihood
estimation. Minimizing the penalized likelihood cost function (3), introduced in section I, balances the agreement

between the observations and the model, with minimizing the area of the template.

A. Penalized likelihood estimation algorithm
We now modify the algorithm described in the previous section to address the minimization of the penalized
likelihood cost functionCpy, in (3). Re-writeCpy, as

CPL = CML —+ aArea(T) = CML + // T(SC, y) dx dy ) (23)

whereC\yy, is as in (5),« is non-negative, andrea(T) is the area of the template. Carrying out the minimization,
first note that the second term in (23) does not dependomeither onB, so we getﬁpL — 0 and ﬁpL - B.

By replacin96 in Cpr, we get a modified version of (9),

Cpr, = // T(z,y) [Q(x,y) + o] dz dy + Constant , (24)

where the segmentation matr@@ is as defined in (10), (11), and (12). The penalized likelihood estimate of the

template is then given by the following test, which extends test (22),

Tpr, (Iiy) =0
Q(z,y) < —a. (25)
Tpr(z,y) =1

B. Relaxation

It is now clear that the strategy of relaxing the parametehas an advantage with respect to the ML-only
two-step algorithm of [38]. To emphasize this point, consider using ML as in section IlI-A initialized by estimating
the background as the average of the co-registered input imageghe initial estimate of the background is
contaminated by the moving object intensity values. It may happen that the next estimate of the template, obtained
from test (22) is, erroneously, so large that, in the next step, the estimate of the background can not be computed
at all pixels and the algorithm freezes and can not proceed. Consider now using the same initialization but with
a relaxation scheme for the parameterUsing the penalized likelihood test (25), with a large value dgrthe

next estimate of the template will be very small (the paramatean even be set to a value such that the template
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estimate will contain a single pixel). Using this template estimate, the next estimate of the background will be less
contaminated by the moving object intensity values and thus closer to the true background. The next penalized
likelihood estimate of the template, obtained from test (25) with a slightly smallewill then be slightly larger

and closer to the true template of the moving object. This relaxation proceeds until the parametehes either

zero, leading to the ML estimate minimizing (5), or a value previously chosen, leading to the penalized likelihood
estimate minimizing (23).

We illustrate the impact of the relaxation procedure by using again a 1-D example. The moving object template
is represented on the left plot of Fig. 6. It is composed by four segments of different lengths. We synthesized eleven
1-D images by moving the object from left to right with a constant speed of two pixels per frame. Each of the line
of the right plot of Fig. 6, labeled from top to bottom from 1 to 11, shows one resulting image and the full right
plot shows the image sequence. As this plot clearly shows, the noise and the similarity between the textures of the

background and the object makes it very challenging to obtain an accurate segmentation.

121
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Fig_.I_G. Left: 1-D templatg1111001101111100111 1h Right: 1-D image se(i_tljence. Time increases from top to bottom. .
he plots of Fig. 7 illustrate the behavior of the algorithm with the relaxation procedure just outlined. Evolution

occurs from the top-left plot to the bottom-right plot. Each plot shows: i) the symmetfythe entries of the
segmentation matriQQ, marked with a solid line; ii) the value of the threshold parametemarked with a dashed

line; and iii) the estimat&'py, of the template, marked with stars (“*”). The top-left plot represents the first penalized
likelihood test (25) after initializing the background estimate by averaging the images in the sequence. From this
plot we see that the threshold parameteis high enough such that only one pixel is classified as belonging to the
object templatei.e., only one entry of the symmetric segmentation matrix is above the thresholthe values of

the segmentation matrix in this plot make clear thatyifvas set to zero at this early stage, the template would be
clearly overestimated (compare with the true template in the left plot Fig. 6), the next background estimate would
be incomplete, and the two-step algorithm could not proceed. On the other hand, by choosing the valire of
such a way that only one pixel is classified as belong to the template, the algorithm is able to refine the background

estimate, leading to the second template test, represented on the second plot from left on the top of Fig. 7. Here, we

SWe represent the entries of negati@ i.e, —Q, because those are the values to be compared with the weitfirough (25).
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decrease the value of the thresheldenabling a second pixel to be classified as belonging to the template. In this
example, the relaxation process continues umtieaches zero, leading to the ML estimate. To ease visualization,
we use a different vertical scale for the last eight plots. The final estimate, represented on the bottom-right plot,

shows that our method successfully segmented the moving object from the image sequence on the right of Fig. 6

(compare with the left plot of Fig. 6).

ey

— segmentation matrix
- - threshold
+_template estimate

w s
space

arex aren
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W 45 s s s e 10 75 80 &
space
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space

Fig. 7. Relaxation for the 1-D image sequence of Fig. 6. Evolution occurs from the top-left plot to the bottom-right plot. Each plot shows:

i) the symmetry of the entries of the segmentation ma@x marked by a solid line; ii) the value of the threshold parametemarked by
a dashed line; and iii) the estimaTAEpL of the template, marked by stars (“*”). The final estimate, on the bottom-right plot, shows that our

method successfully segmented the moving object (compare with the left plot of Fig. 6).

In general, the relaxation af can be made faster than we did for this exampke, at each step several pixels
can be added to the estimate of the template. Anyway, any relaxation procedure for our segmentation algorithm

should stop and decrease the relaxation rate whenever a background estimate returns incomplete. In our experiments

with real video, we decreased linearly, in four to five steps.
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C. Stopping criteria

To stop the relaxation process we could adopt as strategy to stop as soon as the &timatdhe template of
the moving object stabilizes,e., as soon as no more pixels are added to it. However, to resolve the problems with
low contrast background that motivated the use of penalized likelihood estimation, we stop the relaxation when
reaches a pre-specified minimum valugn. This ayn can be chosen by experimentation, but we can actually
predict from the observation model (1) what are good choices for it. If the minimum vallg is chosen very high,
we risk that some pixe{z, y) of the moving objectj.e., with T(x, y) = 1, is erroneously classified as belonging to
the background, since from test (28)(x,y) > —aviN = ’T‘pL(x, y) = 0. In [37], using the observation model (1)
and the definition of the segmentation matfixin (10), (11), and (12), we show that the expected value of the
entry Q(z, y) for a pixel (z,y) of the moving objectj.e, with T(x,y) = 1, can be approximated as

F 2
Er—1{Q(w 1)} = - 3 [0z, 1) — M(a;p})B(z,y)| - (26)
f=1

This expression shows that, as we process more framgs; EQ(x,y)} becomes more negative, reducing the
probability of Q(z,y) > —ammn, and so of misclassifying the pixel,y) as belonging to the backgrouhd
Expression (26) then suggests that good choices for the threshgld are in the interval 0, —Er—; {Q} [. Since

in practice we can not computerE; {Q} because we do not know before hand what are the intensity levels of the
object and the background, we assume a valtiéor their average square difference and chasgy in the middle

of the interval,] 0, F'S? [, whereF is a constant. In our experiments, with 1-byte per pixel gray level images,
with intensities in the intervadl, 255], we usedyyn = 20, obtained by setting = 2 and F' = 10. Our experience

has shown that any other valug,n not to close to the extremes of the above interval would lead to the same

estimates.

V. EXPERIMENTS

We describe four experiments. The first two use challenging computer generated image sequences to illustrate
the convergence of our algorithm and its capability to segment complex shaped moving objects and low contrast
video. In the third and fourth experiments we use real video sequences. The third experiment illustrates the time
evolution of the segmentation matrix. The fourth experiment segments a traffic video clip.

Complex shapeWe synthesized an image sequence, the “IST” sequence, according to the model described in
section II. Fig. 8 shows the world images used. The left frame, from a real video, is the background world image.
The moving object template is the logo of thestituto Superior TécnicglST) which is transparent between the
letters. Its world image, shown on the right frame, is obtained by clipping with the IST logo a portion of one of the
frames in the sequence. The task of reconstructing the object template is particularly challenging with this video
sequence due to the low contrast between the object and the background and the complexity of the template. We

synthesized a sequence i images where the background is static and the IST logo moves around.
4In [37], using Tchebycheff inequality [54], we derive upper bounds for the probability of misclassification.
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Fig. 8. Constructs for the synthetic image sequence. Left: background. Right: moving object.

Fig. 9 shows three frames of the sequence obtained according to the image formation model introduced in
section I, expression (2), with noise varianeé = 4 (the intensity values are in the intervil, 255]). The object
moves from the center (left frame) down by translational and rotational motion. It is difficult to recognize the logo

in the right frame because its texture is confused with the texture of the background.

Fig. 9. Three frames of the image sequence synthesized with the constructs of Fig. 8.

Fig. 10 illustrates the four iterations it took for the two-step estimation method of our algorithm to converge.
The template estimate is initialized to zero (top left frame). Each background estimate in the bottom was obtained
using the template estimate on the top of it. Each template estimate was obtained using the previous background
estimate. The arrows in Fig. 10 indicate the flow of the algorithm. The good template estimate obtained, see bottom

left image, illustrates that our algorithm can estimate complex templates in low contrast background.

Fig. 10. Two-step iterative method: template estimates and background estimates for the image sequence of Fig. 9.

Note that this type of complex templates (objects with transparent regions) is much easier to describe by using a

binary matrix than by using contour based descriptions, like splines, Fourier descriptors, or snakes. Our algorithm
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overcomes the difficulty arising from the higher number of degrees of freedom of the binary template by integrating
over time the small intensity differences between the background and the object. The two-step iterative algorithm
performs this integration in an expedite way.

Low contrast video By rotating and translating the object shown on the left image of Fig. 11, we synthesized
20 frames, two of which are shown in the middle and right images of Fig. 11. As these images clearly show, the
noise and the similarity between the textures of the background and the object makes it very challenging to obtain

an accurate segmentation.

B

Fig. 11. Left: moving object. Middle and right: noisy video frames.

Fig. 12 describes the evolution of the estimate of the moving object template through the relaxation process
described in section IV. The final estimate, shown in the bottom-right image of Fig. 12, shows that our algorithm

was able to recover the true shape of the moving object (left image of Fig. 11).

Fig. 12. Relaxation. Evolution of the estimate of the moving object template for the image sequence in Fig. 11. The final estimate (bottom-right)
coincides with the true shape of the moving object in the left image of Fig. 11.

Robot soccerWe used a sequence @0 images, the “robot soccer” sequence, obtained from a robot soccer
game, see [55]. It shows a white robot pursuing the ball. Framéss, and16 of the robot soccer video sequence
are in Fig. 13.

Although it is an easy task for humans to segment correctly the video sequence in Fig. 13, even looking at a
single frame, this is not the case when motion is the only cue taken into account. In fact, due to the low texture of
the regions of both the field and the robot, the robot template is ambiguous during the first frames of the sequence.

This is because several regions belonging to the field can be incorrectly classified as belonging to the robot, since
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Fig. 13. Robot soccer video sequence. Frames 8, and16.

the motion of the robot during the first frames is such that the video sequence would be the same whether or not
those regions move rigidly with the robot. The same happens to regions of the robot that can be interpreted as being
stationary with respect to the field. Only after the robot rotates, it is possible to determine, without ambiguity, its
template.

Multiple objects The robot soccer video sequence contains two moving objects. Our algorithm deals with multiple
moving objects by running the segmentation procedure, independently, for each of them. This basically requires
estimating the motions of the independently moving objects. Since the algorithm does not require an accurate
segmentation when estimating the image motion (in fact it does not require any segmentation at all since the
algorithm uses in further steps only the motion estimates), we resolve the simultaneous estimation of the support
regions and the corresponding motion parameters by using a fast and simple sequential method. We first estimate the
motion parameters that best describe the motion of the entire image. Then, the images are co-registered according
to the estimated motion. The pixels where the registered frame difference is below a threshold are considered to
belong to the dominant region, which we assume is the background. Then, the dominant region is discarded and
the process is repeated with the remaining pixels.

Applying the moving object template test, in expression (22), see section IlI-A, the ball template becomes
unambiguous afteb frames. Figure 14 shows the evolution of the robot template. Regions where the test is
inconclusive are grey, regions classified as being part of the robot template are white, and regions classified as
being part of the background are black. The robot template is unambiguousléafteames. The final robot

template estimate is shown on the right side of Fig. 14.

Fig. 14. Estimate of the robot template after fran2d, 6, and 10 of the video sequence of Fig. 13.

Figure 15 illustrates the evolution of the segmentation maf)isintroduced in section IlI-A. The curves on the
left side plot the value of)(z, y) for representative pixelér,y) in the template of the robot. These curves start
close to zero and decrease with the number of frames processed, as predicted by the analysis in section Ill. The

curves on the right side plot of Fig. 15 represent the evolutiorQof, y) for pixels not in the template of the
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robot. For these pixel9Q(z, y) increases with the number of frames, again according to the analysis in section Ill.
Thus, while during the first frames the value @f(z, y) is close to zero and the template test is ambiguous (due
to the low texture of the scene), after processing enough images the absolute vé&l{e,@f increases and the

robot template becomes unambiguous.

3 Background pixels
x 10° Robot pixels 9 x10 9 P
T T T

-2+

-3 I I | I I | | | | -1 I I I I I i i i i
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Frame number Frame number

Fig. 15. Evolution of the entrieQ(z,y) of the segmentation matri€Q for representative pixels: left plots are for pixé€ls, y) in the robot
template; right plots are for pixel&z,y) not in the robot template.

Figure 16 shows the recovered world images for the two moving objects and background, after processing the

entire sequence af0 frames.

Fig. 16. Background, robot, and ball world images recovered from the robot soccer video sequence of Fig. 13.

Road traffic In this experiment we use a road traffic video clip. The road traffic sequencedtagrames.
Figure 17 shows framek5, 166, and225. The example given in section | to motivate the study of the segmentation

of low textured scenes, see Fig. 1, also uses franmiesnd 77 from the road traffic video clip.

Fig. 17. Road traffic video sequence. Framé&s166, and225.
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In this video sequence, the camera exhibits a pronounced panning motion, while four different cars enter and
leave the scene. The cars and the background have regions of low texture. The intensity of some of the cars is very
similar to the intensity of parts of the background.

Figs. 18, top and bottom, show the good results obtained after segmenting the sequence with our algorithm.
Fig. 18, bottom, displays the background world image, while Fig. 18, top, shows the world images of each of
the moving cars. The estimates of the templates for the cars in Fig. 18 become, from left to right, unambiguous

after 10, 10, and 14 frames, respectively.

R e g P e T e e e o

Fig. 18. Top: Moving objects recovered from the road traffic video sequence of Fig. 17.; Bottom: Background world image recovered from
the the road traffic video sequence of Fig. 17.

The CPU time taken by our algorithm to process a sequence of images depends on several factors, in particular,
the level of relaxation used. With little or no relaxation, as used in our experiments with the IST, the robot soccer,
and the road traffic sequences, to process a typical sequeritfeafieo frames ofl60 x 120 pixels takes about
1.75 sec with a non-optimized MATLAB implementation, running on a 2.4 GHz Pentium IV laptop. Using the
same implementation of the algorithm but using a high degree of relaxation where the threshold is decreased very

slowly this time can increase 0 sec or ever80 sec.

VI. CONCLUSION

We develop an algorithm for segmenting 2-D rigid moving objects from an image sequence. Our method recovers
the template of the moving object by processuligectly the image intensity value8/e model both theigidity of
the moving object over a set of frames and theelusionof the background by the moving object. We estimate
all unknowns (object and camera motions and textures) by an algorithm that approximates the minimization of a
penalized likelihood (PL) energy functional. We first estimate the motion estimates, and then use a two-step iterative
algorithm to approximate the minimization of the resulting cost function. The solutions for both steps are in closed
form and so computationally very simple. Convergence is achieved in a small number of iterations (typically three
to five iterations). Experiments show that the proposed algorithm can recover complex templates in low contrast

Scenes.
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