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Abstract

Layered video representations are increasingly popular, see [1] for a recent review. Segmentation of moving

objects is a key step for automating such representations. Current motion segmentation methods either fail to segment

moving objects in low textured regions or are computationally very expensive. This paper presents a computationally

simple algorithm that segments moving objects even in low texture/low contrast scenes. Our method infers the moving

object templates directly from the image intensity values, rather than computing the motion field as an intermediate

step. Our model takes into account therigidity of the moving object and theocclusionof the background by the

moving object. We formulate the segmentation problem as the minimization of apenalized likelihoodcost-function

and present an algorithm to estimate all the unknown parameters: the motions, the template of the moving object,

and the intensity levels of the object and of the background pixels. The cost function combines amaximum likelihood

estimation term with a term that penalizes large templates. The minimization algorithm performs two alternate steps

for which we derive closed-form solutions. Relaxation improves the convergence even when low texture makes it

very challenging to segment the moving object from the background. Experiments demonstrate the good performance

of our method.

EDICS: 2-SEGM (Image and Video Processing—Segmentation),2-ANAL (Analysis).

Permission to publish this abstract separately is granted.
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I. I NTRODUCTION

Modern content-based video representations demand efficient methods to infer the contents of video sequences,

like the shape and texture of objects and their motions. Some existing methods lead to good results, see for

example [2], [3], but require extensive human interaction. Fully automatic methods continue to be lacking and are

of major interest. This paper considers the automatic segmentation of moving objects from a video sequence.

Motivation Segmentation of image sequences into regions with different motions is of interest to a large number

of researchers. There is the need for segmentation methods that aresimpleand perform well, in particular, when

the moving objects contain low-textured regions or there is low contrast between the object and the background.

We present here a computationally simple method that performs well under these conditions: low-texture and

low-contrast. Our algorithms use as a key assumption that the moving objects arerigid objects.

Several papers on video coding develop computationally simple algorithms for motion segmentation by processing

two consecutive frames only. They predict each frame from the previous one through motion compensation [4].

Because their focus is on compression and not in developing a high level representation, these algorithms fail to

provide accurate segmentation, in particular with low textured scenes; regions with no texture are considered to

remain unchanged. For example, we applied the algorithm in [5] to segment a low textured moving object, a car, in

a traffic video clip; see Fig. 1 where we show on the left two frames of this video clip. The template of the moving

car as found by the algorithm in [5] is on the right of Fig. 1. As we see, due to the low texture of the car, the

regions in the interior of the car are misclassified as belonging to the background, leading to a highly incomplete

car template.

Fig. 1. Motion segmentation in low texture.

Related work Background-estimation methods are very appealing approaches to segmentation of moving objects

due to their simplicity. These methods infer the moving object template by subtracting the input image from

a previously estimated background image [6], [7], [8], [9], [10], [11]. They generally estimate the background

from the data by attempting to classify each pixel as either foreground or background. Although background-

estimation succeeds in many relevant situations,e.g., surveillance applications [12], it requires robust estimation of

the background, which limits its application. Their major failing is that generally they do not exploit the structure

of the object—they are usually pixel-wise independent.

In computer vision, commonly, motion-based segmentation copes with low textured scenes by coupling motion-

based segmentation with prior knowledge about the scenes as in statistical regularization techniques, or by combining
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motion with other attributes. For example, [13] uses a Markov Random Field (MRF) prior and a Bayesian Maximum

a Posteriori (MAP) criterion to segment moving regions. The authors suggest a multiscale MRF to resolve large

regions of uniform intensity. In [14], the contour of a moving object is estimated by fusing motion with color

segmentation and edge detection. In general, these methods lead to complex and time consuming algorithms. Another

approach to object segmentation uses active contours [15], [16], including methods that describe the contour as the

level set of a real-valued function defined in the image domain [17], see also [18], [19] for applications to bioimaging.

Besides edge information, some of these methods also account for prior models on the intensity values of the image

inside and outside the contour [20], [21]. These methods, as the pioneering work of Mumford and Shah [22], estimate

the contour of the object by minimizing a global cost function, thus leading to robust estimates. The computational

cost is their major drawback—the minimization of the cost function resorts to calculus of variations [23] with the

contour evolving according to partial differential equations [24], which makes the algorithms rather expensive.

Irani, Rousso, and Peleg use temporal integration. They average the images by registering them according to

the motion of the different objects in the scene [25], [26]. After processing a number of frames, each of these

averaged images should show only one sharp region corresponding to the tracked object. This region is found

by detecting the stationary regions between the corresponding averaged image and the current frame. Unless the

background is textured enough to blur completely the averaged images, some regions of the background can be

classified as stationary. In this situation, the method in [25], [26] overestimates the template of the moving object.

This is particularly likely to happen when the background has large regions with almost constant color or intensity

level.

Layered models [27], [28], [29], [30], [31], [32], [33], [34] brought new approaches to the segmentation of moving

objects. Tao, Sawhney, and Kumar proposed a filtering approach where a 2-D Gaussian shape model is updated

from frame to frame [30]. This work was extended to the case where the background is described by a set of layers

rather than a single one [34]. In contrast to online filtering, Jojic and Frey proposed an offline approach to infer

flexible templates [32]. They use probabilistic learning to estimate robustly the state of the system. Since the exact

posterior for the problem results intractable, they use variational inference to compute a factorized approximation

and non-linear optimization techniques coupled into an EM algorithm [35].

Proposed approachLike the simple background-estimation algorithms, our approach exploits the fact that the

moving object occludes the background. We formulate segmentation in a global way, as a parameter estimation

problem and derive a computationally simple algorithm. Because in many interesting situations the 2-D shape of

the moving object does not change significantly across a number of consecutive frames,e.g., moving cars, see

Fig. 1, we exploit the objectrigidity . In the paper we show howocclusion+rigidityenable a computationally simple

algorithm to jointly estimate the unknown background and rigid shape of the moving object directly from the image

intensity values.

Our segmentation algorithm is derived as an approximation to apenalized likelihood(PL) estimate of the unknown

parameters in the image sequence model: the motions; the template of the moving object; and the intensity levels

of the object pixels (object texture) and of the background pixels (background texture). The joint estimation of
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this complete set of parameters is a very complex task. Motivated by our experience with real video sequences,

we decouple the estimation of the motions (moving objects and camera) from that of the remaining parameters.

The motions are estimated on a frame by frame basis and then these estimates are used in the estimation of the

remaining parameters. Then, we introduce the motion estimates into the penalized likelihood cost function and

minimize it with respect to the remaining parameters.

The estimate of the texture of the object is obtained in closed form. To estimate the texture of the background

and the template of the moving object, we develop a fast two-step iterative algorithm. The first step estimates the

background texture for a fixed template—the solution is obtained in closed form. The second step estimates the

object template for a fixed background—the solution is given by a simple binary test evaluated at each pixel. The

algorithm converges in a few iterations, typically three to five iterations.

Our penalized likelihood cost function balances two terms. The first term is theMaximum Likelihood(ML) cost

function. It is a measure of the error between the observed data and the model. The second term measures the

size of the moving object,i.e., the area of its template. The minimum of the first term,i.e., the ML estimate, is

not always sharply defined. In fact, for regions with low texture, the likelihood that this region belongs to the

background is very similar to the likelihood that it belongs to the moving object. The penalization term addresses

this difficulty and makes the segmentation problem well-posed: we look for thesmallesttemplate that describes

well the observed data.

The penalization term has a second very relevant impact—it improves the convergence of the two-step iterative

segmentation algorithm. Usually, with iterative minimization algorithms, it is important to have a good initial guess

in order for the algorithm to exhibit good convergence. In our algorithm, we adopt a relaxation strategy for the

weight of the penalization term. This enables us to avoid computationally expensive methods to compute the initial

estimates. Our experience shows that this strategy makes the behavior of the algorithm quite insensitive to the initial

guess, so much so that it suffices to initialize the process with the trivial guess of having no moving object,i.e.,

every pixel is assumed to belong to the background.

Although related to the work of Irani, Rousso, and Peleg [25], [26], our approach models explicitly theocclusion

of the background by the moving object, and we use the frames available to estimate the moving object template

rather than just a single frame. Even when there is little contrast and the color of the moving object is very similar

to the color of the background, our algorithm resolves accurately the moving object from the background, because

it integrates over time existing small differences. Our approach also relates to the work of Jojic and Frey [32] in

the sense that both approaches model the occlusion of the background by the moving object. However, our work

is concerned withrigid shape, in contrast with [32] that is concerned withflexibleshape. We can then exploit the

rigidity of the object to derive a verysimplealgorithm that estimates with high accuracy the shape of the moving

object, where all steps admit closed-form solutions. Although our work applies only to rigid moving objects, the

simplicity of our algorithm enables us to consider more general class of motions—translations and rotations—

than [32] that restricts the motions to single pixel translations. A final comment on our approach regards offline

versus online and real time. Our approach, as [32], builds the object template by processing several frames. This
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leads to an inherent delay so that we can accumulate a sufficient number of frames to resolve template ambiguities

and to achieve high accuracy. The number of frames, and the corresponding delay, depends on the level of contrast

between the moving object and the background and on the object texture; it may be acceptable or not acceptable

in close-to-real time applications. In several sequences we tested, this number is on the order of tens of frames,

requiring buffering the video from a fraction of a second to a few seconds. For example, with the “road traffic”

video clip in section V, the maximum delay is14 frames.

Paper organization In section II, we state the segmentation problem. We define the notation, develop the

observation model, and derive the penalized likelihood cost function. In section III, we address the minimization

of the cost function. To provide insight into the problem, we start by studying the ML estimation problem,i.e.,

when no penalizing term is present; we detail a two-step iterative method that minimizes this ML term of the cost

function. Section IV deals with penalized likelihood estimation. We discuss when ML estimation is ill-posed and

address the minimization of the complete penalized likelihood cost function. In section V, we describe experiments

that demonstrate the performance of our algorithm. Section VI concludes the paper.

The model used in the paper and described in section II was introduced in [36]. Preliminary versions of the

ML-estimation step were presented in [36], [37], [38].

II. PROBLEM FORMULATION

We discuss motion segmentation in the context ofGenerative Video(GV), see [39], [40], [41], [42]. GV is a

framework for the analysis and synthesis of video sequences. In GV the operational units are not the individual

images in the original sequence, as in standard methods, but rather the world images and the ancillary data. The

world images encode the non-redundant information about the video sequence. They are augmented views of the

world—background world image—and complete views of moving objects—figure world images. The ancillary data

registers the world images, stratifies them at each time instant, and positions the camera with respect to the layering

of world images. The world images and the ancillary data are the generative video representation, the information

that is needed to regenerate the original video sequence. We formulate the moving object segmentation task as

the problem of generating the world images and ancillary data for the generative video, [39], [40], [41], [42],

representation of a video clip.

Motion analysis toward three-dimensional model-based video representations are treated in [43], [44].

A. Notation

We describe an image by a real-valued function defined on a subset of the real plane. The image space is a

set {I : D → R}, whereI is an image,D is the domain of the image, andR is the range of the image. The

domainD is a compact subset of the real planeR2, and the rangeR is a subset of the real lineR. Examples of

images in this paper are the framef in a video sequence, denoted byIf , the background world image, denoted

by B, the moving object world image, denoted byO, and the moving object template, denoted byT. The imagesIf ,
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B, andO have rangeR = R. They code intensity gray levels1. The templateT of the moving object is a binary

image,i.e., an image with rangeR = {0, 1}, defining the region occupied by the moving object. The domain of the

imagesIf andT is a rectangle corresponding to the support of the frames. The domain of the background world

imageB is a subsetD of the plane whose shape and size depends on the camera motion,i.e., D is the region of

the background observed in the entire sequence. The domainD of the moving object world image is the subset

of R2 where the templateT takes the value1, i.e., D = {(x, y) : T(x, y) = 1}.

In our implementation, the domain of each image in the video sequence is rectangularly shaped with its size

fitting the needs of the corresponding image. Although we use a continuous spatial dependence for commodity, in

practice, the domains are discretized and the images are stored as matrices. We index the entries of each of these

matrices by the pixels(x, y) of each image and refer to the value of imageI at pixel (x, y) asI(x, y). Throughout

the text, we refer to the image product of two imagesA and B, i.e., the image whose value at pixel(x, y)

equalsA(x, y)B(x, y), as the imageAB. Note that this corresponds to the Hadamard product, or elementwise

product, of the matrices representing imagesA andB, not their matrix product.

We consider 2-D parallel motions,i.e., all motions (translations and rotations) are parallel to the camera plane. We

represent this type of motions by specifying time varying position vectors. These vectors code rotation-translation

pairs that take values in the group of rigid transformations of the plane, the special Euclidean group SE(2). The

image obtained by applying the rigid motion coded by the vectorp to the imageI is denoted byM(p)I. The

imageM(p)I is also usually called the registration of the imageI according to the position vectorp. The entity

represented byM(p) is seen as a motion operator. In practice, the(x, y) entry of the matrix representing the

imageM(p)I is given byM(p)I(x, y) = I(fx(p; x, y), fy(p; x, y)) wherefx(p; x, y) and fy(p; x, y) represent

the coordinate transformation imposed by the 2D rigid motion. We use bilinear interpolation to compute the intensity

values at points that fall in between the stored samples of an image.

The motion operators can be composed. The registration of the imageM(p)I according to the position vectorq

is denoted byM(qp)I. By doing this we are using the notationqp for the composition of the two elements

of SE(2),q andp. We denote the inverse ofp by p#, i.e., the vectorp# is such that when composed withp we

obtain the identity element of SE(2). Thus, the registration of the imageM(p)I according to the position vectorp#

obtains the original imageI, so we haveM(p#p)I = M(pp#)I = I. Note that, in general, the elements of SE(2)

do not commute,i.e., we haveqp 6= pq, andM(qp)I 6= M(pq)I. Only in special cases is the composition of

the motion operators not affected by the order of their application, as for example when the motionsp andq are

pure translations or pure rotations.

The notation for the position vectors involved in the segmentation problem is as follows. The vectorpf represents

the position of the background world image relative to the camera in framef . The vectorqf represents the position

of the moving object relative to the camera in framef .

1For simplicity, we take the pixel intensities to be real valued, although, in practice, they are integer valued in the range[0 · · · 255]. The

analysis in the paper is easily extended to color images by specifying color either by the perceptual attributesbrightness, hue, andsaturation

or by the primary colorsred, green, andblue, see [45].
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B. Observation model

The observation model considers a scene with a moving object in front of a moving camera with 2-D parallel

motions. The pixel(x, y) of the imageIf belongs either to the background world imageB or to the object world

imageO. The intensityIf (x, y) of the pixel (x, y) is modeled as

If (x, y) = M(p#
f )B(x, y)

[
1 −M(q#

f )T(x, y)
]

+ M(q#
f )O(x, y) M(q#

f )T(x, y) + Wf (x, y) , (1)

whereT is the moving object template,pf andqf are the camera pose and the object position, andWf stands

for the observation noise, assumed Gaussian, zero mean, and white.

Equation (1) states that the intensity of the pixel(x, y) on framef , If (x, y), is a noisy version of the true

value of the intensity level of the pixel(x, y). If the pixel (x, y) of the current image belongs to the template

of the object,T, after the template is compensated by the object position,i.e., registered according to the vec-

tor q#
f , then M(q#

f )T(x, y) = 1. In this case, the first term of the right hand side of (1) is zero, and the

image intensityIf (x, y) reduces to a noisy version of the second term. This second term,M(q#
f )O(x, y), is

the intensity of the pixel(x, y) of the moving object. In other words, the intensityIf (x, y) equals the object

intensityM(q#
f )O(x, y) corrupted by the noiseWf (x, y). On the other hand, if the pixel(x, y) does not belong

to the template of the object,M(q#
f )T(x, y) = 0, the pixel belongs then to the background world imageB,

registered according to the inversep#
f of the camera position. In this case, the intensityIf (x, y) is a noisy version

of the background intensityM(p#
f )B(x, y). We want to emphasize that, rather than modeling simply the two

different motions, as usually done in other approaches that process only two consecutive frames, expression (1)

models theocclusionof the background by the moving object explicitly. Also, equation (1), which composites the

image in the sequence by overlaying on the background image the image of the moving object at the appropriate

position, assumes that the object is opaque. Transparency could be taken into consideration by affecting the middle

term in (1) with a transparency index. We do not pursue this here.

Expression (1) is rewritten in compact form as

If =
{
M(p#

f )B
[
1−M(q#

f )T
]

+ M(q#
f )OM(q#

f )T + Wf

}
H , (2)

where we assume thatIf (x, y) = 0 for (x, y) outside the region observed by the camera. This is taken care of in

equation (2) by the binary imageH whose(x, y) entry is such thatH(x, y) = 1 if pixel (x, y) is in the observed

imagesIf or H(x, y) = 0 if otherwise. The image1 is constant with value1.

Basically, the model in (2) describes the images in the sequence as a noisy version of a collage of 2-D images:

the background, described by the background world imageB, and the moving object, described by the object world

imageO. This model, which we have proposed in [36], [37], [38] is similar to the one used by Jojic and Frey

in [32] to capture flexible moving objects. We will see that modeling the templateT of the moving object as a

fixed binary matrix, i.e., that the object is rigid, enables us to develop a very simple segmentation algorithm.

In (2), each image in the sequence is obtained by first registering the background with respect to the camera

position, as given bypf , then registering the object with respect to the background, as given byqf , and, finally,
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by clipping the composite of the background plus object by the field of view of the camera—operatorH. Since

the background is first registered according to the camera motion, the clipping operatorH does not depend on the

frame indexf .

Fig. 2 illustrates model (2) for 1-D framesIf (x), wherex is now a scalar. The top plot, a sinusoid, is the

intensityB(x) of the background world image. The templateT(x) of the moving object is shown on the left of the

second level as the union of two disjoint intervals. The intensity levelO(x) of the moving object is also sinusoidal,

and is shown on the right plot on the second level. The frequency of this sinusoidal intensity is higher than the

frequency of the background intensityB(x). The camera windowH is the interval shown in the third level. It clips

the region observed by the camera. The two bottom curves show two framesI1 andI2. They are given by a noise-

free version of the model in expression (2). In between these two frames, both the camera and the object moved:

the camera moved2 pixels to the right, corresponding to the background motion in the opposite direction, while the

object moved3 pixels to the right relative to the camera. The observation model of expression (2) and the illustration

of Fig. 2 emphasize the role of the building blocks involved in representing an image sequence{If , 1 ≤ f ≤ F}

according to the generative video framework, [39], [40], [41], [42].

B(x)

-
x

T(x) O(x)

-
x

-
x

H(x)

I1(x)

I2(x)

-
x

Fig. 2. Illustration of the 1-D generative video image formation and observation model.

C. Energy minimization: Penalized likelihood estimation

GivenF frames{If , 1 ≤ f ≤ F}, we want to estimate the background world imageB, the object world imageO,

the object templateT, the camera poses{pf , 1 ≤ f ≤ F}, and the object positions{qf , 1 ≤ f ≤ F}. The quantities

{B,O,T, {pf} , {qf}} define the generative video representation, [39], [40], [41], [42], the information that is

needed to regenerate the original video sequence.

The problem as stated may be very difficult. As an example, consider that the object moves in front of a

constant intensity background,i.e., the background has no texture. This image sequence is indistinguishable from

an image sequence where the object template is arbitrarily enlarged with pixels whose intensity equals the intensity
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of the background. Without additional knowledge, it is not possible to decide whether a pixel with intensity equal

to the background intensity belongs to the background or to the moving object,i.e., no algorithm can segment

unambiguously the moving object. Although extreme, this example illustrates the difficulties of segmenting objects

from backgrounds that have large patches with low texture (see the example in Fig. 1).

To address this issue, we assume that the object is small. This is in agreement with what the human visual

system usually implicitly assumes. We incorporate this constraint into the segmentation problem by minimizing a

cost function given by

CPL = CML + α Area(T) , (3)

whereCML is the ML cost function, derived below,α is a non-negative weight, andArea(T) is the area of the

template. Minimizing the costCPL balances the agreement between the observations and the model (termCML)

with minimizing the area of the template. The termαArea(T) can be interpreted as a Bayesian prior and the

cost function (3) as the negative log posterior probability whose minimization leads to the Maximum a Posteriori

estimate, as usual in Bayesian inference approaches [46]. It can also be motivated through information-theoretic

criteria like Akaike’s AIC [47] or the Minimum Description Length principle [48]. Different basic principles lead

to different choices for the parameterα but the structure of the cost function is still as in (3). Statisticians usually

call the generic form (3) apenalized likelihood(PL) cost function [49]. Our choice for the weightα is discussed

in section IV.

From the observation model (2) and the Gaussian white noise assumption, the likelihood is given by

p (B,O, T,{pf , qf} | {If}) =
∏

f,x,y

N
(
If (x, y);M(p#

f )B(x,y)
[
1−M(q#

f )T(x, y)
]
+M(q#

f )O(x, y) M(q#
f )T(x, y), σ2

)
. (4)

By maximizing the logarithm of the likelihood (4), we derive the ML term of the penalized likelihood cost

function (3) as2

CML =

∫ ∫ F∑

f=1

{
If (x, y) − M(p#

f )B(x,y)
[
1 − M(q#

f )T(x, y)
]
− M(q#

f )O(x, y) M(q#
f )T(x, y)

}2
H(x, y) dx dy , (5)

where the inner sum is over the full set ofF frames and the outer integral is over all pixels.

The estimation of the parameters of (2) using theF frames rather than a single pair of images is a distinguishing

feature of our work. Other techniques usually process only two or three consecutive frames. We use all frames

available as needed. The estimation of the parameters through the minimization of a cost function that involves

directly the image intensity values is another distinguishing feature of our approach. Other methods try to make

some type of post-processing over incomplete template estimates. We process directly the image intensity values,

through penalized likelihood estimation.

By describing the shape of the moving object by the binary templateT, we are able to express the ML cost

function as in (5),i.e., in terms of an integral whose region of integration is independent of the unknown shape.

This enables developing a computationally simple algorithm to estimate the shape of the object. The same type of

2We use a continuous spatial dependence for simplicity. The variablesx andy are continuous whilef is discrete. In practice, the integral is

approximated by the sum over all the pixels.
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idea has been used in the context of the single-image intensity-based segmentation problem, for example, Ambrosio

and Tortorelli [50] adapted Mumford and Shah theory [22] by using a continuous binary field instead of a binary

edge process.

The minimization of the functionalCPL in (5) with respect to the set of generative video constructs{B,O,T}

and to the motions{{pf} , {qf} , 1 ≤ f ≤ F} is still a highly complex task. To obtain a computationally feasible

algorithm, we simplify the problem. We decouple the estimation of the motions{{pf} , {qf} , 1 ≤ f ≤ F} from

the determination of the generative video constructs{B,O,T}. This is reasonable from a practical point of view

and is well supported by our experimental results with real videos.

The rationale behind the simplification is that the motion of the object (and the motion of the background) can be

usually inferred without knowing precisely the object template. To better appreciate the complexity of the problem,

consider an image sequence with no prior knowledge available, except that an object moves with respect to an

unknown background. Even with no spatial cues, for example, if the background texture and the object texture are

spatially white noise random variables, the human visual system can easily infer the motion of the background

and the motion of the object from only two consecutive frames. However, this is not the case with respect to the

template of the moving object; to infer an accurate template we need a much higher number of frames that enables

us to easily capture therigidity of the object across time. This observation motivated our approach of decoupling

the estimation of the motions from the estimation of the remaining parameters.

We estimate the motions on a frame by frame basis using a simple sequential method, see [37] for the details. We

first compute the dominant motion in the image, which corresponds to the motion of the background. Then, after

compensating for the background motion, we compute the object motion. We estimate the parameters describing

both motions by using a known motion estimation method, see [51]. After estimating the motions, we introduce the

motion estimates into the penalized likelihood cost function and minimize with respect to the remaining parameters.

Clearly, this solution is sub-optimal, in the sense that it is an approximation to the penalized likelihood estimate of

the entire set of parameters, and it can be thought of as an initial guess for the minimizer of the penalized likelihood

cost function given by (5). This initial estimate can then be refined by using a greedy approach. We emphasize that

the key problem we address in this paper is finding the initial guess in an expedite way, not the final refinement.

III. M INIMIZATION PROCEDURE

In this section, we assume that the motions have been correctly estimated and are known. In reality, the motions are

continuously estimated. Assuming the motions are known, the problem becomes the minimization of the penalized

likelihood cost function with respect to the remaining parameters,i.e., with respect to the template of the moving

object, the texture of the moving object, and the texture of the background.

A. Two-step iterative algorithm

Due to the special structure of the penalized likelihood cost function, we can express explicitly and with no

approximations involved the estimatêO of the texture of the object world image in terms of the templateT. Doing
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this, we are left with the minimization ofCPL with respect to the templateT and the texture of the background

world imageB, still a nonlinear minimization. We approximate this minimization by a two-step iterative algorithm:

(i) in step one, we solve for the backgroundB while the templateT is kept fixed; and (ii) in step two, we solve

for the templateT while the backgroundB is kept fixed. We obtain closed-form solutions for the minimizers in

each of the steps (i) and (ii). The two steps are repeated iteratively. The value ofCPL decreases along the iterative

process. The algorithm proceeds till every pixel has been assigned unambiguously to either the moving object or

to the background.

The initial guess in iterative algorithms is very relevant to the convergence of the algorithm—a bad initial guess

may lead to convergence to a local optimum. As an initial guess, we may start with an estimate for the background

like the average of the images in the sequence, including or not a robust statistic technique like outlier rejection,

see for example [52]. The quality of this background estimate depends on the occlusion level of the background in

the images processed. In [37], we propose a more elaborate technique that leads to better initial estimates of the

background. However, sophisticate ad-hoc methods to recover the background result in computationally complex

algorithms. In this paper, instead of using these algorithms, we use a continuation method,i.e., we relax the cost

function. We start from a cost for which we know we can find the global minimum, and then we gradually change

the cost, keeping track of the minimum, to end at the desired cost function. Due to the structure of the penalized

likelihood cost function (3), the continuation method is easily implemented by relaxing the weightα, as in annealing

schedules,e.g., stochastic relaxation [53]. We start with a high value forα such that the minimum of the cost (3)

occurs atT̂(x, y) = 0, ∀x,y—it is clear from (3) that this is always possible. Then, we gradually decreaseα and

minimize the corresponding intermediate costs, till we reach the desired cost and the correct segmentation. In

section IV, we discuss the impact of the final value ofα.

To provide good insight into the problem, we start by studying the cost function (3) when there is no penalty

term, i.e., whenα = 0. The problem reduces to minimizing the termCML, i.e., the ML cost function given by (5).

This we do in the remaining of this section. In section IV, we come back to the general penalized likelihood cost

function; we will see that the ML-analysis extends gracefully to penalized likelihood estimation.

B. Estimation of the moving object world image

We express the estimatêO of the moving object world image in terms of the object templateT. By minimiz-

ing CML in (5) with respect to the intensity valueO(x, y), we obtain the average of the pixels that correspond to

the point(x, y) of the object. The estimatêO of the moving object world image is then

Ô = T
1
F

F∑

f=1

M(qf )If . (6)

This compact expression averages the observationsI registered according to the motionqf of the object in the

region corresponding to the templateT of the moving object.

We consider now separately the two steps of the iterative algorithm described above.
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C. Step (i): estimation of the background for fixed template

To find the estimatêB of the background world image, given the templateT, we register each term of the sum

of CML in (5) according to the position of the camerapf relative to the background. This is a valid operation

becauseCML is defined as a sum over all the space{(x, y)}. We get

CML =

∫ ∫ F∑

f=1

{
M(pf)If −B

[
1 −M(pfq

#
f )T

]
−M(pfq

#
f )O M(pfq

#
f )T(x,y)

}2

M(pf )H dx dy . (7)

Minimizing the ML cost functionCML given by (7) with respect to the intensity valueB(x, y), we get the

estimateB̂(x, y) as the average of the observed pixels that correspond to the pixel(x, y) of the background.

The background world image estimatêB is then written as

B̂ =

∑F
f=1

[
1−M(pfq

#
f )T

]
M(pf )If

∑F
i=f

[
1−M(pfq

#
f )T

]
M(pf )H

. (8)

The estimateB̂ of the background world image in (8) is the average of the observationsIf registered ac-

cording to the background motionpi, in the regions{(x, y)} not occluded by the moving object,i.e., when

M(pfq
#
f )T(x, y) = 0. The termM(pf )H provides the correct averaging normalization in the denominator by

accounting only for the pixels seen in the corresponding image.

If we compare the moving object world image estimateÔ given by (6) with the background world image

estimateB̂ in (8), we see that̂O is linear in the templateT, while B̂ is nonlinear inT. This has implications

when estimating the templateT of the moving object, as we see next.

D. Step (ii): estimation of the template for fixed background

Let the background world imageB be given and replace the object world image estimateÔ given by (6) in

expression (5). The ML cost functionCML becomes linearly related to the object templateT. ManipulatingCML

as described next, we obtain

CML =
∫ ∫

T(x, y) Q(x, y) dx dy + Constant , (9)

whereQ, which we call thesegmentation matrix, is given by

Q(x, y) = Q1(x, y) − Q2(x, y) , (10)

Q1(x, y) =
1
F

F∑

f=2

f−1∑

g=1

[M(qf )If (x, y) −M(qg)Ig(x, y)]2 , (11)

Q2(x, y) =
F∑

f=1

[
M(qf )If (x, y) −M(qfp

#
f )B(x, y)

]2

. (12)

On first reading, the reader may want to skip the derivation of expressions (9) to (12) and proceed till after

equation (21) on page 13.
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Derivation of expressions (9) to (12)Replace the estimatêO of the moving object world image, given by (6), in

expression (5), to obtain

CML =
∫ ∫ F∑

f=1

{
I−M(p#

f )B
[
1 −M(q#

f )T
]
− 1

F

F∑

g=1

M(q#
f qg)Ig M(q#

f )T

}2

H dx dy . (13)

Register each term of the sum according to the object positionqf . This is valid becauseCML is defined as an

integral over all the space{(x, y)}. The result is

CML =

∫ ∫ F∑

f=1

{[
M(qf )If −M(qfp

#
f )B

]
+

[
M(qfp

#
f )B − 1

F

F∑

g=1

M(qg)Ig

]
T

}2

M(qf )H dx dy . (14)

In the remainder of the derivation, the spatial dependence is not important here, and we simplify the notation by

omitting (x, y). We rewrite the expression forCML in compact form as

CML =
∫ ∫

C dx dy , where C =
F∑

f=1

{[
If − Bf

]
+

[
Bf − 1

F

F∑

g=1

Ig

]
T

}2

Hf , (15)

If = M(qf )If (x, y) , Bf = M(qfp
#
f )B(x, y) , and Hf = M(qf )H(x, y) . (16)

ManipulatingC under the assumption that the moving object is completely visible in theF images (THf =

T, ∀f ), and using the left equality in (19), we obtain

C = T





F∑

f=1

[
2IfBf − B2

f

]
−

1
F

[
F∑

g=1

Ig

]2


 +

F∑

f=1

[
If − Bf

]2

Hf . (17)

The second term ofC in (17) is independent of the templateT. To show that the sum that multipliesT is the

segmentation matrixQ as defined by expressions (10), (11), and (12), writeQ using the notation introduced in (16):

Q =
1
F

F∑

f=2

f−1∑

g=1

[
I2

f + I2
g − 2IfIg

]
−

F∑

f=1

[
I2

f + B2
f − 2IfBf

]
. (18)

We now need the following equalities:
[

F∑

g=1

Ig

]2

=
F∑

f=1

F∑

g=1

IfIg and
F∑

f=2

f−1∑

g=1

[
I2

i + I2
g

]
= (F − 1)

F∑

g=1

I2
g . (19)

Manipulating (18), using the two equalities in (19), we obtain

Q =
F∑

f=1

[
2IfBf − B2

f

]
− 1

F




F∑

g=1

I2
g + 2

F∑

f=2

f−1∑

g=1

IfIg


 . (20)

The following equality concludes the derivation:
[

F∑

g=1

Ig

]2

=
F∑

g=1

I2
g + 2

F∑

f=2

f−1∑

g=1

IfIg . (21)

We estimate the templateT by minimizing the ML cost function given by (9) over the templateT, given the

background world imageB. It is clear from (9), that the minimization ofCML with respect to each spatial location
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of T is independent from the minimization over the other locations. The templateT̂ that minimizes the ML cost

function CML is given by the following test evaluated at each pixel:

Q1(x, y)

T̂(x, y) = 0
>

<
T̂(x, y) = 1

Q2(x, y) . (22)

The estimatêT of the template of the moving object in (22) is obtained by checking which of two accumulated square

differences is greater. In the spatial locations where the accumulated differences between each frameM(qf )If

and the backgroundM(qgp#
g )B are greater than the accumulated differences between each pair of co-registered

framesM(qf )If andM(qg)Ig, we estimatêT(x, y) = 1, meaning that these pixels belong to the moving object.

If not, the pixel is assigned to the background.

The reason why we did not replace the background world image estimateB̂ given by (8) in (5) as we did with the

object world image estimatêO is that it leads to an expression forCML in which the minimization with respect to

each different spatial locationT(x, y) is not independent from the other locations. Solving this binary minimization

problem by a conventional method is extremely time consuming. In contrast, the minimization ofCML over T

for fixed B results in a local binary test, which makes our solution computationally very simple. This closed-form

solution is rooted on our assumption ofrigid shape, which contrasts to theflexibleshape model and the probabilistic

learning approach of [32], where the solution is not in closed form.

We illustrate the template estimation step for a sequence of 1-D frames obtained with the generative video

building blocks of Fig. 2. We synthesized an image sequence by using the model in (2). The camera position was

chosen constant and the object position was set to increase linearly with time. The frame sequence obtained is

represented in Fig. 3. Time increases from bottom to top. From the plot of Fig. 3 we can see that the background

is stationary and the object moves from left to right.

space

time

frame sequence

Fig. 3. 1-D image sequence synthesized with the generative video constructs of Fig. 2. Time increases from bottom to top.
The evolutions of the matricesQ1 and Q2 (in this experiment,Q1 and Q2 are vectors because the frames

are 1-D) are represented by the plots in Fig. 4. The left plot represents the evolution ofQ1, while the right plot

representsQ2. Time increases from bottom to top. At the beginning, when only a few frames have been taken into

account, the values ofQ1 andQ2 are small and the test (22) is inconclusive. As more observations are processed,
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the absolute value of the difference betweenQ1 andQ2 rises and the test becomes unambiguous, see the evolution

of the segmentation matrixQ = Q1 −Q2 shown on the left plot of Fig. 5. When enough frames were processed,

Q takes high positive values for pixels that do not belong to the template of the moving object, and negative values

for pixels belonging to the template, see the shape ofQ in the top of the left plot of Fig. 5 (the straight line at the

bottom representsQ = 0) and the template of the moving object in Fig. 2.

space

time

Q1

space

time

Q2

Fig. 4. Evolution ofQ1 andQ2 for the image sequence of Fig. 3. Time increases from bottom to top.

space

time

Q=Q1−Q2

space

tim
e

test

Fig. 5. Template estimation for the image sequence of Fig. 3. Left: evolution of the segmentation matrixQ. Right: template estimates. Regions

classified as belonging to the object template are light. Regions classified as not belonging to the template are dark. Middle grey regions

correspond to the test (22) being inconclusive. In both plots, time increases from bottom to top.
On the right plot of Fig. 5, we show a grey level representation of the evolution of the result of the test (22). Time

increases from bottom to top. Regions classified as belonging to the object template are light. Regions classified

as not belonging to the template are dark. Middle grey regions correspond to the test (22) being inconclusive.

Note that, after processing a number of frames, the regions are either light or dark, meaning that the test (22) is

unambiguous at every spatial location. The right plot of Fig. 5 illustrates the convergence behavior of the template

test—the estimates of the template of the moving object confirm the statement above about the evolution of the

segmentation matrixQ in the left plot of Fig. 5,i.e., we see that the sequence of estimates of the template converges

to the true template, represented in Fig. 2.

The top row of the right plot in Fig. 5 shows the final estimate of the template of the moving object. It is equal

to the actual template, represented in Fig. 2. In this example, the template of the moving object is the union of two
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disjoint intervals. We see that the segmentation algorithm recovers successfully the template of the moving object

even when it is a disconnected set of pixels.

IV. PENALIZED LIKELIHOOD

As anticipated in section II when we formulated the problem, it may happen that, after processing theF available

frames, the test (22) remains inconclusive at a given pixel(x, y), i.e., Q1(x, y) ' Q2(x, y). In other words, it is

not possible to decide if this pixel belongs to the moving object or to the background. This ambiguity comes

naturally from the fact that the available observations are in agreement with both hypothesis. We make the decision

unambiguous by looking for thesmallesttemplate that describes well the observations, through penalized likelihood

estimation. Minimizing the penalized likelihood cost function (3), introduced in section II, balances the agreement

between the observations and the model, with minimizing the area of the template.

A. Penalized likelihood estimation algorithm

We now modify the algorithm described in the previous section to address the minimization of the penalized

likelihood cost functionCPL in (3). Re-writeCPL as

CPL = CML + α Area(T) = CML + α

∫ ∫
T(x, y) dx dy , (23)

whereCML is as in (5),α is non-negative, andArea(T) is the area of the template. Carrying out the minimization,

first note that the second term in (23) does not depend onO, neither onB, so we getÔPL = Ô and B̂PL = B̂.

By replacingÔ in CPL, we get a modified version of (9),

CPL =
∫ ∫

T(x, y) [Q(x, y) + α] dx dy + Constant , (24)

where the segmentation matrixQ is as defined in (10), (11), and (12). The penalized likelihood estimate of the

template is then given by the following test, which extends test (22),

Q(x, y)

T̂PL(x, y) = 0
>

<
T̂PL(x, y) = 1

− α . (25)

B. Relaxation

It is now clear that the strategy of relaxing the parameterα has an advantage with respect to the ML-only

two-step algorithm of [38]. To emphasize this point, consider using ML as in section III-A initialized by estimating

the background as the average of the co-registered input images,i.e., the initial estimate of the background is

contaminated by the moving object intensity values. It may happen that the next estimate of the template, obtained

from test (22) is, erroneously, so large that, in the next step, the estimate of the background can not be computed

at all pixels and the algorithm freezes and can not proceed. Consider now using the same initialization but with

a relaxation scheme for the parameterα. Using the penalized likelihood test (25), with a large value forα, the

next estimate of the template will be very small (the parameterα can even be set to a value such that the template
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estimate will contain a single pixel). Using this template estimate, the next estimate of the background will be less

contaminated by the moving object intensity values and thus closer to the true background. The next penalized

likelihood estimate of the template, obtained from test (25) with a slightly smallerα, will then be slightly larger

and closer to the true template of the moving object. This relaxation proceeds until the parameterα reaches either

zero, leading to the ML estimate minimizing (5), or a value previously chosen, leading to the penalized likelihood

estimate minimizing (23).

We illustrate the impact of the relaxation procedure by using again a 1-D example. The moving object template

is represented on the left plot of Fig. 6. It is composed by four segments of different lengths. We synthesized eleven

1-D images by moving the object from left to right with a constant speed of two pixels per frame. Each of the line

of the right plot of Fig. 6, labeled from top to bottom from 1 to 11, shows one resulting image and the full right

plot shows the image sequence. As this plot clearly shows, the noise and the similarity between the textures of the

background and the object makes it very challenging to obtain an accurate segmentation.
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Fig. 6. Left: 1-D template[1 11 10 01 10 11 1 11 00 11 11]. Right: 1-D image sequence. Time increases from top to bottom.
The plots of Fig. 7 illustrate the behavior of the algorithm with the relaxation procedure just outlined. Evolution

occurs from the top-left plot to the bottom-right plot. Each plot shows: i) the symmetry3 of the entries of the

segmentation matrixQ, marked with a solid line; ii) the value of the threshold parameterα, marked with a dashed

line; and iii) the estimatêTPL of the template, marked with stars (“*”). The top-left plot represents the first penalized

likelihood test (25) after initializing the background estimate by averaging the images in the sequence. From this

plot we see that the threshold parameterα is high enough such that only one pixel is classified as belonging to the

object template,i.e., only one entry of the symmetric segmentation matrix is above the thresholdα. The values of

the segmentation matrix in this plot make clear that, ifα was set to zero at this early stage, the template would be

clearly overestimated (compare with the true template in the left plot Fig. 6), the next background estimate would

be incomplete, and the two-step algorithm could not proceed. On the other hand, by choosing the value ofα in

such a way that only one pixel is classified as belong to the template, the algorithm is able to refine the background

estimate, leading to the second template test, represented on the second plot from left on the top of Fig. 7. Here, we

3We represent the entries of negativeQ, i.e., −Q, because those are the values to be compared with the weightα through (25).
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decrease the value of the thresholdα, enabling a second pixel to be classified as belonging to the template. In this

example, the relaxation process continues untilα reaches zero, leading to the ML estimate. To ease visualization,

we use a different vertical scale for the last eight plots. The final estimate, represented on the bottom-right plot,

shows that our method successfully segmented the moving object from the image sequence on the right of Fig. 6

(compare with the left plot of Fig. 6).
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Fig. 7. Relaxation for the 1-D image sequence of Fig. 6. Evolution occurs from the top-left plot to the bottom-right plot. Each plot shows:

i) the symmetry of the entries of the segmentation matrixQ, marked by a solid line; ii) the value of the threshold parameterα, marked by

a dashed line; and iii) the estimatêTPL of the template, marked by stars (“*”). The final estimate, on the bottom-right plot, shows that our

method successfully segmented the moving object (compare with the left plot of Fig. 6).

In general, the relaxation ofα can be made faster than we did for this example,i.e., at each step several pixels

can be added to the estimate of the template. Anyway, any relaxation procedure for our segmentation algorithm

should stop and decrease the relaxation rate whenever a background estimate returns incomplete. In our experiments

with real video, we decreasedα linearly, in four to five steps.
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C. Stopping criteria

To stop the relaxation process we could adopt as strategy to stop as soon as the estimateT̂PL of the template of

the moving object stabilizes,i.e., as soon as no more pixels are added to it. However, to resolve the problems with

low contrast background that motivated the use of penalized likelihood estimation, we stop the relaxation whenα

reaches a pre-specified minimum valueαMIN. This αMIN can be chosen by experimentation, but we can actually

predict from the observation model (1) what are good choices for it. If the minimum valueαMIN is chosen very high,

we risk that some pixel(x, y) of the moving object,i.e., with T(x, y) = 1, is erroneously classified as belonging to

the background, since from test (25),Q(x, y) > −αMIN ⇒ T̂PL(x, y) = 0. In [37], using the observation model (1)

and the definition of the segmentation matrixQ in (10), (11), and (12), we show that the expected value of the

entry Q(x, y) for a pixel (x, y) of the moving object,i.e., with T(x, y) = 1, can be approximated as

ET=1 {Q(x, y)} ' −
F∑

f=1

[
O(x, y) −M(qfp

#
f )B(x, y)

]2

. (26)

This expression shows that, as we process more frames, ET=1 {Q(x, y)} becomes more negative, reducing the

probability of Q(x, y) > −αMIN, and so of misclassifying the pixel(x, y) as belonging to the background4.

Expression (26) then suggests that good choices for the thresholdαMIN are in the interval] 0,−ET=1 {Q} [ . Since

in practice we can not compute ET=1 {Q} because we do not know before hand what are the intensity levels of the

object and the background, we assume a valueS2 for their average square difference and choseαMIN in the middle

of the interval,] 0, FS2 [ , whereF is a constant. In our experiments, with 1-byte per pixel gray level images,i.e.,

with intensities in the interval[0, 255], we usedαMIN = 20, obtained by settingS = 2 andF = 10. Our experience

has shown that any other valueαMIN not to close to the extremes of the above interval would lead to the same

estimates.

V. EXPERIMENTS

We describe four experiments. The first two use challenging computer generated image sequences to illustrate

the convergence of our algorithm and its capability to segment complex shaped moving objects and low contrast

video. In the third and fourth experiments we use real video sequences. The third experiment illustrates the time

evolution of the segmentation matrix. The fourth experiment segments a traffic video clip.

Complex shapeWe synthesized an image sequence, the “IST” sequence, according to the model described in

section II. Fig. 8 shows the world images used. The left frame, from a real video, is the background world image.

The moving object template is the logo of theInstituto Superior Técnico(IST) which is transparent between the

letters. Its world image, shown on the right frame, is obtained by clipping with the IST logo a portion of one of the

frames in the sequence. The task of reconstructing the object template is particularly challenging with this video

sequence due to the low contrast between the object and the background and the complexity of the template. We

synthesized a sequence of20 images where the background is static and the IST logo moves around.

4In [37], using Tchebycheff inequality [54], we derive upper bounds for the probability of misclassification.

August 4, 2004 DRAFT



20 IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 8. Constructs for the synthetic image sequence. Left: background. Right: moving object.

Fig. 9 shows three frames of the sequence obtained according to the image formation model introduced in

section II, expression (2), with noise varianceσ2 = 4 (the intensity values are in the interval[0, 255]). The object

moves from the center (left frame) down by translational and rotational motion. It is difficult to recognize the logo

in the right frame because its texture is confused with the texture of the background.

Fig. 9. Three frames of the image sequence synthesized with the constructs of Fig. 8.

Fig. 10 illustrates the four iterations it took for the two-step estimation method of our algorithm to converge.

The template estimate is initialized to zero (top left frame). Each background estimate in the bottom was obtained

using the template estimate on the top of it. Each template estimate was obtained using the previous background

estimate. The arrows in Fig. 10 indicate the flow of the algorithm. The good template estimate obtained, see bottom

left image, illustrates that our algorithm can estimate complex templates in low contrast background.

? ? ? ?������*

������*

������*

Fig. 10. Two-step iterative method: template estimates and background estimates for the image sequence of Fig. 9.

Note that this type of complex templates (objects with transparent regions) is much easier to describe by using a

binary matrix than by using contour based descriptions, like splines, Fourier descriptors, or snakes. Our algorithm
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overcomes the difficulty arising from the higher number of degrees of freedom of the binary template by integrating

over time the small intensity differences between the background and the object. The two-step iterative algorithm

performs this integration in an expedite way.

Low contrast video By rotating and translating the object shown on the left image of Fig. 11, we synthesized

20 frames, two of which are shown in the middle and right images of Fig. 11. As these images clearly show, the

noise and the similarity between the textures of the background and the object makes it very challenging to obtain

an accurate segmentation.

Fig. 11. Left: moving object. Middle and right: noisy video frames.

Fig. 12 describes the evolution of the estimate of the moving object template through the relaxation process

described in section IV. The final estimate, shown in the bottom-right image of Fig. 12, shows that our algorithm

was able to recover the true shape of the moving object (left image of Fig. 11).

Fig. 12. Relaxation. Evolution of the estimate of the moving object template for the image sequence in Fig. 11. The final estimate (bottom-right)

coincides with the true shape of the moving object in the left image of Fig. 11.

Robot soccerWe used a sequence of20 images, the “robot soccer” sequence, obtained from a robot soccer

game, see [55]. It shows a white robot pursuing the ball. Frames1, 4, 8, and16 of the robot soccer video sequence

are in Fig. 13.

Although it is an easy task for humans to segment correctly the video sequence in Fig. 13, even looking at a

single frame, this is not the case when motion is the only cue taken into account. In fact, due to the low texture of

the regions of both the field and the robot, the robot template is ambiguous during the first frames of the sequence.

This is because several regions belonging to the field can be incorrectly classified as belonging to the robot, since
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Fig. 13. Robot soccer video sequence. Frames1, 4,8, and16.

the motion of the robot during the first frames is such that the video sequence would be the same whether or not

those regions move rigidly with the robot. The same happens to regions of the robot that can be interpreted as being

stationary with respect to the field. Only after the robot rotates, it is possible to determine, without ambiguity, its

template.

Multiple objects The robot soccer video sequence contains two moving objects. Our algorithm deals with multiple

moving objects by running the segmentation procedure, independently, for each of them. This basically requires

estimating the motions of the independently moving objects. Since the algorithm does not require an accurate

segmentation when estimating the image motion (in fact it does not require any segmentation at all since the

algorithm uses in further steps only the motion estimates), we resolve the simultaneous estimation of the support

regions and the corresponding motion parameters by using a fast and simple sequential method. We first estimate the

motion parameters that best describe the motion of the entire image. Then, the images are co-registered according

to the estimated motion. The pixels where the registered frame difference is below a threshold are considered to

belong to the dominant region, which we assume is the background. Then, the dominant region is discarded and

the process is repeated with the remaining pixels.

Applying the moving object template test, in expression (22), see section III-A, the ball template becomes

unambiguous after5 frames. Figure 14 shows the evolution of the robot template. Regions where the test is

inconclusive are grey, regions classified as being part of the robot template are white, and regions classified as

being part of the background are black. The robot template is unambiguous after10 frames. The final robot

template estimate is shown on the right side of Fig. 14.

Fig. 14. Estimate of the robot template after frames2,4, 6, and10 of the video sequence of Fig. 13.

Figure 15 illustrates the evolution of the segmentation matrixQ introduced in section III-A. The curves on the

left side plot the value ofQ(x, y) for representative pixels(x, y) in the template of the robot. These curves start

close to zero and decrease with the number of frames processed, as predicted by the analysis in section III. The

curves on the right side plot of Fig. 15 represent the evolution ofQ(x, y) for pixels not in the template of the

DRAFT August 4, 2004



AGUIAR AND MOURA: FIGURE–GROUND SEGMENTATION FROM OCCLUSION 23

robot. For these pixels,Q(x, y) increases with the number of frames, again according to the analysis in section III.

Thus, while during the first frames the value ofQ(x, y) is close to zero and the template test is ambiguous (due

to the low texture of the scene), after processing enough images the absolute value ofQ(x, y) increases and the

robot template becomes unambiguous.
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Fig. 15. Evolution of the entriesQ(x, y) of the segmentation matrixQ for representative pixels: left plots are for pixels(x, y) in the robot

template; right plots are for pixels(x, y) not in the robot template.

Figure 16 shows the recovered world images for the two moving objects and background, after processing the

entire sequence of20 frames.

Fig. 16. Background, robot, and ball world images recovered from the robot soccer video sequence of Fig. 13.

Road traffic In this experiment we use a road traffic video clip. The road traffic sequence has250 frames.

Figure 17 shows frames15, 166, and225. The example given in section I to motivate the study of the segmentation

of low textured scenes, see Fig. 1, also uses frames76 and77 from the road traffic video clip.

Fig. 17. Road traffic video sequence. Frames15,166, and225.
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In this video sequence, the camera exhibits a pronounced panning motion, while four different cars enter and

leave the scene. The cars and the background have regions of low texture. The intensity of some of the cars is very

similar to the intensity of parts of the background.

Figs. 18, top and bottom, show the good results obtained after segmenting the sequence with our algorithm.

Fig. 18, bottom, displays the background world image, while Fig. 18, top, shows the world images of each of

the moving cars. The estimates of the templates for the cars in Fig. 18 become, from left to right, unambiguous

after 10, 10, and14 frames, respectively.

Fig. 18. Top: Moving objects recovered from the road traffic video sequence of Fig. 17.; Bottom: Background world image recovered from

the the road traffic video sequence of Fig. 17.

The CPU time taken by our algorithm to process a sequence of images depends on several factors, in particular,

the level of relaxation used. With little or no relaxation, as used in our experiments with the IST, the robot soccer,

and the road traffic sequences, to process a typical sequence of20 video frames of160×120 pixels takes about

1.75 sec with a non-optimized MATLAB implementation, running on a 2.4 GHz Pentium IV laptop. Using the

same implementation of the algorithm but using a high degree of relaxation where the threshold is decreased very

slowly this time can increase to20 sec or even30 sec.

VI. CONCLUSION

We develop an algorithm for segmenting 2-D rigid moving objects from an image sequence. Our method recovers

the template of the moving object by processingdirectly the image intensity values. We model both therigidity of

the moving object over a set of frames and theocclusionof the background by the moving object. We estimate

all unknowns (object and camera motions and textures) by an algorithm that approximates the minimization of a

penalized likelihood (PL) energy functional. We first estimate the motion estimates, and then use a two-step iterative

algorithm to approximate the minimization of the resulting cost function. The solutions for both steps are in closed

form and so computationally very simple. Convergence is achieved in a small number of iterations (typically three

to five iterations). Experiments show that the proposed algorithm can recover complex templates in low contrast

scenes.
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