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ABSTRACT

In this paper, we address the problem of optimizing the
detection performance of sensor networks under communi-
cation constraints on the common access channel. Our work
helps understanding tradeoffs between sensor network para-
meters like number of sensors, degree of quantization at each
local sensor, and SNR. Traditionally, this problem is tack-
led using asymptotic assumptions on the number of sensors,
an approach that leads to the abstraction of important de-
tails such as the structure of the fusion center. We adopt
a non-asymptotic approach and optimize both, the sensing
and the fusion sides with respect to the probability of de-
tection error. We show that the optimal fusion rule has an
interesting structure similar to the majority-voting rule. In
addition, we study the convergence with respect to the num-
ber of sensors of the performance of the fusion rule. We show
that convergence is SNR dependent and that, in low-SNR
environments, asymptotics may require a large number of
SENsors.

Categories and Subject Descriptors

C.2.4 [Computer Communication Networks]: Distrib-
uted Systems—Distributed applications; E.4 [Coding and
Information Theory|: Data compaction and compres-
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formation Theory—Information theory; C.2.1 [Computer
Communication Networks): Network Architecture and
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1. INTRODUCTION

Large-scale reconnaissance and surveillance through net-
works of geographically dispersed autonomous sensors is be-
coming a reality due to the levels of integration offered by
technology. Distributed sensing is faced with many chal-
lenges pertaining to the scarcity of power, bandwidth, and
computing resources. Effective design under such resource
limitations is often a matter of compromise; a balance be-
tween competing goals and objectives. We focus here on the
detection performance of sensor networks operating under
a global rate constraint imposed by their common access
communications channel.

Fundamental results on distributed detection go back to
the early work of Tenney and Sandell [14]. Interested read-
ers are referred to [20] as well as the book by Varshney
[19] for an introduction and overview to the area of decen-
tralized detection. Faced with many obstacles, most of the
literature in this field resort to asymptotic assumptions and
information-theoretic performance measures to simplify the
analysis and design of sensor networks [15]-[3]. Analysis
based on asymptotics leads to the abstraction of important
details of the problem such .as the structure of the fusion
rule. Although there are few studies that avoid using as-
ymptotic assumptions [13],[19], most of them are limited to
simple networks and they fall short of providing insight into
the structure of optimal fusion rules.

We consider here a specific architecture for the sensor net-
work, a parallel architecture, see Fig. 1, where there is no
communication among the local sensors, and the local detec-
tors feed their quantized decisions to a single fusion center.
We address the problem of optimizing the detection perfor-
mance of such sensor networks under communication con-
straints. In particular, we concentrate on the design of the
fusion center and the tradeoffs among parameters of interest
like the number of sensors, how many bits per local deci-
sion, and SNR. Understanding these tradeoffs is important
since it provides answers to important questions including
the following: how many sensors of a particular type should
be deployed in certain environments and whether or not it is
advisable to use hard versus soft detectors. We adopt a non-
asymptotic approach and develop algorithms for optimizing



both, the local sensors and the fusion center with respect

to the exact probability of detection error. We show that - 0/ ™1

optimal fusion rules have an interesting structure similar to Binary Hypothesis
the majority voting rule. We establish, under a channel
rate constraint, when should we opt for fewer higher qual-
ity sensors (more bits per sensor) rather than more lower
quality sensors (fewer bits per sensor). Also, we study the
convergence of performance results towards those obtained
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under asymptotic assumptions, when the number of sensors
N — o0, and show that conclusions derived from asymptotic © st
analysis may be very different from the actual conclusions :
derived for networks with a given number of sensors. This . 42 | compression | AN
is much more so at low-SNR environments, most likely the 1" 40 b
condition under which many such sensor networks will op- : { SO
erate. - % Uy Uy
The remaining of the paper is organized as follows. In h 4 y h 2
section 2, we present the model of parallel fusion networks Channel
and state the problems. Algorithms for optimizing the local Communication
detectors and the fusion rule are presented in section 3. Sec-
tion 4 contains the optimization results along with discus- 0
sions regarding the structure of the fusion center, the trade-- 7" | Fusion
offs between network parameters, and convergence toward l
the asymptotes. Finally, we present concluding comments v
in section 4. H e {0, 1}
2. MODEL AND PROBLEM STATEMENT
We consider here the following distributed detection prob- Figure 1: Parallel fusion network.
lem for sensor networks: N sensors gather T' measurements
Yn,+ Per sensor n, make a local decision u,,; per measure-
ment and send the decisions u,,; to a single fusion center NT local decisions {un, : n = 1,2, ... SN } into one of two
7o through an error-free multiple-access channel (MAC) as classes, i.e., vy : V¥ — {0,1}.
shown in Fig. 1. This particular architecture is often re- We address the following main issues:
ferred to as a parallel fusion network [19]. We consider this
problem when the MAC has a rate constraint R. The fu- 1. Structure of the fusion rule that optimizes the proba-
sion center makes a global decision H about the true state bility of detection error P. = Pr(H # H).
of nature H based on the collection of the local decisions
gathered from all sensors. In the version of the problem 2. Tradeoffs between sensor network parameters such as
we consider here explicitly, the fusion center does not sense the number of sensors V, number of bits per sensor b,
measurements directly. and SNR.
We cast the problem as a binary detection problem with 3. Convergence of the error decay rate towards the as-

hypotheses Ho and H; with known prior probabilities mp
and 71, respectively. In addition, we assume that the ob-
servations {yn::n=1,2,...,N,t =1,2,...,T} are, condi-
tioned on H, independent and identically distributed with 3. OPTIMIZATION

ymptotes as N — oo.

conditional densities fo(y) = f(y|Ho) and fi(y) = f(y|H1). In its general form, the problem of optimizing decentral-

The spatio-temporal conditional independence assump- ized sensor networks is complex and computationally ex-
tion causes the space and time to be indistinguishable. Un- pensive due to the fact that the optimization is performed
der such assumption, the probability of error Pe(T', N, b, A\,v,) over all possible local classification rules v, € T and all
is dependent on the total number of samples NT rather than possible fusion rules vy, € T'o. When a discrete observa-
the individual values of N and T. Effectively, this makes a tion space is assumed, the resulting optimization problem is
sensor network with IV sensors gathering T' measurements NP-complete. The problem can not be any easier if we con-
per sensor equivalent to having NT sensors gathering single sider a continuous observation space [17]. The assumptions
measurements each as long as the fusion rules in both cases introduced in the previous section yield considerable simpli-
are equivalent. Therefore, without loss of generality, we can fications, which enable us to formulate a simpler version of
assume that 7' = 1 and drop the dependence on T. the optimization problem. In particular, the conditional in-

Since the fusion center makes the final decision, the output dependence assumption simplifies the problem greatly since,
of the fusion rule v, is binary, i.e., either Hy or Hy. Local in this case, optimal local classifiers are likelihood ratio tests
sensors, on the other hand, are not restricted to binary out- characterized by a finite number of thresholds. The problem
puts: each sensor classifies each measurement y, € Y into can be simplified further by assuming that the likelihood ra-
L = 2° classes, where'b is the number of transmitted bits per tio f1(y)/fo(y) is monotonic in y [10], in which case, we are
sensor per measurement. We can think of each classifier as a allowed to quantize the measurements directly rather than
mapping from the observation space ) to the classification their likelihood ratios. It was shown in [5] that, when the
space U, i.e., v, : Y — U. Similarly, the fusion rule maps observations are Gaussian, at most L(L — 1)/2 quantization
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thresholds per local sensor are required in order to preserve
global optimality of the sensor network. It is easy to show
that the latter statement holds for any other distribution
as long as the measurements are conditionally independent.
Numerical results that we conducted for b = 2 on the asymp-
totic regime (N — oo) show that optimizing a network with
L(L — 1)/2 thresholds per local sensor always converges to
a simpler one having only L — 1 thresholds per local sensor.
For this reason, and in order to reduce the computational
complexity, we assume that the local quantizers are charac-
terized by L — 1 thresholds as follows

0 if yn < Ann

1 if An,l < Yn S A17,,2
Un = . . ) (1)
L—-1 if Yn > )\n,L—l

where, yn is the local measurement at the nth sensor, u, is
the corresponding local decision, and An 1, An,2,..., An,L—1,
are the L —1 quantization thresholds of that sensor. In sum-
mary, for a fixed fusion rule «y,, the optimization problem
amounts to finding the set of optimal thresholds A = {An s,
n=1,2,...N,4=1,2,...L — 1} such that the average
probability of detection error P.(N, b, A,y,) is minimized.

The structure of the fusion rule plays a crucial role re-
garding the overall performance of the sensor network since
the fusion center makes the final decision about the state of
the environment. While a few bad sensors might not greatly
impact the overall performance, a badly designed fusion rule
can lead to a poor performance even if the local detectors are
well designed. Under the conditional independence assump-
tion, the optimal fusion rule is known to be a likelihood ratio
test on the probability mass functions (pmf) of the local de-
cisions [19]. However, the coupling between the fusion rule
and the local classification rules reduces the importance of
this fact since the optimal thresholds of the local classifiers
are not known apriori. This makes it necessary to consider
all possible fusion rules when attempting to optimize the
sensor network. One way to accomplish this is by searching
the space of fusion rules and optimizing the local thresholds
for each candidate rule. Other than for some simple cases
(e.g., [19, pp.84-87]), the complexity of such an approach is
prohibitive due to the exponential growth of the set of pos-
sible fusion rules with respect to the number of sensors N
and the number of bits per sensor b. '

Next, we consider the details of local thresholds and fusion
rule optimization. )

3.1 Representation of Fusion Rules

Before getting into details of the optimization algorithm,
it is necessary to devise a way for representing fusion rules.
We adopt a binary representation, which describes the out-
put of the fusion rule under every possible combination of
the local decisions. Since there are N sensors and each sen-
sor classifies its measurement into L classes, a particular
fusion rule should account for LY local decision possibilities
and, therefore, it can be represented as a string of LV bits
as follows

h=(hpn_y hyn_5 -+ h1 ho),
hq € {0,1}, ¢=0,1,...LY —1. (2)

Similarly, each possible combination of local decisions can
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Figure 2: Fusion rule representation for a network
of N = 2 sensors quantizing their measurements into
b = 2 bits per - measurement.

be represented by a vector of N integers

u=(ug uz -~ un), un € {0,1,..., L -1}

®3)

Assuming L = 2%, u can be represented as a string of bN
bits as follows

(.1 2 b1 2 b 1.2 b
u_ ulul"'uluZuQ"'u2 ...uNuN...uN ,

ol € {0,1}. (4)

with representation (4), the space of all possible local deci-
sions is spanned by a single bN-bit integer ¢ ranging from 0
to 2°V — 1. For a particular combination of local decisions
represented by an integer g, the individual values of the lo-
cal decisions un,, n = 1,2,..., N, can be extracted using a
reverse mapping function ¥, (g). This can be implemented
by shifting the binary representation of g to the right by
b(N — n) bits then ANDing the result with 2° — 1. Alter-
natively, one could implement this using integer operations,
.. (q) = (¢/2°™~™)mod L, where mod is the modulo op-
eration. .

Fig. 2 illustrates the relationship between the integer g,
the local decisions u1 and u2, and the decision of the fusion
center hq for N = 2 sensors and L = 4 classes (b = 2 bits
per sensor). Entry g in the table indicates the corresponding
combination of local decisions and the output of the fusion
rule hy. For example, if the fusion rule is given by h =
(00---01), then this means that the fusion center always
decides for Hy except when u; = 00 and ug = 00, in which
case it decides in favor of Hj.

3.2 Fusion Rule Optimization

Searching for the fusion rule that leads to the minimum
probability of error is the main bottleneck due to the dis-
crete nature of this optimization process and the exponen-
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Figure 3: Sensor network optimization using the ge-
netic algorithm. '

tially large number of possible fusion rules. Except for few
simple cases, exhaustive search strategies are usually infea-
sible since the search space grows exponentially with both,
the number of sensors N and the number of bits per sensor
b. Even if we assume identical sensors, the large number of
possible fusion rules still precludes any practical algorithm
based on exhaustive strategies. We develop an algorithm
for optimizing the fusion rule by making use of the Genetic
Algorithm (GA) to minimize the average probability of er-
ror. Unlike exhaustive search algorithms, GA uses evolution
and survival-of-the-fittest mechanisms to guide the search
toward the fittest candidates. The GA, introduced by John
Holland in 1975 [4], has found a wide spread use in many
fields including signal processing and communications (see
for example [12] and the references therein).

Fig. 3 outlines the fusion rule search algorithm. The pop-
ulation comprises a group of chromosomes from which can-
didate solutions are selected. Each chromosome in the pop-
ulation represents a candidate fusion rule A represented by a
string of L™ bits (genes). Initially, a population is generated
randomly. The fitness of every chromosomes is evaluated by
optimizing the local thresholds and calculating the objective
function P.(A, k) as described in the following section. A
particular group of chromosomes (parents) is selected from
the population to generate the offspring. The fitness of the
offspring is evaluated similarly by evaluating their P.(A, k).
The chromosomes in the current population are then re-
placed by their offspring based on a replacement strategy.
This cycle is repeated until a desired termination criterion
is reached. If all goes well throughout this process of simu-
lated evolution, the best chromosome in the final population
can become a highly evolved solution to the problem.

GA-based algorithms usually suffer from slow convergence
and high computational complexity, which may limit their
use in real-time applications. However, recent developments
in massively parallel computer architectures demonstrated
the potential to eliminate the computational bottleneck in
implementing evolution techniques due to the inherent par-
allel nature of the GA. In this regard, Twardowski [18] has
shown the feasibility of GA real-time implementation using
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parallel associative architectures. Furthermore, simulation
results in this paper provide good heuristics that can be used
without further optimization for real-time applications.

In the following section, we present a gradient-based al-
gorithm for optimizing the thresholds of the local detectors.
This optimization step is required for all candidate fusion
rules within the GA population to evaluate the fitness of
each chromosome.

3.3 Threshold Optimization

For each candidate fusion rule -y, represented by a binary
string h, the set of N(L — 1) local thresholds should be
optimized with respect to the probability of error. Formally,
this can be written as

m}inP5 (A, k) subject to

A1 <Az < <AMr-1, n=12,...N. (5)
This is a [N(L — 1)]-dimensional nonlinear constrained opti-
mization problem. Except for some simple cases, it is often
hard, if not impossible, to find analytical solutions for the
optimal thresholds, especially when the number of sensors
or the number of bits per sensor is large.

We propose a gradient-based numerical approach to solve
this optimization problem. Due to the number of constraints,
instead of moving in the direction of the N(L—1)-dimensional
gradient, we propose an algorithm similar to the cyclic co-
ordinate descent explained in [8]. In this algorithm, each
optimization step involves moving along the direction of the
one-dimensional gradient with respect to one of the variables
as long as the constraints are satisfied. The optimization is
then carried out cyclically over all variables. Definitions and
derivations of the probability of error Pe(\, h) and its gra-
dients are presented in the appendix.

It might be tempting to think that optimal local classifiers
should be identical, in which case the number of optimiza-
tion variables can be greatly reduced. However, this is not
true even if the observations are identically distributed. In
fact, Tsitsiklis in [15] presented an example for which two
sensors with identically distributed measurements have dif-
ferent decision rules. On the other hand, it has been shown
in [15] that the performance loss due to this assumption is
negligible when the number of sensors is large. In this paper,
we study the general case except when indicated.

Table 1 outlines the threshold optimization algorithm.
In this algorithm, each step involves the computation of
the gradient with respect to a variable @; in the vector
0 = (01,02,...,6N(—1y), then moving in the direction of
that gradient as long as the constraints are not violated.
In our work, the arrangement of the variables is such that
6= (/\1,1, AL2y oy ALL=13A2,1,5 -+ -, /\N,L—1)~ The algorithm
loops over all variables sequentially. The algorithm keeps
searching until all gradients A;,7s = 1,2,... N(L — 1) ap-
proach zero or if a maximum number of iterations has been
exceeded.

The search parameter ¢ = (o, 2, ...,aL) controls the
convergence speed of the algorithm. The updating step of
«; is designed to speedup or stabilize the convergence of the
algorithm: a too small value «; leads to slow convergence;
larger values may cause instabilities. At each step, the al-
gorithm keeps track of the sign of the gradient A; and uses
it to update the value of o; according to whether there was
a sign change in A;, indicating a switch in the search direc-



Table 1: Optimization of the local thresholds
1: Initialize 0,
Compute the gradient A; = %&%ﬂ
If constraints are violated, jump to 2
Oi — 0,’ - a,;Ai

i t+1 (reset if ¢ > N(L —1))
If converged stop, else jump to 2

DD WN

tion. Specifically, the a;’s are decreased by a small amount
whenever the sign of A; changes since this indicates that
we stepped over a local optima and we should slow down
the search. Similarly, if the sign of A; does not change, this
might indicate that we are still far away from the optima and
we need to speed up the search in this direction by slightly
increasing ;. )

Proper initialization plays another crucial role in the con-
vergence of the algorithm. Since the algorithm is gradient-
based, it is possible that the algorithm converges to an incor-
rect solution when the gradients become very small. There-
fore, it is important to decide where to initialize the search
in a way to avoid those regions where this might occur. Our
results here and in the asymptotic study of [1] indicate that
the thresholds should be initialized such that they are con-
centrated around the intersection between fo(y) and fi(y).
This is intuitively reasonable since this is the region where
it is hardest to discriminate between Hy and H;. In other
words, it is not recommended to put the thresholds far away
from the intersection point.

Convergence properties of the above algorithm are hard
to analyze theoretically due to the high dimensionality and
nonlinearity of the optimization problem at hand. Even if
we succeeded in avoiding saddle points, the algorithm might
get stuck in local minima. In the case of binary local detec-
tors, a proof of quasi-convexity of the probability of error
is provided in [11] for Gauss and some non-Gauss distrib-
utions. Aside from binary local detectors, convexity of the
general case is much harder to prove. However, our results
show good convergence properties and, for all case studies,
the algorithm converges to a single point even if we use dif-
ferent reasonable initial conditions.

4. RESULTS

We consider a parallel fusion network with N sensors with
a single measurement each and quantizing it to b bits per
measurement. The sensors use possibly non-identical quan-
tizers. ‘Local observations are conditionally independent and
identically distributed and, in addition, are assumed to fol-
low the additive noise model y = m; + n, where m, is the
signal.mean under H;,i = 0,1 and n is a zero-mean noise
with known distribution and variance o2. Our main objec-
tives here are to investigate the structure of optimal fusion
rules as well as to study the tradeoffs between sensor net-
work parameters such as number of sensors N, number of
bits per sensor b, and SNR. In addition, we study the con-
vergence of the probability of error results towards those
obtained under asymptotic assumption as N — ooc.

4.1 Optimal fusion rule

For the purpose of exploring the structure of the fusion
rule, we optimize the sensor network using the algorithm
described in the previous section for different network set-
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Figure 4: Evolution of the probability of error us-
ing the GA optimization algorithm for a network of
N = 4 sensors and b = 2 bits per sensor. The mea-
surements are Gaussian with me = 0, m; = 1, and
02 = 1. The GA population size is set at 1000 chro-
mosomes, while the crossover and mutation rates
are 0.45 and 0.01, respectively.

tings. We use the notation (b, N) to refer to a network of
N sensors with b bits per measurement. The aim here is to
see if there is a unique structure to which the fusion rule
converges.

Our study covered the cases of (2,2), (2,3), (2,4), (3,2),
(3,3), and (1, N) with N ranging from 2 to 8. Out of these
cases, we were able to conduct an exhaustive search over all
possible fusion rules for the (2,2) and the (1, N), N =2,3,4
cases since the number of fusion rules is relatively small. For
the remaining cases we used the GA algorithm to search for
the fusion rule that minimizes the average probability of
error. We note that this involves finding the optimal fu-
sion rules and the optimal thresholds for the local detectors.
These local detectors are not assumed to be identical, i.e.,
total number of the local thresholds is N(L—1). In addition
to considering different sensor network settings b and N, we
also varied the prior probability 7o as well as the parame-
ters of the Gaussian observation model mg, mi, and o2. In
all cases, we ran the algorithm several times to improve the
odds of reaching the global minimum. Fig. 4 shows the evo-
lution of the probability of -error over 100 generations for
a (2,4) case with prior probability 7o = 0.6 and Gaussian
observations with mg = 0, m; = 1, and ¢? = 1, from which
it is clear that the algorithm converged to a minimum after
20 generations. For this particular example, the population
size is set at 1000 chromosomes while the crossover and mu-
tation rates are 0.45 and 0.01, respectively.

The most important result in our study.of fusion rules is
that in all of the cases that we considered, the optimization
algorithm converges to a fusion rule with a unique structure
shown in Fig. 5. Interestingly, the best fusion rule that we
found in our study came down to a simple threshold test on
the integer sum of the local decisions. More interestingly,
our results show that the best threshold A° of this fusion
rule is around

20~ %N(L —1) (6)
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Figure 5: Majority-like fusion rule.

regardless of the prior probabilities o and ;. It should be
noted that there are several cases that we optimized using
an exhaustive search algorithm for which we were able to
show that this particular fusion rule is indeed optimal.

The fusion rule shown in Fig. 5 resembles the binary ma-
jority voting rule. It should be noted that the conclusion in
[19] regarding the optimality:of the majority voting rule is
only specific for the case of binary local detectors (b = 1)
and, in addition, has been derived under the assumption of
identical local sensors. In contrast, our study provides an
insight into the structure of the fusion rule in the general
case (b > 1) and we do not restrict the local detectors to be
identical.

The probability of error of the majority-like fusion rule
in Fig. 5 can be analyzed using the saddle-point approach.
Preliminary results show that a good accuracy is achievable
using the Lugannani-Rice approximation [9]. This will be
the subject of a subsequent paper.

4.2 Tradeoff between sensor network
parameters

We discuss the tradeoffs between sensor network parame-
ters such as the number of sensors N, number of bits per
sensor b, and the SNR. For a fixed constraint on the total
number of bits imposed for example by a MAC rate con-
straint R, we compare sensor networks with different num-
ber of bits b per sensor and different number of sensors N
based on their detection performance. We use the fusion rule
shown in Fig. 5 while the thresholds are optimized using the
gradient-based algorithm described in section 3.3. The aim
here is to see whether it is better to have a larger number of
sensors N or a higher number of bits per sensor b when the
total number of bits R = bN is fixed due to constraints on
the MAC channel. This problem has been addressed in (3]
and [16], but with asymptotic assumptions on the number
of sensors. Here we study this problem when the number of
sensors is finite.

Fig. 6 shows the probability of error as a function of
SNR of two sensor networks, one constructed using 8 bi-
nary (b = 1) sensors while the other uses only 4 quaternary
(b = 2) sensors when mo = 7y = 0.5, mp = —mq , and
0? = 1. These both satisfy a MAC constraint of 8 bits per
detection interval. Fig. 6 illustrate the superiority of the 8
binary sensors when both binary and quaternary sensors op-
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Probability of error P,

SNR (dB)

Figure 6: Probability of error comparison of 8 bi-
nary (b = 1) versus 4 quaternary (b = 2) sensors
when 7o = m; = 0.5. The observations are Gaussian
with mo = —m; , and 62 =1

erate at the same SNR. This is consistent with the results of
the asymptotic study in [3]. We note that the two curves in
Fig. 6 are roughly 1.5 dB apart. So if the quaternary sensors
operate at an SNR that exceeds by 1.5 dB the SNR of the bi-
nary sensors, then the 4 quaternary sensors outperform the
8 binary sensors. This contrasts with what is suggested in
[3] and [16], in which it was concluded that we should always
opt for the larger number of sensors. Again, we emphasize
that their conclusion is reached under the assumption that
all sensors offer the same SNR n = n; = n, S = Ny,
where 7, is the SNR when b-bit per sensor quantizers are
used. In practice, it is usually the case that low-cost hard
sensors are of low-quality and, hence, provide lower SNR.
The results here show that the preference of a particular
sensor type over the others is dictated by the SNR that
they can offer as well as their degree of quantization. In-
terestingly, we reached similar conclusion in our asymptotic
(N — o0) study in [1] although the performance measure
in that study is the error decay rate, which is somewhat
different from the probability of error considered here.

4.3 Convergence towards the asymptotes

The assumption of asymptotically large number of sensors
is often adopted when analyzing decentralized detection net-
works since it can lead to great simplifications resulting from
the abstraction of the fusion center. Here, we study the con-
vergence of our results based on finite number of sensors N
toward those obtained when N — oco. Under the asymptotic
assumption, an appropriate way of representing the perfor-
mance of the system is through the error decay rate given by

(7)

which is always less than Cs, the error decay rate of infinite-
bandwidth systems (i.e., with unquantized local sensors).
Fig. 7 shows the ratio of Cs, the error decay rates resulting
from quantized measurements, to C, the error decay rate
when the sensors do not quantize their measurements, from

Cy(A) = —lim % log Po(N, b, Aryy),



b (bits/sample)

Figure 7: Ratio of the error decay rates of quantized
to unquantized measurements. The measurements
are Gaussian with mg = —m; , ¢2 = 1. Each curve
represents a different SNR ranging from SNR;
0 dB to SNRy = 20 dB with 2 dB steps.

which it is clear that the performance loss due to quantiza-
tion decays exponentially as the number of bits per sensor b
is increased (more details in [1]). In this section, this ratio
represents our main performance measure and we denote it
by {,(n) = Cs(n)/Coo(n); where 7 is the SNR.

Fig. 8 compares the ratio C, (N, 1) = Co(N,1)/Coo (1) with
the corresponding ratio ¢,(n) obtained under the asymp-
totic assumption and when the local detectors are quater-
nary (b'= 2). The approximate error decay rate Cy(N,7)
is obtained by computing the probability of error P. (this
involves optimizing the local thresholds as explained in sec-
tion 3.3 while the fusion rule is as shown in Fig. 5) at dif-
ferent numbers of sensors N and evaluating the decay rate
numerically as /N increases. The unquantized decay rate is
given by Co () = n/2 [3] while the quantized asymptotic
error decay rate Cy(n) is computed using the techniques pre-
sented in [1].

It is clear from Fig. 8 that the results obtained using a
finite number N of sensors converge to the asymptotic re-
sults. More importantly, the convergence speed is highly
dependent on the SNR. In particular, large number of sen-
sors, possibly larger than 500 or 1000, are needed to ap-
proach the asymptotes when the SNR is low (as seen for
SNR= —5 dB, a typical SNR environment with low qual-
ity sensors). This implies that, in low SNR environments,
performance assessments based on asymptotic results lead
to incorrect conclusions, especially when the number of sen-
sors is not sufliciently large.

5. CONCLUSIONS

We addressed the problem of designing decentralized sen-
sor networks when there are constraints on the communica-
tion resources. We considered a parallel fusion architecture
and, unlike other studies, we adopted a non-asymptotic ap-
proach to the optimization of the local sensors and the fu-
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Figure 8: Convergence of the error decay rate to-

wards the asymptotes when b = 2, 7o = 71 = 0.5 and

the observations are Gaussian with mo = —m; , and
2

o =1.

sion rule. Our results show that the optimal fusion rule
has a structure that generalizes the majority rule for binary
sensors. It should be noted that despite the complexity of
the proposed optimization algorithm, simulation results in
this paper provide good heuristics that can be used without
further optimization for real-time applications. In addition,
the obtained results enabled us to study the tradeoff be-
tween the number of bits per local quantizer and the SNR.
We concluded that, for example, for binary (b = 1) versus
quaternary (b = 2) sensors, if the SNR for the quaternary
sensors is at least 1.5 dB larger than the SNR for the binary
sensors, it is preferable to use a number of quaternary sen-
sors that is only half the number of binary sensors. Finally,
we addressed the question: of how large should the number
of sensors be so that performance results based on asymp-
totic analysis (with the number of sensors) are reliable. We
find that the number is highly dependent on the SNR, and
that it can be fairly large, on the order of hundreds if not
thousands, for realistic (low) SNR values.
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APPENDIX

A. GRADIENT OF THE PROBABILITY OF
ERROR

Given a fusion rule h, the average probability of error at
the fusion center is given by the weighted sum of type-I and
type-II errors,

1

P(Ah) = mP(k, A B), (8)
k=0

where 7, is the prior probability of hypothesis Hy, P2 (k, A, k) =
Pr(uo = k|H}) is the false alarm probability when & = 0 or
the miss probability when k = 1, and & is the binary nega-
tion of k (i.e., k =NOT(k)). From the LV mutually exclu-
sive possibilities of the local decisions, we sum over those
that result in a ug = k decision at the fusion center and we
use the fact that the measurements at the local sensors are
conditionally independent to write the probability of each
error type P2(A, h) as a sum of products,

tNo1 N

= 3 [[Pr@aia), ),

q=0 n=1
hg=F

P2k, A\ h) 9

where Pg'(m,) = Pr(u, = m|Hi) is the probability that
the nth sensor decides m when Hy is present. Since u, re-
sults from quantizing the measurement y,, its probability
is related to the pdf of y, through the L — 1 quantization
thresholds A = (An,1,An,2,- .., An,L—1), and since the mea-
surements are identically distributed, Pf(m, ) is given by

)‘n,m-}»l B
PEom ) = [ )y = O = B,
>\n,m .
(10)
where An o and A,z are defined to be —oco and oo, respec-
tively, fx(y) is the probability density function of y condi-

tioned on Hy, and Fy(x) is the conditional cumulative den-
sity function (ccdf) of y defined as

Fi(z) = / " fw)dy. (11)

The gradient of the average probability of error Pe(A,h)
with respect to a threshold A, is given by

o}
T o P(h) = ch P,c (B, A, R, (12)
o R OPL (W (@), ) 1
k v 5 N
Erw ——P(k,\h) = ;:D o nI:IIPk (Tn(g), N).
hq=k n#v

(13)
The derivative of Pf(m, ), the probability of the nth sensor
deciding in favor of m, with respect to a threshold A, ; can
be shown to be

n —fk(An,r) fm=7
3_1%15_&\_) ={ foOnr)  ifm=7-1 (14)
™7 0 otherwise :
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