CoDef: Collaborative Defense against Large-Scale Link-Flooding Attacks

Soo Bum Lee*, Min Suk Kang, Virgil D. Gligor
CyLab, Carnegie Mellon University
*Qualcomm

Dec. 12, 2013
Large Scale Link-Flooding Attacks

- Massive DDoS attacks against *chosen targets* in *Internet Infrastructure*
Real World Example: “Spamhaus” Attack (2013)

- **flooding** few links in 4 IXPs
 - **scalable impact**: regionally degraded connectivity
 - **but easily mitigated**: attack flows are distinguished from legitimate flows and filtered

=> lasted only ~ 1 - 1.5 hours
Typical Defenses against Link-Flooding Attacks

➢ Distinguish attack flows from legitimate ones
 ✓ e.g., flow filtering, pushback, anti-spoof filtering, capability-based solutions

But, advanced link-flooding attacks can easily circumvent the typical defenses
“Crossfire” Attack (S&P’13)

use “bot to public server” attack flows

N bots

M public servers
(e.g., HTTP web server)

flooding

$O(NM)$ flows

“indistinguishable” attack flows from legitimate flows
✓ many, low-rate, diverse source/destination addresses, protocol conforming, destination-wanted
“Coremelt” Attack (ESORICS’09)

use “bot to bot” colluding attack flows

Our adversary model:

“indistinguishable link-flooding attacks”
Problems

I. **Identify** the *indistinguishable* attack flows?
 - force the adversary’s *untenable choice* by conformance tests

II. **Avoid collateral damage** to legitimate flows?
 - route separation (i.e., providing *detours* for legitimate flows)

III. **Prevent** the attack from being *dispersed* and causing *unanticipated* damage to legitimate flows?
 - pin down potential attack flows
CoDef: Collaborative Defense

1. Collaborative Rerouting

Target AS sends *reroute requests* to source ASes

=> provides detours around the flooded link
CoDef: Collaborative Defense

2. Collaborative Rate Control

Target AS sends *rate-control requests* to source ASes

=> allows source AS to prioritize flows

Source AS

[Diagram showing flow between Source AS and Target AS]

Target AS

Okay!

Pls. slow down!

Link flooding
Motivations of Collaborative Defense

Target AS

✓ Has no way to distinguish attack flows by itself
✓ Has limited control over the incoming traffic
e.g., end-to-end AS-paths, traffic rate

Source AS

✓ Has no idea about the flooding at the remote target
✓ Has good reason for collaboration to circumvent flooding

Transit ASes

✓ Has no incentive/motivation for changing
 (optimized/complex) routing policies
CoDef Architecture

- CoDef adds complementary routing functions
 - route controllers, secure route-control channels
Collaborative Rerouting

C is *flooded* and A’s packets to G are dropped.

1. C sends re-route message to A: “Please avoid me (i.e., C)”
Collaborative Rerouting

C is **flooded** and A’s packets to G are dropped

1. C sends re-route message to A: “Please avoid me (i.e., C)”
2. A refers to its routing table and finds alternate route: ADEFG
Collaborative Rerouting

C is *flooded* and A’s packets to G are dropped
(1) C sends re-route message to A: “Please avoid me (i.e., C)”
(2) A refers to its routing table and finds alternate route: ADEFG
(3) A changes “Import Policy” of its BGP router (i.e., R2)
Collaborative Rerouting

C is **flooded** and A’s packets to G are dropped
1. C sends re-route message to A: “Please avoid me (i.e., C)”
2. A refers to its routing table and finds alternate route: ADEFG
3. A changes “Import Policy” of its BGP router (i.e., R2)

“What if domain A is **single-homed** exclusively to B?”

=> rerouting at B
Rerouting Conformance Test

Link Flooding
Rerouting Conformance Test

Okay!

Link Flooding

rerouting request

rerouting request
Rerouting Conformance Test
Rerouting Conformance Test

Link Flooding

identify attack flows

oh... wait...

flooding has stopped!

let’s create

new attack flows!
Rerouting Conformance Test

Adversary’s *untenable choice*:

give up the attack or be detected
(by conforming to the test) (by creating new attack flows)

Link Flooding

identify attack flows

oh... wait...
flooding has stopped!

let’s create new attack flows!
Path Pinning

CoDef **fixes** attack **paths** to the target to prevent unanticipated **damages**
Evaluation of Collaborative Rerouting

- Internet AS topology
 - 40K+ ASes and their business relationships from CAIDA (e.g., customer-provider, peer-peer)
 - 538 attack ASes selected based on real spam bot distribution

- Forwarding path decision model
 - preference: (i) cheaper paths; (ii) shorter paths
Evaluation of Collaborative Rerouting

evaluate the “availability of alternate paths” from legitimate ASes to a destination

conservative attack scenario

- all ASes on the attack paths (i.e., paths from attack ASes to destination) are the *flooding targets*

Finding alternate paths: “avoid target ASes”

- three evaluation policies
 - strict
 - viable
 - flexible

![Diagram showing path selection process](image)
Availability of Alternate Paths

![Graph showing connection ratio for different ASes in strict, viable, and flexible categories.](attachment:image.png)

- **Connection Ratio (%)**
- **Destination ASes**
 - AS 20144
 - AS 297
 - AS 7500
 - AS 27
 - AS 2149
 - AS 29216

Note: This graph illustrates the availability of alternate paths for different ASes under strict, viable, and flexible conditions.
Ease of Deployment

• **No significant deployment cost**
 – *no* changes to *existing* systems (e.g., BGP and OSPF)
 ➢ honors routing policies of individual ASes
 ➢ requires no disclosure of internal topology/policies

• **Significant deployment incentives**
 – *technical* advantage
 ➢ detects and mitigates large-scale link-flooding attacks
 – *economical* advantages
 ➢ provides premium services
Conclusion

• *CoDef*: a practical mechanism for *defending* against large-scale link-flooding attacks

• Test to *identify the attack flows* exploiting adversary’s untenable choices

• *Significant deployment incentives*
Thank You