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Abstract—Industrial Control Systems (ICS) govern critical
infrastructure like power plants and water treatment plants.
ICS can be attacked through manipulations of its sensor or
actuator values, causing physical harm. A promising technique
for detecting such attacks is machine-learning-based anomaly
detection, but it does not identify which sensor or actuator
was manipulated and makes it difficult for ICS operators to
diagnose the anomaly’s root cause. Prior work has proposed
using attribution methods to identify what features caused an ICS
anomaly-detection model to raise an alarm, but it is unclear how
well these attribution methods work in practice. In this paper, we
compare state-of-the-art attribution methods for the ICS domain
with real attacks from multiple datasets. We find that attribution
methods for ICS anomaly detection do not perform as well as
suggested in prior work and identify two main reasons. First,
anomaly detectors often detect attacks either immediately or
significantly after the attack start; we find that attributions com-
puted at these detection points are inaccurate. Second, attribution
accuracy varies greatly across attack properties, and attribution
methods struggle with attacks on categorical-valued actuators.
Despite these challenges, we find that ensembles of attributions
can compensate for weaknesses in individual attribution methods.
Towards practical use of attributions for ICS anomaly detection,
we provide recommendations for researchers and practitioners,
such as the need to evaluate attributions with diverse datasets
and the potential for attributions in non-real-time workflows.

I. INTRODUCTION

Industrial control systems (ICS) govern our critical infras-
tructure, including power grids, water treatment, and manu-
facturing processes. Because of this critical nature, attackers
aim to infiltrate the ICS and interfere with their physical
processes [58]; prominent examples include Stuxnet [41],
attacks on the Ukrainian power grid [52], and an attack on
a German blast furnace [70].

ICS operate on process-level data: data from sensors,
which read information from a physical process, and data
from actuators, which send commands to control a physical
process [60]. A commonly studied type of attack involves
manipulating process-level data of an ICS [15], [44]: an
attacker gains access to an ICS and manipulates one or more
sensor or actuator values, causing the ICS to react in a harmful
way (e.g., a tank to overflow, a reactor to overheat).

To detect these manipulations in real time, a variety of
anomaly-detection approaches have been proposed [10], [26],
[31]. A common approach for ICS anomaly-detection uses
machine learning (ML): process-level values (i.e., ICS states)
are represented as features in a ML model, and the model is
trained to predict future ICS states (i.e., a per-feature prediction
of each sensor and actuator value) from an input window of
prior states. At test time, the predicted state is compared with
the observed state; if the total difference between the prediction
and observation (i.e., reconstruction error) exceeds a threshold,
an anomaly is declared [39], [72]. This approach has been
shown to effectively detect attacks across various types of
ICS [7], [19], [27] and with various model architectures [18],
[24], [39], [72].

A key part of ICS operators’ response to an attack is
identifying its cause [13]. However, most proposals for using
ML-based anomaly detection in ICS only identify whether an
ICS as a whole is in a normal or anomalous state [72].

In this work, we investigate if attribution for anomaly
detection methods could help operators identify which sensors
or actuators are the cause of an ICS anomaly. Attribution is a
technique for quantifying the impact of the input features on a
model’s prediction [51], [56], [61]. Attribution methods, such
as saliency maps [56] and SHAP [45], have been developed
for other domains of ML (e.g., images).

Prior work in ICS anomaly detection has proposed that
suggesting features with the highest reconstruction errors can
sufficiently guide operators to the location of the manipula-
tion [34], [39]. However, these studies evaluate attribution with
few attacks, and prior work in general has not systematically
studied the accuracy and quality of attribution methods for ICS
anomaly detection.

In this work, we investigate two research questions:

• RQ1: Can attribution methods accurately identify the
manipulated feature in an ICS attack? Which method is
most accurate?

• RQ2: What properties of ICS attacks affect the accuracy
of attributions? E.g., the timing of the anomaly detec-
tion, the manipulation magnitude, or type of component
attacked.

To investigate these questions, we conduct a comparative
evaluation of several attribution methods for ICS anomaly
detection across a large set of attacks and anomaly-detection
models. We first implement five process-level anomaly-
detection models for ICS. Next, we implement eight attribution
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methods for ICS anomaly detection and adapt them to attribute
time-series reconstruction errors. We evaluate these anomaly-
detection models and attribution methods across two datasets
from prior work that contain real ICS attacks [7], [27] and
a newly generated dataset of synthetic anomalies designed to
increase anomaly diversity, created with an open-source ICS
simulator [14].

We make the following contributions:

• In contrast to what is suggested by prior work, we find
that ranking features by raw reconstruction error performs
poorly for attributing ICS anomalies when evaluated over
a broad set of attacks and anomaly-detection methods.

• We find that ML-based attribution methods outperform
raw-error rankings, but only when the input to the attri-
bution method coincides with the start of the anomaly.

• We evaluate attribution methods along manipulation prop-
erties and find that low-magnitude, categorical-actuator-
based manipulations are most difficult to attribute.

• We show that an ensemble method that combines the
outputs of multiple attribution methods outperforms all
individual attribution methods.

• We provide recommendations for researchers and practi-
tioners when designing and deploying attributions for ICS
anomaly detection.

• To support further research on attributing ICS anomalies,
we create (i) an open-source library of attribution meth-
ods for reconstruction-based, time-series ICS anomaly-
detection models1, (ii) a modified ICS simulator that per-
forms well-defined sensor/actuator manipulations2, and
(iii) a dataset of 286 synthetic ICS anomalies for testing3.

II. BACKGROUND AND RELATED WORK

In this section, we discuss background from prior work:
ICS attacks and datasets (Sec. II-A), ICS anomaly-detection
methods (Sec. II-B), and attribution methods (Sec. II-C). We
then discuss prior evaluations of attributions for ICS anomaly
detection (Sec. II-D) and related, alternative techniques to
attribution methods for ICS anomaly detection (Sec. II-E).

A. ICS attacks and datasets

ICS are interconnected systems that govern a physical,
industrial process. ICS collect information from the process
through sensors and control the process through commands
sent to actuators [60].

When attackers obtain access to an ICS, they can ma-
nipulate the sensor and actuators values sent throughout the
network, causing the ICS to react improperly [15], [44].
These attacks can be performed stealthily through a false-data-
injection attack, which bypasses existing ICS controls such
as state-estimation and programmable control logic [44]. We
use an attacker model proposed in prior work [15], where an
adversary replaces sensor/actuator readings with curated values
over a period of time.

When ICS controllers observe and respond to readings
that differ from their true value (e.g., a sensor value for the

1https://github.com/pwwl/ics-anomaly-attribution
2https://github.com/pwwl/tep-attack-simulator
3https://doi.org/10.1184/R1/23805552

water tank level that does not represent reality), the effect
is propagated through the system, achieving the attacker’s
harmful objective (e.g., overflowing a water tank).

We evaluate on two public water treatment datasets [7],
[27]. These datasets include examples of manipulation-based
ICS attacks, with descriptions of which sensors/actuators are
manipulated, how they are manipulated, and the intended
attack objective. In evaluating against these attacks, we assume
that the attacks would genuinely cause the intended harm.

B. ICS anomaly-detection methods

In this work, we assume that the ICS is partially secured
with anomaly detection, which predicts anomalies based on
real-time observation of process values. We further assume that
the ICS operator has full white-box access to the model: they
are able to fully observe its inputs, outputs, and parameters.
We evaluate attributions from two types of anomaly detection:
statistical anomaly-detection methods and deep-learning-based
anomaly-detection methods.

1) Statistical methods: PASAD uses a departure score to
detect anomalies [10]. For each feature, the time-series signal
is compressed into a lower-dimensional signal subspace. At
test time, new inputs are projected onto the signal subspace,
and the distance from the subspace centroid is used as the
anomaly score; scores that exceed a threshold are predicted as
anomalies.

An auto-regressive model (AR) is a linear model that
predicts future process values from previous values [31]; each
feature is modeled independently. Prior work has applied AR to
ICS process data for anomaly detection by using a cumulative
sum of prediction errors [64].

2) Deep-learning-based methods: In prior ICS anomaly
detection work, deep-learning-based models are based on
unsupervised learning [23], [39], [72]: rather than directly
classifying an attack, the model predicts the next ICS state
and prediction error is used to detect anomalies. Unsupervised
learning is preferred to supervised learning in the ICS setting,
as supervised learning requires explicit attack labels, and ICS
attack data is rare and difficult to generalize [11].

At time t, given an input window of the previous h states
(xt−h, ..., xt−1), the model predicts the next state x̂t. The
predicted state x̂t is compared with the observed state xt; an
anomaly is declared if the total difference exceeds a threshold.

Several model architectures have been evaluated on a
variety of ICS datasets in prior work [23], [39], [72]; prominent
examples include convolutional neural networks (CNNs) [39],
gated-recurrent-unit networks (GRUs) [23] and long-short-
term-memory networks (LSTMs) [72]. CNNs learn patterns
through one-dimensional convolutional kernels, which perform
convolutions across the time dimension and can capture tem-
poral patterns in the sensor and actuator values [39]. GRUs
and LSTMs are similar, but do not use fixed-size convolutional
kernels [42]. GRU cells are instead trained with the capability
to update or reset system states, while LSTM cells further
include memory units that maintain states over time. In theory,
GRUs and LSTMs are more complex than CNNs and can learn
longer-term patterns from data [42].
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Table I: A summary of the attribution methods used in this work. Each
attribution method is listed with its type, whether it requires a baseline
reference, and whether it uses randomness.

Method Type Needs baseline? Randomness?

Counterfactual
(CF-Add/CF-Sub) [17] Black-box Yes No

LIME [51] Black-box No Yes
SHAP [45] Black-box No Yes

LEMNA [29] Black-box No Yes

Saliency
Map (SM) [56] White-box No No

Smoothed
Gradients (SG) [59] White-box No Yes

Integrated
Gradients (IG) [61] White-box Yes No

Expected
Gradients (EG) [21] White-box Yes Yes

C. Attribution methods

Given a model, its input, and its prediction, attribution
methods estimate the impact of each input feature on the
prediction. A canonical example is in the image domain: given
an image classification model, an input image, and a predicted
label, attribution methods assign a score to each pixel in the
input image that estimates its importance to the prediction [61],
[21]. Broadly, two types of attribution methods exist: black-box
methods, which use model queries, and white-box methods,
which use internal model gradients. Table I lists the attribution
methods used in this work and their properties.

1) Black-box attribution methods: Black-box attribution
methods use repeated model queries to estimate model be-
havior; a set of input-output pairs is generated by locally
perturbing the input and observing the corresponding model
output. LIME uses these input-output pairs to fit a linear
model and uses feature coefficients as attribution scores [51].
SHAP also fits a local model, but instead uses feature Shapley
values as attribution scores [45]. LEMNA focuses on security-
relevant applications [29]; it uses the input-output pairs to fit a
combined fused Lasso regression and Gaussian mixture model
and uses its feature coefficients as attribution scores.

Although LIME, SHAP, and LEMNA are designed for
single-output classification and regression tasks, prior work
uses SHAP for ICS anomaly detection by attributing the
highest-error feature [9], [34]; we apply LIME, SHAP, and
LEMNA to ICS anomaly detection with the same technique.

2) White-box attribution methods: White-box attribution
methods use gradients on model parameters to determine how
predictions change with respect to a given input. A variety
of prior work improves white-box attribution methods by
modifying how the gradients are computed and how the inputs
to the gradient function are chosen; these techniques have each
been empirically shown to improve attribution quality in other
domains [21], [56], [59], [61].

We adapt four white-box methods from prior work
(saliency maps [56], smoothed gradients [59], integrated gradi-
ents [61], and expected gradients [21]) for deep-learning-based
anomaly-detection models and evaluate them on ICS attacks.

D. Prior work in attributing attacks on ICS

In this section, we summarize prior work that evaluates
attributions of ICS anomaly detection. Although prior works
have qualitatively evaluated explanations of ICS anomaly
detection models with visualizations [18], [30], [37], [62],
few prior works have quantitatively evaluated attributions by
directly mapping anomaly scores produced from anomaly-
detection models to the features manipulated in the attack.

We identify two prior works that employ quantitative
evaluation: Kravchik and Shabtai evaluate “attack detection
localization” of a CNN trained on SWaT by directly identify-
ing if high-error features correspond to manipulated features
(found in Appendix C in their work [39]), and Hwang and Lee
evaluate a similar LSTM-based setup on a different dataset
(found in Section VII-C1 of their work [34]).

Kravchik and Shabtai evaluate the attributions of a CNN-
based anomaly detection model on the SWaT dataset and find
that, when using only a few of the highest ranked raw-error
features, eight out of ten attacks are correctly attributed to
the original attack location [39]. However, the SWaT dataset
contains 32 attacks, and an evaluation for the rest of these
attacks is not performed. Hwang and Lee evaluate the at-
tributions of an LSTM-based anomaly detection model [34],
computing attributions with SHAP [45]. Evaluating on only
two attacks, they find that using the three highest-error features
can correctly identify which feature was manipulated.

In this work, we expand greatly on prior work by evaluating
attributions on 156 manipulations from three datasets and
evaluating attributions across a variety of timing and attack
scenarios.

E. Alternatives to attribution for ICS anomaly detection

In this section, we present alternative approaches to ICS
anomaly detection and attribution, while discussing their ad-
vantages and drawbacks.

Physics-based anomaly detection: Physics-based (also
called model-based) anomaly detection is an alternative to the
data-driven (also called model-free [20]) approaches used in
this work [26]. Physics-based anomaly-detection models the
physical process with a set of equations and is best suited
for systems that closely follow the laws of physics, such
as robotic motion [16], [50] or electric power grids [44],
[57]. Properly implementing such approaches requires a strong
understanding of the physical system, and attributions are less
likely to be needed for fault diagnosis. In this work, we assume
that operators do not have strong system knowledge and rely
on data-driven anomaly-detection methods; attributions can
therefore help operators diagnose anomalies (as suggested by
our operator survey in Sec. V).

Rule-based anomaly detection: In rule-based anomaly de-
tection [6], [22], [38], rules or invariants are used to describe
benign ICS behavior, and a violated rule causes an anomaly to
be declared. Designing rule-based anomaly detection requires
process knowledge and engineering effort [46], so automated
approaches have emerged to address this difficulty [6], [22],
[43]. Engineered rules can also serve as features for ML-
based ICS anomaly-detection [39], [43], [53]: when rules are
sufficiently complex, their values can be used as explanations
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or indicators of compromise [6], [13]. Rule-based and ML-
based anomaly-detection have been compared for ICS [22],
[36], [68]; this work focuses on exploring ML-based anomaly-
detection attributions for ICS that rely on such techniques.

Fault isolation: Fault isolation models predict attack types
directly [25], [71], turning an anomaly-detection task into a
classification task [35], [54]. Fault isolation requires an explicit
definition of the types of faults expected in the system, which
can be difficult to acquire [67]. Furthermore, applying fault
isolation to ICS anomaly detection requires diverse attack
examples across features and attack strategies for training. In
this work, we assume that this approach is infeasible and would
not scale to larger, complex ICS.

Comparing attribution and explanations for security tasks:
While attribution refers to identifying input features responsi-
ble for a specific output, explanation more generally refers
to understanding how a model behaves [48]. For example,
explanation methods have been used in security-relevant ML
domains to generate training data for model fine-tuning [33],
to automatically detect bias [36], and to detect and explain
concept drift [32], [69]. Explanation methods can be applied to
our anomaly-detection models to improve detection accuracy.

In this work, we focus on using attribution to identify the
manipulated feature in a specific ICS attack. Since the attacks
in our datasets contain ground-truth labels for which sensors
or actuators were manipulated, we quantitatively measure how
accurate attributions are for this task.

Intrusion Detection Systems (IDS): ICS anomaly-detection
systems are closely related to intrusion detection systems
(IDS): both are given a time-series sequence of data, and
both identify if and when anomalous behavior occurs [12],
[47]. State-of-the-art ML-based approaches for IDS and ICS
anomaly detection are similar; they commonly use time-series-
based, unsupervised anomaly detection, as labeled ground-
truth data is expensive to obtain in these domains [11].

However, ICS anomaly detection is distinct from IDS in the
types of features processed by their ML models, introducing
new challenges and requiring unique solutions. First, ICS
anomaly detection observes a system with semantics governed
by physical processes and process control logic; IDS are gen-
erally designed for network or host data, where relationships
between features are often not as strong. Second, since features
directly correspond to physical components in ICS anomaly
detection, their attributions can be used as suggested locations
for operator investigation without additional interpretation. As
ML-based IDS often operate on engineered features from
network or host data, solutions that help operators interpret
their predictions are needed [36].

III. METHODOLOGY

In this section, we describe our methodology, which is
composed of several steps; Fig. 1 shows our overall method-
ology in detecting and attributing ICS anomalies.

First, we prepare anomalous data for evaluating anomaly
detection and attribution—Sec. III-A describes the datasets
used in our work, spanning both publicly collected and newly
generated datasets. Second, we train ICS anomaly-detection
models, closely following techniques from prior work, as

described in Sec. III-B. Third, we compute attributions of
anomalies, using baseline methods from prior work (raw-
error ranking) and ML-based attribution methods; Sec. III-C
describes how we adapt attribution methods to account for
the time-series and unsupervised aspects of ICS anomaly
detection. Finally, we sort, score, and average attributions
to produce an overall ranking of features for investigation;
Sec. III-D describes our evaluation metric that captures at-
tribution accuracy over a broad set of anomalies.

A. Datasets used for training and evaluation

We evaluate against two groups of anomalies: (1) real
attacks found in public ICS datasets [7], [27] and (2) synthetic
anomalies created with an open-source ICS simulator [14].

1) Real attacks: SWaT [27] and WADI [7] are two public
datasets of time-series sensor and actuator data collected
from real water treatment and distribution systems in Sin-
gapore; they are commonly used for training deep-learning-
based anomaly-detection models [18], [24], [39], [49], [72].
SWaT and WADI each contain data from two separate system
traces: one trace is collected from a benign execution of the
system (for training anomaly-detection models); and the other
trace is collected from an execution containing several attacks
performed sequentially (for evaluating attack detection and
attack attribution). Each attack is performed by the system
operator: the value of one or more sensors or actuators is
manipulated for a fixed duration, and the resulting response
from the physical ICS is recorded. Each attack’s start time,
end time, and location (which sensors/actuators are manip-
ulated) are labeled. In total, the SWaT and WADI datasets
contain 47 attacks for testing: 32 in SWaT and 15 in WADI.
These datasets also contain anomalies where multiple features
are manipulated simultaneously; when evaluating attributions,
we consider each manipulation independently. Across the 47
attacks in our datasets, 67 manipulations (43 in SWaT, 24 in
WADI) are performed, forming the set of real attacks.

2) Synthetic anomalies: To further increase anomaly di-
versity for our attribution evaluation, we created an additional
dataset of anomalies by manipulating a simulated ICS. We use
a public MATLAB 7.0 simulator of the Tennessee Eastman
process (TEP) [14], an anonymized chemical process [19].

We implement a MATLAB module that interfaces with the
TEP simulation and manipulates process values, based on an
attacker model used in prior work [15], [40]: for a feature j, a
benign sequence xj(t) is replaced with a manipulated sequence
x′
j(t) for a time period Ta.

x̃j(t) =

{
xj(t) for t /∈ Ta

x′
j(t) for t ∈ Ta

Using the modified simulator, we systematically perform
ICS feature manipulations to generate a set of synthetic
anomalies. For each anomaly, we execute a 40-hour TEP
simulation, manipulate a chosen sensor/actuator, and record
the resulting system states. For every sensor and actuator in
TEP, we simulate four anomalies with different magnitudes,
creating 89 anomalies4.

411 out of 100 manipulations triggered a shutdown sequence, causing the
MATLAB simulator to exit and preventing data collection.
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Figure 1: In this work, we describe and evaluate each step when attributing an ICS attack. Raw-output rankings (top) are described in Sec. III-C1 and are the
baseline method from prior work. We introduce ML-based attribution methods (bottom) as an alternative in Sec. III-C2. Outputs/attributions are averaged and
sorted to produce an overall ranking of suggested features for investigation, described in Sec. III-D.

Table II: A summary of the manipulations used for evaluation, across a
set of real attacks from prior work (SWaT, WADI) and a set of synthetic
anomalies generated with a public simulator (TEP).

Dataset Magnitude Location Total

SWaT 0.06–36.31 std devs 24 sensors
19 actuators 43

WADI 0.5–91.00 std devs 16 sensors
8 actuators 24

TEP 2–5 std devs 56 sensors
33 actuators 89

Although these anomalies are generated synthetically, they
simulate physically realizable anomalies. For each manipula-
tion, the data collected from non-manipulated features were
produced as the output of the physical process (i.e., the
chemical process) responding to the manipulation. In cases
where manipulations produced runtime errors in the MATLAB
simulation, we excluded them from our dataset. Maintaining
physical realizability is important to ensuring that the executed
attacks are possible, and is essential when evaluating ML-
based approaches in other security contexts, such as face
recognition [55] and malware detection [63].

Though the anomalies in this dataset do not necessarily
correspond to an intentional ICS attack outcome, they are
genuine statistical anomalies (95th percentile or higher event)
that share common properties (e.g., manipulation patterns and
magnitudes) with the manipulations observed in the real attack
dataset. We use the synthetic anomalies to support a systematic
analysis of the relationship between manipulation properties
and attributions.

3) Defining manipulation properties: Each anomaly is de-
fined by its manipulation magnitude and the type of feature
attacked; the anomalies contained in all datasets are summa-
rized in Table II. In Sec. IV-C, we identify properties that
significantly affect attribution accuracy and which attribution
methods are optimal.

We define the manipulation magnitude using the difference
in standard deviations between feature j’s benign distribution
and its replaced value:

magnitude =
|max(x′

j(t))− mean(xj(t))|
stddev(xj(t))

Attacks in SWaT and WADI are performed with ma-
nipulations that span a wide magnitude range, from small
manipulations within the benign distribution (magnitude of
0.06) to large manipulations outside the benign distribution
(magnitudes over 35). When generating synthetic anomalies,
we perform manipulations at four different magnitudes: +2, -2,
+3, and +5. Our synthetic anomalies are performed within the
distribution of magnitudes observed in the real attack dataset,
which has an average magnitude of 3.25 standard deviations.

We also define attacks by the type of feature that is ma-
nipulated. Features in TEP are grouped into three categories:
actuators, which directly control the chemical process; sen-
sors, which are read by controllers to compute future actuator
values; and out-of-loop features, which do not impact the ICS
process. For TEP, we only perform manipulations on sensors
that result in changes to the physical process. SWaT and
WADI provide documentation for each feature and each attack:
we manually verified that each manipulation was executed as
described and affects the physical ICS process.

B. Implementing ICS anomaly detection

In this section, we describe our implementation of statis-
tical and deep-learning-based anomaly-detection models for
ICS, closely following the methodology from prior work.

1) Statistical anomaly detection: We implement two statis-
tical anomaly-detection methods: PASAD [10] and AR [31].

We use the open-source PASAD implementation by Aoudi
et al. [5] and tune it for each dataset in our use case. PASAD
is parameterized by the training length N , the input window
length (called lag) L and the statistical dimension r. We refer
to the anomaly-detection methodology and configurations by
Aoudi et al. [10], using the same default parameters for the
SWaT and TEP datasets. Since WADI is based on the SWaT
system, we opt for the same parameter values for WADI and
SWaT. For SWaT and WADI, our parameters are: N = 30000,
L = 5000 and r = 10; for TEP, our parameters are: N =
10000, L = 5000 and r = 16.

The original AR implementation is in C++ [4], so we opt
to implement a linear model on our own in Python. AR is
parameterized by p, the number of prior states used in the
linear model. Based on the default settings, we use p = 10,
and train our linear models with the Adam optimizer.
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2) Deep-learning-based anomaly detection: A variety of
prior work performs hyperparameter tuning across model
architectures to find optimal deep-learning-based anomaly-
detection models for ICS [24], [39], [72]; this is not the focus
of our work. Nevertheless, we perform a best-effort training of
anomaly-detection models for attributions.

We evaluate across three model architectures: convo-
lutional neural networks (CNNs) [39], gated-recurrent-unit
networks (GRUs) [23], and long-short-term-memory units
(LSTMs) [49], [72]. To best compare across model architec-
tures, we use a similar model size for each architecture: a
2-layer, 64-unit, 50-length-history model is trained for each
combination of dataset (SWaT, WADI, TEP) and architecture
(CNN, GRU, LSTM), with the default Adam optimizer. For
each training dataset, 80% of the benign dataset is used for
training and 20% of the benign dataset is used for validation.
As suggested by prior work [24], we implement early stopping,
which halts training when the validation loss stops decreasing.
Finally, we test the anomaly-detection models against the
manipulations from SWaT, WADI, and TEP. The results are
shown in Table IX in Appendix B. Similar to prior work, we
find that the size of the underlying reconstruction model has a
small effect on detection accuracy [24]; each model’s benign
validation error is below 0.25.

C. Attribution methods for ICS anomaly detection

After implementing ICS anomaly-detection models (de-
scribed in Sec. III), in this section we describe how we adapt
attribution methods for anomaly-detection outputs.

1) Baseline attribution method from prior work: Our base-
line attribution method uses the raw, per-feature anomaly
scores produced by each model as the attribution, as suggested
in prior evaluations of ICS anomaly-detection attribution [39].

For AR and deep-learning-based anomaly detection mod-
els, we use the per-feature prediction error (i.e., before taking
the average for MSE) between input xj and its prediction x̂j as
the anomaly score. Each error sj corresponds to the anomaly
score for an ICS feature j: sj = (xj − x̂j)

2.

With PASAD, each feature’s input xj produces a departure
distance that represents its deviation from normal5; we use the
departure distance as the anomaly score: sj = (c̃− Pxj)

2.

2) Adapted attribution methods: We next describe how
attribution methods can be adapted for ICS anomaly detection.
Each attribution method is given a trained anomaly-detection
model and an input of interest, and produces an attribution
for each input feature. We briefly describe our adaptations to
attribution methods; additional implementation details can be
found in Appendix B.

Counterfactuals: Given an input and a baseline, a
counterfactual attribution is computed by changing feature
values and measuring the change in a quantity of interest [65].
We use MSE as the quantity of interest for anomaly detection.
Based on prior work [17], we implement two counterfactual
attribution methods: an additive method that adds values to the
baseline; and a subtractive method that subtracts values from
the provided input.

5Details on how to compute projection matrix P and subspace centroid c̃
can be found in the original publication [10]

LIME [51], SHAP [45], and LEMNA [29]: LIME,
SHAP, and LEMNA are prominent, black-box attribution
methods. These techniques use perturbed samples to train
a local, linear approximation around an input, and use the
approximation model’s coefficients as attributions. We use
public LIME [2] and SHAP [3] libraries maintained by their
original authors. We implement LEMNA based on its pub-
lished description [29] and public code examples [1]. Each of
the described implementations assumes a single-output clas-
sification or regression task. To adapt these implementations
for ICS anomaly detection, we use a technique from prior
work [9], [34]: for a given input, we identify the feature with
the highest prediction error and compute its LIME, SHAP, or
LEMNA attributions. Thus, we adapt the anomaly-detection
task as a single-output regression task to comply with the
design and API of LIME, SHAP, and LEMNA.

Saliency maps [56]: The saliency map uses internal
model gradients as the attribution. Given a trained model, an
input of interest, and a quantity of interest, the internal gradient
of the quantity of interest with respect to the input is computed.
For a traditional classification model, the quantity of interest
is a given class label; for our anomaly-detection models, the
quantity of interest is the MSE. Thus, for a given model,
the saliency map computes each input feature’s influence on
increasing the MSE.

Other white-box variants: Prior work has found that
saliency maps are sensitive to small input changes; in response,
several extensions to saliency maps have been proposed [21],
[59], [61]. SmoothGrad adds random noise to the input before
computing the saliency map to reduce variance [59]. Integrated
gradients replace the quantity of interest with a path integral
to produce more meaningful outputs [61]. Expected gradients
reduce the variance of integrated gradients by sampling in-
puts from the training dataset [21]. We discuss the detailed
implementation of each white-box variant in Appendix B. We
evaluate the white-box variants in Appendix C but find that
they do not outperform the saliency map when applied to ICS
anomaly detection models.

D. Evaluation metric for attributions: AvgRank

Prior work that evaluated explanations of ICS anomaly
detection uses a mix of qualitative evaluations of visualizations
and analyses of individual attacks [18], [34]. To quantitatively
compare attribution methods over full datasets, we propose
the metric AvgRank. Across a set of ICS attacks, AvgRank
represents the average ranking of the manipulated feature when
features are ranked by their attributions.

For a given anomaly’s attribution s, we sort each feature’s
attribution sj in descending order and identify the placement
of the manipulated feature j′. Since the analysis in this paper is
across three ICS of varying dimension, we normalize rankings
by dividing the placement by the number of features in the
evaluated ICS dataset. We then report the average placement
across all anomalies for a given attribution method.

This produces the AvgRank: a score ∈ [0, 1] (lower is
better) that represents the average proportional ranking of
attacked features when identified by an attribution method. In
other words, an attribution method with an AvgRank of 0.2
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Table III: Top-k feature attribution accuracy and AvgRank for the baseline
attribution strategy from prior work (ranking features by raw error at
detection time). We find that this strategy performs worse than previously
reported; for all methods, less than 40% of all attacks are identified by the
highest score.

Total Top-1 Top-5 Top-10 AvgRank

AR 128 10 (8%) 30 (23%) 45 (35%) 0.383
PASAD 130 24 (18%) 43 (33%) 61 (47%) 0.304

CNNs 103 40 (39%) 59 (57%) 70 (68%) 0.187
GRUs 86 26 (30%) 54 (63%) 62 (72%) 0.141

LSTMs 113 27 (24%) 62 (55%) 75 (66%) 0.171

indicates that this attribution method will, on average, place
the attacked feature in the top 20% of features.

AvgRank’s design is drawn from prior work, which pro-
posed criteria for explanations of ML models when applied
to security-relevant tasks [66]. Although these proposed cri-
teria assume a classification task, some of them are relevant
for attributions of ICS anomaly detection. First, descriptive
sparsity requires that attributions identify a small set of fea-
tures; our proposed use of attributions filters out sensors and
actuators in an ICS. AvgRank could be interpreted as the
average number of sensors and actuators that would need to be
displayed in an anomaly alert to ensure that the manipulated
feature is shown. Second, completeness requires that attribution
methods perform well over a variety of inputs; AvgRank
measures performance over a set of anomalies. In Sec. IV-C,
we demonstrate the importance of evaluating attributions over
diverse datasets by using AvgRank to reveal discrepancies in
attribution accuracy across attack properties.

IV. RESULTS: EVALUATING ATTRIBUTIONS OF ICS
ANOMALIES

In this section, we report on the evaluation of two sets of
attribution methods for ICS anomaly detection:

• Raw-error ranking: a baseline method that ranks features
in descending order by their reconstruction error (de-
scribed in Sec. III-C1)

• ML-based attribution methods: attribution methods from
other ML domains, adapted for ICS anomaly detection
(described in Sec. III-C2)

Sec. IV-A describes our evaluation of attribution methods
using strategies from prior work: we find that raw-error rank-
ings perform much less well that previously reported, and ML-
based attribution methods also perform worse than anticipated.

To better understand why attributions fail, we perform a
more detailed analysis of ICS domain-specific characteristics:
the timing of the attribution relative to the time the manipula-
tion occurred (Sec. IV-B), and properties of the manipulations
(Sec. IV-C). We find that different attribution methods perform
best in different situations, and thus we propose an ensemble
attribution method and find that it outperforms all individual
methods (Sec. IV-D).

A. Assessing prior attribution strategies

In this section, we first explore prior attribution strategies:
when an ICS anomaly-detection model raises an alarm, can a

raw-ranking of its outputs identify which feature was attacked?
And how do ML-based attribution methods compare?

1) Evaluating raw-error rankings: We first describe our
results for raw-error rankings: ranking features in descending
order by their error (i.e., by the amount they deviate from the
predicted value).

Method: We apply raw-error ranking to all detected
attacks in all three datasets: 128 attacks for the AR model,
93 attacks for PASAD, 103 attacks for the CNN, 83 attacks
for the GRU, and 113 attacks for the LSTM. Table IX (in
Appendix B) shows the breakdown of detected attacks.

We find the first detection point for each labeled attack
and use the per-feature reconstruction errors at that timestep as
attributions. We rank all features by descending attribution and
use the rank of the manipulated feature to compute AvgRank
(e.g., an AvgRank of 0.25 implies that the manipulated feature
is on average, ranked within the top 25%), repeating the
process for each anomaly-detection model.

To find the detection points for our deep-learning-based
models, we use each model’s 99.95-th percentile validation
MSE as a threshold, employing a common strategy from prior
work [24], [39], [72]. For the AR model and PASAD, we use
the 99.5-th percentile validation error, as very few anomalies
are detected at the 99.95-th percentile threshold. At test time,
an anomaly is detected if any input within the labeled anomaly
region produces an MSE above the threshold.

Results: Table III shows the accuracy of the prior
attribution strategy for each anomaly-detection method, span-
ning both statistical methods and deep-learning-based models
(CNNs, GRUs, and LSTMs). Although prior work has reported
high attribution accuracies (e.g., 80% accuracy within the top
few features6 [39]), we find that raw-error rankings are not
as effective as reported; for all models, less than half of all
attacked features are correctly identified by the highest-error
feature, and at least one quarter of attacked features could not
be identified within the top 10 features. Across all three deep-
learning-based models, the AvgRank ranges from 0.14 to 0.19;
in other words, on average, the manipulated feature is ranked
within the top 14–19%, which is far more than the top few, as
suggested in prior work.

Although the AR model and PASAD are effective at
detecting attacks, their attributions perform far worse than
for the deep-learning-based models; their AvgRank is much
higher (over 0.3) and over 50% of all attacks are not correctly
attributed by the top 10 features. This is likely because AR and
PASAD model each feature independently, meaning that they
cannot consider inter-feature relationships when performing
anomaly detection. Thus, when an ICS feature is manipulated
and subsequent components respond to the change, AR and
PASAD identify are particularly likely to identify those addi-
tional features as anomalous.

2) Evaluating raw ranking of attribution method outputs:
Next, we compare raw-error ranking to ML-based attribu-
tion methods. To select a group of best-performing attribu-
tion methods as candidates, we design and use a synthetic

6The number of features selected for investigation varied by attack: from
one single feature to as many as four.
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Figure 2: When attributing ICS anomalies at the time of detection, the raw-
error feature (MSE) produces a lower AvgRank (lower is better) than all
best-performing ML-based attribution methods: the saliency map (SM),
SHAP, and LEMNA.

benchmark to systematically compare attribution methods;
our benchmark is described in Appendix C. We find that
the saliency map (SM), SHAP, and LEMNA are the best-
performing attribution methods.

Method: For each detected attack, we find the first
detection point using the same methodology as with raw-error
rankings. We then find the corresponding model input for the
detection point—using the range of data from the 50 timesteps
prior to the detection point. The model input is used as input to
an attribution method, producing a score for each ICS feature.
We use these scores to rank features and compute AvgRank,
repeating the process for each combination of deep-learning-
based anomaly-detection model and attribution method.

Results: Fig. 2 shows the resulting AvgRank for all
attribution methods and deep-learning anomaly-detection mod-
els. Although the results of our benchmark (described in
Appendix C) suggest that, in theory, ML-based attribution
methods outperform raw-error ranking, ML-based attribution
methods perform far worse when applied in practice to attack
scenarios: for each model architecture, raw-error ranking pro-
duces a lower AvgRank than all ML-based attribution methods
(0.14–0.19 for raw-error ranking, compared to over 0.2 for
most ML-based attribution methods).

Finding 1: When computed at the timestep when the
anomaly is detected, attributions based on ranking raw
reconstruction errors from anomaly-detection models are
less accurate than previously reported, and ML-based
attribution methods have similar or worse accuracy.

To better understand why attribution methods fail for
ICS anomaly detection when applied to attack scenarios, we
identify and investigate two ICS-specific characteristics which
make attributions difficult and affect which techniques work
best: Sec. IV-B describes the effect of timing on attributions
and Sec. IV-C describes how attack properties affect attribu-
tions. We identify configurations under which both raw-error
rankings and ML-based attribution methods perform better
than prior attribution strategies.

B. Effect of detection timing on attributions

ICS anomaly detection is performed over a time-series in-
put, so selecting the best timing for attributions is an important
consideration for optimal performance. The data in the selected
input window may contain too much noise or too little signal
to make an accurate attribution. We observe that there exists a
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Figure 3: Outputs of a GRU-based anomaly-detection model on SWaT
attack #10 are shown: when sensor AIT504 is manipulated (top), its
prediction error (2nd) is insufficient to trigger an anomaly. As the ICS
responds and the total error increases, the model detects the anomaly over
100 seconds later. From this example, attributions can be computed at three
points (shown in red) with corresponding input windows (shown in grey): at
the anomaly start (3rd), when the input window coincides with the anomaly
(4th), or when the anomaly is detected (5th, bottom).
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Figure 4: Across all detected attacks, we compare AvgRank (lower is better)
across three timing cases, based on the detection time t relative to the start
of the anomaly (t = 0). Considering that 50 timesteps are used for the
model input, we divide attacks based on if t ∈ [0, 49], t ∈ [50, 99], or
t ∈ [100, end]. For most cases, the AvgRank is lowest when t ∈ [50, 99].

Table IV: We categorize each attack by its detection time t relative to the
start of the anomaly (considered t = 0), dividing into cases where the
detection is early (t ∈ [0, 49]), slightly late t ∈ [50, 99], or very late
(t ∈ [100, end]). For each model architecture, the number of attacks that fall
into each case is shown.

Total t ∈ [0, 49] t ∈ [50, 99] t ∈ [100, end]

CNNs 103 52 10 41
GRUs 86 38 12 36

LSTMs 113 56 9 48
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“best-guess” timing: when ML-based attribution methods are
computed at this timing, their accuracy improves.

1) Identifying how timing can affect attribution: To il-
lustrate how timing can affect attribution, Fig. 3 shows the
sensor value, sensor prediction error, and the total MSE for a
GRU-based anomaly-detection model for the duration of SWaT
attack #10. In this attack, a chemical sensor’s value (AIT504)
is increased to 16, causing a reverse-osmosis sequence to shut
down; the GRU model detects the anomaly within two minutes.

If the input window is selected immediately before the
detection point (“late”, shown in bottom row of Fig. 3), the
overall MSE is high: many features have drifted from their
expected values in reaction to the attack and will appear
anomalous, making it difficult to attribute the attack to the
correct feature.

If the input window is selected immediately at the start of
the attack7 (“early”, shown in third row of Fig. 3), observing
such feature drift can be avoided; however, since our anomaly-
detection models rely on historical input, the input window will
contain benign signal, complicating attribution.

We observe that, in our dataset, the detection point can
vary relative to the start of the anomaly. Given the model’s
input-window length (50 timesteps), the detection can occur
before the window length has passed, far after multiple window
lengths have passed, or at a time between these two cases—
within one and two window lengths. Table IV shows the
number of occurrences for each of the described three cases: all
three cases are prominent. We analyze AvgRank across these
three cases and show the results in Fig. 4. In most settings,
attributions computed within 50 seconds of the anomaly start
perform the worst, and attributions computed within 50 to 100
seconds of the anomaly start perform the best.

Finding 2: ICS anomalies vary in when they are
detected relative to their start time. Differences in
detection timing affect attribution accuracy.

Based on these observations, the ideal timing (for per-
forming attribution) should be sufficiently near the start of
the anomaly to avoid observing the original manipulation’s
subsequent effects; and should be sufficiently after the start of
the anomaly, such that the input window contains sufficient
manipulated information. Towards achieving these goals, we
select an input window that starts at the same time as the
anomaly, as shown in the fourth row of Fig. 3 (e.g., given a 50-
timestep input window length, we would use the 51st timestep
after the anomaly start), and we call the strategy using this
input window the “best-guess” timing8.

2) Comparing timing strategies: Based on the observed
differences in attribution accuracy across timing, we evaluate
attribution methods across two timing strategies:

• “Practical” timing: when the input window immediately
precedes the detection time (used in prior evaluation)

• “Best-guess” timing: when the input window starts at the
same time as the anomaly

7This is a hypothetical solution; in practice the start time is not known.
8“Best-guess” since in practice the start time is not known.
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Figure 5: For all datasets, the AvgRank (lower is better) is reported after
attributions are computed with different timing strategies: “practical
timing”, the prior attribution strategy that computes attributions immediately
when anomalies are detected, and “best-guess timing”, which computes
attributions such that the input starts with the anomaly. Two additional
variants are reported: practical timing with early detections removed,
and best-guess timing for attacks that are not detected by the underlying
anomaly-detection model. Results for the CNN (top), GRU (middle), and
LSTM (bottom) are shown. In all cases, choosing an alternate timing
strategy from the “practical” strategy improves attribution accuracy.

We compare the AvgRank at the best-guess timing to
the practical timing, across all datasets (SWaT, WADI, and
TEP) and all deep-learning-based model architectures (CNNs,
GRUs, LSTMs). When evaluating the best-guess timing for
each anomaly, the input is exactly the same across attribution
methods and models, even if models detect the anomaly at
different times.

Fig. 5 shows the AvgRank for different timing strategies.
We first compare the best-guess and practical timings (“best-
guess timing” vs “practical timing”): when an anomaly is
detected, if instead the best-guess timing is used, does Av-
gRank improve? We find that in 10 out of 12 cases (including
all cases with ML-based attribution methods), the best-guess
timing outperforms the practical timing. For example, LEMNA
improves for all models: the AvgRank drops from 0.246 to
0.112 for CNNs, from 0.242 to 0.083 for GRUs, and from
0.236 vs 0.107 for LSTMS. Furthermore, when the best-guess
timing is used, LEMNA is the best-performing attribution
method for all models.

Finding 3: ML-based attribution methods outperform
raw-MSE rankings when attributions are computed with
inputs beginning at the start of the anomaly.

To analyze the impact of early detections on practical
timings, we compare the AvgRank after removing attacks that
are detected before the 50th timestep, shown in Fig. 5 (“prac-
tical timing” vs “practical timing—late only”). We discuss the
results of the CNN; the results for the GRU and LSTM show
similar observations. Although early detection of anomalies is
clearly a beneficial outcome in practice, it results in worse
attributions: removing the early detections improves the MSE
AvgRank from 0.187 to 0.121. In all 12 cases, AvgRank
improves after removing early detections.
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3) Separating timing from detection outcome: Finally, we
investigate if attribution methods could be useful even in cases
where anomaly detection fails. Using the best-guess timing, we
compare the AvgRank between anomalies that are detected and
anomalies that are missed by the anomaly-detection model,
shown in Fig. 5 (“best-guess timing” vs “best-guess timing—
missed detection”).

For raw-MSE rankings, the performance is drastically
worse for anomalies that are missed: the AvgRank increases
from 0.164 to 0.334 for CNNs, from 0.146 to 0.352 for GRUs,
and from 0.177 to 0.379 for LSTMs. This is expected: when
the MSEs are insufficient to detect the anomaly, they are also
insufficient to identify the manipulated feature. However, when
these same inputs are used with ML-based attribution methods,
the AvgRank performs far better for missed attacks. ML-based
attribution methods perform approximately as well, regardless
of whether the anomaly is detected or not. For example, the
CNN LEMNA attribution AvgRank changes from 0.112 to
0.106. One potential implication of this observation is that
attribution methods should be computed separately from de-
tection times and detection outcomes; this could potentially be
accomplished with a data historian or other post-hoc incident
analytics for anomalies that are not detected in real time.

In summary, we found that the timing of attributions has
a large impact on attribution accuracy. Although we do not
advocate for a specific timing strategy, we would like to
highlight that computing attributions at “practical” timings, the
strategy most commonly used in prior work [34], [39], does
not lead to best attribution outcomes, although it reflects how
attribution methods might be used in practice.

C. Effect of attack properties on attributions

Although broad evaluations of attribution methods can
reveal general trends, a deeper analysis across attack properties
reveals imbalances in attribution accuracy between different
attacks. In this section, we investigate how (i) the magnitude
of the manipulation used in the attack and (ii) the type of
feature attacked affect the accuracy of attribution methods. To
enable such analysis, we define all anomalies from our three
datasets (SWaT, WADI, and TEP) along common properties
(as described in Sec. III-A). We compute attributions at their
best-guess anomaly timing (as described in Sec. IV-B) and
perform statistical tests to quantify each dimension’s effect on
AvgRank. The results of this analysis are shown in Table V.

1) Magnitude: We compare the effect of manipulation
magnitude on AvgRank. Since the range of observed magni-
tudes in our dataset is large (0.06–91 standard deviations), we
take the natural log of the magnitude for our analysis. The first
column of Table V shows, across all attacks, (i) the Pearson
correlation coefficient between the log-scaled manipulation
magnitude and AvgRank and (ii) the resulting p-value of the
non-correlation test with Student’s t-distribution.

For all methods, we observe a statistically significant rela-
tionship between manipulation magnitude and AvgRank. Since
the anomaly-detection methods studied in this work rely on
statistical modelling, lower-magnitude manipulations are more
difficult to attribute. High-magnitude manipulations produce
more immediate and obvious dispersions [28], so attribution
methods that perform well on these manipulations may not be

needed. An important area of future work would be to design
effective attribution methods that are robust to low-magnitude
manipulations.

2) Feature type: Sensors and actuators are fundamentally
different: actuators induce changes in the industrial process,
while sensors provide feedback from the industrial process.
Some actuators are also encoded as categorical variables (e.g.,
a valve in SWaT is ON (1) or OFF (0)), while all sensors
in our datasets are continuous-valued. Although sensors and
actuators differ in context and representation, current statistical
and deep-learning-based anomaly-detection models treat these
features equally as raw-valued features.

We analyze if whether a sensor or actuator was manipulated
affects AvgRank. Raw-error rankings perform significantly
better for sensor-based attacks while ML-based attribution
methods perform better on actuator-based attacks. We empiri-
cally explore this difference by using a one-way ANOVA test
to compare the AvgRank distributions when separating ma-
nipulations on sensors, manipulations on categorical actuators,
and manipulations on continuous actuators. The results of this
test are provided in the second column of Table V.

For raw-error ranking (MSE), the AvgRank for sensors
ranges from 0.152 to 0.162, whereas the AvgRank for actuators
is always above 0.306. For ML-based attribution methods,
the findings are different: attribution methods perform best
on continuous-valued actuators (AvgRank below 0.060), while
still performing well on sensors (AvgRank below 0.198). This
suggests that attribution methods may be able to capture
relationships that connect sensors with their corresponding
actuators, beyond what can be found by the raw-error rank-
ing. We also find that attribution methods perform worst on
categorical-valued actuators (AvgRank above 0.248), likely be-
cause attribution methods compute attributions for categorical-
valued features as if they were continuous-valued features.

In general, anomaly-detection models would likely benefit
from modelling sensors and actuators differently when com-
puting attributions, in ways that consider (i) interdependencies
between sensors and actuators and (ii) categorical variables
as states, rather than continuous values. Attacker models for
sensors and actuators are also different; prior work has argued
that actuator attacks require more ICS knowledge and are more
difficult to execute in practice [64].

3) Effects of other attack strategies: Beyond manipulation
magnitude and feature type, we also explore if attackers can
use alternate strategies to make attributions less accurate. We
find that attacking multiple features simultaneously or using
stealthier manipulation patterns can bypass attributions, assum-
ing increased attacker capabilities. We describe the details and
results for these experiments in Appendix D.

D. Evaluating ensembles of attribution methods

Different attribution methods are best in different scenarios:
ML-based attribution methods work best for continuous-valued
actuators and at best-guess timings, whereas raw-error ranking
works best for sensors and at practical timings (Sections IV-B–
IV-C). Thus, in this section, we design an ensemble of
attribution methods to combine the strengths of both types
of attribution methods, by using a weighted average over
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Table V: We perform three statistical tests across our attribution results under “best-guess” timing: we compare the effect on AvgRank from manipulation
magnitude (left), the type of feature attacked (middle), and whether the attack is multi-point (right). Results with p-value below 0.016 (applying Bonferroni
correction) are bolded. Raw-error rankings (MSE) perform better on high-magnitude, sensor-based attacks, whereas attribution methods perform better on
high-magnitude, actuator-based attacks. This analysis suggests that no attribution method is always optimal across a variety of attacks.

Attribution
Method Model Magnitude (Pearson) Sensor vs actuator (continuous)

vs actuator (categorical) (ANOVA) Single-point vs multi-point (ANOVA)

Corr. p-value AvgRank F(2, 153) p-value AvgRank F(1, 154) p-value

MSE

AR -0.214 p = 0.007 0.227 vs 0.486 vs 0.244 9.02 p < 0.001 0.300 vs 0.232 1.18 p = 0.279
CNN -0.336 p < 0.001 0.162 vs 0.306 vs 0.330 14.87 p < 0.001 0.199 vs 0.304 4.60 p = 0.034
GRU -0.445 p < 0.001 0.154 vs 0.385 vs 0.361 17.95 p < 0.001 0.224 vs 0.288 1.75 p = 0.189

LSTM -0.399 p < 0.001 0.152 vs 0.362 vs 0.360 13.21 p < 0.001 0.224 vs 0.265 0.65 p = 0.421

SM
CNN -0.430 p < 0.001 0.176 vs 0.059 vs 0.281 13.28 p < 0.001 0.160 vs 0.205 1.72 p = 0.192
GRU -0.605 p < 0.001 0.160 vs 0.050 vs 0.330 21.67 p < 0.001 0.156 vs 0.204 1.79 p = 0.183

LSTM -0.558 p < 0.001 0.197 vs 0.047 vs 0.329 19.55 p < 0.001 0.172 vs 0.245 3.71 p = 0.056

SHAP
CNN -0.497 p < 0.001 0.176 vs 0.059 vs 0.275 13.89 p < 0.001 0.151 vs 0.231 5.86 p = 0.017
GRU -0.595 p < 0.001 0.149 vs 0.054 vs 0.325 24.31 p < 0.001 0.141 vs 0.225 6.47 p = 0.012

LSTM -0.513 p < 0.001 0.181 vs 0.039 vs 0.333 23.39 p < 0.001 0.159 vs 0.243 5.41 p = 0.021

LEMNA
CNN -0.544 p < 0.001 0.085 vs 0.034 vs 0.291 26.82 p < 0.001 0.070 vs 0.252 39.06 p < 0.001
GRU -0.537 p < 0.001 0.084 vs 0.034 vs 0.278 26.76 p < 0.001 0.067 vs 0.252 46.80 p < 0.001

LSTM -0.523 p < 0.001 0.084 vs 0.034 vs 0.248 27.23 p < 0.001 0.070 vs 0.248 40.55 p < 0.001
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Figure 6: Attribution averaging is evaluated on CNNs at two timings
(“best-guess” on top, “practical” on bottom) and in two ways. On left,
the AvgRank (lower is better) of attribution methods is reported over 150
timesteps. Regardless of timing strategy and the selected timestep, an
average of attribution methods outperforms any individual method. On right,
across datasets, different β values are used when performing a weighted
average, across all six settings, β ∈ (1.5, 3.25) are optimal (red star).

attributions from multiple methods. We find that this ensemble
outperforms all individual attribution methods.

Our ensemble of attribution methods computes attributions
differently for sensors and actuators; the ensemble uses a raw
average of attributions for sensors and a β-average of attri-
butions for actuators, where β represents the relative weight
of ML-based attribution methods. We compute our ensemble
over three attributions: the normalized MSE, the normalized
SM attribution, and the normalized LEMNA attribution.

sAVGβ
=

{
sMSE + sSM + sLEMNA if sensor
sMSE + β(sSM ) + β(sLEMNA) if actuator

We compare our ensemble of attribution methods to the
raw average of attributions: the left half of Fig. 6 shows

the AvgRank for our ensemble with different β-values; we
compare averaging strategies for CNNs using the best-guess
(Fig. 6a) and practical (Fig. 6c) timing strategies (described
in Sec. IV-B). For all datasets and timing strategies, the best-
performing value of β ∈ [1.5, 3.25] (i.e., higher weight for ML-
based attribution methods for actuators) outperforms the raw
average (i.e., when β = 1). We also compare our ensemble to
the raw average with GRUs and LSTMs; in all cases the best-
performing β ≥ 1, which shows that our ensemble outperforms
the raw average.

We next compare our ensemble attribution method to
individual, best-performing attribution methods: the raw-error
ranking (MSE), SM, and LEMNA. Fig. 6b shows the AvgRank
for various attribution methods (individual and ensemble) for
the CNN model over 150 timesteps, beginning with the start of
the anomaly. Similar to what was found in Sec. IV-B, we find
that ML-based attribution methods are initially less accurate,
but their accuracy improves over time; conversely, a ranking of
raw errors is initially accurate but becomes less accurate over
time. Our ensemble attribution method combines strengths of
each individual method and produces the lowest AvgRank over
most timesteps.

Our ensemble attribution method also outperforms all indi-
vidual attribution methods when used with a practical timing
strategy (Fig. 6d), showing that it can also be used in practice
when ground-truth timing is not known. This finding holds
when our evaluation is repeated with GRUs and LSTMs.

Finally, we determine what the best-performing configura-
tion for our ensemble attribution method is in practice: Fig. 6d
shows that when using our ensemble attribution method with
β = 2.5, and attribution are computed between 25 and 50
seconds after the anomaly is detected, the AvgRank is lowest.
Thus, we observe this configuration of our ensemble attribution
method to be the best-performing attribution method across all
attribution methods evaluated in this work.

Finding 4: An ensemble of attribution methods outper-
forms all individual attribution methods at identifying
which feature was manipulated in an ICS anomaly.
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V. SURVEY: ICS OPERATOR PERCEPTIONS OF
ATTRIBUTIONS

Our experiments showed that attribution methods do not
achieve perfect accuracy: the feature with the highest attribu-
tion score was actually the manipulated feature for less than
39% of all attacks (see Sec. IV-A). This raises the question:
are imperfect attributions for anomaly detectors useful to ICS
operators?

Concurrently with our experiments, we conducted a prelim-
inary survey of ICS operators to better understand whether and
how attributions would be helpful for responding to anomalies.
We sought operators’ perspectives on the following questions:

1) How do ICS operators respond to anomaly-detection
alerts and how would attributions fit into their workflow?

2) Assuming imperfect attribution performance, would oper-
ators find it more useful to be shown fewer features, but
with a higher chance of omitting the feature that caused
the anomaly; or more features, with a lower chance that
the manipulated feature will be missed?

Survey: First, we asked participants to describe the type of
ICS they have experience with and their role in operating ICS.
Next, to surface how operators integrate anomaly detectors
into their workflows, we asked participants what kinds of
anomaly detectors they have experience with, the benefits and
challenges of using them, and what their role is in diagnosing
the root causes of an anomaly.

Then, we asked participants to evaluate the tradeoff be-
tween the number of reported features and attribution accuracy.
We showed participants a sample output for an attack in the
SWaT dataset: a subset of the sensors and actuators, their
values, and their attribution scores (in descending order). We
then asked the participants to rate on a five-point Likert scale
how useful the output would be in an attack scenario. We
varied the number of features shown in the output, between
the top two, five, ten, 20, or all 34 features9. We also varied
the error rate (the percentage of attacks where the attacked
feature is not included in the subset of features shown in
the output) between a “low”, “medium”, and “high” level,
which changes depending on the number of features shown
(See Table VIII). The error rates were based on our initial
estimates of attribution accuracy; later we observed that the
“high” error rate roughly matches the empirical error rate
of raw-error rankings for the LSTM-based detection model
using practical timings on SWaT, and the “medium” error rate
roughly matches the empirical error rate of the best-performing
LSTM-based ensemble attributions on SWaT. Lastly, we asked
participants to explain the reasoning behind their ratings, and
how they would integrate attributions into their workflow. The
full survey text is available in Appendix A.

Participants and ethics: We recruited participants by send-
ing email flyers to employees at organizations that run ICS and
by sending private messages via LinkedIn to people with job
titles relating to ICS security (e.g., OT Security Architect).
We recruited seven participants in total. Participants were
compensated with $5 gift cards. Our survey was approved
under Exempt Review by our institutional review board.

9This survey was performed with an earlier version of SWaT with a
feature selection step, and thus only 34 features were used.

Table VI: List of survey participants: their participant code, the type of ICS
they operate, and their role at their organization.

ICS Type Role/Title

P1 Distributed control system Cybersecurity, design and
acquisition

P2 (Not disclosed) Security engineer
P3 Unmanned vehicle ground control Operator supervisor
P4 Various Consulting and Research
P5 Electrical power generation and

transmission
SCADA Engineering, System
Integration and Security

P6 Electric Transmission Security Engineer
P7 Various (manufacturing and

distribution)
CISO

Table VII: Participants’ ratings for the usefulness of hypothetical attribution
outputs, varying the number of features shown and the error rate (1 being
“not at all useful” and 5 being “extremely useful”). “Error rate” is the
likelihood that the manipulated feature is not in the output. Bolded values
indicate that the average rating was “moderately useful” or above.

# Output Features Usefulness (1-5)
Error rate: (H, M, L) (High) (Medium) (Low)

2 (70%, 40%, 20%) 1.29 2.00 2.86
5 (50%, 30%, 10%) 1.57 2.57 4.14
10 (40%, 20%, 5%) 1.57 2.86 4.29
20 (30%, 10%, 5%) 2.14 3.14 4.43

All 34 (0%) 2.43

Results: Participants worked on a variety of ICS, ranging
from electric transmission to controls for unmanned vehicles
(see Table VI for a summary of their roles and types of ICS
operated). All had experience with rule-based anomaly detec-
tion, and four reported using ML-based anomaly detection.

Participants described anomaly detection as the first step in
the attack mitigation process, followed by manual investigation
and correction (P1, P2, P4, P6). Some challenges reported by
participants included (i) excessive false positives that led to
“wild goose chases”, requiring manual mitigation by operators
(P1, P2, P5), and (ii) a lack of data and context in alerts raised
by detectors, which made it difficult to trace root causes of
anomalies (P4, P6). Prior work has found that, more broadly,
SOC analysts have similar challenges with security alerts [8].

Participants provided several examples of how attributions
would be integrated into their workflow. Attributions could
help provide context on the relationship between system com-
ponents (P3, P4) and inform follow-up diagnostic steps, such
as running tests and consulting runbooks (P2, P4). Attributions
could also be integrated with other data sources such as control
system logs (e.g., SCADA) in a security information and event
management (SIEM) system (P5, P7).

Participants perceived attribution outputs with more fea-
tures and low error rates to be more useful (Table VIII).
Participants reported attributions in the low-error-rate condition
to be “very useful” (average score 4.14–4.43), if 20, ten, or
five features were shown. For the medium-error-rate condition,
roughly corresponding to our ensemble model’s performance,
participants reported attributions to be “moderately useful” if
20 features were shown (3.14) and “slightly useful” (2.00–
2.86) for fewer features. For the high-error-rate condition,
roughly corresponding to raw-error ranking, participants re-
ported attributions to be between “slightly useful” and “not
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at all useful” (1.29–2.14). Lastly, attributions showing all 34
features were reported as only “slightly useful” (2.43) by
participants.

Participants mentioned several considerations regarding
attribution accuracy and quantity of information. P1 and P3
generally preferred having more information available to the
operator. P7 preferred seeing less information, as having too
many false positives would require too much effort to inves-
tigate. P5 and P6 said that operators and organizations would
be unlikely to trust models with high error rates. P2 and P4
explicitly weighed the tradeoff between error rates and the
amount of information shown:

A balanced trade-off is needed. Often having [a] list
of max 10 [sensors] with minimal error rate is more
useful than having less with high error rate. Depends
on the needed follow-up testing effort to identify the
one culprit finally. –P4

These results suggest that attributions could help ICS
operators respond to anomalies, even without perfect accuracy.
Attributions could provide a starting point for operators when
investigating anomalies; for this use case, operators reported
that an attribution method that performs as well as our pro-
posed ensemble method would be moderately helpful, and
preferred to see attribution scores for the top 10–20 features
to balance accuracy and the amount of information shown.

Finding 5: ICS operators are likely to find our current
best-performing attribution methods for anomaly detec-
tion models to be moderately useful when responding
to incidents, even if the single manipulated sensor or
actuator cannot be identified with high accuracy.

VI. DISCUSSION AND RECOMMENDATIONS

In this section, we use our findings to provide recommen-
dations for researchers and practitioners in ICS security.

A. Recommendations for researchers

Evaluate on diverse, complex ICS attacks: The accuracy
of attribution methods depend heavily on ICS attack proper-
ties (Sec. IV-C). Despite the wide range of potential attack
strategies, public ICS datasets predominantly contain high-
magnitude, constant-valued manipulations [7], [27], and prior
work evaluates attributions on only a small number of attacks
from these datasets [34], [39].

When developing ICS anomaly detection and attribution
methods, evaluations should be performed on a complex and
diverse set of ICS attacks. This would ensure that attributions
generalize across attack strategies and perform well on attacks
that are most difficult to attribute with currently existing
methods (low-magnitude, categorical-actuator-based attacks).

Design attribution methods specifically for ICS anomaly
detection: When tested on full ICS datasets, we found that
prior attribution strategies performed less well than previously
suggested, and that our adapted ML-based attribution methods
performed less well than anticipated (Sec. IV-A). Attributing
ICS anomaly detection presents unique challenges: attributions
are time-dependent (Sec. IV-B) and affected by additional

feature dependencies (Sec. IV-C). Furthermore, the results of
our survey (Sec. V) suggest that ICS operators would prefer
attributions to show a list of 10–20 features to provide context
for their investigation, rather than just the top few features.

Future work that designs attribution methods for ICS
should be designed to directly address the aspects of ICS
anomalies that make their attributions uniquely challenging,
such as considering separate designs for sensors and actuators.
These methods should also be evaluated with operators’ pref-
erences and workflows in mind, rather than optimizing solely
for top feature accuracy.

B. Recommendations for practitioners

Consider attributions in workflows beyond the real-time de-
tection case: Although it may seem most intuitive to compute
attributions in real time at the moment when anomalies are
detected, this strategy is suboptimal for attribution accuracy.

We found that that attributions are most effective when
computed with an input that closely follows the start of the
anomaly (e.g., 25 seconds): this is when the input to the
attribution method includes some data on how the ICS has
responded to the initial manipulation, but before the input
is dominated by the manipulation’s side effects (which may
increase with time). However, in many attacks, the anomaly
detector does not generate alerts at this ideal point in time.

Furthermore, we found that ML-based attribution methods
can identify manipulated features, even when the input con-
tains insufficient information for the anomaly-detection model
to generate an alert (Sec. IV-B). Hence, to overcome the
limitations of anomaly detection in providing timely detection
for optimal attribution, we suggest using attribution methods
in post-hoc settings, using tools like a data historian, which
would allow the operator to leverage their domain expertise to
explore optimal timings for attributions.

Use an ensemble of attribution methods: The optimal
choice of attribution method differs based on the ICS,
anomaly-detection model, and properties of the attack being
attributed. A “silver bullet” solution does not yet exist for
attributions of ICS anomalies. We found that, on average,
a weighted ensemble of attributions from raw reconstruction
error, saliency maps, and LEMNA outperforms all individual
attribution methods (Sec. IV-D).

VII. CONCLUSION

In this work, we investigate how attribution methods can be
used to identify the manipulated feature in an ICS attack. We
compare across anomaly-detection methods, model architec-
tures, and datasets, ultimately finding that attribution methods
outperform raw-error rankings proposed in prior work, but
only when their input coincides with the anomaly start. We
also evaluate attribution methods across attack properties,
finding that they are less accurate on manipulations with
low magnitude, and manipulations on categorical actuators.
Finally, we develop a strategy that uses an ensemble of
attribution methods and show that it outperforms all individual
attribution methods. We provide insights into the design and
application of attribution methods for ICS anomaly detection,
with recommendations for researchers and practitioners.
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APPENDIX

A. Full text of ICS operator survey and results

In this Appendix, we show the questions in the survey of
ICS experts, which we report on in Sec. V, and a summary
of the responses where participants rated the usefulness of
different hypothetical attributions, varying the error rate and
the number of features shown (Table VII).

1) What type of industrial control system (ICS) do you
operate? (Free response)

2) What is your role in operating this ICS? (Free response)
3) Do you, or does your organization use an anomaly de-

tection system to detect potential attacks on the ICS you
operate? (Yes / No / Not Sure)

4) Do you have any current or prior experience working with
anomaly detection systems? (Yes / No)

5) What method(s) does the anomaly detection system
that you have experience with use to detect anomalies?
(choose all that apply: Rule-based anomaly detection,
Machine learning-based anomaly detection, Not sure,
Other (please specify))

6) What kind of information does the anomaly detection
system that you have experience with provide you, and
what does the human interface look like? (Free response)
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7) What aspects of the anomaly detection system that you
have experience with are most useful to you when moni-
toring the system or responding to potential attacks? (Free
response)

8) What aspects of the anomaly detection system that you
have experience with are most challenging or confusing
to work with when monitoring the system or responding
to potential attacks? (Free response)

For the last part of this survey, we describe a simulated
attack on the Secure Water Treatment (SWaT) testbed, and
outputs from a proposed, machine-learning based anomaly
detection system.

In this scenario, the anomaly detection system has detected
an anomaly. In addition to alerting the operator to the occur-
rence of an anomaly, the system also reports a list of sensors
and actuators that the model predicts to be the cause of the
anomaly. Here is the output of the anomaly detection system
for a simulated attack on SWaT: (Table VIII)

Table VIII: Sample output from detector used in the survey.

Feature Current Value Anomaly Score Alert Level

DPIT301 19.59 10.11 HIGH
MV302 2.00 8.74 HIGH
P302 2.00 2.03 HIGH
FIT201 2.44 0.54 MEDIUM
P203 2.00 0.54 MEDIUM
P101 2.00 0.53 MEDIUM
MV101 2.00 0.49 MEDIUM
FIT101 2.67 0.48 MEDIUM
MV201 2.00 0.46 MEDIUM
P403 1.00 0.45 MEDIUM

Currently, the anomaly detection system is configured to
show the top 10 most likely sensors and actuators to be respon-
sible for the anomaly, out of 34 total sensors. However, it can
be configured to show more or fewer sensors or actuators. The
more sensors it shows, the more likely the sensor or actuator
that is the root cause of the anomaly is in the list.

In this next part, we propose several alternative configura-
tions of the system, with different numbers of sensors/actuators
shown.

9) How useful would an anomaly detection system be if
it showed 2 sensors or actuators (out of 34), with the
following error rates? (5 point Likert scale: not at all
useful, slightly useful, moderately useful, very useful,
extremely useful)
• 70% • 40% • 20%

10) How useful would an anomaly detection system be if
it showed 5 sensors or actuators (out of 34), with the
following error rates? (5 point Likert scale)
• 50% • 30% • 10%

11) How useful would an anomaly detection system be if
it showed 10 sensors or actuators (out of 34), with the
following error rates? (5 point Likert scale)
• 40% • 20% • 5%

12) How useful would an anomaly detection system be if
it showed 20 sensors or actuators (out of 34), with the
following error rates? (5 point Likert scale)
• 30% • 10% • 5%

13) How useful would an anomaly detection system be if it
showed all 34 sensors or actuators? (5 point Likert scale)

Table IX: The number of detected attacks (at least one example exceeds the
MSE threshold), when using a validation-error-based tuning for the error
threshold (99.5% for AR/PASAD and 99.95% for deep learning models).

Total Detected
Total AR PASAD CNNs GRUs LSTMs

SWaT 43 22 40 33 20 34
WADI 24 21 4 15 8 15

TEP 89 85 86 55 58 64

14) Please explain your responses above: do you think it
would be helpful for the anomaly detection system to
display more sensors and actuators with lower error rates,
or fewer sensors and actuators with higher error rates?
(Free response)

15) Which of these two options would you rather have, for
this anomaly detection system? (Choose one)
• The entire list of sensors and actuators, and anomaly

scores and alert levels for all of them
• A list of 10 sensors and actuators the anomaly detection

model thinks are most likely to be the cause of the
anomaly, which correctly identifies the root cause 95%
of the time

16) If this anomaly detection system showed 10 sensors and
actuators, what percent of the time does the anomaly
detection system need to correctly include the cause of
the anomaly for it to be useful? (0%-100%)

17) If you had an anomaly detection system like this, how
would you use the information provided to find the root
cause of the anomaly? How would you integrate it into
your workflow? (Free response)

B. Technical implementation details

In this section, we provide additional implementation de-
tails. Table IX shows the number of attacks for which one
least one example exceeds a validation-error-defined threshold:
these examples are used as the basis of evaluation in Sec. IV-A.

Next, we provide the technical definitions of our attri-
bution methods, adapted for ICS anomaly detection. Each
attribution method A requires an anomaly-detection model
F (xt−h, ..., xt−1) → x̂t and time-series input Xe ∈ Rdxh:
computing an attribution A(Xe)j for feature j.

Counterfactuals: Given input Xe and baseline Xb, a coun-
terfactual attribution is computed by changing the value of each
feature and measuring the change in the MSE. We use the
feature-wise average benign value as Xb and define a masking
function Mj(X), which removes all but the j-th feature from
X . We define the additive counterfactual AA:

AA(Xe)j = MSE (Xb −Mj(Xb) +Mj(Xe))−MSE (Xb)

We define the subtractive counterfactual AS :

AS(Xe)j = MSE (Xe)−MSE (Xe −Mj(Xe) +Mj(Xb))

Saliency map [56]: The saliency map ASM (X) is the
product of Xe and the gradient of the quantity of interest with
respect to the input window, computed at Xe. We compute the
gradient with respect to the MSE:

ASM (Xe) = Xe ×
∂MSE (Xe)

∂X
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SmoothGrad [59]: Prior work found that saliency maps
are sensitive to small input changes; in response, SmoothGrad
averages saliency maps over multiple perturbations of Xe.

ASG(Xe) = Xe ×
1

n

∑ ∂MSE (Xe + ε)

∂X
, ε ∼ N(0, σ)

SmoothGrad is defined by n, the number of samples used,
and σ, the sampled noise variance. We use the suggested values
σ = 0.1 ∗ (Xmax −Xmin) and n = 50.

Integrated gradients [61]: Integrated gradients calculate
the change in a quantity of interest between Xe and a baseline
Xb, producing more meaningful results. Attributions are com-
puted through an approximate path integral that interpolates
between Xb and Xe.

AIG(Xe) ≈ (Xe −Xb)×
1

n

n∑
k=1

∂MSE (Xb +
k
n (Xe −Xb))

∂X

Using larger n increases the accuracy of the path-integral
estimate. In our work, we use n = 200 and the feature-wise
average benign value as the baseline Xb.

Expected gradients [21]: Instead of assuming a single
baseline, expected gradients use samples from the training dis-
tribution D. Attributions are computed as the expectation over
baseline examples and interpolation points. The expectation is
approximated by averaging over estimates: for each estimate
i, a sample baseline Xbi is drawn from the benign training
dataset and an interpolation point αi is drawn from the uniform
distribution.

AEG(Xe) ≈
1

n

n∑
i=0

[(Xe −Xbi)
∂MSE (Xbi + αi(Xe −Xbi))

∂X
]

αi ∼ U(0, 1), Xbi ∼ D

To sample baselines from our training dataset, we sample
a timestep t from the benign dataset and use its process
values and corresponding history. As the number of samples
n increases, the stability of the expected gradients increases.
We use the suggested n = 200 for convergence.

C. Selecting attribution methods with a synthetic benchmark

ICS anomaly detection is inherently noisy: benign features
produce (small) errors and interactions between sensors and
actuators can complicate the analysis of attribution methods.
To remove these effects from our evaluation, we craft synthetic
inputs to systematically evaluate an attribution method for a
given anomaly-detection model.

Method: We evaluate attribution methods in a synthetic
setting where a controlled manipulation introduced to a single
input feature is the only source of error in an unsupervised
anomaly-detection model.

First, we craft a zero-MSE, input-output pair by selecting
an input window Xbase from the benign training data, feeding
it to an anomaly-detection model F , and storing the corre-
sponding process-value prediction Y base = F (Xbase). We
then perturb a feature j in Xbase by two-standard-deviations
to generate Xpert: when computing errors, we compare the
prediction F (Xpert) with the synthetic ground-truth Y base.

To compute attributions, an attribution method uses Xpert and
Y base as the input window and ground-truth respectively.

The perturbation is the only change introduced in the zero-
MSE input-output pair, so a correct attribution would assign
the perturbed feature j the highest score. We rank feature j
in the attribution and repeat this measurement for all features,
ultimately computing the AvgRank for each method.

Results: We evaluate each attribution method for all
nine combinations of model architecture (CNNs, GRUs, and
LSTMs) and dataset (SWaT, WADI, TEP). Figure 7 shows the
resulting AvgRank across all synthetic inputs. Three attribution
methods perform well: the saliency map (SM), SHAP, and
LEMNA. These three methods outperform the MSE on all
models and datasets, with the exception of SHAP on TEP
(e.g., for SWAT CNNs, the MSE AvgRank is 16.4, whereas
the SM, SHAP, and LEMNA AvgRanks are 2.6, 2.6 and 3.8
respectively). This suggests that attribution methods (black-
box or white-box) can provide stronger insight than raw MSEs
when attributing ICS anomalies.

White-box variants (SG, IG, and EG) outperform saliency
maps on images [59], [61], [21], and our results suggest that
the performance of these methods may not translate to ICS
anomaly detection. We suggest two reasons why: First, the
dynamics of ICS are more precise than in images; although
adding random noise to images (as done in SmoothGrad)
helps generalize attributions for images, randomness does not
provide this benefit for ICS anomaly detection. Second, benign
ICS behavior cannot be well-represented with a single (or
sample of) reference input(s), and thus choosing an effective
baseline (required for IG and EG) is difficult.

When comparing black-box attribution methods, we find
that SHAP and LEMNA outperform LIME. LIME uses a linear
approximation: in contrast, SHAP (which uses Shapley values)
and LEMNA (which uses a fused-lasso, Gaussian mixture
model) can better capture the inter-feature dynamics of an ICS.

D. Evaluating against stealthier manipulations

Although attackers can adjust modify manipulation prop-
erties to reduce attribution accuracy, stealthier manipulations
strategies can be even more effective. In this section, we
explore how attribution methods are affected by stealthier
manipulation strategies, extending beyond strategies used for
current datasets. We find that: (i) multi-point attacks are more
difficult to attribute and (ii) summing and linear manipulations
are particularly effective at reducing attribution accuracy.

1) Multi-point attacks: We first consider multi-point at-
tacks: when multiple features are manipulated simultaneously.
Multi-point attacks are included in the SWaT and WADI
datasets. In general, correctly attributing multi-point attacks
is more difficult, since the effects of multiple manipulations
are observed in the ICS. We use a one-way ANOVA test to
compare the AvgRank distributions for single-point attacks and
multi-point attacks; results are in the third column of Table V.

We find that LEMNA is significantly more accurate for
single-point attacks; the AvgRank is over three times higher
when a multi-point attack is performed. In general, all attribu-
tion methods (except raw AR-score ranking) are less accurate
on multi-point attacks.
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Figure 7: Results for all datasets (SWaT, WADI, TEP) and model architectures (CNN, GRU, LSTM) over our synthetic benchmark; the AvgRank is shown
(lower is better). Within white-box attribution methods (SM, SG, IG, EG), the saliency map (SM) always performs the best, and within black-box attribution
methods (CF-Add, CF-Sub, LIME, SHAP, LEMNA), SHAP and LEMNA generally perform best. Notably, SM and LEMNA always outperform the raw-
ranking of MSEs (MSE).

Table X: By introducing summing or linear manipulations, attackers can
reduce attribution method accuracy. When comparing summing/linear
manipulations to their constant alternatives: (i) the manipulation is detected
later and (ii) the AvgRank for all attribution methods increases.

Constant Summing Linear

CNNs

Detection latency 200s 694s 1232s
MSE AvgRank 0.075 0.140 0.147

SM AvgRank 0.287 0.536 0.619
SHAP AvgRank 0.223 0.415 0.362

LEMNA AvgRank 0.117 0.423 0.551

GRUs

Detection latency 242s 1132s 1316s
MSE AvgRank 0.064 0.102 0.072

SM AvgRank 0.279 0.513 0.525
SHAP AvgRank 0.204 0.472 0.366

LEMNA AvgRank 0.087 0.389 0.468

LSTMs

Detection latency 174s 571s 1090s
MSE AvgRank 0.087 0.151 0.113

SM AvgRank 0.355 0.551 0.574
SHAP AvgRank 0.174 0.377 0.464

LEMNA AvgRank 0.072 0.343 0.634

2) Summing and linear manipulations: We implement two
alternate manipulation types with the TEP simulator: linear
and summing manipulations10. These manipulations achieve
the same sensor value as the constant-valued manipulations
prevalent in SWaT, WADI, TEP, and prior work [40], [15], yet
are more stealthy (i.e., harder to detect and attribute correctly).

Method: A linear manipulation incrementally increases
in magnitude with each timestep, and a constant-sum manipu-
lation adds a constant value to the original sensor value at each
timestep, which maintains the natural amount of noise. We
define the stealthier manipulation types based on the original
attack model used in Sec. III-A. For a summing manipulation:

x′
j(t) = xj(t) + c

For a linear manipulation, where ta is the initial point of the
attack, and m is the slope:

x′
j(t) = m(t− ta) + xj(ta)

10Included in our public set of 286 manipulations.

We use the modified TEP simulator to perform the stealth-
ier manipulations on every sensor in the system. For each
sensor, we perform a two-standard-deviation-magnitude ma-
nipulation with the stealthier manipulation types. We compare
the AvgRank and detection latency for the five cases where,
regardless of manipulation type, all attacks are detected by all
three models.

Results: Table X shows the resulting AvgRank and
detection latency for constant, constant-sum, and linear ma-
nipulations. On average, performing an attack with a stealthier
manipulation causes the attack to be detected later: compared
to constant manipulations, constant-sum manipulations are
detected at least three times later and linear manipulations
are detected at least five times later. In addition, the attri-
butions computed at these detection points are less accurate:
the AvgRank increases in all cases. When using alternate
manipulation types, attribution accuracy decreases while the
same target sensor value is achieved.

E. Artifact appendix

Description, requirements, and how to access: Our artifact
is comprised of three independent components:

• A Python library11 for attributions on ICS anomaly de-
tection models and datasets (focus of this Appendix)

• An ICS simulator12, adapted from a publicly available
version, that supports manipulation of sensors/actuators
and subsequent data collection.

• A dataset containing 286 manipulation traces13, produced
from the above simulator.

Dependencies: Our artifact can be executed on commodity
hardware. Software dependencies are listed for each artifact:

• Attribution library: Our code depends on Python 3.7,
and a variety of Python libraries from pip. A requirements
file has been provided with installation instructions.

11https://github.com/pwwl/ics-anomaly-attribution
12https://github.com/pwwl/tep-attack-simulator
13https://doi.org/10.1184/R1/23805552

18

https://github.com/pwwl/ics-anomaly-attribution
https://github.com/pwwl/tep-attack-simulator
https://doi.org/10.1184/R1/23805552


• ICS simulator: The simulator depends on MATLAB
R2021a. Installation instructions can be found in the
associated README.

• Dataset of synthetic manipulations: None

Our experiments depend on three datasets: SWaT (provided
by iTrust), WADI (provided by iTrust), and TEP (generated
by our ICS simulator). The authors of SWaT and WADI have
requested that the dataset not be re-shared, and users must
request the datasets through the iTrust website14.

Artifact installation & configuration: Our library requires
Python 3.7 and a variety of pip packages. We recommend
using conda to manage dependencies; installation instructions
are provided in the repository README.

Major claims: The artifact supports the contribution listed
in the paper introduction: we create (i) an open-source library
of attribution methods for reconstruction-based, time-series
ICS anomaly-detection models, (ii) a modified ICS simulator
that performs well-defined sensor/actuator manipulations, and
(iii) a dataset of 286 synthetic ICS anomalies for testing.

Evaluation: We provide a minimal example to show that
our attribution library is functional, configurable, and usable.
All the main results in our work follow the same structure
as our minimal examples. To scale up the examples and
produce the full results in this paper, users must evaluate
and compare widely across additional models, datasets, and
attribution methods. The artifact README contains a more
complete set of instructions, with specific commands and
command-line arguments for each workflow.

Experiment (E1): [CNN SWaT attribution example] [10
human-minutes + up to 2 compute hours]: In this experiment,
we execute a minimal attribution example using a CNN model
and the SWaT dataset. Four attribution methods are compared:
raw MSE, saliency maps (SM), SHAP, and LEMNA. For each
attribution method, the attribution scores are computed and a
final ranking of the attacked feature is determined.

[Preparation] First, create the needed directories that will
be populated with metadata with the make_dirs.sh script.
Next, request the SWaT dataset and set up the dataset environ-
ment by following the instructions in the data/SWAT directory.

Next, train a CNN model on the SWaT dataset, using the
main_train.py script, specifying a CNN architecture and the
SWaT dataset. The default configuration trains a 2-layer, 64-
unit, 3-kernel, 50-history CNN, which is the same architecture
used in our experiments.

Next, prepare metadata with the save_model_mses.py
and save_detection_points.py scripts, which compute
and store the test MSEs and detection times respectively.

[Execution] To compute attributions for the sample SWaT
attack, use the scripts in the explain-eval-attacks direc-
tory: main_grad_explain_attacks.py and main_bbox_
explain_attacks.py. In this workflow, we compute attri-
butions with saliency maps (SM), SHAP, and LEMNA. Each
script will compute and store all attribution scores for 150
timesteps, at the two timings described in our work: (i) the

14https://itrust.sutd.edu.sg/itrust-labs_datasets/

best-guess timing (using the labeled beginning of the attack)
and (ii) the practical timing (using the point of detection).

Bash scripts expl-full-bbox.sh and expl-full-
swat.sh are provided for reference. Note: running the expla-
nations may take anywhere from 20 minutes to two hours de-
pending on your machine. If the experiments are prohibitively
expensive, one can reduce the number of timesteps with the
num_samples parameter; this will limit the results of the
timing average measurements in the next section. At the end of
this section, .pkl files should be created for each attribution
method.

[Results] To interpret the results of the attribution meth-
ods, the script main_feature_properties.py is used. This
script will determine the ranking of the attacked feature over
the list of attacks, and compute the AvgRank. For the minimal
example, presented here, we only print the ranking of each
attribution method for a single SWaT attack. Sample results
are shown in Table XI; due to randomness in model training
and attribution methods, the actual results may differ.

Table XI: Example experiment results for SWaT attack #1.

Attribution
Method

Best-guess
Rank

Practical
Rank

Best-guess
Timing

Rank

Practical
Timing

Rank

MSE 1 3 11.59 13.98

SM 4 15 2.23 1.31

SHAP 10 15 16.03 16.43

LEMNA 7 9 12.84 13.79

Ensemble 3.74 2.81

To produce the full results used in our paper, attributions
must be computed for all attacks. Averaging attributions over
the full set of attacks will produce the results in Fig. 5.
Averaging attributions within individual attack subsets will
produce the results in Table V. Finally, averaging attributions
while maintaining the full timing of 150 timesteps will produce
the results in Fig. 6.

[Customization] Each script’s function (model training,
attribution methods, computing rankings) is configured to
accept command line arguments that can modify the model
architecture (CNNs, GRUs or LSTMs), dataset (SWaT, WADI,
or TEP), or attribution method used (SM, SG, IG, EG, LIME,
SHAP, LEMNA). For a full description of all command-line
arguments, please see the artifact README.
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