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Abstract. Binary function similarity comparison is essential in a vari-
ety of security fields, such as software vulnerability detection and mal-
ware analysis, because it enables engineers to accelerate otherwise time-
consuming tasks. While various approaches for binary function similarity
comparison have been proposed, in an experiment of previous work to
fairly evaluate existing methods, a method combining graph neural net-
work (GNN) and bag-of-words (BoW) exhibited the highest performance.
In this method, each basic block (BB) in a function is embedded into a
vector by BoW. As a result, the function vector is derived from sparse
vectors. In this paper, we propose a method combining a GNN with
fastText, instead of BoW. Furthermore, in order to optimize machine
learning models for calculating binary function similarity, we apply early
stopping based on mean reciprocal rank (MRR) to our machine learn-
ing training. Our method outperformed the previous method combining
GNN and BoW by up to 2% in AUC, up to 9% in Recall@1 and up to 7%
in MRR10 in a certain case. Additionally, through a function search case
study in malware analysis, our method has been found to be applicable
for finding distinctive functions present in LockBit Ransomware.
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1 Introduction

Binary function similarity comparison is essential in a variety of security fields,
such as software vulnerability detection and malware analysis. For example,
in software vulnerability detection, the similarity comparison helps engineers
quickly find the same vulnerability in different binaries [7,18]. However, binaries
compiled with different compilers and to different architectures make binary
function similarity comparison very challenging. For instance, each function in
a binary consists of a control flow graph (CFG) and basic blocks (BBs), where
each BB consists of assembly instructions. When binaries are compiled from the
same source code with different compilers, the structure of a CFG and assembly
instructions of BBs are drastically different from each of the binaries because
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the structure of a CFG and assembly instructions of BBs in the binaries rely on
their respective compiler [9,13].

To tackle this issue, many researchers in security fields have proposed meth-
ods to compare binary function similarity with machine learning [13,18,25].
While numerous methods for calculating function similarity have been proposed,
Marcelli et al. [17] conducted an evaluation to perform a fair comparison of these
methods. Their evaluation found that Graph Neural Network (GNN) and Graph
Matching Network (GMN) models [13] outperformed other methods in terms of
binary function similarity comparison. In the GNN and GMN models Marcelli
et al. [17] prepared, however, function vectors are generated using CFGs and
Bag-of-Words (BoW)-based BB vectors. In the BoW approach, a BB vector is
generated from the counts of opcode occurrences within the top 200 opcodes
selected by Marcelli et al. [17]. As a result, the function vector is derived from
sparse vectors. Besides, the effectiveness of the GNN and GMN models in mal-
ware analysis remains unclear because the search performance of the GNN and
GMN models in malware analysis has not been evaluated by Marcelli et al. [17].

In this paper, we propose a new method for binary function similarity com-
parison by using fastText [4] (Sect. 3.1). fastText is an open-source natural lan-
guage processing (NLP) tool developed by Facebook, well-suited for various NLP
tasks, including word embeddings generation. One of the features of fastText is
to split a word into subwords, which are parts of letters within a word, and learn
embeddings for these subwords. This approach enhances the handling of out-
of-vocabulary words and language variations, allowing for the consideration of
fine-grained language details. In our research, we obtain embeddings of opcodes
using fastText and use these embeddings to generate BB vectors. Even across
different architectures, there are multiple opcodes that share partial common
subwords. For instance, opcodes for copying data, such as "mov" or "movzx",
contain the partially common subword "mov". Therefore, using fastText to gen-
erate embeddings of opcodes appears to intuitively be a more effective approach.

Furthermore, we apply early stopping [20] based on Mean Reciprocal Rank
(MRR) in training. Early stopping is a methodology used to halt the learning
process when evaluation metrics no longer exhibit continuous improvement dur-
ing the training. MRR is an evaluation metric for ranking accuracy and is used
for evaluating binary function comparison methods [17,27]. Early stopping based
on MRR enables to enhance the search performance of our method (Sect. 3.3).

In the evaluation of search performance in malware analysis (Sect. 4.7), we
conducted a search for the functions of LockBit Ransomware [5] obtained from
Vx Underground [1] using our method. Our method has been found to be appli-
cable for finding distinctive functions present in LockBit Ransomware.

In a nutshell, the contributions of this paper are as follows:

– We improve the performance of GNN and GMN models by leveraging fast-
Text as a method of embedding BBs (Sect. 3.1). We published the source
code for training the models, some trained multi-architecture models and
the testing dataset for the multi-architecture models.1

1 https://github.com/sgr-ht/mam-for-cbfs
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– We evaluate the effectiveness of early stopping based on MRR in training to
enhance the search performance of the GNN and GMN models (Sect. 4).

– We evaluate a method combining the GNN model and fastText for its effec-
tiveness in calculating the similarity of binary functions in malware analysis
(Sect. 4.7).

2 Related Work

Creating embeddings is a popular method for binary function similarity com-
parison. The embeddings refer to vectors in a low-dimensional space where se-
mantically similar inputs are associated with points that are close to each other,
irrespective of the differences in their original representations [17]. Two methods
commonly employed for creating embeddings are code embeddings and graph
embeddings [17]. Code embeddings is an approach to create embeddings us-
ing NLP by considering assembly code as text. Graph embeddings is another
approach to create embeddings using machine-learning models which compute
embeddings using a CFG and features in each function.

2.1 Code Embeddings

SAFE [18] can convert a function into a vector using a self-attentive network [14],
which comes from the seq2seq model, a commonly used NLP structure. In SAFE,
assembly instructions in a function are embedded into vectors and then each
vector of assembly instruction in a function is fed into the self-attentive network
to embed a function vector.

2.2 Graph Embeddings

Gemini The CFG and BBs of a function are first transformed into an annotated
CFG, which is a graph containing manually selected features such as the number
of assembly instructions and the number of string constants in Gemini [25]. After
that, Gemini creates a function vector using structure2vec [6].

GNN and GMN Models Li et al. [13] proposed GNN and GMN models, which
can create a function vector from the CFG and BBs of a function and calculate
the similarity between pairs of functions. GNN and GMN models achieve the best
results in the experiments of prior work [17], which performs a comparison among
existing approaches that are publicly available, such as Gemini and SAFE.

3 Proposed Method

Fig. 1 gives an overview of the process of converting a function into a vector in
order to compare binary function similarity. The process that we use is based
on Li et al. [13]. In this process, using fastText [4] as a BB converter and the



Fig. 1. The overview of the process of converting functions into vectors.

training of a function converter with early stopping based on MRR are new. We
first input binaries as a dataset to be disassembled. We then extract BBs and
CFGs from the assembly code. After that, the BBs are fed into the BB converter,
which converts a BB into a vector. Finally, the BB vectors and the CFGs are
fed into the function converter, which embeds a function vector. Each function
vector has the embedded meaning of the BBs and the CFG in each function.
By repeating these processes to each function of each binary, it enables us to
transform all functions of a dataset into vectors.

3.1 BB Converter

As the BB converter we use fastText, which is an NLP tool developed by Face-
book used to generate word embeddings. Other work has shown that fastText
outperforms word2vec [19], which is an NLP tool to generate word embeddings
[4]. Our results presented here suggest that using fastText for vectorizing BBs is
a better approach for calculating binary function similarity, particularly because
of fastText’s utilization of opcode embeddings to vectorize BBs. In terms of sim-
ilar improvements in other applications, other work has shown that fastText can
also be beneficial for vectorizing assembly instructions, which can then be used
to vectorize a function [2,24]. Other work has also shown that fastText can lead
to improvements in type inference [11].

In our research, we obtain embeddings of opcodes using fastText and use
these embeddings to generate BB vectors. The advantage of fastText is to trans-
form unseen opcodes not included in a training dataset into vectors. If there is
a BB containing only unseen opcodes, i.e., opcodes not included in the training
dataset for BoW and fastText, then BoW would be incapable of extracting any
features. On the other hand, fastText is likely to extract at least some features
owing to the benefits of subword embeddings. For example, in one of our test
datasets, there is a BB containing only one “mov.s”, which is an opcode of MIPS
(e.g., mov.s dest, src), and ”mov.s” is not included in the training dataset. BoW



cannot extract any features of the BB, but fastText can extract a feature thanks
to the subword embedding of ”mov”. In examining our dataset, we found at least
60 other BBs where fastText has this advantage for ”mov.s”, and many other
BBs for other unseen opcodes.

The benefit of subword embedding leads to another advantage of fastText,
which is to transform BBs with similar meanings into vectors that are spatially
close to each other. In BoW, BBs with similar meanings do not necessarily
become vectors that are spatially close. This is because BoW is based on the
frequency of opcode occurrence, and does not take into account the semantic
aspects of opcodes. On the other hand, in fastText, opcodes are vectorized con-
sidering the context information of the surrounding opcodes, and semantically
similar opcodes tend to become more spatially close vectors. For example, com-
paring the similarity between a BB consisting of only ”mov” and a BB consisting
of only ”movzx” using cosine similarity, fastText can capture semantics of the
BBs better compared to BoW. ”mov” and ”movzx” are opcodes related to data
movement. In our dataset, we found the similarity of fastText is 0.515 and the
similarity of BoW is 0 and many BBs consist of only ”mov” or ”movzx”. Therefore,
these two advantages help inter-node GNN’s classify better.

In order to train fastText, we first preprocess all assembly instructions in
each function to reduce the vocabulary size. The reduction of the vocabulary
size enables us to train the BB converter faster and to generate assembly in-
struction vectors which capture the meaning of the assembly instructions more
accurately [18,29]. Based on Marcelli et al. [17], we extract opcodes from all as-
sembly instructions in each function. For example, "mov" is extracted from the
following instruction.

mov eax, 800
After preprocessing, opcodes and BBs are considered as words and sentences,

respectively. This methodology regarding contents in BBs as words and BBs
as sentences is commonly used to create BB vectors [10,28,29]. Then, opcodes
in each BB are fed into fastText. In order to generate opcode vectors, each
opcode is divided into subwords by N-gram. N-gram is a representation method
of contiguous sequences of N characters in a word [4]. For example, when N
equals to 3, the mov opcode is divided into as follows.

<mo, mov, ov>
The < and > are boundary symbols at the beginning and the end of a word [4].

fastText generates opcode vectors using the subword embeddings. After that, we
create a BB vector by averaging of opcode vectors in the BB.

3.2 Function Converter

As the function converter, we use GNN and GMN models [13]. The difference
between the GNN model and the GMN model lies in their approach to generating
vectors for functions. In the GNN model, each function vector is generated based
only on its respective BB vector and CFG. On the other hand, in the GMN model
each generated function vector is influenced by the BB and CFG of its paired
counterpart, which is another function from a pair of functions (Sect. 2.2). We



use and tweak GNN and GMN models based on prior work [17], which provides
detailed instructions on how to use and tweak them.

3.3 Early Stopping Based on MRR

In order to optimize GNN and GMN models for calculating function similarity,
we leverage early stopping [20] based on MRR. Early stopping is a methodology
used in training to halt the learning process when evaluation metrics, such as the
area under curve (AUC) of the receiver operating characteristic (ROC) curve, no
longer exhibit continuous improvement during the training. The primary objec-
tive of applying early stopping in training is to prevent overfitting. Overfitting is
a problem in which a model is trained extremely to match trends in the training
dataset, such that the model achieves high accuracy on the training dataset, but
fails to generalize well to data outside the training dataset.

MRR is an evaluation metric for ranking accuracy and is used for evaluating
binary function comparison methods [17,27]. The computation of MRR involves
calculating the reciprocal of the highest rank position for the correct answer for
each search query and then taking the average of these reciprocals. The value
of MRR falls within the range of 0 to 1, with the value closer to 1 indicating
superior ranking of search performance. For instance, MRR10 assesses search
performance within the top 10 positions, and if, for a specific search query, the
correct answer is ranked second, the MRR10 will be 0.5.

In Sect. 4, we show that applying early stopping based on MRR to training
enhances the search performance of our method.

4 Evaluation

Our evaluation is based on the comparison performed by Marcelli et al. [17]. We
trained and tested GNN and GMN models [13] as multi-architecture models and
single-architecture models. Functions of ARM, x86 and MIPS are fed into multi-
architecture models for training. The functions come from ELF format binaries.
We trained and tested multi-architecture models on an Amazon EC2 P3 instance
(p3.2xlarge), which is equipped with Ubuntu 20.04, Intel(R) Xeon(R) CPU E5-
2686 v4 @ 2.30GHz and 61 GB memory.

In regard to single-architecture models, we fed the models functions of x86
32-bit binaries in PE format. We trained and tested single-architecture models
on a workstation equipped with Ubuntu 18.04 on Windows 10 Pro 64-bit with
WSL, Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz and 64 GB memory.

For preparing datasets, we used Python programs which are open to the
public and were provided by prior work [17]. Some of these Python programs
were originally created to work with IDA Pro [8] 7.3, and we worked on rewriting
them to work with IDA Pro 7.7. Thus, some of the dataset preprocessing, such
as disassembling binaries and counting BBs in a function, depends on IDA Pro.

We implemented multi-architecture models and single-architecture models
in Tensorflow 1.14 and conducted training based on Python programs publicly
available via prior work [17].



4.1 Dataset

We prepared two datasets for multi-architecture models, and one dataset for
single-architecture models.

Dataset-1 Dataset-1 comprises seven open source projects: ClamAV, Curl,
Nmap, OpenSSL, Unrar, Z3 and Zlib [17]. These open source projects are com-
piled for ARM, x86, MIPS in 32- and 64-bit versions and are compiled by Clang
and GCC with 4 different versions each and with 5 optimizations (O0, O1, O2,
O3 and Os) [17]. 5,489 binaries of Dataset-1 are in ELF format and are used
for the training and the evaluation of multi-architecture models. We obtained
Dataset-1 preprocessed by Marcelli et al. [17]. Prior work removed duplicate
functions based on their names and the hash values of their instructions [17].

In total, Dataset-1 comprises approximately 790k functions, each of which
has more than four BBs. Dataset-1 is split into training, validation and test-
ing datasets. The training dataset comprises approximately 260k functions from
ClamAV, Curl, OpenSSL and Unrar. The validation dataset comprises approx-
imately 10k functions from Zlib. The testing dataset comprises approximately
520k functions from Nmap and Z3.

Dataset-BINKIT We obtained Normal-dataset from prior work [12] and
selected some binaries of Normal-dataset as another testing dataset for the
evaluation of multi-architecture models. We call this testing dataset Dataset-
BINKIT. In order to investigate the impact of the number of software used
to a testing dataset on performance, we minimized the differences between
Dataset-1 and Dataset-BINKIT as much as possible, excluding the number
of software. We selected 7,200 binaries in ELF format, which are compiled
for ARM, x86, MIPS in 32- and 64-bit versions and are compiled by Clang
and GCC with 2 different versions each and with 4 optimizations (O0, O1,
O2 and O3). We preprocessed Dataset-BINKIT using prior work’s code [17],
which enables us to remove duplicate functions based on their names and the
hash values of their opcodes. We also removed functions in Dataset-BINKIT
which are the same as functions in Dataset-1 in terms of the hash values of
their opcodes. In total, Dataset-BINKIT comprises approximately 510k functions
which have more than four BBs. The selected binaries in Dataset-BINKIT are
the following GNU software packages; gsl, gss, gzip, hello, inetutils,
libiconv, libidn, libmicrohttpd, libtasn1, libtool, libunistring,
lightning, macchanger, nettle, osip, patch, plotutils, readline,
recutils, sed, sharutils, spell, tar, texinfo, time, units, wdiff,
which and xorriso.

Dataset-Win32 We first collected six open source project source codes: Curl,
FFmpeg, OpenSSL, PuTTY, SQLite and Zlib. Then, we compiled them for x86
(32-bit) and by Clang and GCC with 2 different versions each and with 5 opti-
mizations (O0, O1, O2, O3 and Os). 480 binaries of Dataset-Win32 are in PE



format and are used for the training and the evaluation of single-architecture
models. We preprocessed Dataset-Win32 using prior work’s code [17]. In to-
tal, Dataset-Win32 comprises approximately 260k functions which have more
than four BBs. In the evaluation of single-architecture model, we performed
5-fold cross validation because Dataset-Win32 is smaller than the datasets for
multi-architecture models. For convenience, we represent each separate cross val-
idation fold as cv1, . . . , cv5. In each cross validation fold, the training dataset
comprises approximately 210k functions and the validation dataset comprises
approximately 50k functions.

4.2 Machine Learning Models

For multi-architecture models, we evaluated the models using holdout validation
to compare them with the GNN model [17]. When data imbalance occurs upon
splitting datasets using the holdout validation, the data imbalance can introduce
potential bias in the evaluation of a model [22]. Also, other work has shown that
k-fold cross validation tends to give better results compared to holdout validation
[26]. To mitigate the bias, we employed five different random seeds to conduct
the evaluation and obtained the mean results of the all random seeds. Altering
the random seeds leads to changes in the training of GNN and GMN models,
such as model initialization and variations of function pairs used for training.
We first employed random seed 11 because the GNN model [17] to which we
compare our results appeared to be trained on random seed 11, according to
prior work [17]. We also tried random seeds 12 through 15, with similar results.

In regard to the evaluation of single-architecture models, we evaluated the
models using cv1, . . . , cv5 and random seed 11. Before training the models,
We modified the training process to ensure that the function pairs were not
duplicated in each epoch. The rationale behind this is to avoid the duplication of
function pairs due to the lower abundance of compiler versions and architectures
compared to the training dataset for the multi-architecture models.

Baseline In the evaluation of multi-architecture models, we prepared three
baseline models. One of them is a GNN model which is created by Marcelli et
al. [17] and is open to the public. The GNN model uses BB vectors created by
BoW. The others are a GNN model and a GMN model which use BB vectors
created by BoW and are trained by early stopping based on MRR. As a BB
converter, BoW serves to convert BBs into BB vectors, which are generated
from the counts of opcode occurrences within the top 200 opcodes in all BBs
of the training dataset from Dataset-1. We selected the top 200 opcodes using
prior work’s code [17]. The other training configuration for the GNN model and
the GMN model, such as the dimension of function vector (128-dimension), is
the same as Marcelli et al. [17].

In regard to the evaluation of single-architecture models, we prepared a GNN
model and a GMN model which uses BB vectors created by BoW as baseline
models. BB vectors are generated from the counts of opcode occurrences within



the top 200 opcodes in all BBs of the training dataset from cv1, . . . , cv5. We
selected the top 200 opcodes using prior work’s code [17]. The top 200 opcodes
vary depending on cv1, . . . , cv5. The baseline models are trained by early stop-
ping based on MRR. The other training configuration for the GNN model and
the GMN model is the same as Marcelli et al. [17].

Our Proposed Model In the evaluation of multi-architecture models, we pre-
pared a GNN model and a GMN model which use BB vectors, which are the
average of the embeddings of opcodes in each BB. The embeddings are created
by a fastText [4] model. The fastText model is trained using BBs of the train-
ing dataset from Dataset-1. The training configuration for the fastText model
includes skipgram, 200 iterations, minn 3, maxn 6, window size 5, minCount
1, and a BB vector dimension of 200. After training, the fastText model takes
each of the BBs of Dataset-1 and Dataset-BINKIT as input and generates cor-
responding BB vectors for each of the BBs. Our proposed models are trained by
early stopping based on MRR. The other training configuration is the same as
Marcelli et al. [17].

In regard to the evaluation of single-architecture models, we prepared a GNN
model and a GMN model which use BB vectors, which are the average of the
embeddings of opcodes in each BB. The embeddings are created by a fastText
model. The training configuration for the fastText model includes skipgram,
200 iterations, minn 3, maxn 3, window size 5, minCount 1, and a BB vector
dimension of 128. The fastText model is trained using BBs of the training dataset
from Dataset-Win32. In total, we created five fastText models from the training
datasets in cv1, . . . , cv5. The other training configuration is the same as the
evaluation of multi-architecture models.

4.3 Measures of Performance

Based on Marcelli et al. [17], in order to evaluate the performance of multi-
architecture models, we prepared four different tasks to evaluate: (1) XA: two
functions of a pair come from different architectures and bitness, but the same
compiler, compiler version, and optimization. (2) XC: two functions of a pair
come from different compiler, compiler versions, and optimizations, but the same
architecture and bitness. (3) XC+XB: two functions of a pair come from different
compiler, compiler versions, optimizations, and bitness, but the same architec-
ture. (4) XM: two functions of a pair come from randomly selected architectures,
bitness, compiler, compiler versions, and optimizations. We also prepared two
different tests based on Marcelli et al. [17]: (i) AUC, which is one of the metrics
to evaluate classifiers. (ii) MRR10 and the recall at different K thresholds (Re-
call@K), which are common ranking metrics. Ranking metrics are useful to assess
the search performance, particularly in applications requiring the exploration of
candidate functions within a large database [17].

Pair Creation We created positive pairs and negative pairs based on function
names and tasks. In the case of training, we created them based on function



names. For instance, when two functions have the same function name although
the two functions are compiled by different configurations, such as optimization,
the two functions are regarded as a positive pair. On the other hand, when two
functions have different function names, the two functions are regarded as a
negative pair regardless of the compilation settings. We created positive pairs
and negative pairs using prior work’s code [17]. Additionally, two functions of
a positive pair for AUC test, the ranking test and early stopping come from
binaries with the same name but compiled by different configurations.

Calculation of AUC For the first test, we prepared two datasets of 50k positive
pairs and 50k negative pairs for each task from Dataset-1 and Dataset-BINKIT
using prior work’s code [17]. As for Dataset-1, we first tried to use two datasets
from Marcelli et al. [17] to replicate their experiment. However, we found du-
plicate pairs from the positive pairs from Dataset-1 and some positive pairs for
XA, XC, and XC+XB from Dataset-1 partially do not satisfy the constraint of
each task. We also fixed a bug in prior work’s AUC code, which caused an error
of approximately 0.3% in the AUC calculation on Dataset-1. We performed the
first test in the evaluation of multi-architecture models.

Calculation of MRR10 and Recall@K For the ranking test of the XM task,
we randomly selected 20k positive pairs and 2,000k negative pairs, that is 100
negative pairs for each positive one.

In order to evaluate the performance of single-architecture models, we pre-
pared the XM task. The XM task is evaluated according to two commonly used
ranking metrics, MRR10 and Recall@K. For the ranking test of the XM task,
we randomly selected 20k positive pairs and 6,000k negative pairs, that is 300
negative pairs for each positive one.

Configuration of Early Stopping Based on MRR10 We prepared four
different patience values to stop training, early stopping patience (EP) 5, EP10,
EP15 and EP20. For example, training on EP5 would be halted when the value of
MRR10 does not improve for five consecutive epochs. In the evaluation of multi-
architecture models, MRR10 in each epoch is calculated by 500 positive pairs
and 50k negative pairs of the validation dataset from Dataset-1 for XM task.
In regard to the evaluation of single-architecture models, MRR10 in each epoch
is calculated by 500 positive pairs and 150k negative pairs of the validation
dataset from Dataset-Win32 for XM task. The positive and negative pairs in
early stopping and in the ranking test are not duplicated.

4.4 Results of Multi-architecture Models

From this point onward, we shall refer to the GNN model and the GMN model of
our proposed models as GNN+fastText and GMN+fastText respectively. Like-
wise, we shall refer to a GNN model created by Marcelli et al. [17] as the GNN+



Table 1. AUC, Recall@1 and MRR10 comparison between our proposed models and
the baseline models on Dataset-1. Each value is the average from random seed 11 to
15. Using fastText [4] improves the baseline performance in almost every case.

Model XA XC XC+XB XM Recall@1(XM) MRR10(XM)
GNN+BoW 0.98 0.82 0.82 0.88 0.48 0.55
GNN+fastText 0.98 0.86 0.86 0.90 0.48 0.56
GMN+BoW 0.98 0.79 0.78 0.85 0.43 0.51
GMN+fastText 0.99 0.83 0.83 0.88 0.44 0.53

BoW epoch10 [17], and a GNN model and a GMN model which use BB vectors
created by BoW and are trained by early stopping based on MRR as GNN+
BoW and GMN+BoW.

Results of Training Fig. 2 shows the results of training with random seed 11.
On EP15, GNN+fastText is better than the other models according to MRR10
although GNN+fastText necessitates a greater number of epochs in comparison
to the other models. The MRR10 of GNN+fastText is 0.814 at epoch 75, whereas
the MRR10 of GNN+BoW is 0.797 at epoch 24. Also, the MRR10 of GMN+
fastText is 0.738 at epoch 20, whereas the MRR10 of GMN+BoW is 0.745 at
epoch 12. For your reference, we calculated AUC in each epoch using 10k posi-
tive pairs and 10k negative pairs for the only XM task, which come from prior
work [17]. Recall@1 is also calculated by the same pairs as the ones to calculate
MRR10. In comparison to MRR10, AUC converges more quickly after 20 itera-
tions rather than 60 in the result of GNN+fastText. The similar trend observed
in training with random seed 11 was confirmed for the other random seeds as
well. In the evaluation of Multi-Architecture Models, GNN+fastText and GNN+
BoW are trained on EP15 for the evaluation. We confirmed that the result of
GNN+BoW on EP20 with random seed 11 was slightly worse than on EP15 in
Dataset-1, and GNN+BoW on EP20 with random seed 12 and 15 were slightly
worse than on EP15 in Dataset-BINKIT. To mitigate the impact of overfitting,
we evaluated GNN+fastText and GNN+BoW which are trained on EP15. On
the other hand, GMN+fastText and GMN+BoW are trained on EP20.

Results of the Testing Dataset of Dataset-1 Table 1 and Table 2 show the
AUC, Recall@1 and MRR10 of multi-architecture models on Dataset-1. Each
value in Table 1 is the average from random seed 11 to 15, and each value in Ta-
ble 2 is the result of random seed 11. Also, Table 2 shows the comparison between
GNN+fastText, GNN+BoW and the GNN+BoW epoch10 [17]. In Table 1, the
AUC values of 0.86, 0.86 and 0.90 for XC, XC+XB and XM respectively, the
Recall@1 value of 0.48 and the MRR10 value of 0.56 show that GNN+fastText
is better than the other models. In Table 2, GNN+fastText outperformed the
GNN+BoW epoch10 [17] by up to 3% in AUC, 5% in Recall@1 and 5% in
MRR10.



Fig. 2. The training results of GNN+fastText, GMN+fastText, GNN+BoW and
GMN+BoW with random seed 11 on Dataset-1. Re01 denotes Recall@1 and P denotes
early stopping patience (EP). Epoch indices start at zero. In the results of training on
EP15, the MRR10 value of 0.814 shows that GNN+fastText is better than the other
models.

Results of Dataset-BINKIT Table 3 and Table 4 show the AUC, Recall@1
and MRR10 of multi-architecture models on Dataset-BINKIT. Each value in
Table 3 is the average from random seed 11 to 15, and each value in Table 4 is
the result of random seed 11. In a manner akin to Table 2, Table 4 shows the
comparison between GNN+fastText, GNN+BoW and the GNN+BoW epoch10
[17]. In Table 3, the AUC values of 0.98, 0.95 and 0.96 for XA, XC+XB and
XM respectively, the Recall@1 value of 0.64 and the MRR10 value of 0.72 show
that GNN+fastText is better than the other models. In Table 4, GNN+fastText
outperformed the GNN+BoW epoch10 [17] by up to 2% in AUC, 9% in Recall@1
and 7% in MRR10.

4.5 Case Study of Vulnerability Search Using Multi-architecture
Models

In order to validate the effectiveness of early stopping based on MRR in en-
hancing the search performance of multi-architecture models, we replicated the



Table 2. AUC, Recall@1 and MRR10 comparison between our proposed model and
the baseline models on Dataset-1. Each model is trained with random seed 11. Using
fastText [4] improves the baseline performance in almost every case.

Model XA XC XC+XB XM Recall@1(XM) MRR10(XM)
GNN+BoW 0.98 0.81 0.81 0.88 0.49 0.56
GNN+fastText 0.98 0.85 0.84 0.90 0.48 0.56
GNN+BoW epoch10 [17] 0.97 0.82 0.82 0.88 0.43 0.51

Table 3. AUC, Recall@1 and MRR10 comparison between our proposed models and
the baseline models on Dataset-BINKIT. Each value of AUC, MRR10 and Recall@1
is the average from random seed 11 to 15. Using fastText [4] improves the baseline
performance in almost every case.

Model XA XC XC+XB XM Recall@1(XM) MRR10(XM)
GNN+BoW 0.97 0.95 0.94 0.95 0.62 0.70
GNN+fastText 0.98 0.95 0.95 0.96 0.64 0.72
GMN+BoW 0.97 0.95 0.93 0.94 0.59 0.68
GMN+fastText 0.97 0.96 0.94 0.95 0.58 0.67

case study of vulnerability search, using a dataset from Marcelli et al. [17].
The dataset includes preprocessed functions from OpenSSL1.0.2d, which is com-
piled for x86, x64, ARM 32-bit and MIPS 32-bit architectures, and from two
firmware images: Netgear R7000(ARM 32-bit) and TP-Link Deco M4(MIPS 32-
bit). OpenSSL1.0.2d compiled for the four architectures contain ten vulnerable
functions, Netgear R7000 contains four of them and TP-Link Deco M4 contains
nine of them [17]. We searched for the four functions of Netgear R7000 and the
nine functions of TP-Link Deco M4 using the ten functions of OpenSSL1.0.2d.
We also calculated MRR10 from these search results using prior work’s code [17].

Table 5 shows the MRR10 of GNN+fastText, GMN+fastText, GNN+BoW
and GMN+BoW and the results of Marcelli et al. [17] on the case study. In
this case study, we used GNN+fastText and GNN+BoW trained on EP15 with
random seed 11 and GMN+fastText and GMN+BoW trained on EP20 with
random seed 11. Also, GNN+BoW [17] and GMN+BoW [17] in Table 5 denote
the results of Marcelli et al. [17]. In regard to Netgear R7000, the MRR10 values
of 0.88, 1.00, 1.00 and 0.80 for x86, x64, ARM32 and MIPS32 respectively show
that GMN+fastText is better than the other models in all architectures. As
for TP-Link Deco M4, the MRR10 values of 0.79 and 0.75 for x86 and x64
respectively show that GMN+fastText is better than the other models in x86
and x64. Also, the MRR10 values of 0.78 and 0.78 for ARM32 and MIPS32
respectively show that GMN+BoW are better than the other models in ARM
32-bit and MIPS 32-bit.

4.6 Results of Single-architecture Models

Fig. 3 shows that the results of training with random seed 11 in cv1. On EP15,
GNN+fastText is better than the other models according to MRR10 although
GNN+fastText necessitates a greater number of epochs in comparison to the



Table 4. AUC, Recall@1 and MRR10 comparison between our proposed model and
the baseline models on Dataset-BINKIT. Each model is trained with random seed 11.
Using fastText [4] improves the baseline performance.

Model XA XC XC+XB XM Recall@1(XM) MRR10(XM)
GNN+BoW 0.96 0.95 0.93 0.95 0.62 0.70
GNN+fastText 0.98 0.96 0.95 0.96 0.66 0.74
GNN+BoW epoch10 [17] 0.97 0.95 0.93 0.95 0.57 0.67

Table 5. MRR10 comparison between our proposed models and the baseline models
on the case study of vulnerability search of Netgear R7000 and TP-Link Deco M4. (11)
represents the result of random seed 11 and [17] denotes the result of prior work [17].

Netgear R7000 TP-Link Deco M4
Model x86 x64 ARM32 MIPS32 x86 x64 ARM32 MIPS32
GNN+BoW (11) 0.60 0.58 0.75 0.58 0.33 0.53 0.50 0.40
GNN+fastText (11) 0.75 0.63 0.78 0.75 0.51 0.51 0.38 0.64
GMN+BoW (11) 0.67 0.50 0.56 0.38 0.56 0.67 0.78 0.78
GMN+fastText (11) 0.88 1.00 1.00 0.80 0.79 0.75 0.52 0.73
GNN+BoW [17] 0.33 0.32 0.56 0.30 0.49 0.56 0.36 0.61
GMN+BoW [17] 0.88 0.54 1.00 0.79 0.67 0.73 0.70 0.78

other models. The MRR10 of GNN+fastText is 0.819 at epoch 82, whereas
the MRR10 of GNN+BoW is 0.813 at epoch 42. Also, the MRR10 of GMN+
fastText is 0.778 at epoch 32, whereas the MRR10 of GMN+BoW is 0.715 at
epoch 3. For your reference, we calculated AUC and Recall@1 in each epoch
during training. Each AUC is calculated by 40k positive pairs and 40k negative
pairs of the validation dataset from Dataset-Win32 for XM task. Each Recall@1
is calculated by the same pairs to calculate MRR10. In comparison to MRR10,
AUC converges more quickly after 10 iterations rather than 40 in the result of
GNN+fastText. The similar trend observed in training in cv1 was confirmed for
cv2, . . . , cv5 as well. To mitigate the impact of overfitting, we evaluated GNN+
fastText and GNN+BoW on EP15 for the evaluation. This is because the result
of GNN+BoW in cv2 and of GNN+fastText in cv3 on EP20 with random seed
11 were slightly worse than on EP15. On the other hand, GMN+fastText and
GMN+BoW are trained on EP20.

Table 6 shows Recall@1 and MRR10 of GNN+fastText, GMN+fastText,
GNN+BoW and GMN+BoW on Dataset-Win32. Each value in Table 6 is the
average from cv1 to cv5. In Table 6, the Recall@1 value of 0.73 and the MRR10
value of 0.79 show that GNN+fastText is better than the other models.

4.7 Case Study of Function Search Using GNN+fastText

In order to validate the search performance of our proposed model in malware
analysis, using the samples of LockBit version 3.0 (LockBit 3.0) and a LockBit
3.0 builder obtained from Vx Underground [1] we conducted a search for the
functions of LockBit 3.0 using the GNN+fastText, which is trained in cv1 with
random seed 11 on EP15. LockBit is a variant of ransomware that was promi-
nent in 2022, and a builder for LockBit 3.0 was leaked [5], making it easier to



Fig. 3. The training results of GNN+fastText, GMN+fastText, GNN+BoW and
GMN+BoW with random seed 11 on cv1. Re01 denotes Recall@1 and P denotes early
stopping patience (EP). Epoch indices start at zero. In the results of training on EP15,
the MRR10 value of 0.819 shows that GNN+fastText is better than the other models.

analyze. Analysis of LockBit 3.0 [23] revealed that there was a variant of Lock-
Bit 3.0 which has four distinct phases "Unpack Sections", "Reconstruct IAT",
"Escalate Privilege", and "Ransom Main". The variant was also found to call
corresponding functions for each of these phases within the .itext section [23].
For experimental purposes, using the LockBit 3.0 builder which is uploaded on
Vx Underground [1], we created a variant (LockBit 3.0 encryptor), which was
unpacked and included each phase excluding the Unpack Sections.

In light of this, using four functions each from the Reconstruct IAT phase
(Reconstruct IAT, create_heap_API_jmp_table, hash_api_address_res-
olve, gen_random), the Escalate Privilege phase (Escalate Privilege, Load
Configuration, System Language Discovery, Set Icon), and the Ransom
Main phase (Ransom Main, Drop Ransom Note, Set Wallpaper, Wipe Rec-
ycle Bin), we conducted the case study of function search, which is based on the
case study of vulnerability search by Marcelli et al. [17]. As for the twelve function
names,create_heap_API_jmp_table, hash_api_address_resolve, gen_ra-
ndom were chosen based by prior work [21], and the rest were chosen based by



Table 6. MRR10 and Recall@1 comparison between our proposed models and the
baseline models on Dataset-Win32. Each value is the average from cv1 to cv5.

Model Recall@1(XM) MRR10(XM)
GNN+BoW 0.72 0.78
GNN+fastText 0.73 0.79
GMN+BoW 0.64 0.71
GMN+fastText 0.66 0.74

prior work [23]. We prepared three targets for the case study, which are obtained
from Vx Underground [1]. The SHA-256 hash values of the targets are as follows.

Sample-58260:58260a6687486e39dc46461270b391280b7d59997d84b6639230d95e3bdfca23
Sample-87b76:87b76f35740262abb8da224b94779ff56eb6346318b4f9fb1988a59a72a4e6c9
Sample-a56b4:a56b41a6023f828cccaaef470874571d169fdb8f683a75edd430fbd31a2c3f6e
In our function search, we confirmed that 12 out of 12 functions are de-

tected in each target. In this case study, "detected" means that the result of a
function search, using a specific function as a query for a given target, ranked
first. We also observed that 31 out of 36 functions in the targets matched those
of the LockBit 3.0 encryptor when comparing functions by hashopcode. The
hashopcode, in this context, is a hash value of opcodes of a function. We com-
puted the hashopcode of each function using the Python program from prior
work [17]. In terms of hashopcode, gen_random in each target, Reconstruct
IAT and create_heap_API_jmp_table in Sample-58260 are functions which did
not match the corresponding ones of the LockBit 3.0 encryptor.

5 Discussion

5.1 Multi-architecture Models

GNN+fastText outperformed the GNN+BoW epoch10 [17] by up to 2% in AUC,
9% in Recall@1 and 7% in MRR10 in the evaluation of multi-architecture models
with random seed 11 on Dataset-BINKIT. In regard to the results of AUC,
GNN+fastText is higher than that of the other models in almost every case. On
the other hand, in the average results of random seed 11 to 15 in the ranking
test (Table 1 and Table 3), a difference of up to 2% in MRR10 and up to
2% in Recall@1 was observed between GNN+fastText and GNN+BoW. From
these results, it is considered that the superior performance of GNN+fastText
and GNN+BoW over the GNN+BoW epoch10 [17] on Dataset-1 and Dataset-
BINKIT can be attributed to the effectiveness of early stopping based on MRR.

Additionally, it is necessary to prepare multiple seeds for the evaluation be-
cause altering the random seeds will change the search performance. For exam-
ple, in the results of GNN+fastText on Dataset-BINKIT (Table 3 and Table 4),
there was a 2% difference in Recall@1 and MRR10 between the average results
and those obtained with random seed11.

In terms of training time, a tendency was observed that GNN+fastText re-
quired more time for training compared to GNN+BoW (Sect. 4.4). This is at-
tributed to the denser BB vectors created by fastText, which is believed to



have contributed to the increased time requirement in comparison to those cre-
ated by BoW. On the other hand, no significant difference was observed be-
tween GMN+fastText and GMN+BoW. The GMN models (GMN+fastText and
GMN+BoW) conclude their training relatively quickly compared to GNN mod-
els (GNN+fastText and GNN+BoW). However, the GMN models exhibit more
pronounced fluctuations in MRR10 during training, making it challenging to
enhance the search performance of the GMN models.

When comparing the performance of the GNN models and the GMN mod-
els, it was observed that the GNN models outperformed the GMN models on
Dataset-1 and Dataset-BINKIT (Sect. 4.4), whereas in the case study of vul-
nerability search, the GMN models yielded better results (Sect. 4.5). Notably,
the case study involved searches for four or nine functions, while Dataset-1 and
Dataset-BINKIT encompassed searches across 20k functions. Therefore, the re-
sults of Dataset-1 and Dataset-BINKIT are more reliable in terms of evaluating
the search performance of each model compared to the case study. Furthermore,
the function vectors generated by the GMN models exhibit slight variations de-
pending on the pairs [13]. This results in an increased number of searches when
searching for a specific function. For instance, when searching for one function
similar to a particular function among 100 functions, the GMN models require
creating 100 function pairs, necessitating 200 conversions of functions into vec-
tors. In contrast, the GNN models only require 101 conversions of functions into
vectors, making it nearly twice as fast in terms of function-to-vector conversion
speed. In the realm of malware analysis, where new malware is being developed
at a rate of 4.2 samples every second [3], the speed of analysis is important.
Therefore, leveraging the GNN models in malware analysis are highly desirable.
However, it cannot be discounted that with more meticulous hyperparameter
tuning and the addition of training data, the performance of the GMN models
could potentially surpass that of the GNN models.

We conducted a further experiment because we noticed that there were du-
plicate functions in terms of the hash values of their opcodes in Dataset-1 we
obtained. Although prior work removed duplicate functions based on their names
and the hash values of their instructions [17], we hypothesized that removing du-
plicate functions based on the hash values of their opcodes would be appropriate
for machine learning models that use features of opcodes, not instructions. In
the further experiment, we removed approximately 12% and 25% of functions
from the training dataset and validation dataset, respectively, based on for their
names and the hash values of their opcodes based on prior work’s code [17].
Using the revised Dataset-1, we recreated the top 200 opcodes and a fastText
model, and trained GNN+BoW and GNN+fastText with random seed 11 to 15.
After the training, we tested the models on EP15 using the same testing datasets
from Dataset-BINKIT in Table 3 and Table 4. As a result, we observed on aver-
age from random seed 11 to 15 that GNN+fastText outperformed GNN+BoW
on the XM task for AUC and MRR10 while GNN+BoW outperformed GNN+
fastText on the XC task for AUC. As for the comparison between GNN+BoW
epoch10 [17] and GNN+fastText with random seed 11, GNN+fastText outper-



formed GNN+BoW epoch10 [17] by up to 1% in AUC, 5% in Recall@1 and 3%
in MRR10.

5.2 Single-architecture Models

In terms of AUC Recall@1 and MRR10, the single-architecture models exhib-
ited a similar trend to the multi-architecture models. It is difficult to assess the
effectiveness of early stopping based on MRR compared to the evaluation of
multi-architecture models. However, because single-architecture models can de-
tect functions of LockBit 3.0 accurately (as shown in the case study), they are
considered to be sufficiently optimized for search performance.

5.3 Future Work

To further enhance the search performance in malware analysis using our pro-
posed models, we plan on implementing data augmentation utilizing Malware
Makeover [15,16]. In existing methods for calculating binary function similar-
ity, function pairs based on function name are required to train the existing
methods. However, the function name of malware typically has been stripped,
making it exceedingly challenging to conduct training using functions of mal-
ware. Moreover, even if some functions have the same function name, there is
no guarantee that they possess the same functionality. Therefore, we leverage
Malware Makeover to enhance the search performance in malware analysis. Mal-
ware Makeover can create variants from malware, which retain the functionality
of original malware. By conducting additional training using Malware Makeover,
we aim to achieve further improvement in the search performance of our pro-
posed models. We also plan to compare binary program similarity using a GNN
model [13]. We hypothesize that the GNN model may perform well for calculat-
ing binary program similarity because the GNN model can convert a call-tree
into a vector.

6 Conclusion

In this paper we proposed the method combining GNN and GMN models [13] and
fastText [4] to transform functions in a binary into vectors for binary function
similarity comparison. GNN+fastText outperformed the GNN+BoW epoch10
[17] by up to 2% in AUC, up to 9% in Recall@1 and up to 7% in MRR10 in
a certain case when training multi-architecture models with random seed 11
(Sect. 4.4). In the case study of vulnerability search (Sect. 4.5), specific values
of MRR10 in Table 5 show that GMN+fastText are better than the baseline
models. Furthermore, our findings suggest that early stopping based on MRR
enables to improve the search performance of GNN+fastText and GNN+BoW.
In the case study of single-architecture models (Sect. 4.7), our work shows that
GNN+fastText is effective to search for malicious functions of LockBit 3.0 be-
cause GNN+fastText was able to find 12 out of 12 functions which we prepared



for the case study. In future work, to further enhance the search performance in
malware analysis using our proposed models, we plan to implement data aug-
mentation utilizing Malware Makeover [15,16] (Sect. 5.3).
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