
1

Malware Makeover: Breaking ML-based
Static Analysis by Modifying Executable Bytes

Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K. Reiter, Saurabh Shintre

2

Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-defender-antivirus?view=o365-worldwide
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.mcafee.com/enterprise/en-us/solutions/machine-learning.html
https://www.deepinstinct.com/

3

Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats

Machine learning (ML) models show promise / are in use for detection

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-defender-antivirus?view=o365-worldwide
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.mcafee.com/enterprise/en-us/solutions/machine-learning.html
https://www.deepinstinct.com/

4

Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats

Machine learning (ML) models show promise / are in use for detection

But, malware classification models may be susceptible to evasion

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-defender-antivirus?view=o365-worldwide
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.mcafee.com/enterprise/en-us/solutions/machine-learning.html
https://www.deepinstinct.com/

5

Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats

Machine learning (ML) models show promise / are in use for detection

But, malware classification models may be susceptible to evasion

Creating useful defenses requires knowledge of how ML models can be attacked

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-defender-antivirus?view=o365-worldwide
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.mcafee.com/enterprise/en-us/solutions/machine-learning.html
https://www.deepinstinct.com/

6

Deep Neural Networks (DNNs) for Static Malware Detection

Program binary represented as variable length sequence of integers/bytes
Å! ǎƛƴƎƭŜ ōȅǘŜΩǎ ƳŜŀƴƛƴƎ ŘŜǇŜƴŘǎ ƻƴ ǘƘŜ ǾŀƭǳŜǎ ƻŦ ōȅǘŜǎ ŀǊƻǳƴŘ ƛǘ
ÅByte values are treated as categorical

Å Absolute difference between byte values has no meaning

9Φ wŀŦŦΣ WΦ .ŀǊƪŜǊΣ WΦ {ȅƭǾŜǎǘŜǊΣ wΦ .ǊŀƴŘƻƴΣ .Φ /ŀǘŀƴȊŀǊƻΣ ŀƴŘ /Φ bƛŎƘƻƭŀǎΦ нлмтΦ άaŀƭǿŀǊŜ 5ŜǘŜŎǘƛƻƴ ōȅ 9ŀǘƛƴƎ ŀ ²ƘƻƭŜ 9·9ΦέarXiv
[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435.

7

Deep Neural Networks (DNNs) for Static Malware Detection

Program binary represented as variable length sequence of integers/bytes
Å! ǎƛƴƎƭŜ ōȅǘŜΩǎ ƳŜŀƴƛƴƎ ŘŜǇŜƴŘǎ ƻƴ ǘƘŜ ǾŀƭǳŜǎ ƻŦ ōȅǘŜǎ ŀǊƻǳƴŘ ƛǘ
ÅByte values are treated as categorical

Å Absolute difference between byte values has no meaning

9Φ wŀŦŦΣ WΦ .ŀǊƪŜǊΣ WΦ {ȅƭǾŜǎǘŜǊΣ wΦ .ǊŀƴŘƻƴΣ .Φ /ŀǘŀƴȊŀǊƻΣ ŀƴŘ /Φ bƛŎƘƻƭŀǎΦ нлмтΦ άaŀƭǿŀǊŜ 5ŜǘŜŎǘƛƻƴ ōȅ 9ŀǘƛƴƎ ŀ ²ƘƻƭŜ 9·9ΦέarXiv
[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435.

8

Attacking ML Algorithms ςAdversarial Examples

Adversarial Example
(image from Goodfellow 2015)

!ǘǘŀŎƪǎ ǳǎŜ ŎƭŀǎǎƛŦƛŜǊΩǎ ǘǊŀƛƴŜŘ ǿŜƛƎƘǘǎ ǘƻ ŎǊŀŦǘ ƛƳǇŜǊŎŜǇǘƛōƭŜ ŀŘǾŜǊǎŀǊƛŀƭ ƴƻƛǎŜ όƻǊ
perturbations) to cause misclassification

ÅFast Gradient Sign Method (FGSM)
ÅProjected Gradient Descent (PGD)

+ 0.007x =

άtŀƴŘŀέ άDƛōōƻƴέ

I. J. Goodfellow, J. Shlens, and C. SzegedyΦ нлмпΦ ά9ȄǇƭŀƛƴƛƴƎ ŀƴŘ IŀǊƴŜǎǎƛƴƎ !ŘǾŜǊǎŀǊƛŀƭ 9ȄŀƳǇƭŜǎΦέ arXiv[stat.ML]. arXiv.
http://arxiv.org/abs/1412.6572.

9

Attacking DNNs for Static Malware Detection

Must ensure all byte changes preserve binary functionality
Assume whiteboxaccess to target model (can view trained weights)
Å Our paper also examines a blackboxthreat model

9Φ wŀŦŦΣ WΦ .ŀǊƪŜǊΣ WΦ {ȅƭǾŜǎǘŜǊΣ wΦ .ǊŀƴŘƻƴΣ .Φ /ŀǘŀƴȊŀǊƻΣ ŀƴŘ /Φ bƛŎƘƻƭŀǎΦ нлмтΦ άaŀƭǿŀǊŜ 5ŜǘŜŎǘƛƻƴ ōȅ 9ŀǘƛƴƎ ŀ ²ƘƻƭŜ 9·9ΦέarXiv
[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435.

10

Creating Adversarial Examples from Binaries

To modify binaries without changing
functionality, use functionality
preserving transformations:

V. Pappas, M. Polychronakis, and A. D. KeromytisΦ нлмнΦ ά{ƳŀǎƘƛƴƎ ǘƘŜ DŀŘƎŜǘǎΥ IƛƴŘŜǊƛƴƎ wŜǘǳǊƴ-Oriented Programming Using
In-tƭŀŎŜ /ƻŘŜ wŀƴŘƻƳƛȊŀǘƛƻƴΦέ нлмнΦ Lƴ tǊƻŎΦ L999 {ϧtΦ
H. Koo and M. PolychronakisΦ нлмсΦ άWǳƎƎƭƛƴƎ ǘƘŜ ƎŀŘƎŜǘǎΥ .ƛƴŀǊȅ-ƭŜǾŜƭ ŎƻŘŜ ǊŀƴŘƻƳƛȊŀǘƛƻƴ ǳǎƛƴƎ ƛƴǎǘǊǳŎǘƛƻƴ ŘƛǎǇƭŀŎŜƳŜƴǘΦέ Lƴ
Proc. AsiaCCS.

11

Creating Adversarial Examples from Binaries

mov edx, [ebp+4]
sub edx, - 0x10
mov ebx, [ebp+8]
mov [ebx], edx

(8b5504)
(83eaf0)
(8b5d08)
(8913)

mov ebx, [ebp+8]
mov edx, [ebp+4]
sub edx, - 0x10
mov [ebx], edx

(8b5d08)
(8b5504)
(83eaf0)
(8913)

Reorder (1/4 IPR)

To modify binaries without changing
functionality, use functionality
preserving transformations:

ÅIn-Place Replacement (IPR)

ÅFour types: preserv, swap, reorder,

equiv

V. Pappas, M. Polychronakis, and A. D. KeromytisΦ нлмнΦ ά{ƳŀǎƘƛƴƎ ǘƘŜ DŀŘƎŜǘǎΥ IƛƴŘŜǊƛƴƎ wŜǘǳǊƴ-Oriented Programming Using
In-tƭŀŎŜ /ƻŘŜ wŀƴŘƻƳƛȊŀǘƛƻƴΦέ нлмнΦ Lƴ tǊƻŎΦ L999 {ϧtΦ
H. Koo and M. PolychronakisΦ нлмсΦ άWǳƎƎƭƛƴƎ ǘƘŜ ƎŀŘƎŜǘǎΥ .ƛƴŀǊȅ-ƭŜǾŜƭ ŎƻŘŜ ǊŀƴŘƻƳƛȊŀǘƛƻƴ ǳǎƛƴƎ ƛƴǎǘǊǳŎǘƛƻƴ ŘƛǎǇƭŀŎŜƳŜƴǘΦέ Lƴ
Proc. AsiaCCS.

12

Creating Adversarial Examples from Binaries

mov edx, [ebp+4]
sub edx, - 0x10
mov ebx, [ebp+8]
mov [ebx], edx

(8b5504)
(83eaf0)
(8b5d08)
(8913)

mov ebx, [ebp+8]
mov edx, [ebp+4]
sub edx, - 0x10
mov [ebx], edx

(8b5d08)
(8b5504)
(83eaf0)
(8913)

Reorder (1/4 IPR) Displacement

To modify binaries without changing
functionality, use functionality
preserving transformations:

ÅIn-Place-Replacement (IPR)

ÅFour types: preserv, swap, reorder,

equiv

ÅDisplacement (Disp)

V. Pappas, M. Polychronakis, and A. D. KeromytisΦ нлмнΦ ά{ƳŀǎƘƛƴƎ ǘƘŜ DŀŘƎŜǘǎΥ IƛƴŘŜǊƛƴƎ wŜǘǳǊƴ-Oriented Programming Using
In-tƭŀŎŜ /ƻŘŜ wŀƴŘƻƳƛȊŀǘƛƻƴΦέ нлмнΦ Lƴ tǊƻŎΦ L999 {ϧtΦ
H. Koo and M. PolychronakisΦ нлмсΦ άWǳƎƎƭƛƴƎ ǘƘŜ ƎŀŘƎŜǘǎΥ .ƛƴŀǊȅ-ƭŜǾŜƭ ŎƻŘŜ ǊŀƴŘƻƳƛȊŀǘƛƻƴ ǳǎƛƴƎ ƛƴǎǘǊǳŎǘƛƻƴ ŘƛǎǇƭŀŎŜƳŜƴǘΦέ Lƴ
Proc. AsiaCCS.

...
0x4587:
0x458b:
0x458f:
...

...
add ax, 0x10
sub bx, 0x10
cmp ax, bx
...

...
(6683c010)
(6683eb10)
(6639d8)
...

...
0x4587:
0x458c:
0x458f:
...

...
0x4800:
0x4804:
0x4808:
0x4805:
0x4806:
0x4807:
0x480a:
0x480b:
0x480d:
...

...
jmp 0x4800
mov cx, cx
cmp ax, bx
...

...
add ax, 0x10
sub bx, 0x10
nop
pushfd
push ebx
add ebx, 0x1a
pop ebx
popfd
jmp 0x458c
...

...
(e974020000)
(6689c9)
(6639d8)
...

...
(6683c010)
(6683eb10)
(90)
(9c)
(53)
(83c31a)
(5b)
(9d)
(e97afdffff)
...

13

Attack Algorithm

1. Random initialization

14

Attack Algorithm

1. Random initialization

2. For every function:

a. Randomly choose from valid transformations

15

Attack Algorithm

1. Random initialization

2. For every function:

a. Randomly choose from valid transformations
b. Generate byte changes using chosen transformation

and check gradient in embedding

16

Guided Transformations

1. Random initialization

2. For every function:

a. Randomly choose from valid transformations
b. Generate byte changes using chosen transformation
c. If byte changes align with loss gradient ςaccept and

move on to next part of function. If not, discard and
go back to step b

d. Execute until all instructions in function have been
reached

17

Attack Algorithm

1. Random initialization

2. For every function:

a. --ŘΦ Χ

3. Repeat step 2 until success or 200 iterations

18

Experiment Setup ςDataset

Å32-bit portable executable (PE) files, smaller than 5 MB, first seen in 2020,
collected from VirusTotal feed (VTFeed), either 0 or >40 AV detections

19

Experiment Setup ςDataset

Å32-bit portable executable (PE) files, smaller than 5 MB, first seen in 2020,
collected from VirusTotal feed (VTFeed), either 0 or >40 AV detections

ÅLabeled as benign (resp. malicious) if classified malicious by 0 (resp. >40) antivirus
vendors aggregated by VirusTotal

20

Experiment Setup ςDataset

Å32-bit portable executable (PE) files, smaller than 5 MB, first seen in 2020,
collected from VirusTotal feed (VTFeed), either 0 or >40 AV detections

ÅLabeled as benign (resp. malicious) if classified malicious by 0 (resp. >40) antivirus
vendors aggregated by VirusTotal

Å139K benign and 139K malicious, shuffled, and randomly partitioned into
Train (80%), Validation (10%), and Test (10%) sets

21

Experiment Setup ςDNNs

State-of-the-art architectures we trained:

ÅMalConvςproposed by Raff et al.

ÅAvast ςproposed by YǊőłƭet al.

Endgame ςpre-trained DNN (Anderson et al.)
ÅBased on MalConvarchitecture
ÅTrained on 600K binaries, evenly distributed between benign and malicious
Å92% detection rate when restricted to a false positive rate of 0.1%

Architecture diagram of MalConv model (from Raff et al.)

H. S. Anderson and P. Roth. 2018. Ember: An Open Dataset for Training Static PE Malware Machine Learning Models .arXiv
preprint arXiv:1804.04637(2018).
M. KrcálŜǘ ŀƭΦ ά5ŜŜǇ /ƻƴǾƻƭǳǘƛƻƴŀƭ aŀƭǿŀǊŜ /ƭŀǎǎƛŦƛŜǊǎ /ŀƴ [ŜŀǊƴ ŦǊƻƳ wŀǿ 9ȄŜŎǳǘŀōƭŜǎ ŀƴŘ [ŀōŜƭǎ hƴƭȅΦέ L/[w όнлмуύΦ
9Φ wŀŦŦΣ WΦ .ŀǊƪŜǊΣ WΦ {ȅƭǾŜǎǘŜǊΣ wΦ .ǊŀƴŘƻƴΣ .Φ /ŀǘŀƴȊŀǊƻΣ ŀƴŘ /Φ bƛŎƘƻƭŀǎΦ нлмтΦ άaŀƭǿŀǊŜ 5ŜǘŜŎǘƛƻƴ ōȅ 9ŀǘƛƴƎ ŀ ²ƘƻƭŜ 9·9ΦέarXiv
[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435.

22

Results ςDNNs and Malware Samples

Malware samples used to construct adversarial examples

Å100 sampled from VirusTotal (aggregates binaries and anti-virus vendor detections)

ÅUnpacked
Å{ƛȊŜ ōŜƭƻǿ ƳƻŘŜƭǎΩ ǎƳŀƭƭŜǎǘ ƛƴǇǳǘ όрмнY.ύ
ÅAt least 40 anti-virus detections for malware

23

Experiment methods

Å10 repetitions of each experiment

ÅDeemed successful if an attack can reduce maliciousness score to
below 0.1% FPR threshold (0.5 for Endgame)

Experiment Setup ςMeasuring Success

24

Experiment methods

Å10 repetitions of each experiment

ÅDeemed successful if an attack can reduce maliciousness score to
below 0.1% FPR threshold (0.5 for Endgame)

Two measures of success

ÅCoverage ςfraction of binariesan attack was successful in at least
one of the trials

Experiment Setup ςMeasuring Success

T
ria

ls

Binaries

- Success

- Failure

Coverage = 3/5 = 60%

25

Experiment methods

Å10 repetitions of each experiment

ÅDeemed successful if an attack can reduce maliciousness score to
below 0.1% FPR threshold (0.5 for Endgame)

Two measures of success

ÅCoverage ςfraction of binariesan attack was successful in at least
one of the trials

ÅPotency ςfraction of trials that succeeded, over all binaries

Experiment Setup ςMeasuring Success

T
ria

ls

Binaries

- Success

- Failure

Coverage = 3/5 = 60%
Potency = 8/25 = 32%

26

Experiment methods

Å10 repetitions of each experiment

ÅDeemed successful if an attack can reduce maliciousness score to
below 0.1% FPR threshold (0.5 for Endgame)

Two measures of success

ÅCoverage ςfraction of binariesan attack was successful in at least
one of the trials

ÅPotency ςfraction of trials that succeeded, over all binaries

Experiment Setup ςMeasuring Success

T
ria

ls

Binaries

Coverage = 3/5 = 60%
Potency = 8/25 = 32%
Coverage Potency

- Success

- Failure

27

Results ςOverall

Attack success rates in the white-box setting
Å Potency shown as lighter bars and coverage as darker bars

28

Results ςOverall

Attack success rates in the white-box setting
Å Potency shown as lighter bars and coverage as darker bars

Random < IPR

