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Guessing Methods

John the Ripper
Hashcat
Markov Models

PCFGs

passwordl2 monkey!!
passwordll dgwerty..
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Guessing Methods

e John the Ripper
e Hashcat
e Markov Models

e PCFGs



Choose a password: TTITTITITY Fassword strength:  Weak

binimum of & characters in length.

Re-enter password:




Can we guess more accurately?
Quicker?

With fewer resources?
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Our Approach: Neural Networks

R Hello = 3apaBcTByitTe

Handwriting recognition
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Outline: Guessing with Neural Networks

e How to guess passwords with neural networks
e Password guesser design
e Comparison to other guessing methods

e Real-time, in-browser feedback with neural networks



Generating Passwords
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Generating Passwords

passw =g 0 Or maybe QorOor...
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Generating Passwords

Next char is:

A: 3%
B: 1%
passw . C: 0.6%
O: 55%
Z: 0.01%

0: 20%
1: ...
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Generating Passwords

132/

Prob: 100%
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Generating Passwords

(1%} .
Prob: 100%

Next char is:
A: 3%
B: 2%
C: 5%
O: 2%
Z: 0.2%
0: 1%
1:
END: 2%
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Generating Passwords

)

Prob: 100%

Next char is:
A: 3%
B: 2%
C: 5%
O: 2%
Z: 0.2%
0: 1%

Gy
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Generating Passwords

Next char is:
A: 3%
B: /4

(1%} »

Prob: 100% O: 2%
Z: 0.2%
0: 1%
1:
END: 2%

22



Generating Passwords

“C” .
Prob: 5%
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Generating Passwords

Next char is:

A: 10%

B: 1%

C: 4%
Prob: 5% O 8%

Z: 0.02%

0: 3%

1:

END: 6%



“C”
Prob: 5%
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Generating Passwords

“CA” .
Prob: 0.5%

Next char is:
A: 3%

B: 10%
C: 7%
O: 1%

Z: 0.03%
0: 2%

1:
END: 12%
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Generating Passwords

“CAB” .
Prob: 0.05%

N

A []

B: 10%

Q:

ext char is:
(0)

0

1%

0.03%
2%
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Generating Passwords

“CAB” .
Prob: 0.05%

Next char is:
A: 4%

B: 3%
C: 1%

O: 2%

Z: 0.01%
0: 4%

1:
END: 12%
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Generating Passwords

Next char is:
A: 4%
B: 3%
C: 1%
“CAB” »
Prob: 0.05% O 2%
Z: 0.01%
0: 4%
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Generating Passwords

“CAB”
Prob: 0.006%
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Generating Passwords

cCAB - 0.006%
CAC - 0.0042%
ADD1 - 0.002%
CODE - 0.0013%
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Generating Passwords

CAI=EE)6%
CACEQf42%
ADD1 - 0.002%
CODE - 0.0013%

MVUST BE LONGER THAN
3 CHARACTERS
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Password Policies: 1class8

1 character class and 8 characters minimum

passwordl23
12345678

monkey99
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Password Policies: 4class8

4 character classes and 8 characters minimum

PaSSwOrd
10az2wsx

Jvj24601!
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Password Policies: 1class16

1 character class and 16 characters minimum

123456789123456789
gwertyuiopl23456

Monikal234567890
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Password Policies: 3class12

3 character class and 12 characters minimum

llamalovel23
Mypassword#3

N@rutO0 rOck5
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Outline: Guessing with Neural Networks

e How to guess passwords with neural networks
e Password guesser design
e Comparison to other guessing methods

e Real-time, in-browser feedback with neural networks
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Design Space

e Model size

3MB - Browser

60MB - Limited by GPU
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Design Space

e Model size 1class8 network

e Transference learning
Transfer knowledge

3class12 network
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Design Space

e Model size
e Transference learning

e Training data

Natural language?

Varying training sets?
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Design Space

e Model size

e Transference learning
e Training data

e Model architecture
e Alphabet size

e Password context
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Testing Methodology

Approach: measure # guessed passwords
Training data: leaked password sets

Testing data

o MTurk study passwords: 1class8, 4class8, 1class16, 3class12

o Real passwords: 000webhost password leak

Use Monte-Carlo to estimate guess numbers
(Dell’Amico and Filippone CCS ‘15)
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Tuning Training



Percent guessed

0%:

60%:

40%:

20%-

10" 10* 1071010101091 0%210%°
Guesses
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Percent guessed

0%:

60%:

40%:

20%-

10" 10% 07101031081 '%10%1 0%
Guesses
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Percent guessed

0%:

60%:

40%:

20%-

More
accurate
guessing

10" 10* 1071010101091 0%210%°
Guesses
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Percent guessed

0%:

60%-

40%:

20%-

More
accurate
guessing

10" 10* 1071010101091 0%210%°
Guesses
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Transference Learning — More Accurate

Percent guessed

60%-
40%:
200" """ °

0%:

15% — 22%

Transference
Normal

10" 10* 10710'“0%10"10'%1022102°

Guesses
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Natural Language Doesn't Help

o/ . NoNL
e 80% WithNL
?60%:
o

b 400/0'
C

S 20%
Y
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0%:

10" 10% 107 10'°10'310"®109102210%
Guesses
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Model Size: Larger Is More Accurate

Percent guessed
O)
Q
=

10" 100 10 10" 10%®
Guesses
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Model Size: Larger Is More Accurate

Percent guessed
O)
Q
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10" 100 10 10" 10%®
Guesses
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Model Size: Larger Is More Accurate

Percent guessed
(@)
<
=

10" 107 10" 10" 10%
Guesses
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| SOMETIMES
Model Size: Larger IsAMore Accurate

Percent guessed
(@)
S
=

10" 107 10" 10" 10%
Guesses
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Comparison to Other
Approaches



1class8: Comparison

90%:

60%-

30%-

Percent guessed

0%+

10" 10* 107 10'°10"310"810'9102210%5
Guesses
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1class8: Neural Networks Guess Better
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1class8: Neural Networks Guess Better

MinGuess
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4class8: Neural Networks Guess Better
100%- MinGuess

75%:

Percent guessed
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Hashcat

10" 10* 10710'°10"310%10'%10?%10%®
Guesses
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3class12: Neural Networks Guess Better

MinGuess
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3class12: Neural Networks Guess Better

MinGuess
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Password feedback



Current password feedback:

Quick or accurate



Accurate Guessing Methods

100s MB to GBs!
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Accurate Guessing Methods

100s MB to GBs!

e »
y ) /.
1
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Accurate Guessing Methods

100s MB to GBs!

- 9 ‘a

Neural networks: 60MB, 3MB
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Accurate Guessing Methods

Neural networks: 60MB, 3MB
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Accurate Guessing Methods

Hours to days!
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Can neural networks give
real-time feedback?



|deal Meter Targets

e Small: < 1MB
e Fast: <0.1sec
e JavaScript

e Accurate
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Making Meters Small

e Start with small version of neural network
e Quantize parameters of model

e Compress with existing lossless compression methods

850KB <1MB
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Making Meters Fast

e Pre-compute inexact mapping from prob — guess number
e (Cache intermediate results

e Run on separate thread

17 ms < 0.1 sec
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Meter Accuracy



Meter Accuracy

100%:

uessed

9 50%:

Percent

0%

75%:

25%:
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10" 10* 107 10'°10"310'6101°10%210%
Guesses
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Meter Accuracy

100%:

uessed
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Meter Accuracy
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Modeling Passwords Using Neural Networks

e Neural networks guess passwords accurately

e Can be made small and fast for client-side feedback

github.com/cupslab
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