
9

Composing Expressive Runtime
Security Policies

LUJO BAUER

Carnegie Mellon University

JAY LIGATTI

University of South Florida

and

DAVID WALKER

Princeton University

Program monitors enforce security policies by interposing themselves into the control flow of un-
trusted software whenever that software attempts to execute security-relevant actions. At the point
of interposition, a monitor has authority to permit or deny (perhaps conditionally) the untrusted
software’s attempted action. Program monitors are common security enforcement mechanisms and
integral parts of operating systems, virtual machines, firewalls, network auditors, and antivirus
and antispyware tools.

Unfortunately, the runtime policies we require program monitors to enforce grow more complex,
both as the monitored software is given new capabilities and as policies are refined in response
to attacks and user feedback. We propose dealing with policy complexity by organizing policies in
such a way as to make them composable, so that complex policies can be specified more simply as
compositions of smaller subpolicy modules. We present a fully implemented language and system
called Polymer that allows security engineers to specify and enforce composable policies on Java
applications. We formalize the central workings of Polymer by defining an unambiguous semantics
for our language. Using this formalization, we state and prove an uncircumventability theorem
which guarantees that monitors will intercept all security-relevant actions of untrusted software.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs
and Features—Frameworks; patterns; procedures, functions, and subroutines; D.2.1 [Software
Engineering]: Requirements/Specifications—Languages; tools; D.2.5 [Software Engineering]:
Testing and Debugging—Monitors; D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; syntax

This research was supported in part by National Science Foundation grants CNS-07216343, CNS-
0716216, CCR-0238328, and CCR-0306313, by ARDA grant NBCHC030106, by the Army Research
Office through grant DAAD19-02-1-0389, and by a Sloan Fellowship.
Authors’ addresses: L. Bauer, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213; J. Ligatti, University of South Florida; email: ligatti@cse.usf.edu; D. Walker, Computer
Science Department, Princeton University, Princeton, NJ 08544.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 0163-5948/2009/05-ART9 $10.00
DOI 10.1145/1525880.1525882 http://doi.acm.org/10.1145/1525880.1525882

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:2 • L. Bauer et al.

General Terms: Design, Languages, Security

Additional Key Words and Phrases: Policy composition, policy-specification language, policy
enforcement

ACM Reference Format:
Bauer, L., Ligatti, J., and Walker, D. 2009. Composing expressive runtime security policies. ACM
Trans. Softw. Eng. Methodol. 18, 3, Article 9 (May 2009), 43 pages. DOI = 10.1145/1525880.1525882
http://doi.acm.org/10.1145/1525880.1525882

1. INTRODUCTION

Program monitors enforce security policies by interposing themselves into the
control flow of untrusted software whenever that software attempts to execute
security-relevant actions. At the point of interposition, a monitor has authority
to permit or deny (perhaps conditionally) the untrusted software’s attempted
action. Program monitors are common security enforcement mechanisms and
integral parts of operating systems, virtual machines, firewalls, network audi-
tors, and antivirus and antispyware tools.

The runtime policies we need to enforce in practice tend to grow ever more
complex, which makes them very difficult to reason about and manage. The in-
creased complexity occurs for several reasons. First, as software becomes more
sophisticated, so do our notions of what constitutes valid (secure) and invalid
(insecure) behavior. Witness, for example, the increased complexity of reason-
ing about security in a multiuser and networked system versus a single-user,
stand-alone machine. Similarly, new application domains often require new
security constraints; for example, electronic-commerce and medical-database
applications require sophisticated authentication and privacy constraints.

Second, practical security policies also grow more complex as security engi-
neers tighten policies in response to new attacks. When engineers discover an
attack, they often add rules to their security policies (increasing policy complex-
ity) to avoid the newly observed attacks. For instance, a security engineer might
add policy rules that disallow insecure default configurations or that require
displaying a warning and asking for user confirmation before downloading dan-
gerous files.

Third, relaxing overly tight policies also often leads to increased policy com-
plexity. In this case, the complexity increases because the original policy forbade
too much and needs more sophisticated reasoning to distinguish between safe
and dangerous behaviors. For example, an older version of the Java Develop-
ment Kit (JDK 1.0) required all applets to be sandboxed. User feedback led
to the adoption of a more relaxed policy, that only unsigned applets be sand-
boxed, in a later version (JDK 1.1) [McGraw and Felten 1999]. This relaxation
increased policy complexity by additionally requiring the policy to reason about
cryptographic signatures.

Complex policies are not only difficult for security engineers to maintain;
they also often require complex and powerful enforcement mechanisms, which
are themselves prone to error. To have assurance that a desired policy will
be enforced, both the policy-specification language and the mechanism that

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:3

enforces it should be implemented in a principled manner and amenable to
formal reasoning about their correctness.

This article addresses the problem of policy complexity by describing Poly-
mer, a programming language and system in which complex runtime policies
can be specified and enforced more simply as compositions of smaller subpolicy
modules. Our compositional design allows security architects to create, reuse,
update, and analyze subpolicies in isolation.

1.1 Polymer Language Overview

In Polymer, security policies are first-class objects structured to be arbitrar-
ily composed with other policies. This design allows users to specify complex
policies as compositions of simpler policy modules.

Polymer policies specify runtime constraints on untrusted Java bytecode pro-
grams. Programmers implement policies by extending Polymer’s Policy class,
which is given a special interpretation by the underlying runtime system. In-
tuitively, each Policy object contains the following three elements:

(1) an effect-free decision procedure that determines how to react to security-
sensitive application actions, which are suspended method calls that mon-
itors intercept;

(2) security state, which can be used to keep track of the application’s activity
during execution; and

(3) methods to update the policy’s security state.

We call the decision procedure mentioned in (1) previously a query method.
This method takes as input an action object, which contains the security-
sensitive method’s name, signature, calling object (if any), and actual argu-
ments (if any). A query method returns one of six suggestions indicating that: the
action is irrelevant to the policy; the action is OK but relevant; the action should
be reconsidered after some other code is inserted; the return value of the action
should be replaced by a precomputed value (which may have been computed
using earlier insertion suggestions); a security exception should be thrown in-
stead of executing the action; or the application should be halted. We call these
return objects suggestions because there is no guarantee that the policy’s de-
sired reaction will occur when it is composed with other policies. Also for this
reason, the query method should not have effects. State updates occur in other
policy methods, which are invoked only when a policy’s suggestion is followed.

In order to further support flexible but modular security policy programming,
we treat all policies, suggestions, and application actions as first-class objects.
Consequently, it is possible to define higher-order security policies that query
one or more subordinate policies for their suggestions and then combine these
suggestions in a semantically meaningful way, returning the overall result to
the system or other policies higher in the hierarchy. We facilitate programming
with suggestions and application events by supporting pattern matching for
actions and developing mechanisms that allow programmers to summarize a
collection of application events as an abstract action.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:4 • L. Bauer et al.

Fig. 1. A secure Polymer application.

1.2 Polymer System Overview

Similarly to the designs of Naccio [Evans and Twyman 1999] and PoET/Pslang
[Erlingsson and Schneider 2000], the Polymer system is composed of two main
tools. The first is a policy compiler that compiles program monitors defined in
the Polymer language into plain Java and then into Java bytecode. The second
tool is a bytecode rewriter that processes ordinary Java bytecode, inserting
calls to the monitor in all the necessary places. In order to construct a secure
executable using these tools, programmers perform the following six steps.

(1) Write an action declaration file, which lists all program methods that might
have an impact on system security.

(2) Instrument the system libraries specified in the action declaration file us-
ing the bytecode rewriter. This step may be performed independently of
the specification of the security policy. The libraries must be instrumented
before the Java Virtual Machine (JVM) starts up, since the default JVM se-
curity constraints prevent many libraries from being modified or reloaded
once the JVM is running.

(3) Write and compile the security policy. The policy compiler translates the
Polymer policy into ordinary Java and then invokes a Java compiler to
translate it to bytecode. Polymer’s policy language is described in Section 2;
its formal semantics appear in Section 4.

(4) Start the JVM with the modified libraries.
(5) Load the target application. During this loading, Polymer’s custom class

loader rewrites the target code in the same way we rewrote the libraries in
step two.

(6) Execute the secured application.

Figure 1 shows the end result of the process. The instrumented target and li-
brary code run inside the JVM. Whenever this code is about to invoke a security-
sensitive method, control is redirected through a generic policy manager, which
queries the current policy. The current policy will return a suggestion that is
carried out by the policy manager.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:5

1.3 Contributions

The contributions of our work include the following.

(1) We have designed a new programming methodology that permits policies
to be composed in meaningful and productive ways. A key innovation is the
separation of a policy into an effectless method that generates suggestions
(OK, halt, raise exception, etc.) and is safe to execute at any time, and
effectful methods that update security state only when a policy’s suggestion
is followed.

(2) We have written a library of first-class, higher-order policies and used
them to build a large-scale, practical security policy that enforces a so-
phisticated set of constraints on untrusted email clients. We also used the
combinators to design complex policies for text-editor and media-player
applications.

(3) We have developed a formal semantics for an idealized version of our lan-
guage that includes all of the key features of our implementation including
first-class policies, suggestions, and application events. The formal seman-
tics serves as the unambiguous, canonical definition of the Polymer lan-
guage. We prove that our language is type safe, a necessary property for pro-
tecting the program monitor’s state from untrusted applications, and that
applications cannot circumvent monitoring code before executing security-
relevant methods.

There are a number of smaller contributions as well. For instance, unlike
closely related systems such as Naccio and PoET [Evans and Twyman 1999;
Erlingsson and Schneider 2000], Polymer allows a monitor to replace an entire
invocation of a security-relevant action with a provided return value via a re-
place suggestion. Some policies, such as the IncomingMail policy in Section 2.2,
require this capability. In addition, we faithfully implement the principle of
complete mediation [Saltzer and Schroeder 1975] (and prove so for the formal
Polymer calculus). In other words, once a policy is put in place, every security-
sensitive method is monitored by the policy every time it is executed, even if
the method is called from another policy component. This has a performance
cost, but it guarantees that every policy sees all method calls that are rele-
vant to its decision. The details of our language, including its pattern-matching
facilities and our complementary notion of an abstract program action, which
allows grouping of related security functions, also differ from what appears in
previous work.

Large portions of this article derive from a paper entitled “Composing
Security Policies with Polymer”, which was presented at the ACM SIGPLAN
Symposium on Programming Languages Design and Implementation in June,
2005 [Bauer et al. 2005a]. This article extends and completes that conference
paper in several ways.

—We give related work a much more complete treatment, in a new Section 5.
—We describe in greater detail how to write policies using Polymer. We present

more examples of Polymer policies (e.g., in the new Section 3.3) and provide

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:6 • L. Bauer et al.

more in-depth discussions of the example policies and more complete code
examples (e.g., for the case-study policy in Section 3.2).

—We discuss, in the new Section 3.4, the ways in which Polymer facilitates, and
at times hinders, the design and implementation of policies in practice. Our
conclusions are based on our experience using Polymer and are substantiated
by the unabbreviated code examples we show throughout the article.

—We present the complete semantics and type-safety proof for the Polymer
language in Section 4 and the appendices.

—We prove an additional property of the formal Polymer language, uncircum-
ventability of monitors, in Section 4.5.

—We also make numerous minor revisions to the text throughout, including
the addition of a brief discussion of future work in Section 6.2.

Roadmap. Section 2 introduces the Polymer language and demonstrates
how simple policies can be composed to build complex policies. Section 3 de-
scribes our experiences implementing and testing Polymer. Section 4 presents
a complete formal semantics for the core features of the Polymer language.
Section 5 discusses related work, and Section 6 concludes by summarizing and
describing some directions for future work.

2. THE POLYMER LANGUAGE

This section introduces the Polymer language. We begin with the basic concepts
(Section 2.1) and show how to program simple policies (Section 2.2). Then, we
demonstrate how to create more complex policies by composing simpler ones
(Section 2.3).

2.1 Core Concepts

Polymer is based on three central abstractions: actions, suggestions, and
policies. Policies analyze actions and convey their decisions by means of
suggestions.

Actions. Monitors intercept and reason about how to react to security-
sensitive method invocations. Action objects contain all of the information
relevant to such invocations: static information such as the method signature,
and dynamic information like the calling object and the method’s parameters.
The Action API is shown in Figure 2. An Action object is instantiated by Polymer
at the call site of every security-sensitive method and passed to the policy.

For convenient manipulation of actions, Polymer allows them to be matched
against action patterns. An Action object matches an action pattern when
the action’s signature matches the one specified in the pattern. Patterns can
use wildcards: * matches any one constraint (e.g., any return type or any single
parameter type), and .. matches zero or more parameter types. For example,
the pattern

〈public void java.io.*.〈init〉(int, ..)〉

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:7

Fig. 2. Polymer API for Action objects.

matches all public constructors in all classes in the java.io package whose first
parameter is an int. In place of 〈init〉, which refers to a constructor, we could
have used an identifier that refers to a particular method.

Action patterns appear in two places. First, the action declaration file is
a set of action patterns. During the instrumentation process, every action
that matches an action pattern in the action declaration file is instru-
mented. Second, policies use action patterns in aswitch statements to deter-
mine with which security-sensitive action they are dealing. aswitch state-
ments are similar to Java’s switch statements, as the following example
shows.

aswitch(a) {
case 〈void System.exit(int status)〉: E;
...

}
If Action a represents an invocation of System.exit, this statement evaluates

expression E with the variable status bound to the value of System.exit’s single
parameter.

Suggestions. Whenever the untrusted application attempts to execute a
security-relevant action, the monitor suggests a way to handle this action
(which we often call a trigger action because it triggers the monitor into making
such a suggestion).

The monitor conveys its decision about a particular trigger action using a
Sug object. Polymer supplies a concrete subclass of the abstract Sug class for
each type of suggestion mentioned in Section 1.1.

—An IrrSug suggests that the trigger action execute unconditionally because
the policy does not reason about it.

—An OKSug suggests that the trigger action execute even though the action is
of interest to the policy.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:8 • L. Bauer et al.

Fig. 3. Polymer’s abstract Sug class.

—An InsSug suggests that making a final decision about the target action be de-
ferred until after some auxiliary code is executed and its effects are evaluated.

—A ReplSug suggests replacing the trigger action, which computes some return
value, with a return value supplied by the policy. The policy may use InsSugs
to compute the suggested return value.

—An ExnSug suggests that the trigger action not be allowed to execute, but
also that the target be allowed to continue running. Whenever following an
ExnSug, Polymer notifies the target that its attempt at invoking the trigger
action has been denied by throwing a SecurityException that the target can
catch before continuing execution.

—A HaltSug suggests that the trigger action not be allowed to execute and that
the target be halted.

Breaking down the possible interventions of monitors into these categories pro-
vides great flexibility. In addition, this breakdown, which was refined by experi-
ence with writing security policies in Polymer, simplifies our job tremendously
when it comes to controlling monitor effects and building combinators that
compose monitors in sensible ways (see Section 2.3).

We distinguish between irrelevant and OK suggestions for two reasons. First,
for performance: We need not update policy state when a policy considers the
current action irrelevant. Second, some interesting superpolicies, such as the
Dominates combinator described in Section 2.3, make a semantic distinction
between subpolicies’ IrrSug and OKSug suggestions. XACML also distinguishes
between its NotApplicable and Permit responses to security-relevant method
invocations [OASIS 2005].

Figure 3 shows our Sug class. The class contains convenience methods for
dynamically determining a suggestion’s concrete type, as well as methods for
obtaining the policy that made the suggestion, the action that triggered that
policy to make the suggestion, and any other suggestions and auxiliary objects
the suggestion’s creator found convenient to store in the Sug object. Thus, when
given a Sug object, Polymer policies can determine the precise circumstances
under which that suggestion was made.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:9

Fig. 4. The parent class of all Polymer policies.

Policies. Programmers encode a runtime monitor in Polymer by extending
the base Policy class (Figure 4). A new policy must provide an implementation
of the query method and may optionally override the accept and result methods.

—query analyzes a trigger action and returns a suggestion indicating how to
deal with it.

—accept is called to indicate to a policy that its suggestion is about to be fol-
lowed. This gives the policy a chance to perform any bookkeeping needed
before the suggestion is carried out.

—result gives the policy access to the return value produced by following its
InsSug or OKSug. The three arguments to result are the original suggestion
the policy returned, the return value of the trigger action or inserted ac-
tion (null if the return type was void and an Exception value if the action
completed abnormally), and a flag indicating whether the action completed
abnormally.

The accept method is called before following any suggestion except an IrrSug;
the result method is only called after following an OKSug or InsSug. After result
is called with the result of an InsSug, the policy is queried again with the original
trigger action (in response to which the policy had just suggested an InsSug).
Thus, InsSugs allow a policy to delay making a decision about a trigger action
until after executing another action.

A policy interface consisting of query, accept, and result methods is funda-
mental to the design of Polymer. We can compose policies by writing policy
combinators that query other policies and combine their suggestions. In com-
bining suggestions, a combinator may choose not to follow the suggestions of
some of the queried policies. Thus, query methods must not assume that their
suggestions will be followed and should be free of effects such as state updates
and I/O operations.

2.2 Simple Policies

To give a feel for how to write Polymer policies, we define several simple
examples in this section; Sections 2.3 and 3.2 build more powerful policies
by composing the basic policies presented here using a collection of policy
combinators.

We begin by considering the most permissive policy possible: one that allows
everything. The Polymer code for this policy is shown in Figure 5. Because the
query method of Trivial always returns an IrrSug, it allows all trigger actions to
execute unconditionally. To enable convenient processing of suggestions, every
Sug constructor has at least one argument, the Policy making the Sug.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:10 • L. Bauer et al.

Fig. 5. Polymer policy that allows all actions.

Fig. 6. Polymer policy that disallows Runtime.exec methods.

For our second example, we consider a more useful policy that disallows ex-
ecuting external code, such as OS system calls, via java.lang.Runtime.exec(..)
methods. This policy, shown in Figure 6, simply halts the target when it calls
java.lang.Runtime.exec. The accept method notifies the user of the security vio-
lation. Notice that this notification does not appear in the query method because
it is an effectful computation; the notification should not occur if the policy’s
suggestion is not followed.

In practice, there can be many methods that correspond to a single action
that a policy considers security relevant. For example, a policy that logs in-
coming email may need to observe all actions that can open a message. It can
be cumbersome and redundant to enumerate all these methods in a policy, so
Polymer makes it possible to group them into abstract actions. Abstract actions
allow a policy to reason about security-relevant actions at a different level of
granularity than is offered by the Java core API. They permit policies to fo-
cus on regulating particular behaviors, say, opening email, rather than forcing
them to individually regulate each of the actions that cause this behavior. This
makes it easier to write more concise, modular policies. Abstract actions also
make it possible to write platform-independent policies. For example, the set of
actions that fetch email may not be the same on every system, but as long as
the implementation of the abstract GetMail action is adjusted accordingly, the
same policy for regulating email access can be used everywhere.

Figure 7 shows an abstract action for fetching email messages. The matches
method of an abstract action returns true when a provided concrete action is
one of the abstract action’s constituents. The method has access to the concrete
action’s runtime parameters and can use this information in making its deci-
sion. All constituent concrete actions may not have the same parameter and

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:11

Fig. 7. Abstract action for receiving email messages; the action’s signature is Message[] GetMail().

return types, so one of the abstract action’s tasks is to export a consistent inter-
face to policies. This is accomplished via convertParameter and convertResult
methods. The convertResult method in Figure 7 allows the GetMail abstract
action to export a return type of Message[].

Naccio [Evans and Twyman 1999] implements an alternative abstraction,
called platform interfaces, that supports a similar sort of separation between
concrete and abstract actions. It appears that our design is slightly more gen-
eral, as our abstract actions allow programmers to define many-many rela-
tionships, rather than many-one relationships, between concrete and abstract
actions. In addition, our abstract actions are first-class objects that may be
passed to and from procedures, and we support the convenience of general-
purpose pattern matching.

The example policy in Figure 8 logs all incoming email and prepends the
string “SPAM:” to subject lines of messages flagged by a spam filter. To log
incoming mail, the policy first tests whether the trigger action matches the

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:12 • L. Bauer et al.

Fig. 8. Abbreviated Polymer policy that logs all incoming email and prepends “SPAM:” to subject
lines of messages flagged by a spam filter.

GetMail abstract action (from Figure 7), using the keyword abs in an action pat-
tern to indicate that GetMail is abstract. Since query methods should not have
effects, the policy returns an OKSug for each GetMail action; the policy logs the
fetched messages in the result method. Polymer triggers a done action when
the target application terminates; the policy takes advantage of this feature to
insert an action that closes the message log. If the InsSug recommending that
the log be closed is accepted, the policy will be queried again with a done action
after the inserted action has been executed. In the second query, the log file will
already be closed, so the policy will return an IrrSug. The policy also intercepts
calls to getSubject in order to mark email as spam. Instead of allowing the orig-
inal call to execute, the policy fetches the original subject, prepends “SPAM:” if
necessary, and returns the result via a ReplSug. Running a such a spam filter on
an email client allows end users to filter based on individually customized rules.

Sometimes, a policy requires notifying the target that executing its trigger
action would be a security violation. When no suitable return value can indicate
this condition to the target (e.g., when returning null would not be interpreted as
an error), the policy may make an ExnSug rather than a ReplSug. For example,
the email Attachments policy in Figure 9 seeks user confirmation before creating
an executable file. If the user fails to provide the confirmation, the Attachments
policy signals a policy violation by returning an ExnSug, rather than by halting
the target outright. Unless overruled by an enclosing policy, this ExnSug causes
a SecurityException to be thrown, which the application can catch and handle
in an application-specific manner.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:13

Fig. 9. Polymer policy that seeks confirmation before creating .exe, .vbs, .hta, and .mdb files.

2.3 Policy Combinators

Polymer supports policy modularity and code reuse by allowing policies to be
combined with and modified by other policies. In Polymer, a policy is a first-
class Java object, so it may serve as an argument to and be returned by other
policies. We call a policy parameterized by other policies a policy combinator.
When referring to a complex policy with many policy parts, we call the policy
parts subpolicies and the complex policy a superpolicy. We have written and
distribute with Polymer a library of common combinators [Bauer et al. 2005b];
however, policy architects are always free to develop new combinators to suit
their own specific needs.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:14 • L. Bauer et al.

Fig. 10. Lattice ordering of Polymer suggestions’ semantic impact.

We next describe several types of combinators we have developed and found
particularly useful in practice. The email policy described in Section 3.2 includes
all of them. Although our combinators were developed through experience and
seem to match intuitive notions of policy conjunction, precedence, etc., we have
not formalized their semantics beyond the intuition given in this subsection
and their Polymer code implementations. In related work, Krishnan provides
formal semantics for several of our combinators [Krishnan 2005].

Conjunctive combinator. It is often useful to restrict an application’s behav-
ior by applying several policies at once and, for any particular trigger action,
enforcing the most restrictive one. For example, a policy that disallows access
to files can be used in combination with a policy that disallows access to the
network; the resulting policy disallows access to both files and the network.
In the general case, the policies being conjoined may reason about overlapping
sets of actions. When this is the case, we must consider what to do when the
two subpolicies suggest different courses of action. In addition, we must define
the order in which effectful computations are performed.

Our conjunctive combinator composes exactly two policies; we can gen-
eralize this to any number of subpolicies. Our combinator operates as
follows.

—If either subpolicy suggests insertions, so does the combinator, with any in-
sertions by the left (first) conjunct occurring prior to insertions by the right
conjunct. Following the principle of complete mediation, the monitor will re-
cursively examine these inserted actions if they are security relevant.

—If neither subpolicy suggests insertions, the conjunctive combinator computes
and returns the least upper bound of the two suggestions, as described by the
lattice in Figure 10, which orders suggestions in terms of increasing seman-
tic impact. For instance, IrrSug has less impact than OKSug since an IrrSug
indicates the current method is allowed but irrelevant to the policy whereas
OKSug says it is allowed, but relevant, and updates of security state may
be needed. ReplSugs have more impact than OKSugs since they change the
semantics of the application. ReplSugs containing different replacements are
considered inequivalent; consequently, the “conjunction” of two ReplSugs is
an ExnSug.

Note that a sequence of insertions made by one conjunct may affect the second
conjunct. In fact, this is quite likely if the second conjunct considers the inserted
actions security relevant. In this case, the second conjunct may make a different
suggestion regarding how to handle an action before the insertions than it does
afterward. For example, in the initial state the action might have been OK,

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:15

Fig. 11. A conjunctive policy combinator.

but after the intervening insertions the second conjunct might suggest that the
application be halted.

Figure 11 contains our conjunctive combinator. The invocations of SugUtils.
cpSug in the query method create new suggestions with the same type as the
first parameter in each call. Notice that the suggestion returned by the com-
binator includes the suggestions on which the combinator based its decision.
This design makes it possible for the combinator’s accept and result methods to
notify the appropriate subpolicies that their suggestions have been followed.

Precedence combinators. We have found the conjunctive policy to be the
most common combinator. However, it is useful on occasion to have a combinator
that gives precedence to one subpolicy over another. One example is the TryWith

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:16 • L. Bauer et al.

Fig. 12. The TryWith policy combinator.

combinator (shown in Figure 12), which queries its first subpolicy, and if that
subpolicy returns an IrrSug, OKSug, or InsSug, it makes the same suggestion.
Otherwise, the combinator defers judgment to the second subpolicy. The email
policy described in Section 3.2 uses the TryWith combinator to join a policy that
allows only HTTP connections with a policy that allows only POP and IMAP
connections; the resulting policy allows exactly those kinds of connections and
no others.

A similar sort of combinator is the Dominates combinator, which always fol-
lows the suggestion of the first conjunct if that conjunct considers the trig-
ger action security relevant; otherwise, it follows the suggestion of the second
conjunct. Note that if two subpolicies never consider the same action security
relevant, composing them with the Dominates combinator is equivalent to com-
posing them with the Conjunction combinator, except the Dominates combinator
is in general more efficient because it need not always query both subpolicies.
In our email policy we use Dominates to construct a policy that both restricts
the kinds of network connections that may be established and prevents exe-
cutable files from being created. Since these two subpolicies regulate disjoint
sets of actions, composing them with the Conjunction combinator would have
needlessly caused the second subpolicy to be queried even when the trigger
action was regulated by the first subpolicy and not of interest to the second.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:17

Selectors. Selectors are combinators that choose to enforce exactly one of
their subpolicies. The IsClientSigned selector of Section 3.2, for example, en-
forces a weaker policy on the target application if the target is cryptographically
signed; otherwise, the selector enforces a stronger policy.

Policy modifiers. Policy modifiers are higher-order policies that enforce a
single policy while also performing some other actions. Suppose, for example,
that we want to log the actions of a target application and the suggestions
made by a policy acting on that target. Rather than modifying the existing
policy, we can accomplish this by wrapping the policy in the Audit unary super-
policy. When queried, Audit blindly suggests whatever the original policy’s query
method suggests. Audit’s accept and result methods perform logging operations
before invoking the accept and result methods of the original policy.

Another example of a policy modifier is our AutoUpdate superpolicy. This
policy checks a remote site once per day to determine if a new policy patch
is available. If so, it makes a secure connection to the remote site, downloads
the updated policy, and dynamically loads the policy into the JVM as its new
subpolicy. Policies of this sort, which determine how to update other policies at
runtime, are useful because they allow new security constraints to be placed on
target applications dynamically, as vulnerabilities are discovered. Note, how-
ever, that because library classes (such as java.lang.Object) cannot in general
be reloaded while the JVM is running, policies loaded dynamically should con-
sider security relevant only the actions that appear in the static action declara-
tion file. For this reason, we encourage security programmers to be reasonably
conservative when writing action declaration files for dynamically updateable
policies.

A third commonly used sort of policy modifier is a Filter that blocks a policy
from seeing certain actions. In some circumstances, self-monitoring policies can
cause loops that will prevent the target program from continuing (for example,
a policy might react to an action by inserting that same action, which the policy
will then see and react to in the same way again). It is easy to write a Filter to
prevent such loops. More generally, Filters allow the superpolicy to determine
whether an action should be made invisible to the subpolicy.

3. EMPIRICAL EVALUATION

Implementing and using Polymer has been instrumental in confirming and
refining its design. In this section we describe Polymer’s implementation
(Section 3.1) and a fully implemented email-client policy (Section 3.2). We then
discuss additional case-study policies (Section 3.3) and summarize ways in
which Polymer facilitates and sometimes hinders policy design and implemen-
tation (Section 3.4).

3.1 Implementation

The principal requirement for enforcing the runtime policies in which we are
interested is that the flow of control of a running program passes to a monitor
immediately before and after executing security relevant methods. The kind

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:18 • L. Bauer et al.

of pre- and postinvocation control-flow modifications to bytecode that we use
to implement Polymer can be done by tools like AspectJ [Kiczales et al. 2001].
Accordingly, we considered using AspectJ to insert into bytecode hooks that
would trigger our monitor as needed. However, we wanted to retain precise
control over how and where rewriting occurs to be able to make decisions in the
best interests of security, which is not the primary focus of aspect-oriented lan-
guages like AspectJ. Instead, we used the Apache BCEL API [Apache Software
Foundation 2003] to develop our own bytecode rewriting tool.

Custom class loaders have often been used to modify bytecode before execut-
ing it [Agesen et al. 1997; Bauer et al. 2003]; we use this technique also. Since li-
braries used internally by the JVM cannot be rewritten by a custom class loader,
we rewrite those libraries before starting the JVM and the target application.

Performance. It is instructive to examine the performance costs of enforcing
policies using Polymer. We did not concentrate on making our implementation
as efficient as possible, so there is much room for improvement here. However,
the performance of our implementation does shed some light on the costs of
runtime policy enforcement.

Our system impacts target applications in two phases: before and during
loading, when the application and the class libraries are instrumented by the
bytecode rewriter; and during execution. The total time to instrument every
method in all of the standard Java library packages (i.e., the 28742 methods
in the 3948 classes in the java and javax packages of Sun’s Java API v.1.4.0),
inserting monitor invocations at the proper times before and after every method
executes, was 107 s, or 3.7 ms per instrumented method.1 Because we only insert
hooks for calling the interpreter of the highest-level policy’s suggestions (see
Figure 1), rather than inlining or invoking any particular policy, we introduce
a level of indirection that permits policies to be updated dynamically without
rewriting application or library code. Hence, this instrumentation only needs
to be performed once for a particular action declaration file.

The average time to load nonlibrary classes into the JVM with our specialized
class loader, but without instrumenting any methods, was 12 ms, twice as long
as the VM’s default class loader required. The cost of transferring control to
and from a Polymer policy while executing a target is very low (approximately
0.62 ms); the runtime overhead is dominated by the computations actually
performed by the policy. Thus, the cost of monitoring a program with Polymer
is almost entirely dependent on the complexity of the security policy.

3.2 Case Study: Securing Email Clients

To test the usefulness of Polymer in practice, we have written a large-scale policy
(outlined in Figure 13) to secure untrusted email clients that use the JavaMail
API. We have extensively tested the protections enforced by the policy on an

1The tests were performed on a Dell PowerEdge 2650 with dual Intel Xeon 2.2 GHz CPUs and
1GB of RAM, running RedHat Linux 9.0. The times represent real time at low average load. We
performed each test multiple times in sets of 100. The results shown are the average for the set
with the lowest average, after removing outliers.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:19

Fig. 13. Email-client policy hierarchy.

email client called Pooka [Petersen 2003], without having to inspect or modify
any of the approximately 50K lines of Pooka source code. The runtime cost of
enforcing the complex constraints specified by our policy is difficult to measure
because the performance of the email client depends largely on interactions
with the user; however, our experience indicates that the overhead is rarely
noticeable.

The component policies in Figure 13 each enforce a modular set of con-
straints. The Trivial and Attachments policies were described in Section 2.2,
and the Audit, Conjunction, TryWith, Dominates, and AutoUpdate superpolicies
in Section 2.3. The left branch of the policy hierarchy (shaded in Figure 13) de-
scribes a generic policy that we include in all of our high-level Polymer policies.
This branch ensures that a target cannot use class loading, reflection, or system
calls maliciously and alerts the user when the memory available to the virtual
machine is nearly exhausted (determined by generating interrupts to poll the
java.lang.Runtime.totalMemory and java.lang.Runtime.maxMemory methods ev-
ery 4 seconds). The nonshaded branch of the policy hierarchy describes policies
specifically designed for securing an email client and enforces constraints as
follows.

—IsClientSigned tests whether the email client is cryptographically signed. If
it is, we run Trivial but continue to log security-relevant actions and allow
dynamic policy updates. If the client is not signed, we run a more restrictive
policy.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:20 • L. Bauer et al.

Fig. 14. Polymer policy that only allows network connections to email ports.

—ConfirmAndAllowOnlyHTTP pops up a window seeking confirmation before
allowing HTTP connections and disallows all other types of network
connections.

—AllowOnlyMailPorts only allows socket connections to standard email ports
(SMTP, regular POP and IMAP, and SSL-based POP and IMAP). This pol-
icy suggests throwing SecurityExceptions to prevent the target from mak-
ing any other types of network connections. Figure 14 contains the code
for this policy. Note that with a lot of engineering effort and runtime over-
head, we could encode the low-level details of the email protocols into our
policy to enforce a stronger AllowOnlyMail policy that would precisely en-
sure that untrusted email clients only make connections that obey standard
email protocols. However, we have chosen to enforce the much simpler and
lower-overhead AllowOnlyMailPorts policy that provides weaker, port-based
guarantees.

—QueryCalls is a policy modifier that allows security-sensitive actions invoked
in the query method of its subpolicy to execute unconditionally. QueryCalls
OKs these actions without requerying the subpolicy in order to prevent in-
finite loops that can occur when the subpolicy invokes actions that it also
monitors. The implementation of QueryCalls inspects the dynamic call stack
to determine whether a trigger action was invoked in the subpolicy’s query
method. In the email-client policy, QueryCalls is needed above IncomingMail
(shown in Figure 8) so that the invocation of getSubject in IncomingMail’s
spamifySubject method does not get intercepted by IncomingMail, which would
cause a recursive invocation of spamifySubject.

—OutgoingMail logs all mail being sent, pops up a window confirming the re-
cipients of messages (to prevent a malicious client from quietly sending mail

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:21

on the user’s behalf), backs up every outgoing message by sending a BCC to
polydemo@cs.princeton.edu, and automatically appends contact information
to textual messages.

—IncomingMail was shown in an abbreviated form in Figure 8. In addition to
logging incoming mail and prepending “SPAM:” to the subject lines of email
that fails a spam filter, this policy truncates long subject lines and displays
a warning when a message containing an attachment is opened.

The entire email-client policy is specified in 1539 lines of Polymer code (ex-
cluding empty lines and comments). To get an idea of how many lines of code
need to be written to specify a new policy, it is instructive to consider the size
of the reusable components of the email policy: The combinators (described in
Section 2.3) are specified in 410 lines; the shaded antitampering branch (which
includes the Dominates and Conjunction combinators) in 356 lines; and the ab-
stract actions for opening files and network connections in 225 lines.

3.3 Additional Case Studies

We next describe two additional case-study policies, which are fully designed
but not implemented, and highlight the effect of complete mediation on their
designs. As we will see, complete mediation is a powerful tool required when
enforcing some policies; however, policy designers must take care to consider
complete mediation to ensure that their designs are consistent.

Text-editor policy. Many reasonable restrictions could be placed on un-
trusted text editors; we design a policy that makes the following restrictions.

—To protect privacy, all network connections must be confirmed with the user.
—To prevent the editor from maliciously operating on the file system, all file

deletions must be confirmed with the user.
—To prevent “window spam”, the editor application may never have more than

four windows open simultaneously.

Figure 15 contains a policy hierarchy designed to enforce these text-editor
restrictions. The hierarchy contains the same generic, shaded branch as the
email-client hierarchy of Figure 13; as described in Section 3.2, this branch is
a policy that prevents the target application from circumventing the monitor
via reflection, etc. The rest of the policy hierarchy specifies text-editor-specific
restrictions as follows.

—NoNetConnects and NoFileDeletes suggest halting the target application be-
fore any network connections or file deletions occur.

—RequireUserConfirm is a policy modifier that returns whatever suggestions its
subpolicy returns, except when both of the following conditions hold: (1) the
subpolicy suggests halting the application or raising a security exception; and
(2) the user then confirms, in a pop-up window, that the action triggering the
HaltSug or ExnSug is in fact OK to execute. In this case, RequireUserConfirm
OKs the action instead of halting or raising a security exception.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:22 • L. Bauer et al.

Fig. 15. Text-editor policy hierarchy.

—LimitPopups limits to four the number of windows open at any time. If a fifth
window is attempted to be opened, LimitPopups halts the target application.

In addition to reusing the entire shaded branch of the email-client policy and
the Conjunction and Audit combinators, the text-editor policy also borrows the
abstract actions for opening files and network sockets that we developed for the
email-client policy. These two abstract actions are likely to be useful for a wide
range of policies, even when (as is the case for the email-client and text-editor
policies) policies place different constraints on the behaviors that those abstract
actions describe.

The text-editor policy is a good illustration of the idea, discussed in
Section 2.1, that policies become composeable when they contain effectless
query methods. The NoNetConnects and NoFileDeletes policies do not im-
mediately halt the application’s execution in their query methods; this ef-
fect gets postponed via HaltSugs, enabling the RequireUserConfirm superpolicy
to analyze the suggestions of the NoNetConnects and NoFileDeletes subpoli-
cies. RequireUserConfirm can safely disobey suggestions of NoNetConnects and
NoFileDeletes because neither subpolicy executes observable, effectful compu-
tation in generating those suggestions. If NoNetConnects and NoFileDeletes
were modified to directly halt the target application in their query methods,
then the policies would not be composeable with the RequireUserConfirm su-
perpolicy because RequireUserConfirm would have no way to undo the effects of
its subpolicies when disobeying their suggestions.

Another interesting aspect of effect composition in the text-editor policy re-
lates to the window-pop-up effects. The two RequireUserConfirm policies may
insert actions to pop up windows, while the LimitPopups policy may forbid those
same pop-ups and require application termination when they occur. We want
LimitPopups to behave this way in order to prevent a text editor from annoy-
ing users by, for example, spawning a hundred threads, each of which opens a
network socket to trigger the RequireUserConfirm policy to open a confirmation

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:23

Fig. 16. Media-player policy hierarchy.

window. Hence, complete mediation, particularly the ability to monitor even
policy code, is necessary to enforce the desired policy (if that policy is to reuse
the RequireUserConfirm subpolicy as a component). Other major runtime policy-
enforcement systems, including PoET/PSLang [Erlingsson and Schneider 2000]
and Naccio [Evans and Twyman 1999; Evans 2000], treat policy code as unmon-
itorable. Because these other enforcement systems do not adhere to complete
mediation, they cannot enforce the text-editor policy as described before.

Media-player policy. As a final policy example, we consider a media-player
policy hierarchy designed to restrict untrusted media players in the following
ways.

—To protect privacy, the media player is not permitted to “phone home”, that is,
to make a connection to any network operated by the media player’s creators.
Some media-player applications shipped with audio CDs have recently been
shown to contain spyware that phones home to report every use of the DRM-
protected CD [Halderman and Felten 2006].

—To prevent malicious access to the file system, the media player is not per-
mitted to write to files, delete files, or open any file with a nonmedia file type
(e.g., an executable file).

Figure 16 outlines the policy hierarchy designed to enforce these media-player
restrictions. Again, the hierarchy specifies the same generic, shaded branch
as the earlier policy-hierarchy examples. The other high-level branch specifies
restrictions on the media player’s access to network sockets and the file system.

—NoPhoneHome restricts applications from making network connections di-
rectly to IP addresses assigned to the application’s provider (though it does
not prevent connections to IP addresses of entities that may be in collusion

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:24 • L. Bauer et al.

with the provider). The policy obtains the application provider’s IP addresses
through a DNS search of the provider’s name, which the policy obtains either
from the application’s signed JAR file or from the provider’s name passed as
a parameter to the policy’s constructor.

—NoFileDeletes and NoFileWrites respond to applications’ attempts to delete
and write files by raising security exceptions.

—OnlyMediaFileOpens allows applications to open only those files that have
fixed media types, such as mpeg and mp3 (these types are supplied as a
whitelist to the policy’s constructor). The policy raises security exceptions in
response to nonmedia-file opens.

—FilterPolymerActions automatically OKs all actions invoked by Polymer poli-
cies, enabling its subpolicy to only monitor actions invoked by application
and library code (but not Polymer code). Similar to the QueryCalls policy
described in Section 3, FilterPolymerActions performs stack inspection to de-
termine whether actions were invoked by Polymer code. FilterPolymerActions
defers to its subpolicy for suggestions and state updates in response to actions
not invoked from Polymer code.

—Finally, the NoPhoneHome policy is composed with the media-player file-
access-control policies using a Dominates combinator as an efficient form of
Conjunction (as described in Section 2.3).

This media-player policy example illustrates an important policy-design con-
cept: When incorporating a policy module into a global policy specification, one
must consider whether the module being inserted is consistent with the other
modules. Inconsistencies occur when one module forbids actions required by
another module. Imprecise specifications of forbidden actions typically cause
inconsistencies; rather than an imprecise (and incorrect) specification that all
of a certain type of action should be forbidden, the actual intended policy is often
that those actions should be forbidden only when not invoked from (or allowed
by) another policy. Essentially, policy designers must be mindful of whether
actions forbidden to be invoked by applications (and library) code should be
allowed to be executed by Polymer code.

For example, without including the FilterPolymerActions policy in the media-
player example, our NoFileWrites and OnlyMediaFileOpens policies would be
globally inconsistent with the Audit policy because Audit requires opening and
writing to a log file (which has a nonmedia file type), while NoFileWrites and
OnlyMediaFileOpens prevent those actions. We resolve the global inconsistency
simply by inserting FilterPolymerActions above the NoFileWrites and OnlyMedia
FileOpens policies, so that Polymer code may open and write to nonmedia-type
files.

Having to consider and resolve these sorts of inconsistencies is the price of
using a system that adheres to complete mediation. Although obeying com-
plete mediation makes the Polymer system very expressive, permitting policies
like the text-editor policy described eariler to be enforced, Polymer policy de-
signers must consider, for every policy included in a policy design, whether
Polymer-invoked actions should be trusted. Our experience indicates that it is

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:25

Fig. 17. Optimized version of media-player policy hierarchy shown in Figure 16.

not difficult for a policy designer to get into the habit of considering inconsis-
tencies during policy design and resolving them by inserting the appropriate
filters.

Finally, we note that a knowledgeable policy designer could optimize the
media-player policy hierarchy by coalescing duplicate FilterPolymerActions poli-
cies to a single parent node, as shown in Figure 17. This is an optimization
because it causes FilterPolymerActions to execute only once for every two execu-
tions in the original hierarchy of Figure 16. The optimization is safe because
it never overfilters; that is, no harm is done by filtering Polymer actions to the
NoFileDeletes policy in this case because the rest of the policy never attempts
to delete files anyway.

3.4 Experiential Observations

This subsection describes our experiences designing the case-study Polymer
policies of Sections 3.2 and 3.3 and implementing the email-client case-study
policy of Section 3.2. We discuss the ways in which Polymer facilitates and
sometimes hinders policy design and implementation.

Tasks Polymer facilitates. As expected, we found Polymer most useful in
modularizing and composing policies. The ability to write modules of isolated
policy concerns and to reuse existing policies made complex-policy design and
implementation tractable. An example of such reuse at a high level is the
shaded antitampering policy that we found useful to include as part of all our
case studies. An example of low-level reuse are the Conjunction and Dominates
combinators, each of which we typically used multiple times in constructing any
policy.

In our case studies we also took advantage of Polymer’s ability to specify
new combinators. Although we commonly used the more standard Conjunction
and Dominates combinators, we also found it necessary to define new com-
binators such as TryWith, AutoUpdate, and RequireUserConfirm. The need for
these combinators would have been hard to predict until considering specific

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:26 • L. Bauer et al.

Fig. 18. Simple but not-immediately-composable version of the policy in Figure 6.

policies, yet once implemented they appeared applicable to other policies as
well.

Beyond policy modularity and composability, Polymer was designed for ex-
pressivity to facilitate specifying a rich set of policies. Polymer provides com-
plete mediation for policies that require monitoring of policy code (e.g., the
text-editor policy of Figure 15) and ReplSugs for policies that require replacing
calls to security relevant methods with precomputed return values (e.g., the
IncomingMail policy of Figure 8). We found both of these provisions essential for
implementing practical policies.

Finally, more minor features such as pattern matching for actions and many-
many mappings from concrete to abstract actions also helped make policy spec-
ification convenient, as the code examples we have presented throughout this
article show.

Tasks Polymer hinders. In our experience, Polymer hinders policy design
and implementation in two major ways. First, designers must take care to avoid
the sorts of policy inconsistencies described in Section 3.3. Having to consider
when to use policy filters places an additional burden on policy designers, but
we believe the increased policy expressiveness provided by complete mediation
outweighs the inconvenience of having to consider appropriate policy filters
during policy design.

The second major hindrance introduced by Polymer is simply the price of
universal policy composability, that is, having to implement policies in terms
of effectless query methods. In our experience, withholding effects from query
methods requires care and can lead to relatively convoluted policy logic. For
instance, the DisSysCalls policy of Figure 6 can be written more simply and
straightforwardly, as shown in Figure 18. Tools like PoET/PSLang [Erlingsson
and Schneider 2000] and Naccio [Evans and Twyman 1999] let users specify
policies similarly, but this prevents them from being safely composed. For exam-
ple, the policy in Figure 18 is not immediately composable because combinators
cannot disobey its suggestions to halt until after its halting error messages have
already been printed. Again, we believe the benefits of having modular, com-
posable policies outweighs the inconvenience of requiring policies to contain
effectless query methods.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:27

4. FORMAL SEMANTICS OF THE POLYMER LANGUAGE

We next precisely define the Polymer language by providing a complete, formal
semantics for the language. This semantics (as opposed to the particular Java
implementation discussed in Sections 2 and 3) serves as the unambiguous,
canonical definition of the Polymer language. Hence, the semantics is a core
contribution of this article and, as far as we are aware, is the first complete
formal semantics for a rich runtime policy-specification language. The seman-
tics highlights the simplicity of the core features of the Polymer language, and
we hope that the semantics will be useful in defining future policy-specification
languages, as it handles nontrivial challenges (such as how to model the sepa-
ration of security relevant and security irrelevant methods) applicable to many
policy-specification languages.

We used Java as the basis for our Polymer implementation to make the sys-
tem widely accessible and to take advantage of the wealth of existing Java
libraries and applications. However, we choose to give the Polymer seman-
tics in the context of a lambda calculus because lambda calculi are inherently
simpler to specify than class-based languages such as Java (even the lightest-
weight specification of Java such as Featherweight Java [Igarashi et al. 1999]
is substantially more complex than the simply-typed lambda calculus). More
importantly, the central elements of our policy language do not depend upon
Java-specific features such as classes, methods, and inheritance. We could just
as easily have implemented Polymer policies for a functional language such
as ML [Milner et al. 1997] or a type-safe imperative language (type safety of
the target language protects the program monitor’s state and code from being
tampered with by the untrusted application).

4.1 Syntax

Figure 19 describes the main syntactic elements of the calculus. The language
is simply-typed with types for booleans, n-ary tuples, references, and functions.
Our additions include simple base types for policies (Poly), suggestions (Sug),
actions (Act), which are suspended function applications, and results of those
suspended function applications (Res).

Programs as a whole are 4-tuples consisting of a collection of functions that
may be monitored, a memory that maps memory locations to values, and two
expressions. The first expression represents the security policy; the second ex-
pression represents the untrusted application. Execution of a program begins
by reducing the policy expression to a policy value. It continues by executing
the application expression in the presence of the policy.

Monitored functions (fun f (x:τ1):τ2{e}) have global scope and are syntactically
separated from ordinary functions (λx:τ.e).2 Moreover, we treat monitored func-
tion names f , which have global scope and may therefore alpha-vary over entire
programs, as a syntactically separate class of variables from ordinary variables
x. Monitored function names are unique and may only appear wrapped up as

2As usual, we treat expressions that differ only in the names of their bound variables as identical.
We often write let x = e1 in e2 for (λx:τ.e2)e1.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:28 • L. Bauer et al.

Fig. 19. Abstract syntax for the Polymer calculus.

actions as in act(f , e). These actions are suspended computations that must be
explicitly invoked with the command invk e. Invoking an action causes the func-
tion in question to be executed and its result wrapped in a result constructor
result(e:τ). The elimination forms for results and most other objects discussed
before are handled through a generic case expression and pattern-matching
facility. The class of patterns p includes variable patterns x as well as patterns
for matching constructors. Ordinary, unmonitored functions are executed via
the usual function application command (e1 e2).

To create a policy, one applies the policy constructor pol to a query function
(equery), which produces suggestions, and security state update functions that
execute before (eacc) and after (eres) the monitored method. Each suggestion (irrs,
oks, inss, repls, exns, and halts) also has its own constructor. For instance, the
repls constructor takes a result object as an argument, and the inss suggestion
takes an action to execute as an argument. Each suggestion will be given a
unique interpretation in the operational semantics.

4.2 Static Semantics

Figure 20 presents the most interesting rules for the language’s static se-
mantics. The more standard rules are shown in Figures 23 and 24 in
Appendix A. The main judgment, which types expressions, has the form
S; C � e : τ where S maps reference locations to their types and C maps
variables to types. More precisely, S and C have the following forms.

Label stores S ::= · | S, l : τ

Variable contexts C ::= · | C, x : τ | C, f : τ

Whenever we add a new binding x : τ to the context, we implicitly alpha-vary
x to ensure it does not clash with other variables in the context.

We have worked hard to make the static semantics a simple but faithful
model of the implementation. In particular, notice in Figure 20 that well-typed

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:29

Fig. 20. Static semantics (rules for policies, suggestions, actions, and programs).

policies contain a query method, which takes an action and returns a suggestion,
and accept and result methods, which perform state updates. In addition, notice
in Figure 20 that all actions share the same type (Act) regardless of the type of
object they return when invoked. Dynamically, the result of invoking an action
is a value wrapped up as a result with type Res. Case analysis is used to safely
extract the proper value. This choice allows policy objects to process and react
to arbitrary actions. To determine the precise nature of any action and give it
a more refined type, the policy will use pattern matching. We have a similar
design for action results and replacement values.

The judgment for overall program states (shown in the middle of Figure 20)
has the form � (�F , M , epol, eapp) : τ where τ is the type of the application code
eapp. This judgment relies on two additional judgments (shown in the bottom of
Figure 20), which give types to a library of monitored functions �F and types to
locations in memory M .

The static semantics for case expressions and pattern matching, as well
as the remaining straightforward rules for standard expressions, is shown in
Appendix A.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:30 • L. Bauer et al.

Fig. 21. Evaluation contexts.

Fig. 22. Dynamic semantics (policy and target steps; beta steps for functions).

4.3 Dynamic Semantics

To explain execution of monitored programs, we use a small-step, context-based
semantics. We first define a set of evaluation contexts E, which mark where
a beta-reduction can occur. Our contexts specify a left-to-right, call-by-value
evaluation order, as shown in Figure 21.

We specify execution through a pair of judgments, one for top-level evalu-
ation (shown in the top of Figure 22) and one for basic reductions (shown in
the bottom of Figure 22 and in Figures 25 and 26 in Appendix B). The top-
level judgment has the form (�F , M , epol, eapp) �→ (�F , M ′, e′

pol, e′
app) and defines

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:31

how whole programs take small steps dynamically. This top-level judgment re-
veals that the policy expression in a program is first reduced to a value before
execution of the untrusted application code begins. We also define a standard
multistep relation �→∗ as the reflexive, transitive closure of the top-level single-
step relation.

Execution of many of the constructs is relatively straightforward. One excep-
tion is execution of function application, the rules for which are given in the bot-
tom half of Figure 22. For ordinary functions, we use the usual capture-avoiding
substitution. Monitored functions, on the other hand, may only be executed if
they are wrapped up as actions and then invoked using the invk command. The
invk command applies the query method to discover the suggestion the current
policy makes and then interprets the suggestion. Notice, for instance, that to
respond to the irrelevant suggestion (irrs), the application simply proceeds to
execute the body of the security relevant action. To respond to the OK sugges-
tion (oks), the application first calls the policy’s accept method, then executes
the security relevant action before calling the policy’s result method, and finally
returns the result of executing the security relevant action.

The other beta reductions (i.e., besides the ones for function application) are
straightforward and appear in Figures 25 and 26 in Appendix B.

4.4 Semantics-based Observations

The formal semantics gives insight into some of the subtler elements of our
implementation, which are important both to system users and to us as imple-
menters.

For example, one might want to consider what happens if a program mon-
itor raises but does not catch an exception (such as a null pointer exception).
Tracing through the operational semantics, one can see that the exception will
percolate from the monitor into the application itself. If this behavior is unde-
sired, a security programmer can create a top-level superpolicy that catches all
exceptions raised by the other policies and deals with them as the programmer
sees fit.

As another example, analysis of the operational semantics uncovers a corner
case in which we are unable to fully obey the principle of complete mediation.
During the first stage of execution, while the policy itself is evaluated, mon-
itored functions are protected only by a trivial policy that accepts all actions
because the actual policy we want to enforce is the one being initialized. Policy
writers need to be aware of this unavoidable behavior in order to implement
policies correctly.

4.5 Language Properties

We have proven two important properties of the Polymer language: It is type
safe, and well-typed programs cannot circumvent monitoring code.

Type safety. To check that our language is sound, we have proven a standard
type-safety result in terms of Preservation and Progress theorems, which to-
gether imply that statically well-typed programs do not “get stuck” dynamically.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:32 • L. Bauer et al.

The theorems are stated next; proofs appear in Appendix C.

THEOREM 4.1 (PRESERVATION). If � (�F , M , epol, eapp) : τ and (�F , M , epol, eapp)
�→ (�F , M ′, e′

pol, e′
app) then � (�F , M ′, e′

pol, e′
app) : τ .

Definition 4.2 (Finished Programs). A program configuration (�F , M , epol,
eapp) is “finished” if and only if at least one of the following is true.

—epol and eapp are values;
—epol = E[abort] or eapp = E[abort];
—epol = E[raise exn] or eapp = E[raise exn], where E �= E ′[try E ′′ with e].

THEOREM 4.3 (PROGRESS). If � (�F , M , epol, eapp) : τ then either (�F , M , epol,
eapp) is finished or there exists a program configuration (�F , M ′, e′

pol, e′
app) such

that (�F , M , epol, eapp) �→ (�F , M ′, e′
pol, e′

app).

Type safety is a particularly important result in the context of monitor-based
policy-specification languages because it guarantees that when whole programs
are well typed, their untrusted applications can never tamper with monitors’
state or code. Type safety is also useful for proving that well-typed programs
obey complete mediation—that control always properly flows to the monitoring
code before any security-sensitive application method executes. We discuss such
uncircumventability of monitoring code next.

Uncircumventability. Unlike in the Java implementation of Polymer, poli-
cies written in our formal language do not have to rely on auxiliary policies
to guarantee that monitors will intercept all security relevant method calls
(auxiliary policies are necessary in the Java implementation because of Java’s
class-loading and reflection capabilities). We have shown that programs writ-
ten in the Polymer calculus adhere to the principle of complete mediation by
proving the following uncircumventability theorem (the proof is in Appendix D).

THEOREM 4.4 (UNCIRCUMVENTABILITY). If � (�F , M , epol, eapp) : τ and (�F , M ,
epol, eapp) �→∗ (�F , M ′, vpol, E[invk act(f , v)]) then there exist functions vquery, vacc,
and vres and context E ′ such that:

(1) vpol = pol(vquery, vacc, vres),

(2) (�F , M ′, vpol, E[invk act(f , v)]) �→ (�F , M ′, vpol, E ′[vquery (act(f , v))]), and

(3) for all programs P such that (�F , M ′, vpol, E[invk act(f , v)]) �→ P, it must be
the case that P = (�F , M ′, vpol, E ′[vquery (act(f , v))]).

This uncircumventability theorem states that well-typed programs, after
having evaluated the top-level policy value, always execute the top-level pol-
icy’s query method before any security relevant method. In other words, the
program’s policy value always gets to interpose and judge how monitored meth-
ods should execute before those monitored methods actually begin executing.
Uncircumventability follows directly from the language’s semantics and type
safety. Although uncircumventability is required for enforcement systems to be

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:33

secure and effective, as far as we are aware, Polymer’s is the first uncircum-
ventability theorem proven for a policy-specification language.

5. RELATED WORK

We next compare and contrast closely related policy-specification-language
efforts with Polymer.

Implemented policy-specification languages. A rich variety of expressive
runtime policy-specification languages and systems have been implemented
[Liao and Cohen 1992; Jeffery et al. 1998; Edjlali et al. 1998; Damianou et al.
2001; Erlingsson and Schneider 2000, 1999; Evans and Twyman 1999; Evans
2000; Robinson 2002; Kim et al. 1999; Bauer et al. 2003; Erlingsson 2003; Sen
et al. 2004; Havelund and Roşu 2004; OASIS 2005]. These languages allow secu-
rity engineers to write a centralized policy specification; the systems then use a
tool to automatically insert code into untrusted target applications (i.e., they in-
strument the target application) in order to enforce the centrally specified policy
on the target application. This centralized-policy architecture makes reasoning
about policies a simpler and more modular task than the alternative approach
of scattering security checks throughout application or execution-environment
code. With a centralized policy, it is easy to locate the policy-relevant code and
analyze or update it in isolation. Our fully implemented policy-specification
language and enforcement system, Polymer, also applies this centralized-policy
architecture.

The implementation efforts cited previously thus deal with one part of
the policy complexity problem; they ensure that policies exist in a central-
ized location rather than being dispersed throughout application or execution-
environment code. The next step in dealing with the problem of policy com-
plexity is to break complex, though centralized, policies into smaller pieces.
Although some of the cited projects support limited policy decomposition via
fixed sets of policy combinators [Evans 2000; Jeffery et al. 1998; Edjlali et al.
1998; Damianou et al. 2001; Bauer et al. 2003], they lack mechanisms to de-
fine new combinators that can arbitrarily modify previously written policies
and dynamically create policies. XACML supports the creation of new combi-
nators (called “combining algorithms”) [OASIS 2005], but, like the other re-
lated systems, it does not facilitate safe composition of general policies be-
cause it does not constrain the use of effects. For example, none of the cited
enforcement systems, even if extended to obey complete mediation, could di-
rectly implement the RequireUserConfirm combinators of the text-editor pol-
icy in Figure 15 because the application-halting effects of the NoNetConnects
and NoFileDeletes policies could not be undone by the RequireUserConfirm poli-
cies. In contrast, Polymer makes the NoNetConnects and NoFileDeletes poli-
cies combinable with the RequireUserConfirm policies by requiring that all
policies make suggestions in an effectless query method invocable from any
superpolicy. In general, no combinator that sometimes disobeys its subpoli-
cies’ suggestions is directly implementable in previous work on similar policy-
specification languages, although such combinators are implementable in
Polymer.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:34 • L. Bauer et al.

Semantics of policy-specification languages. Of the implemented languages
cited before, PoET/Pslang [Erlingsson and Schneider 2000; Erlingsson 2003]
and Naccio [Evans and Twyman 1999] are the most closely related to Poly-
mer because they support the specification of arbitrary imperative policies
that contain both security state and methods to update security state when
policy-relevant methods execute. A major difference between Polymer and these
closely related projects, in addition to the differences noted earlier regarding
policy composability, is that Polymer provides a precise, formal semantics for
its core language (Section 4). We consider the semantics an important contribu-
tion because it distills and unambiguously communicates the central workings
of the Polymer language.

Recently, Krishnan has created a monitoring policy calculus based on the
semantics of Polymer [Krishnan 2005]. He achieves simplicity by removing
our compositionality constraint on policies (i.e., that all policies be separated
into effectless query methods and effectful bookkeeping methods). Krishnan
encodes most of our policy combinators into his calculus, gives our combinators
formal semantics, states interesting properties about the combinators such as
associativity, and explains how to encode several types of policies, including dy-
namically updateable policies, email policies similar to the one we have imple-
mented in Polymer (Section 3.2), and privacy policies, in his calculus. Our own
earlier work also provides precise semantics for some policy combinators, but in
a less general and more complicated language [Bauer et al. 2003]. We showed
how policies composed using a common, though fixed, set of combinators can
be analyzed statically to ensure that their effects do not conflict dynamically.

Aspect-oriented languages. Our policy-specification language can also be
viewed as an Aspect-Oriented Programming Language (AOPL) [Kiczales et al.
1996] in the style of AspectJ [Kiczales et al. 2001]. The main high-level dif-
ferences between our work and previous AOPLs are that our “aspects” (the
program monitors) are first-class values and that we provide mechanisms to
allow programmers to explicitly control the composition of aspects. Several re-
searchers [Tucker and Krishnamurthi 2003; Walker et al. 2003] describe func-
tional, as opposed to object-oriented, AOPLs with first-class aspect-oriented
advice and formal semantics. However, they do not support aspect combinators
like the ones we develop here. In general, composing aspects is a known prob-
lem for AOPLs, and we hope the ideas presented here will suggest a new design
strategy for general-purpose AOPLs.

6. CONCLUSIONS

This article proposes a runtime policy-specification language centrally orga-
nized to enable and control expressive policy composition. This section briefly
summarizes our contributions (Section 6.1) and enumerates several directions
for future work (Section 6.2).

6.1 Summary

Polymer is a language for specifying complex runtime security policies as com-
positions of simpler subpolicy modules. Its benefits include all of the normal

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:35

benefits of software modularity; for example, policies can be created, updated,
reasoned about, and reused in isolation. We have developed a library of policy
combinators and used them in several complex case-study applications. Finally,
we have defined a simple Polymer calculus which formally defines and distills
the key novelties of the Polymer language, and have proven soundness and
uncircumventability properties of the calculus. Our language, libraries, and
example policies are fully implemented and available for download from the
Polymer project Web site [Bauer et al. 2005b].

6.2 Future Work

We conclude by discussing several open problems and opportunities for exten-
sion.

Transactional policies. One might view the Polymer language as enabling
policy composition via transactional policy updates. The separation of policies
into effectless query and effectful result methods implements a form of rollback
so that the highest-level superpolicy can commit to one suggestion atomically,
without directly managing and rolling back subpolicy state and effects (which
may be irrevocable).

In general, strong ties seem to exist between runtime policy enforcement and
transactions [Ligatti et al. 2005]. It would be interesting to explore these ties
further and to examine in exactly which ways languages with explicit transac-
tional support (e.g., Hindman and Grossman [2006]) further facilitate runtime
policy specification and enforcement.

Concurrency. We have avoided providing direct support for concurrency in
Polymer, instead leaving it up to policy writers to ensure that their policies
are thread safe. In the future we plan to allow policies to turn on automatic
locking mechanisms in the interpreter of the highest-level policy’s suggestions
(see Figure 1); in this case the interpreter will obtain a lock before initiating a
query and hold that lock until the corresponding accept method has returned
(result methods must likewise be synchronized).

Combinator analysis. We designed the Polymer language to permit arbi-
trary policy composition. This generality is useful because the definition of
which combinators are the “right” ones to have available is user and application
specific. For example, one set of combinators might be the minimal necessary
to express all compositions of a common sort of policy (such as access-control
policies), while different sets of combinators might be guaranteed to terminate
or to satisfy other useful properties such as associativity and commutativity. Al-
though Polymer permits general policy compositions, it would be interesting in
the future to analyze particular sets of combinators and prove that they satisfy
these sorts of properties. Krishnan has already made progress on formalizing
many of our combinators [Krishnan 2005].

Polymer GUI. Polymer policies, while expressive, have to be written at too
low of a level (at the level of Java source code) to be convenient for many users
who might benefit from creating custom policy compositions. An interesting

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:36 • L. Bauer et al.

Fig. 23. Static semantics (rules for case expressions).

avenue for future work would be to extend Polymer with a Graphical User
Interface (GUI) that would allow, for example, system administrators to eas-
ily form provably safe policy hierarchies using prepackaged base policies and
policy combinators. Polymer seems well suited to support this kind of interface
because of its emphasis on compositionality and the ability to reuse libraries of
policies and policy combinators. At the same time, holistic policy visualization
(similar to what we show in Figure 13) can be very useful in understanding
(and manipulating) a large policy in its entirety.

APPENDIXES

A. ADDITIONAL RULES OF STATIC SEMANTICS

Figure 23 presents the static semantics for case expressions and pattern match-
ing. The auxiliary judgment C � p : (τ ; C′) is used to check that a pattern p
matches objects with type τ and binds variables with types given by C′.

Figure 24 contains the remaining, straightforward rules for the static se-
mantics of standard expressions.

B. ADDITIONAL RULES OF DYNAMIC SEMANTICS

Figure 25 presents the rules for evaluating case expressions and pattern match-
ing. The rules rely on an auxiliary judgment v ∼ p : V , which holds when value
v matches pattern p and the matching produces capture-avoiding variable sub-
stitutions V . Figure 26 presents the language’s standard beta-reduction rules.

C. PROOF OF TYPE SAFETY

We state next the lemmas and theorems in our proof of the Polymer language’s
type safety and provide the proof technique for each. Details for nontrivial proof
cases appear in Ligatti’s thesis [Ligatti 2006].

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:37

Fig. 24. Static semantics (standard rules).

Fig. 25. Dynamic semantics (beta steps for case expressions).

LEMMA C.1 (VARIABLE SUBSTITUTION). If S; C, x : τ ′ � e : τ and S; C � e′ : τ ′

then S; C � e[e′/x] : τ .

PROOF. By induction on the derivation of S; C, x : τ ′ � e : τ .

LEMMA C.2 (STORE SUBSTITUTION). If C � M : S and S(l) = τ and S; C � v : τ

then C � [l → v]M : S.

PROOF. Immediate by the sole typing rule for C � M : S.

LEMMA C.3 (WEAKENING). If S; C � e : τ and S′ extends S and C′ extends C
then S′; C′ � e : τ .

PROOF. By induction on the derivation of S; C � e : τ .

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:38 • L. Bauer et al.

Fig. 26. Dynamic semantics (standard beta steps).

LEMMA C.4 (INVERSION OF TYPING). Every typing rule is invertible; that is, if
the conclusion of any typing rule (in Figure 20, and Figures 23, and 24 in the
Appendix) holds then its premises must also hold. For example, if S; C � inss(e) :
Sug then S; C � e : Act; as another example, if C � act(f , p) : (Act; C′) then
C(f) = τ1 → τ2 and C � p : (τ1; C′).

PROOF. Immediate by inspection of the typing rules.

LEMMA C.5 (CANONICAL FORMS). If S; C � v : τ then:

—τ = Bool implies v = true or v = false;
—τ = (τ1, . . . , τn) implies v = (v1, . . . , vn);
—τ = τ ′ Ref implies v = l ;
—τ = τ1 → τ2 implies v = λx:τ1.e;
—τ = Poly implies v = pol(vquery, vacc, vres);
—τ = Sug implies v = irrs or v = oks or v = inss(act(f , v)) or v = exns; or

v = halts; or v = repls(result(v:τ));
—τ = Act implies v = act(f , v);
—τ = Res implies v = result(v:τ).

PROOF. By induction on the derivation of S; C � v : τ , using the definition
of values (given in Figure 19).

Definition C.6 (Well-Typed Context). A context E is well typed, written
S; C � Eτ : τ ′, if and only if S; C, x : τ � E[x] : τ ′ (where x is not a free vari-
able in E).

LEMMA C.7 (WELL-TYPED, FILLED CONTEXT). If S; C � Eτ : τ ′ and S; C � e : τ

then S; C � E[e] : τ ′.

PROOF. Immediate by Definition C.6 (well-typed context) and Lemma C.1
(variable substitution).

LEMMA C.8 (CONTEXT DECOMPOSITION). If S; C � E[e] : τ then there exists a
τ ′ such that S; C � Eτ ′ : τ and S; C � e : τ ′.

PROOF. By induction on the structure of E.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:39

Definition C.9 (Well-Typed Substitutions). A sequence of variable substitu-
tions V has type C′, written S; C � V : C′, if and only if for all x ∈ dom(C′)
there exists v such that v/x ∈ V and S; C � v : C′(x).

LEMMA C.10 (PATTERN TYPES). If S; C � v : τ ′ and v ∼ p : V and C � p :
(τ ′; C′) then S; C � V : C′.

PROOF. By induction on v ∼ p : V .

LEMMA C.11 (MULTIPLE SUBSTITUTIONS). If S; C � V : C′ and S; C, C′ � e : τ

then S; C � e[V] : τ .

PROOF. By induction on the length of V , using Lemma C.1 (variable substi-
tution).

LEMMA C.12 (BASIC DECOMPOSITION). If S; C � e : τ and � �F : C and C � M :
S and vpol = pol(vquery, vacc, vres) then either:

—e is a value v, or
—e can be decomposed into E[e′] such that one of the following is true.

—(�F , M , vpol, e′) →β (M ′, e′′), for some M ′ and e′′

—e′ = raise exn and E �= E ′[try E ′′ with e′′]
—e′ = abort.

PROOF. By induction on the derivation of S; C � e : τ .

LEMMA C.13 (POLICY DECOMPOSITION). If � (�F , M , epol, eapp) : τ then either:

—epol is a value vpol, or
—epol can be decomposed into E[e] such that one of the following is true.

—(�F , M , Triv, e) →β (M ′, e′), for some M ′ and e′, where Triv is the trivial
policy defined in Figure 22

—e = raise exn and E �= E ′[try E ′′ with e′′]
—e = abort.

PROOF. Immediate by Lemma C.4 (inversion of � (�F , M , epol, eapp) : τ) and
Lemma C.12 (basic decomposition).

LEMMA C.14 (APPLICATION DECOMPOSITION). If � (�F , M , vpol, eapp) : τ then
either:

—eapp is a value vapp, or
—eapp can be decomposed into E[e] such that one of the following is true.

—(�F , M , vpol, e) →β (M ′, e′), for some M ′ and e′

—e = raise exn and E �= E ′[try E ′′ with e′′]
—e = abort.

PROOF. Immediate by Lemma C.4 (inversion of � (�F , M , vpol, eapp) : τ),
Lemma C.5 (canonical forms for S; C � vpol : Poly), and Lemma C.12 (basic
decomposition).

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:40 • L. Bauer et al.

LEMMA C.15 (β PRESERVATION). If � (�F , M , vpol, eapp) : τ and � �F : C and
C � M : S and (�F , M , vpol, eapp) →β (M ′, e′

app) then there exists an S′ extending
S such that S′; C � e′

app : τ and C � M ′ : S′.

PROOF. By induction on (�F , M , vpol, eapp) →β (M ′, e′
app).

THEOREM C.16 (PRESERVATION). If � (�F , M , epol, eapp) : τ and (�F , M , epol,
eapp) �→ (�F , M ′, e′

pol, e′
app) then � (�F , M ′, e′

pol, e′
app) : τ .

PROOF. Examination of the rules for (�F , M , epol, eapp) �→ (�F , M ′, e′
pol, e′

app)
shows that either epol = E[e] or epol = vpol (that is, either the policy or the
application is being evaluated). The desired result holds in both cases.

Definition C.17 (Finished Programs). A program configuration (�F , M , epol,
eapp) is “finished” if and only if at least one of the following is true.

—epol and eapp are values
—epol = E[abort] or eapp = E[abort]
—epol = E[raise exn] or eapp = E[raise exn], where E �= E ′[try E ′′ with e].

THEOREM C.18 (PROGRESS). If � (�F , M , epol, eapp) : τ then either (�F , M , epol,
eapp) is finished or there exists a program configuration (�F , M ′, e′

pol, e′
app) such

that (�F , M , epol, eapp) �→ (�F , M ′, e′
pol, e′

app).

PROOF. By applying Lemma C.13 (policy decomposition) to the assumption
that
� (�F , M , epol, eapp) : τ , we have either epol = vpol or epol = E[e] such that e =
raise exn (where E �= E ′[try E ′′ with e′′]) or e = abort or (�F , M , Triv, e) →β

(M ′, e′). When epol = E[e] such that e = raise exn or e = abort, the program
(�F , M , epol, eapp) is finished. When epol = E[e] and (�F , M , Triv, e) →β (M ′, e′),
we have (�F , M , epol, eapp) �→ (�F , M ′, E[e′], eapp), as required.

When epol = vpol, Lemma C.14 (application decomposition) implies that either
eapp = vapp or eapp = E[e] such that e = raise exn (where E �= E ′[try E ′′ with e′′])
or e = abort or (�F , M , vpol, e) →β (M ′, e′). All of these possibilities correspond
to finished program configurations, except the case where epol = vpol and eapp =
E[e] and (�F , M , vpol, e) →β (M ′, e′). In this case, we have (�F , M , epol, eapp) �→
(�F , M ′, epol, E[e′]), as required.

D. PROOF OF UNCIRCUMVENTABILITY

We state and prove the uncircumventability of Polymer policies after general-
izing preservation from single- to multistep transitions.

THEOREM D.1 (MULTISTEP PRESERVATION). If � P : τ and P �→∗ P ′ then
� P ′ : τ .

PROOF. By induction on the derivation of P �→∗ P ′, using Theorem C.16.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:41

THEOREM D.2 (UNCIRCUMVENTABILITY). If � (�F , M , epol, eapp) : τ and
(�F , M , epol, eapp) �→∗ (�F , M ′, vpol, E[invk act(f , v)]) then there exist functions
vquery, vacc, and vres and context E ′ such that:

(1) vpol = pol(vquery, vacc, vres),

(2) (�F , M ′, vpol, E[invk act(f , v)]) �→ (�F , M ′, vpol, E ′[vquery (act(f , v))]), and

(3) for all programs P such that (�F , M ′, vpol, E[invk act(f , v)]) �→ P, it must be
the case that P = (�F , M ′, vpol, E ′[vquery (act(f , v))]).

PROOF. By Theorem D.1, � (�F , M ′, vpol, E[invk act(f , v)]) : τ , so by the sole
rule deriving � P : τ , we have S; C � vpol : Poly for some label store S and
variable context C. Because S; C � vpol : Poly, Canonical Forms (Lemma C.5)
implies that vpol = pol(vquery, vacc, vres).

To prove obligation (2), let P ′ = (�F , M ′, vpol, E[invk act(f , v)]). Because � P ′ :
τ , Theorem C.18 (progress) implies that either P ′ is finished or P ′ �→ P ′′ for
some program P ′′. By Definition C.17, P ′ is not finished, so P ′ �→ P ′′. By inspec-
tion of the rules deriving P ′ �→ P ′′, we must have (�F , M ′, vpol, invk act(f , v)) →β

(M ′′, e′) for some M ′′ and e′, but only the beta reduction for invk expressions
enables this transition. By the definition of the beta reduction for invk expres-
sions, then, we have M ′′ = M ′ and e′ = Wrap(vpol, Fi, v), where Fi is a monitored
function. Let C denote the case expression in the definition of Wrap given in
the beta-reduction rule for invk expressions. Using the definitions of Wrap, let-
expression abbreviations, and the rule for top-level program execution based
on application-level beta reductions, we obtain (�F , M ′, vpol, E[invk act(f , v)]) �→
(�F , M ′, vpol, E ′[vquery (act(f , v))]), where E ′ = E[λs.C []]. Because no other tran-
sitions are possible from P ′, proof obligation (3) is satisfied, that is, for all P
such that P ′ �→ P , P = (�F , M ′, vpol, E ′[vquery (act(f , v))]).

ACKNOWLEDGMENTS

Many thanks to the anonymous ACM TOSEM reviewers for their helpful and
prompt comments. We are grateful to G. Morrisett for valuable feedback on ear-
lier versions of this article. We are also thankful to F. Piessens, B. De Win, and
other members of the Katholieke Universiteit Leuven community for insight-
ful discussions that honed our understanding of complete mediation’s effects
on Polymer (refer to Section 3.3).

REFERENCES

AGESEN, O., FREUND, S. N., AND MITCHELL, J. C. 1997. Adding type parameterization to the Java
language. In Object Oriented Programing: Systems, Languages, and Applications (OOPSLA).

APACHE SOFTWARE FOUNDATION. 2003. Byte Code Engineering Library. Apache Software Founda-
tion. http://jakarta.apache.org/bcel/.

BAUER, L., APPEL, A. W., AND FELTEN, E. W. 2003. Mechanisms for secure modular programming
in Java. Softw. Pract. Exper. 33, 5, 461–480.

BAUER, L., LIGATTI, J., AND WALKER, D. 2003. Types and effects for non-interfering program mon-
itors. In Software Security—Theories and Systems. Mext-NSF-JSPS International Symposium
Revised Papers, M. Okada (ISSS’02) et al., Eds. Lecture Notes in Computer Science, vol. 2609.
Springer.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

9:42 • L. Bauer et al.

BAUER, L., LIGATTI, J., AND WALKER, D. 2005a. Composing security policies with polymer.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation.

BAUER, L., LIGATTI, J., AND WALKER, D. 2005b. Polymer: A language for composing runtime
security policies. http://www.cs.princeton.edu/sip/projects/polymer/.

DAMIANOU, N., DULAY, N., LUPU, E., AND SLOMAN, M. 2001. The Ponder policy specification
language. Lecture Notes in Computer Science, vol. 1995, 18–39.

EDJLALI, G., ACHARYA, A., AND CHAUDHARY, V. 1998. History-Based access control for mobile code.
In ACM Conference on Computer and Communications Security, 38–48.

ERLINGSSON, Ú. 2003. The inlined reference monitor approach to security policy enforcement.
Ph.D. thesis, Cornell University.

ERLINGSSON, Ú. AND SCHNEIDER, F. B. 1999. SASI enforcement of security policies: A retrospective.
In Proceedings of the New Security Paradigms Workshop, 87–95.

ERLINGSSON, Ú. AND SCHNEIDER, F. B. 2000. IRM enforcement of Java stack inspection. In IEEE
Symposium on Security and Privacy.

EVANS, D. 2000. Policy-directed code safety. Ph.D. thesis, Massachusetts Institute of
Technology.

EVANS, D. AND TWYMAN, A. 1999. Flexible policy-directed code safety. In IEEE Security and
Privacy.

HALDERMAN, J. A. AND FELTEN, E. W. 2006. Lessons from the Sony CD DRM episode. In Proceedings
of the 15th USENIX Security Symposium, 77–92.

HAVELUND, K. AND ROŞU, G. 2004. Efficient monitoring of safety properties. Int. J. Softw. Tools
Technol. Transfer 6, 2 , 158–173.

HINDMAN, B. AND GROSSMAN, D. 2006. Strong atomicity for Java without virtual-machine support.
IGARASHI, A., PIERCE, B., AND WADLER, P. 1999. Featherweight Java. In ACM conference on

Object-Oriented Programming, Systems, Languages and Applications, 132–146.
JEFFERY, C., ZHOU, W., TEMPLER, K., AND BRAZELL, M. 1998. A lightweight architecture for program

execution monitoring. In Program Analysis for Software Tools and Engineering (PASTE). ACM
Press, 67–74.

KICZALES, G., HILSDALE, E., HUGUNIN, J., KERSTEN, M., PALM, J., AND GRISWOLD, W. 2001. An overview
of AspectJ. In European Conference on Object-oriented Programming. Springer-Verlag.

KICZALES, G., IRWIN, J., LAMPING, J., LOINGTIER, J.-M., LOPES, C. V., MAEDA, C., AND MENDHEKAR, A.
1996. Aspect-oriented programming. ACM Comput. Surv. 28, 4es, 154.

KIM, M., VISWANATHAN, M., BEN-ABDALLAH, H., KANNAN, S., LEE, I., AND SOKOLSKY, O. 1999. Formally
specified monitoring of temporal properties. In European Conference on Real-time Systems.

KRISHNAN, P. 2005. A monitoring policy calculus. Tech. rep. CSA-05-01, Bond University.
LIAO, Y. AND COHEN, D. 1992. A specificational approach to high level program monitoring and

measuring. IEEE Trans. Softw. Eng. 18, 11, 969–978.
LIGATTI, J. 2006. Policy enforcement via program monitoring. Ph.D. thesis, Princeton University.
LIGATTI, J., BAUER, L., AND WALKER, D. 2005. Enforcing non-safety security policies with program

monitors. In 10th European Symposium on Research in Computer Security (ESORICS).
MCGRAW, G. AND FELTEN, E. W. 1999. Securing Java: Getting Down to Business with Mobile Code.

John Wiley & Sons, New York.
MILNER, R., TOFTE, M., HARPER, R., AND MACQUEEN, D. 1997. The Definition of Standard ML

(revised). MIT Press.
OASIS. 2005. eXtensible Access Control Markup Language (XACML) version 2.0.
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf.

PETERSEN, A. 2003. Pooka: A Java email client. http://www.suberic.net/pooka/.
ROBINSON, W. 2002. Monitoring software requirements using instrumented code. In Proceedings

of the 35th Annual Hawaii International Conference on System Sciences (HICSS’02)-Volume 9.
IEEE Computer Society, Washington, DC, 276.2.

SALTZER, J. H. AND SCHROEDER, M. D. 1975. The protection of information in computer systems.
In IEEE 63, 9. 1278–1308.

SEN, K., VARDHAN, A., AGHA, G., AND ROSU, G. 2004. Efficient decentralized monitoring of safety
in distributed systems. In 26th International Conference on Software Engineering (ICSE’04),
418–427.

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

Composing Expressive Runtime Security Policies • 9:43

TUCKER, D. B. AND KRISHNAMURTHI, S. 2003. Pointcuts and advice in higher-order languages. In Pro-
ceedings of the 2nd International Conference on Aspect-Oriented Software Development, 158–167.

WALKER, D., ZDANCEWIC, S., AND LIGATTI, J. 2003. A theory of aspects. In ACM International
Conference on Functional Programming.

Received February 2007; revised August 2007; accepted November 2007

ACM Transactions on Software Engineering and Methodology, Vol. 18, No. 3, Article 9, Publication date: May 2009.

