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Abstract 

This article introduces a computational tool called CheckMate. CheckMate is a tool for modelling, prototyping, 
simulating specific situation and formally verifying hybrid dynamic systems based on the MATLAB/Simulink and 
Stateflow Toolbox from The MathWorks, Inc. This paper presents the elements of CheckMate from the user’s 
perspective and illustrates its features using a three dimensional linear system example. The theory underlying 
CheckMate is also reviewed briefly. More complete presentations of the theory can be found in [1-7]. 
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1 INTRODUCTION 

Recently, a tool called CheckMate was developed at 
Carnegie Mellon University to perform simulation and 
verification of a class of hybrid dynamic systems. This 
paper introduces this tool and how it works in the  
modeling and verification of hybrid systems.  CheckMate 
deals with a class of hybrid systems called threshold-
event-driven hybrid systems (TEDHS) for which a 
verification procedure was proposed in [03] . In a 
TEDHS the changes in the discrete state can occur only 
when continuous state variables encounter specified 
thresholds.  

 CheckMate models are constructed using a 
custom graphical user interface (GUI) in the MATLAB 
Simulink environment. Thresholds in the TEDHS model 
are hyperplanes. Models are built using the MATLAB 
Simulink/Stateflow graphical user interface (GUI). 
Parameters and specifications to be verified are entered 
using both the Simulink/Stateflow GUI, and the 
MATLAB command window. The key theoretical 
concepts used in CheckMate are described in [01] . 

Hybrid system models in CheckMate have 
continuous dynamics described by standard differential 
state equations (possibly nonlinear), planar switching 
surfaces, and discrete dynamics modeled by finite state 
machines. Verification is performed using finite-state 
approximations known in the literature as quotient 
transition systems. The approximations are conservative 

in the sense that they capture all possible behaviors of the 
hybrid system. If the verification of an approximating 
automaton returns a positive result, the user is informed 
and the program terminates. If a negative result is found, 
the verification of the original hybrid system is 
inconclusive and the user is given the option to refine the 
current approximation and attempt the verification again. 
Properties of individual trajectories of the system can be 
verified using the MATLAB simulation engine and the 
CheckMate validation tool. The ideas presented 
throughout this paper will be demonstrated using one of 
the demonstration examples included in the CheckMate 
package. The example is a three dimensional linear 
system that can be built from scratch throughout the 
paper, or found in the CM~/ demo/ r gsw directory 
(where CM~ denotes the CheckMate root directory. 

The paper is organized as follows. Section 2 
provides a brief inroduction to CheckMate and an 
overview of the demonstration example.  Section 3 
describes the CheckMate GUI and how it is used to build 
and simulate models of hybrid dynamic systems. Section 
4 describes the basic representation of hybrid dynamic 
systems, the polyhedral invariant hybrid automaton, used 
in CheckMate as the formal model for verification. The 
theory and computations used in the CheckMate 
verification procedure are reviewed briefly in Section 5. 
In Section 6, verification results of the example system 
are presented.  Recent improvements to the CheckMate 
verification procedure are discussed in Section 7 along 
with current research and development plans. 
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2 INTRODUCTION TO CHECKM ATE AND EXAMPLE 

OVERVIEW 

The CheckMate toolbox can be downloaded at 
http://www.ece.cmu.edu/~krogh/CheckMate/main.htm.  
This site also provides reference and background 
information on CheckMate.  Once the file has been 
downloaded, it should be unzipped into a directory which 
becomes the CheckMate root directory.  We will use CM~ 
to denote this directory throughout the remainder of this 
paper.  For proper operation, it is necessary to add the 
CheckMate directories to the MATLAB path.  This can 
be accomplished using the installation routine provided 
with CheckMate.  The m-file i nst al l . m found in the 
CM~ directory provides this functionality.  Sjmply type 
i nst al l ( ’ <CM~>’ )  at the MATLAB command 
prompt and the appropriate changes will be made.  
CheckMate is now ready for use. 

The example used throughout this paper is a three 
dimensional linear system, RGSW (ReGion SWitch).  All 
necessary files can be found in the CM~/demo/rgsw 
directory, or the reader can choose to build the model and 
files as they are introduced throughout the paper.  In this 
example, the state space is restricted to the cube ranging 
from –20 to 20 in each of the three x-yz directions. This 
cube is the analysis region. It means that the verification 
will consider this region to answer questions if some 
specification is met or not. The system is a simple linear 
switched dynamic system with two different dynamics. 
One behavior (IN) is enabled when the system trajectory 
is inside  the internal region. In a real application it could 
represent an error offset that a system has to obey in a 
steady operation, before leaving the analysis region. 
When the system goes out of this internal region box, 
another behavior (OUT) is enforced. The analysis region 
and the internal region are represented in figure 1.  

 

 
figure 1- Analysis Region and internal region for  ver ification 

The differential equations in each case are the 
following (in both cases vector b is [0 0 0 ]T: 
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If, for some initial condition,  we would like to know 
if the trajectory of the system reaches the internal region 
before leaving the AR, we could just simulate the system 
for this initial value. Depending on the time the system 
trajectory takes to accommodates inside the internal 
region, the answer could be TRUE or FALSE. In this 
sense, it would be interesting to model and simulate this 
system, in a user friendly environment. That is the subject 
of the next section. 

3 M ODELING AND SIMULATING HYBRID SYSTEMS IN 

CHECKM ATE 

CheckMate models are built with the MATLAB 
Simulink GUI using two customized (masked) Simulink 
blocks along with several of Simulink’s standard blocks.  
Figure 1 shows the CheckMate block diagram and its 
components for our example. To build the model from 
scratch, the user must enter the command cmnew at the 
MATLAB command prompt.  This will open the 
CheckMate library from which the user can construct the 
system model.  In figure 2 we see the currently set of 
blocks allowed to be used in Checkmate:  

 

 
figure 2 – CheckMate customized blocks 

3.1 Switched Continuous System Block (SCSB) 

The custom SCSB represents a continuous dynamic 

system with state equation )(xfx u=
�

, where u is a 

discrete-valued input vector to the SCSB and the 
continuous state vector x is the block’s output.  Currently, 
three types of dynamics can be specified in an SCSB for 
each value of the input vector u: clock dynamics ( cx =

�

, 
where c is a constant vector), linear dynamics 
( bAxx +=

�

, where A is a constant matrix and b is a 
constant vector), and nonlinear dynamics ( )(xfx =

�

).  

In the example system one of these blocks in necessary, 
and should be named scs .  There are several parameters 
associated with the SCSB. The figure 3 gives us and idea 
about them: 
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figure 3 – Configuration window for  the SCSB block 

The switching function is a .m file that gives us the 
information about the dynamics of the system. For 
RGSW example we have the file switchA.m below. The 
variable u selects which dynamics should be used. 
 
f unct i on [ sys, t ype]  = swi t chA( x, u)  
t ype = ’ l i near ’ ;  
swi t ch u 
case 1,  
   A = [ - 1  1  1 
        - 1  0  0 
        - 1  1  0] ;  
case 2,   
   A = [  - 1  1  1 
        0. 5 - 1  0 
         - 1  1  0] ;  
ot her wi se,   
   A = zer os( 3, 3) ;  
end 
sys. A = A;  sys. b = [ 0 0 0] ’ ;  
r et ur n 

3.2 Polyhedral Threshold Block (PTHB) 

The other custom block in CheckMate is the 
(PTHB), which represents a polyhedral region dCx ≤  
in the continuous space of the continuous-valued input 
vector x. The PTHB output is a binary signal indicating 
whether x is inside the region or not, i.e. whether or not 
the condition dCx ≤  is true.  Only one PTHB is 
necessary in our example to describe the region between 
the two limits on the z-axis, as told before.  

 

 
figure 4 - Configuration window for  the PTHB block 

Once using the simulink environment and selecting a 
PTHB block, an auxiliary window will pop up as 
presented in figure . The specification for the internal 
region for the RGSW example is a linearcon object 
created from a setup file called setup.m, in  figure 4.   

 
f unct i on set up( )  
 
% decl ar e gl obal  var i abl es i n base wor k space 
eval i n( ’ base’ , ’ gl obal _var ’ ) ;  
 
% decl ar e gl obal  var i abl es l ocal l y 
gl obal _var  
 
% set up par amet er  f or  t he PTHB bl ock di agr am 
assi gni n( ’ base’ , ’ i n’ , … 
  l i near con( [ ] , [ ] , [ 0 0 1;  0 0 - 1] , [ 1;  1] ) ) ;  
 
% I ni t i al  condi t i on set up  
I CS_CE = [ 0 0 1] ;  
I CS_dE = 5;  
I CS_CI  = [ 1 0 0;  - 1 0 0;  0 1 0;  0 - 1 0] ;  
I CS_dI  = [ 6; - 4; 6; - 4] ;  
assi gni n( ' base' , ' r gsw_I CS' , .  .  .  
 { l i near con( I CS_CE, I CS_dE, I CS_CI , I CS_dI ) } ) ;  
 
% Anal ysi s r egi on set up  
AR_C = [ - 1 0 0; 0 - 1 0; 0 0 - 1; 0 0 1; 0 1 0; 1 0 0] ;  
AR_d = [ 20; 20; 20; 20; 20; 20] ;  
assi gni n( ' base' , ' r gsw_AR' , .  .  .  
 l i near con( [ ] , [ ] , AR_C, AR_d) ) ;  
 
% set up ver i f i cat i on par amet er s 
GLOBAL_SYSTEM = ' r gsw' ;  
GLOBAL_APARAM = ' r gsw_par am' ;  
GLOBAL_SPEC = ' ( AF AG ( f sm == s1) )  & ( AG 
~out _of _bound) ' ;  
 
r et ur n 

 
The initial condition, the analysis region and the 

internal region hyperplane  are defined as linearcon 
object. The variable GLOBAL_SPEC shows the 
specification that will be tested. We will detail this in the 
following sections. 

 

3.3 Finite State Machine Block (FSMB) 

Discrete dynamics are modeled using a (FSMB).  
FSMBs are regular MATLAB Stateflow blocks that 
conform to the following restrictions.  
• No hierarchy is allowed in the Stateflow diagram.  
• Data inputs must be Boolean functions of PTHB and 

FSMB outputs only. 
• Event inputs must be Boolean functions of PTHB 

outputs only, i.e. events can only be generated by the 
continuous trajectory leaving or entering the 
polyhedral regions. 

• Only one data output is allowed. 
• Every state in the Stateflow diagram is required to 

have an entry action that sets the data output to a 
unique value for that state. 

• No action other than the entry action discussed above 
is allowed in the Stateflow diagram.  

 
The discrete dynamics of  RGSW can be described with 
one FSMB having two states.  Three events are assigned: 
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event coming_in, going_out and start. The start event 
does nothing but starting the execution pointing TO the  
initial condition in the FSM diagram.  The variable q, 
showed inside of the states sets up the output for the 
FSMB, and corresponds to the value of variable u in the 
setup m-file. One also can specify data input for the 
FSMB. This could be used to establish guards for some 
transitions. In  figure 5 we have the FSMB for the RGSW 
example: 

 
figure 5 – State flow diagram for  RGSW example 

Other Simulink blocks supported by CheckMate 
include multiplexers for vectorizing signals and logic 
blocks (AND, OR, NOT, etc.) for creating logical 
combinations of PTHB and FSMB outputs.  Additionally, 
scopes, x-y plots, and other sink blocks can be used when 
taking advantage of the simulation capabilities inherently 
available through Simulink and CheckMate.  A scope has 
been added to the example system to look at trajectories 
of the three state variables. In figure we have the 
complete CheckMate model  for the RGSW example. 
There are some parameters the user must enter, in order 
to give CheckMate all the details about the verification 
process.  For the RGSW example, these data are stored in 
the file rgsw_param.m .  
 
 

 
figure 6 - RGSW modeled by CheckMate 

 
f unct i on appr ox_par am = r gsw_par am( q)  
 
appr ox_par am = [ ] ;  
appr ox_par am. di r _t ol  = [ ] ;  
appr ox_par am. var _t ol  = 1;  
appr ox_par am. si ze_t ol  = 40;  
appr ox_par am. W = eye( 3) ;  
appr ox_par am. T = 0. 1;  
appr ox_par am. max_t i me = I nf ;  
appr ox_par am. quant i zat i on_r esol ut i on = 0. 1;  
appr ox_par am. r eachabi l i t y_dept h = I nf ;  
r et ur n 
 

The table 1 has the description of each parameter. Several 
parameters are used throughout the verification process.  

These parameters as well as any variables used in the 
Simulink/Stateflow front-end model are defined and 
stored in the MATLAB workspace.  Parameters and 
variables can be defined manually or through the use of 
MATLAB m-files. 
 

.dir_tol tolerance for patch "single-sided-ness". 
Decides when to split the region to  
maintain the range of direction variance. 

.var_tol tolerance for patch vector field variation 
relative to the vector field variation on 
the parent invariant face 

.size_tol tolerance for patch size. It gives us the 
maximum slice to split the analysis 
region.  

.W (diagonal) weighting matrix 

.T time step for flow pipe computation 

.max_time time limit (sec) for mapping 
computation 

.eq_tol equilibrium termination tolerance for 
mapping computation  

.quantization_resolution resolution for partition refinement 

.reachability_depth" maximum depth of initial partition 
reachability analysis 
 

table 1 – internal parameters of CheckMate 

 
In  figure 7we can see the result of the simulation of 

RGSW example for the initial condition X = [4,4,5] and 
fsm = s2. 

 
figure 7 – Simulation of the RGSW model 

4 REPRESENTATIONS OF HYBRID SYSTEMS IN 

CHECKM ATE 

In order to understand how CheckMate works, it is 
useful to understand the two models of hybrid systems 
used in CheckMate. Models built with the CheckMate 
GUI are referred to as the threshold-event-driven hybrid 
systems (TEDHSs). The formal model used for 
verification in CheckMate is a class of hybrid automata 
[6].  A threshold-event-driven hybrid system consists of 
three types of subsystems, the switched continuous 
system (SCS), the threshold event generator (TEG), and 
the finite state machine (FSM).  The SCS is the 
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continuous dynamics system that takes in the discrete-
valued input u and produces its continuous state vector x 
as the output.  The continuous dynamics for x evolve 
according to the differential equation or differential 
inclusions selected by the discrete input u.  The output of 
the SCS is fed into the TEG, which produces an event 
when a component of the vector x crosses a 
corresponding threshold from the specified direction 
(rising, falling, or both). The event signals from the TEG 
drive the discrete transitions in the FSM whose output, in 
turn, drives the continuous dynamics of the SCS. 

As illustrated in Figure 7 CheckMate converts the  
TEDHS into a polyhedral invariant hybrid automaton 
(PIHA).  The PIHA are a subclass of more general hybrid 
automata.  A hybrid automaton is a generalization of the 
finite automaton that includes continuous dynamics 
within each discrete state.  Each discrete state in the 
hybrid automaton is called a location. Associated with 
each location is an invariant, the condition which the 
continuous state must satisfy while the hybrid automaton 
resides in that location, and the flow equation 
representing the continuous dynamics in that location.  
Transitions between locations are called edges. Each 
edge is labeled with guard and reset conditions on the 
continuous state.  The edge is enabled when the guard 
condition is satisfied. Upon the location transition, the 
values of the continuous state before and after the 
transition must satisfy the reset condition.  In general, the 
analysis of hybrid automata can be very difficult. In 
CheckMate, we restrict our attention to the 
aforementioned PIHA.  A PIHA is a hybrid automaton 
with the following restrictions. 
• The continuous dynamics for each location is 

governed by an ordinary differential equation (ODE).  
• Each guard condition is a linear inequality (a 

hyperplane guard).  
• Each reset condition is an identity.  
• For the hybrid automaton to remain in any location, 

all guard conditions must be false. This restriction 
implies that the invariant condition for any location 
is the convex 

•  polyhedron defined by conjunction of the 
complements of the guards. This gives rise to the 
name polyhedral-invariant hybrid automaton. 

 

5 QUOTIENT TRANSITION SYSTEMS AND FLOWPIPE 

APPROXIMATIONS 

The verification portion of CheckMate is based on 
the theory of quotient transition systems [14].  A quotient 
transition system (QTS) is a finite state transition system 
that is a conservative approximation of the hybrid system. 
A QTS is defined from a partition of the state space of 
the hybrid system with each state in the QTS 
corresponding to a member of the partition. In the QTS, a 
transition is defined from a state (a set) P1 to another 
state P2 if and only if there is a state p2 in P2 that is 
reachable from a state p1 in P1 in the original hybrid 
system.  A QTS is a conservative approximation in the 
sense that for every trajectory in the original hybrid 
system, there is a trajectory in the QTS corresponding to 
the set of states that the trajectory in the hybrid system 
goes through.  Thus, if we can verify that all trajectories 
in the QTS satisfy some property, we can conclude that 
all trajectories in the hybrid system also satisfy the same 
property.  CheckMate only pays attention to the behavior 
of the hybrid system at the switching instants.  Thus, 
CheckMate approximates the QTS for the hybrid system 
from the partition of the switching surfaces, which are the 
boundaries of the location invariants in the PIHA, and the 
set of initial continuous states.  The reachability analysis 
used to define the transitions in the QTS is performed 
using an approximation method called flow pipe 
approximations [3]. 

The flow pipe approximation is used to define 
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Figure 7– CheckMate ver ification procedure 
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transitions in the quotient transition system for the PIHA 
as follows.  A state in the quotient transition system is a 
triple (π,p,q) where π is a polytope in the location (p,q) of 
the PIHA.  For each state in the quotient transition 
system, the flow pipe is computed for the associated 
polytope under the associated continuous dynamics.  The 
mapping set, the set of states on the invariant boundary 
that can be reached from π is computed.  A transition is 
then defined from (π,p,q) to any other state whose 
polytope overlaps with the mapping from π. 

As shown in Figure 7, CheckMate then performs 
model checking [7] on this transition system to obtain a 
verification result for the desired specification.  If the 
verification returns a positive result, then the program 
informs the user and terminates.  If a negative result is 
returned, the user is informed and given the option to quit 
or allow CheckMate to refine the approximation and 
repeat the verification.  This process continues until a 
positive verification result is obtained, or the user decides 
to quit. 

6 VERIFYING SYSTEMS 

Checkmate can perform two kind of verification: a 
quick and a complete verification. By quick verification 
(command validate) we mean just testing the vertices of 
the polyhedral defined by the initial conditions. 
Checkmate calls the simulation environment from matlab, 
and build the transition system following the simulation 
trajectory. After the simulation entered in a null state, or 
after a time out situation, CheckMate check if the 
transition system built satisfies the specification, written 
in ACTL.  For the RGSW system, we have a square the 
initial condition 4≤x≤6, 4≤y≤6, z=5. In  figure 8we can 
see the result of the validate command for the vertices 
and in figure 9 the trajectories are shown, as well as a 
partial view of the  inside box |x|≤1, |y|≤1, |z|≤1. Note that 
after some time, the trajectories concentrates inside of the 
box. The advantage of the quick verification is that the 
user can have a gross idea about the result of the 
complete verification. If some vertices already violates 
some constraints, probably the verification wouldn’ t give 
any better result. In some cases, for linear time invariant 
system, we can even rely on the results of the quick 
verification, because if the initial set is convex, all the 
reachable set from there will be also convex. If some 
property is satisfied for the vertices of the initial 
condition set, it will be by any inner point. 

The complete verification, on the other hand, 
performs the operations already mentioned in section 5. 
in  we see the states of the approximate quotient 
transition system that lead to the null event (represented 
by the spiral with no further state transition). In  we have 
two different 3D partial views of the flowpipe, used to 
generate the approximate quotient transition system. 

 
Val i dat e –ver t i ces 
bl ock or der s:  x = [ scs] ,  q = [ f sm] ,  pt h = [ i n]  

 
( 1/ 4)  i ni t :  t  = 1,  x = [ 6 6 5] ,  q = 2,  pt h = 0 
- - - >. . . - - >nul l _event  /  speci f i cat i on sat i sf i ed 
 
( 2/ 4)  i ni t :  t  = 1,  x = [ 6 4 5] ,  q = 2,  pt h = 0 
- - - >. . . - - > nul l _event  /  speci f i cat i on sat i sf i ed 
 
( 3/ 4)  i ni t :  t  = 1,  x = [ 4 6 5] ,  q = 2,  pt h = 0 
- - - >. . . - - > nul l _event  /  speci f i cat i on sat i sf i ed 
 
( 4/ 4)  i ni t :  t  = 1,  x = [ 4 4 5] ,  q = 2,  pt h = 0 
- - - >. . . - - > nul l _event  /  speci f i cat i on sat i sf i ed 

figure 8 – Command validate for  quick ver ification 

 

figure 9 – Trajector ies for  the initial condition ver tices 

 

 
figure 10 – Reachable states for  the RGSW system 
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figure 11 – Flowpipe computation  - 3D view 

7 DISCUSSION AND RESEARCH DIRECTIONS 

CheckMate has been developed to take advantage of 
the characteristics of clock and linear dynamics [3].  
Recently, revisions have been made to further reduce the 
computations involved in the approximation of the QTS.  
In particular, the flowpipe approximation procedure has 
been amended for the linear (affine) case.  The new 
procedure considerably reduces the conservativeness of 
the QTS approximations and reduces total computation 
time.  Future improvements are expected to deal with 
sampled data systems  and cases where the flow reduces 
to an extremely small region (thus causing numerical 
problems in the calculation of the flowpipes). 
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