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Abstract

This article introduces a computational tool called CheckMate. CheckMate is a tool for modelling, prototyping,
simulating specific situation and formally verifying hybrid dynamic systems based on the MATLAB/Simulink and
Stateflow Toolbox from The MathWorks, Inc. This paper presents the elements of CheckMate from the user’'s
perspective and illustrates its features using a three dimensional linear system example. The theory underlying
CheckMate is also reviewed briefly. More complete presentations of the theory can be found in [1-7].
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1 INTRODUCTION

Recently, a tool called CheckMate was developed at
Carnegie Mellon University to perform simulation and
verification of a class of hybrid dynamic systems. This
paper introduces this tool and how it works in the
modeling and verification of hybrid systems. CheckMate
deals with a class of hybrid systems called threshold-
event-driven hybrid systems (TEDHS) for which a
verification procedure was proposed in [03] . In a
TEDHS the changes in the discrete state can occur only
when continuous state variables encounter specified
thresholds.

CheckMate models are constructed using a
custom graphical user interface (GUI) in the MATLAB
Simulink environment. Thresholds in the TEDHS model
are hyperplanes. Models are built using the MATLAB
Simulink/Stateflow graphical user interface (GUI).
Parameters and specifications to be verified are entered
using both the Simulink/Stateflow GUI, and the
MATLAB command window. The key theoretical
concepts used in CheckMate are described in [01] .

Hybrid system models in CheckMate have
continuous dynamics described by standard differential
state equations (possibly nonlinear), planar switching
surfaces, and discrete dynamics modeled by finite state
machines. Verification is performed using finite-state
approximations known in the literature as quotient
transition systems. The approximations are conservative
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in the sense that they capture all possible behaviors of the
hybrid system. If the verification of an approximating
automaton returns a positive result, the user is informed
and the program terminates. If a negative result is found,
the verification of the original hybrid system is
inconclusive and the user is given the option to refine the
current approximation and attempt the verification again.
Properties of individual trajectories of the system can be
verified using the MATLAB simulation engine and the
CheckMate validation tool. The ideas presented
throughout this paper will be demonstrated using one of
the demonstration examples included in the CheckMate
package. The example is a three dimensiona linear
system that can be built from scratch throughout the
paper, or found in the CM-/ deno/rgsw directory
(where CM~ denotes the CheckMate root directory.

The paper is organized as follows. Section 2
provides a brief inroduction to CheckMate and an
overview of the demonstration example. Section 3
describes the CheckMate GUI and how it is used to build
and simulate models of hybrid dynamic systems. Section
4 describes the basic representation of hybrid dynamic
systems, the polyhedral invariant hybrid automaton, used
in CheckMate as the formal model for verification. The
theory and computations used in the CheckMate
verification procedure are reviewed briefly in Section 5.
In Section 6, verification results of the example system
are presented. Recent improvements to the CheckMate
verification procedure are discussed in Section 7 along
with current research and development plans.



2 INTRODUCTION TO CHECKMATE AND EXAMPLE
OVERVIEW

The CheckMate toolbox can be downloaded at
http://mww.ece.cmu.edu/~krogh/CheckM ate/main.htm.
This site also provides reference and background
information on CheckMate. Once the file has been
downloaded, it should be unzipped into a directory which
becomes the CheckMate root directory. We will use CM~-
to denote this directory throughout the remainder of this
paper. For proper operation, it is necessary to add the
CheckMate directories to the MATLAB path. This can
be accomplished using the ingtallation routine provided
with CheckMate. The m-filei nstal | . mfound in the
CM- directory provides this functionality. Symply type
install (' <CM~>") a the MATLAB command
prompt and the appropriate changes will be made.
CheckMate is now ready for use.

The example used throughout this paper is a three
dimensional linear system, RGSW (ReGion SWitch). All
necessary files can be found in the CM~/demo/rgsw
directory, or the reader can choose to build the model and
files as they are introduced throughout the paper. In this
example, the state space is restricted to the cube ranging
from —20 to 20 in each of the three x-yz directions. This
cube is the analysis region. It means that the verification
will consider this region to answer questions if some
specification is met or not. The system is a simple linear
switched dynamic system with two different dynamics.
One behavior (IN) is enabled when the system tragjectory
isinside theinternal region. In areal application it could
represent an error offset that a system has to obey in a
steady operation, before leaving the anaysis region.
When the system goes out of this internal region box,
another behavior (OUT) is enforced. The analysis region
and the internal region are represented in figure 1.
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figure 1- Analysis Region and internal region for verification

The differential equations in each case are the
following (in both cases vector bis[000]":

o1 1 10 01 1 10
IN:A =531 0 0JOUT:A =05 -1 0F
H1 1 of 81 1 of
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If, for someinitial condition, we would like to know
if the trajectory of the system reaches the internal region
before leaving the AR, we could just simulate the system
for this initial value. Depending on the time the system
trajectory takes to accommodates inside the internal
region, the answer could be TRUE or FALSE. In this
sense, it would be interesting to model and simulate this
system, in a user friendly environment. That is the subject
of the next section.

3 MODELING AND SIMULATING HYBRID SYSTEMS IN
CHECKMATE

CheckMate models are built with the MATLAB
Simulink GUI using two customized (masked) Simulink
blocks along with several of Simulink’s standard blocks.
Figure 1 shows the CheckMate block diagram and its
components for our example. To build the model from
scratch, the user must enter the command cnmew at the
MATLAB command prompt. This will open the
CheckMate library from which the user can construct the
system model. In figure 2 we see the currently set of
blocks allowed to be used in Checkmate:
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figure 2 — CheckMate customized blocks

3.1  Switched Continuous System Block (SCSB)

The custom SCSB represents a continuous dynamic
system with state equation X = f,(X), where u is a
discrete-valued input vector to the SCSB and the
continuous state vector x is the block’s output. Currently,
three types of dynamics can be specified in an SCSB for
each value of the input vector u: clock dynamics (X =C,
where ¢ is a constant vector), linear dynamics
(X= AX+Db, where A is a constant matrix and b is a
constant vector), and nonlinear dynamics (X = f (X)).
In the example system one of these blocks in necessary,
and should be named scs. There are several parameters

associated with the SCSB. The figure 3 gives us and idea
about them:
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This block represents a switched continuous dynamic spstem. The
switching function is m-file function f(=.u] that outputs the continuous
derivative =dot given continuous variable = and discrete [integer] input w.
Initial continuous =et and analyziz region parameters are used for PIHA
conversion purpose only. They do not affect the zsimulation result. They
must be @linearcon objects imported from the main workspace in the
MATLAE command window.

— Parameters
Mumber of Continuous Yariables

E
Mumber of Dizcrete Inputs:
1

Initial Continuous States:

[14:4:5]
Switching Function m-File:
Iswitchﬂl‘«
Iritial Continuous Set [@linearcon cell array from warkspace]
Ilgsw_ICS
Analyziz Hegion [@linearcon from work space]
|rgsw_.-’-\FE
Ok I Cancel I Help I A I

figure 3 — Configuration window for the SCSB block

The switching function is a .m file that gives us the
information about the dynamics of the system. For
RGSW example we have the file switchA.m below. The
variable u selects which dynamics should be used.

Once using the simulink environment and selecting a
PTHB block, an auxiliary window will pop up as
presented in figure . The specification for the internal
region for the RGSW example is a linearcon object
created from a setup file called setup.m, in figure 4.

function [sys,type] = sw tchA(x, u)

type = 'linear’
switch u
case 1,
=[-1 1 1
-1 0 0
-1 1 0];
case 2,
A= -11 1
0.5-1 0
-1 1 0];
ot herw se,
A = zeros(3,3);
end
sys.A = A sys.b =[0 0 0]’
return

function setup()

% decl are gl obal variables in base work space
eval i n(’ base’,’ gl obal _var’);

% decl are gl obal variables |ocally
gl obal _var

% setup paraneter for the PTHB bl ock di agram
assignin(’'base’,’in, ..
linearcon([],[],[00 1, 00 -1],[1; 11));

(=]
>
—-

niti condition setup

[0 0 1];

5;

[100; -100; 010; 0-10];
. [6;-4;6;-4];

i gnin('base', ' rgsw ICS,

{||nearcon(ICS CE, ICSdE ICS a,

o nng

8888
EEEE T

|
|
|
|
as

[

ICs_dl)});

% Anal ysi s region setup
ARC=[-100;0-20;,00-1;,001,010;10 0];
AR d = [20; 20; 20 20; 20; 207 ;
assignin(' base','rgsw AR ,. .

||nearcon([] [1. ARCAR d))

% setup verification paraneters
GLOBAL_SYSTEM = ' rgsw ;

GLOBAL_APARAM = ' rgsw_param ;
GLOBAL_SPEC = ' (AF AG (fsm== s1)) & (AG
~out _of _bound)'

return

3.2 Polyhedral Threshold Block (PTHB)

The other custom block in CheckMate is the
(PTHB), which represents a polyhedral region Cx<d
in the continuous space of the continuous-valued input
vector x. The PTHB output is a binary signal indicating
whether x is inside the region or not, i.e. whether or not
the condition CX<d is true. Only one PTHB is
necessary in our example to describe the region between
the two limits on the z-axis, astold before.

Parameters: in

— PalphedralThreshold [mask] (link)

Thiz block reprezentz a closed polyhedral region of the form C*x <= d. It
outputs 1 if the input = lies inside the polyhedron and O otherwize. The
@linearcon object representing the region must be full dimenszional, Le. no
equality constraint iz allowed in the object.

— Parameters
Palvhedion [&linearcon from work space]
E
Ok I Cancel Help A

figure 4 - Configuration window for the PTHB block

The initial condition, the analysis region and the
internal region hyperplane are defined as linearcon
object. The variable GLOBAL_SPEC shows the
specification that will be tested. We will detail thisin the
following sections.

3.3  Finite State Machine Block (FSMB)

Discrete dynamics are modeled using a (FSMB).
FSMBs are regular MATLAB Stateflow blocks that
conform to the following restrictions.

* No hierarchy is allowed in the Stateflow diagram.

» Datainputs must be Boolean functions of PTHB and
FSMB outputs only.

e Event inputs must be Boolean functions of PTHB
outputs only, i.e. events can only be generated by the
continuous tragjectory leaving or entering the
polyhedral regions.

*  Only one data output is allowed.

» Every sate in the Stateflow diagram is required to
have an entry action that sets the data output to a
unigue value for that state.

» No action other than the entry action discussed above
is allowed in the Stateflow diagram.

The discrete dynamics of RGSW can be described with
one FSMB having two states. Three events are assigned:




event coming_in, going_out and start. The start event
does nothing but starting the execution pointing TO the
initial condition in the FSM diagram. The variable q,
showed inside of the states sets up the output for the
FSMB, and corresponds to the value of variable u in the
setup m-file. One also can specify data input for the
FSMB. This could be used to establish guards for some
transitions. In figure 5 we have the FSMB for the RGSW
example:
going_out

coming_in

figure 5 — State flow diagram for RGSW example

Other Simulink blocks supported by CheckMate
include multiplexers for vectorizing signals and logic
blocks (AND, OR, NOT, etc.) for creating logical
combinations of PTHB and FSMB outputs. Additionally,
scopes, X-y plots, and other sink blocks can be used when
taking advantage of the simulation capabilities inherently
available through Simulink and CheckMate. A scope has
been added to the example system to look at trajectories
of the three state variables. In figure we have the
complete CheckMate model for the RGSW example.
There are some parameters the user must enter, in order
to give CheckMate al the details about the verification
process. For the RGSW example, these data are stored in
the filergsw_param.m.

Mux
start

Mux—‘

—
EN2

¢ T

fsm

figure 6 - RGSW modeled by CheckMate

function approx_param = rgsw_par an(q)

approx_param = [];
approx_paramdir_tol
appr ox_param var _t ol

[1:
1

approx_param si ze_tol = 40;

appr ox_param W = eye(3);

approx_paramT = 0.1;

approx_param max_time = Inf;

approx_param quanti zation_resolution = 0.1;
approx_param reachability_depth = Inf;

return

Thetable 1 has the description of each parameter. Several
parameters are used throughout the verification process.
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These parameters as well as any variables used in the
Simulink/Stateflow front-end model are defined and
stored in the MATLAB workspace. Parameters and
variables can be defined manually or through the use of
MATLAB mfiles.

dir_tol tolerance for patch "single-sided-ness'.
Decides when to split the region to
maintain the range of direction variance.

var_tol tolerance for patch vector field variation
relative to the vector field variation on
the parent invariant face

.size tol tolerance for patch size. It gives us the
maximum dlice to split the analysis
region.

W (diagonal) weighting matrix

T time step for flow pipe computation

.max_time time limit (sec) for mapping
computation

.eq_tol equilibrium termination tolerance for
mapping computation

.quantization_resolution | resolution for partition refinement

.reachability _depth" maximum depth of initia partition
reachability analysis

table 1 —internal parametersof CheckMate

In figure 7we can see the result of the simulation of
RGSW example for the initial condition X = [4,4,5] and
fsm=s2.

bz [ < 1, 11T, |21

¥ ¥ .Z (inthe same graphic)

0 4 10 15 20 28 30 3 40
TIME (seconds)

figure 7 — Simulation of the RGSW model

4 REPRESENTATIONS OF HYBRID SYSTEMS IN
CHECKMATE

In order to understand how CheckMate works, it is
useful to understand the two models of hybrid systems
used in CheckMate. Models built with the CheckMate
GUI are referred to as the threshold-event-driven hybrid
systems (TEDHSs). The formal model used for
verification in CheckMate is a class of hybrid automata
[6]. A threshold-event-driven hybrid system consists of
three types of subsystems, the switched continuous
system (SCS), the threshold event generator (TEG), and
the finite state machine (FSM). The SCS is the
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continuous dynamics system that takes in the discrete-
valued input u and produces its continuous state vector x
as the output. The continuous dynamics for x evolve
according to the differential equation or differential
inclusions selected by the discrete input u. The output of
the SCS is fed into the TEG, which produces an event
when a component of the vector x crosses a
corresponding threshold from the specified direction
(rising, falling, or both). The event signals from the TEG
drive the discrete transitions in the FSM whose output, in
turn, drives the continuous dynamics of the SCS.

As illustrated in Figure 7 CheckMate converts the
TEDHS into a polyhedral invariant hybrid automaton
(PIHA). The PIHA are a subclass of more general hybrid
automata. A hybrid automaton is a generalization of the
finite automaton that includes continuous dynamics
within each discrete state. Each discrete state in the
hybrid automaton is caled a location. Associated with
each location is an invariant, the condition which the
continuous state must satisfy while the hybrid automaton
resides in that location, and the flow equation
representing the continuous dynamics in that location.
Transitions between locations are called edges. Each
edge is labeled with guard and reset conditions on the
continuous state. The edge is enabled when the guard
condition is satisfied. Upon the location transition, the
values of the continuous state before and after the
transition must satisfy the reset condition. In general, the
analysis of hybrid automata can be very difficult. In
CheckMate, we restrict our attention to the
aforementioned PIHA. A PIHA is a hybrid automaton
with the following restrictions.

e The continuous dynamics for each location is
governed by an ordinary differential equation (ODE).

 Each guard condition is a linear inequality (a
hyperplane guard).

» Eachreset conditionisan identity.

»  For the hybrid automaton to remain in any location,

(simulink/stateflow Front End) (_ Matlab Text Editor )

Switched Dynamics CheckM ate

all guard conditions must be false. This restriction
implies that the invariant condition for any location
isthe convex

e polyhedron defined by conjunction of the
complements of the guards. This gives rise to the
name polyhedral-invariant hybrid automaton.

5 QUOTIENT TRANSITION SYSTEMS AND FLOWPIPE
APPROXIMATIONS

The verification portion of CheckMate is based on
the theory of quotient transition systems[14]. A quotient
transition system (QTYS) is a finite state transition system
that is a conservative approximation of the hybrid system.
A QTS is defined from a partition of the state space of
the hybrid system with each state in the QTS
corresponding to a member of the partition. In the QTS, a
transition is defined from a state (a set) P1 to another
state P2 if and only if there is a state p2 in P2 that is
reachable from a state pl in P1 in the origina hybrid
system. A QTS is a conservative approximation in the
sense that for every trgjectory in the original hybrid
system, there is a trgjectory in the QTS corresponding to
the set of states that the trajectory in the hybrid system
goes through. Thus, if we can verify that al trgjectories
in the QTS satisfy some property, we can conclude that
all trgjectories in the hybrid system also satisfy the same
property. CheckMate only pays attention to the behavior
of the hybrid system at the switching instants. Thus,
CheckMate approximates the QTS for the hybrid system
from the partition of the switching surfaces, which are the
boundaries of the location invariantsin the PIHA, and the
set of initial continuous states. The reachability analysis
used to define the transitions in the QTS is performed
using an approximation method called flow pipe
approximations [3].

The flow pipe approximation is used to define

Data

iauto_part

Operations
M odel V ariable V alues Commands P Structures
Verification Parameters piha_conversion -
PIHA Conversion GLOBAL_PIHA

( M atlab W orkspace )

iauto_build

Initial Partition I—d‘/
-«

parse_spec

—— | QTS Approximation |—>|

Specification Parsing <Z

U
GLOBAL_AUTOMATON __ [J*
[}

GLOBAL_TRANSITION

GLOBAL_SPEC_TREE U

verify

refinement_decision
|retinement _decision,,

refine_automaton

rauto_mapping

State Refinement

GLOBAL_AP_BUILD_LIST ﬂ

User informed of result )

GLOBAL_TBR U

GLOBAL_RAUTO_REM AP_LISTU

[Recompute M apping]<—>| GLOBAL_NEW_AUTOMATON U

rauto_transition

Transition Update
update_automaton W orkspace U pdate

Figure 7— CheckM ate verification procedure



transitions in the quotient transition system for the PIHA
as follows. A dtate in the quotient transition system is a
triple (1tp,q) where Ttis a polytope in the location (p,q) of
the PIHA. For each state in the quotient transition
system, the flow pipe is computed for the associated
polytope under the associated continuous dynamics. The
mapping set, the set of states on the invariant boundary
that can be reached from 11is computed. A transition is
then defined from (mp,q) to any other state whose
polytope overlaps with the mapping from Tt

As shown in Figure 7, CheckMate then performs
model checking [7] on this transition system to obtain a
verification result for the desired specification. If the
verification returns a positive result, then the program
informs the user and terminates. If a negative result is
returned, the user isinformed and given the option to quit
or alow CheckMate to refine the approximation and
repeat the verification. This process continues until a
positive verification result is obtained, or the user decides
to quit.

6 VERIFYING SYSTEMS

Checkmate can perform two kind of verification: a
quick and a complete verification. By quick verification
(command validate) we mean just testing the vertices of
the polyhedral defined by the initial conditions.
Checkmate calls the simulation environment from matlab,
and build the transition system following the simulation
trajectory. After the ssimulation entered in a null state, or
after a time out stuation, CheckMate check if the
transition system built satisfies the specification, written
in ACTL. For the RGSW system, we have a square the
initial condition 4<x<6, 4<y<6, z=5. In figure 8we can
see the result of the validate command for the vertices
and in figure 9 the trajectories are shown, as well as a
partial view of the inside box [x|<1, lyl<1, |zl<1. Note that
after some time, the trajectories concentrates inside of the
box. The advantage of the quick verification is that the
user can have a gross idea about the result of the
complete verification. If some vertices aready violates
some constraints, probably the verification wouldn’t give
any better result. In some cases, for linear time invariant
system, we can even rely on the results of the quick
verification, because if the initial set is convex, al the
reachable set from there will be also convex. If some
property is satisfied for the vertices of the initia
condition set, it will be by any inner point.

The complete verification, on the other hand,
performs the operations already mentioned in section 5.
in  we see the states of the approximate quotient
transition system that lead to the null event (represented
by the spiral with no further state transition). In we have
two different 3D partial views of the flowpipe, used to
generate the approximate quotient transition system.
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(1/4) init: t =1, X [6 65, qg=2, pth =0
--->..-->null _event / specification satisfied

(2/4) init: t =1, x =[645], q=2, pth =0
--->..-->null _event / specification satisfied

(3/4) init: t =1, x =[4605], =2, pth =0
---> ..-->null_event / specification satisfied

(4/4) init: t =1, x =[445], q=2, pth =0
--->..-->null _event / specification satisfied

Val i date —vertices

bl ock orders: x = [scs], q = [fsn], pth = [in]

figure 8 — Command validate for quick verification

Initial condition

figure9 —Trajectoriesfor theinitial condition vertices

... Initial state

| Reachable states|

: :
-4 -
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figure 11 — Flowpipe computation - 3D view

7 DISCUSSION AND RESEARCH DIRECTIONS

CheckMate has been developed to take advantage of
the characteristics of clock and linear dynamics [3].
Recently, revisions have been made to further reduce the
computations involved in the approximation of the QTS.
In particular, the flowpipe approximation procedure has
been amended for the linear (affine) case. The new
procedure considerably reduces the conservativeness of
the QTS approximations and reduces total computation
time. Future improvements are expected to deal with
sampled data systems and cases where the flow reduces
to an extremely small region (thus causing numerical
problems in the calculation of the flowpipes).
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