Cache Behavior of Combinator
Graph Reduction

PHILIP J. KOOPMAN, Jr., PETER LEE, and DANIEL P. SIEWIOREK
Carnegie Mellon University

The results of cache-simulation experiments with an abstract machine for reducing combina-
tor graphs are presented. The abstract machine, called TIGRE, exhibits reduction rates that,
for similar kinds of combinator graphs on similar kinds of hardware, compare favorably
with previously reported technigues. Furthermore, TIGRE maps easily and efficiently onto
standard computer architectures, particularly those that allow a restricted form of self-modifying
code. This provides some indication that the conventional “stored program” organization of
computer systems is not necessarily an inappropriate one for functional programming language
implementations.

This is not to say, however, that present day computer systems are well equipped to reduce
combinator graphs. In particular, the behavior of the cache memory has a significant effect on
performance. In order to study and quantify this effect, trace-driven cache simulations of a
TIGRE graph reducer running on a reduced instruction-set computer are conducted. The results
of these simulations are presented with the following hardware-cache parameters varied: cache
size, block size, associativity, memory update policy, and write-allocation policy. To begin with,
the cache organization of a commercially available system is used and then the performance
sensitivity with respect to variations of each parameter are measured. From the results of the
simulation study, a conclusion is made that combinator-graph reduction using TIGRE runs most
efficiently when using a cache memory with an allocate-on-write-miss strategy, moderately large
block size (preferably with subblock placement), and copy-back memory updates,

Categories and Subject Descriptors: B.3.2 (Memory Structures): Design Styles—cache memo-
ries; B.3.3 [Memory Structures): Performance Analysis and Design Aids—simulation; D.1.1
{Programming Techniques): Applicative (Functional) Programming; D.3.2 {Programming
Languages]: Language Classifications—applicative languages; 1.3 .4 (Programming
Languages}. Processors—compilers, interpreters

General Terms: Languages, Performance

Additional Key Words and Phrases: Abstract machine, combinators, graph reduction,
self-modifying code

A preliminary version of this paper appeared in the Proceedings of the IEEE 1990 International
Conference on Computer Languages (New Orleans, LA., Mar. 12-15, 199() [20]. This research
was supported in part by NASA /Goddard under contract NAG-5-1046. also in part by the
Defense Advanced Research Projects Agency (DOD), ARPA Order No. 5404, monitored by the
Office of Naval Research under the same contract,

Authors’ addresses: P. Koopman, United Technologies Research Center, 411 Silver Lane MS 58,
East Hartford, CT 06108; P. Lee and D. Siewiorek, Schoo | of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 15213,

Permission to copy without fee al} or part of this material is granted provided that the coples are
not made or distributed for direct commercial advantage, the ACM capyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. Te copy otherwise, or to republish, requires a fee and/or
specific permission.

© 1992 ACM 0164-0925/92 /0400- 0265 $01.50

ACM Transactions on Programming Languages and Svstems, Vol 14, No 2, April 1992 Pages 265-297

266 . P. J. Koopman, Jr.

1. INTRODUCTION

We present the results of our experiments with an abstract machine for
reducing combinator graphs. The abstract machine, called TIGRE (the
Threaded Interpretive Graph Reduction Engine), treats combinator graphs
as self-modifying threaded programs, in a manner similar to that described
by Augusteijn and van der Hoeven [2]. We have found that this method
reduces combinator graphs at a rate that compares quite favorably with
previously reported techniques on similar hardware (18, 19]. Furthermore,
TIGRE maps remarkably easily and efficiently onto standard computer archi-
tectures, particularly those that allow a restricted form of self-modifying
code. This provides some indication that the conventional “stored program”
organization of computer systems (the so-called “von Neumann” archi-
tecture!) may be more appropriate for functional programming language
implementations than previously thought [4].

This is not to say, however, that present-day computer systems are well-
equipped to reduce combinator graphs. During the development of TIGRE,
the speed of graph reduction on different hardware platforms repeatedly
surprised us, in some cases failing to meet expectations, and in other cases
substantially exceeding predicted performance levels. For example, a VAX
8800 mainframe system [7] with a faster clock rate and wider system bus
than the DECstation 3100 [9] performed 355,000 reduction applications per
second (RAPS), compared to the DECstation’s 470,000 RAPS. Further experi-
mentation with the VAX implementation led to the discovery that its reduc-
tion rate could be increased by 20% simply by making a small change to the
code to partially compensate for the write-no-allocate cache management
strategy used by that machine. This result prompted us to undertake a
detailed study of the architectural issues affecting the efficiency of graph
reduction, in particular the effect of hardware-cache behavior.

This paper, then, is a report on our study. We begin with a brief review of
combinator-graph reduction. This is followed by a description of the TIGRE
abstract machine and its implementation, as well as a report on its perfor-
mance and comparisons with other methods for reducing similar kinds of
combinator graphs. Then, we present the results of simulating a TIGRE
graph reducer running on a reduced instruction set computer with
the following hardware-cache parameters varied: cache size, block size,
associativity, memory update policy, and write-allocation policy.

Our simulation experiments were conducted in two stages, the first stage
being an exhaustive test of selected values for all combinations of parame-
ters. The result of this stage of experimentation, which we reported on earlier
[20], showed that there were no local extrema in cache miss behavior as a
function of cache design choices. In this paper we begin with the cache design
of a real machine and simulate the performance sensitivity with respect to
variations of individual parameters for several programs. As a check on the

Actually, according to Hennessy and Patterson {12, page 23], credit for the notion of the stored
program computer should be given to Eckert and Mauchly.

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.

Cache Behavior of Combinator Graph Reduction . 267

accuracy of our simulations, we compare the results with measured perfor-
mance on real hardware. From the results of this study, we can conclude that
combinator-graph reduction using TIGRE runs most efficiently when using a
cache memory with an allocate-write-on-miss strategy, moderately large
blodck size (preferably with subblock placement), and copy-back memory
updates.

2. BACKGROUND

Implementation techniques for lazy functional programming langua

as SASL (33] and Haskell [14] have long been tll;e sg\:bject of%eseagrlclh.ge’?uil:;l;
[35] described a technique for implementing lazy functional languages, based
on what is sometimes referred to as SK-combinator reduction. This idea is
based on the well-known fact that all of the variables in a \-expression can be
abstrgcted by transforming it into an applicative expression involving only
combinators. A combinator is simply (the name of) a closed A-expression [5].
In addition to being closed, there is typically the additional stipulation that
A-abstractions not occur in the argument position of an application, as
specified by the following grammar: ’

comb::= \v. comb | Av. exp
exp:= c|v|expexp |(exp)

where ¢ and v range over constants and variables, respectively. (As usual
applications associate to the left.) Three combinators of particular interest
are called S, K, and 1.

S =N.Ng. Ax. fx(gx)
K=Xx.Ay.x
I=Xx.x
The important property is that any M-expression—and hence functional
program—can be trapsformed into an expression consisting solely of applica-
tions of these combinators by a so-called “bracket abstraction” algorithm
[36]. (Actually, only S and K are necessary, as I = SKK.)

The bracket abstraction of a variable v from a A\-expression e, expressed as
[vle, can be defined as follows:

[v]U:I
[v]v = Ko’ (v#v)
[U]C=Kc

[v]ee = S([v]e)([v]¢)
[o]nv’. e = [o] ([]e)
where ¢ ranges over combinator names in addition to constants.
For a practical programming language, additional combinators represent-

ipg primitivg operations, such as arithmetic operators, are needed for effi-
cient execution. Other nonprimitive combinators can also be added (along

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992

268 . P. J. Koopman, Jr.

with suitable extensions to the bracket abstraction algorithm) so as to reduce
the size of the resultant combinator expressions.

With all of the variables abstracted from a functional program, the result-
ing combinator expression is easily represented as a binary tree with names
of combinators appearing at the leaves and internal nodes representing
applications. As a further optimization, the tree is transformed into a graph
in which subgraph sharing denotes the occurrence of common subexpressions
in the combinator program, cycles denote recursion and combinator defini-
tions correspond to graph-rewrite rules. (See for example in Figure 1, the
graph-rewrite rule corresponding to the S combinator.) In this scheme, then,
executing programs is a process of graph reduction: The left-most “spine” of
the graph is traversed until a combinator is encountered, at which point the
graph is rewritten according to the corresponding rewrite rule. This process
is repeated on the new graphs, until finally an irreducible graph is produced,
at which point program execution is complete. The consistent reduction of the
left-most spines of the graphs corresponds to a normal-order reduction strat-
egy which, in conjunction with the sharing and destructive update of pointers
to subgraphs, leads to the so-called ““lazy” evaluation of functional programs.

Besides the great advantage in efficiency gained from the sharing of
subgraphs, the language implementation overall becomes much simpler by
virtue of the fact that variable substitution is, in effect, encapsulated in a
fixed set of simple rules for rewriting graphs. Indeed, a pure graph reducer
can be implemented quite easily and will often exhibit better performance
than implementations of lazy functional languages based on other ap-
proaches. Such simplicity also lends itself to direct hardware implementa-
tion, as in SKIM [32] and NORMA [28]. Still, lazy evaluation of functional
programs, even via combinator-graph reduction, is in practice much less
efficient than applicative-order (or ‘“‘eager”) evaluation. Lazy function-
al programming languages such as Haskell require lazy evaluation, so a
great deal of research has been directed towards improving the efficiency of
combinator-based techniques.

As we mentioned earlier, the most straightforward way to improve effi-
ciency is to add more combinators, thereby reducing both the size of the
graphs and the number of reductions needed for program execution. This
approach was used by Turner [36], who developed what we refer to as the
“Turner set” of SK-combinators. (In Section 4 we give more details about the
combinators, benchmark programs and compilation model used in our experi-
ments.) Another significantly more sophisticated development along these
lines, first proposed by Hughes [15], is the notion of supercombinators in
which the observation is made that any function can be made into a combina-
tor by adding extra formal parameters corresponding to the free variables
appearing in the function body. Rather than using a fixed set of combinators,
supercombinator compilation produces a set of “tailor-made” combinators for
each program, resulting in much larger-grain reduction steps and thus
requiring fewer reductions for evaluation.

The issues involved in SK-combinator reduction differ markedly from those
for supercombinator reduction. Promising approaches to supercombinator

ACM Transactions on Programming Languages and Systems, Vol 14, No. 2, April 1992.

Cache Behavior of Combinator Graph Reduction - 269

- .

S 7

X

Fig. 1. Graph rewriting specified by the § combinator.

Fig. 2. Typical representation of a graph

node. [t T rerrsme | RiGHT SIDE]

redu.ctlon ipclude TIM [10] and the “Spineless, Tagless, G-machine” [24]. Of
particular 1mport:,ance in supercombinator reduction i)s the interaction.be
tween th('e reduction technique and compile-time analyses such as strictn :
and sharing .analysis [1]. This interaction leads to a notion of “com il:ds’s’
f;?ph reduction, to which various optimization techniques can be applizd In
thls paper, we focus our attgntion on pure SK-combinator reduction rather
. an_supercombmator reduction, despite the fact that supercombinator redu
tion is generally a more efficient way to implement lazy functional pro amc-
We concentra}te on SK reduction because we desire to study the bSha%;o St;
g‘:}zpl;t;eductlontin tfh:habsence of influences from the compile-time analyrse(:s
er aspects of the compilation technology. I i i i
n}ents, 1t 1s particularly difficult to quantify t}glz efrf]ec(:)tl;ro??rlz;gfitcliznas:f;“.
tions about t.he underlying hardware (such as the size of the register set) thpt.
are nece.sssarlly made by compiled systems. We will return to this point in oa
concluding remarks and speculate on how supercombinator reductio i Ei
have affected the outcome of our experiments. e

3. THE TIGRE ABSTRACT MACHINE

'tI‘he major dlfﬁcult}es in performing graph reduction efficiently are in
raversing the graph’s left spine (sometimes referred to as “stack unwindin)
and in the case analysis of graph-node tags. Reduction or elimination of thfse
costs.cz.m greatly improve performance. In this section, we shall begin b
describing a straightforward mechanism for graph redu’ction (based 5:1 thy
Chalxpers G-Machine as described by Peyton Jones [25]). Then, we sh l?
exp.lam hovy self-modifying threaded code, as employed by ’.I‘IGREy is bsl at
avgfd certain inefficiencies present in the straightforward approacil e
o ;gu;‘e 2 shows th_at nodes are typically represented by three one-word
telds. ' he first field is a tag for the values in the application node. This ta
;/3(1;;:515 sel;actetq so as to be an index value into an entry table c;)ntaining
5es ol action routines. Accessing a node requi -indi i
operation through the tag and entry tgble. On ae\gr)r(ezsarachdiizcbtll(:riendul;i:;%n

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.

270 . P. J. Koopman, Jr.

TAG LEFT SIDE TAG RIGHT SIDE

Fig. 3. Generalized representation of
a graph node.

pointer const 22

-

comb + const 11

Fig. 4. Example graph for the expression {{+11) 22).

ing a node while traversing the spine requires four instructions, including
this double-indirect jump through the entry table {25]:

movi Head(r0) . r0
movi 0, - (%EP)
movi (rO), ri

Sjmp *0 _ Unwind(r1)

One of the key points of TIGRE is the elimination of most of this overhead for
traversing graph nodes during the unwinding process. This can best be
accomplished simply by eliminating the need for tags, thereby eliminating
the cost of tag interpretation. In the following presentation, we eliminate the
tags in several stages.

Figure 3 shows a generalized node representation which has tags associ-
ated with both the left-hand and right-hand side fields of the node. Figure 4
shows a tree for the expression ((4+11) 22), where + is the addition combina-
tor, which we shall use as a running example. The numbers next to the
nodes serve as labels for our discussion. Although only three kinds of tags
are shown in the example, typically more tag types are used in actual
implementations.

As a first step in eliminating the tags, we replace the fields containing
constant values by pointers to indirection nodes (i.e., nodes that apply the 1
combinator). Figure 5 shows the result of this rewriting. Any graph can be
rewritten so that constant values are placed in indirection nodes, and in fact
this is a standard technique in graph reduction. For example, the + combina-
tor, when executed, creates an indirection node with the sum. This allows the
fields of the root node of the original graph to be overwritten by the result of
the graph rewrite.

Now, constant values are only found as arguments of indirection nodes. If
these I combinators in the left-hand sides of constant nodes are renamed as

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992

Cache Behavior of Combinator Graph Reduction . 271

0
poinler / pointer]
comb I const 22
1
comb + | pointer
: /
comb I const 11
Fig. 5. Example graph with indirection nodes.
0
pointer pointer
3
omb LIT 22
1
comb + pointer J

comb LIT 11

Fig. 6. Example graph with LIT nodes.

LIT combinators (short for “literal value” combinators), as shown in Figure
6, the constant tag is no longer needed, since the LIT combinator implicitly
identifies the argument as a constant value. All other special tags, including
tags for other numeric types, can be eliminated by defining new combinators
(for example, FLIT for floating point constants) in a similar manner.

The graph shown in Figure 6 now only has two tag types: combinator and
pointer. At this point, a number of standard techniques can be used to reduce
tag-checking costs. For instance, all nodes and therefore pointer values can
be aligned on four-byte boundaries. (On some machines, this improves speed
or is even required.) The lowest bit of a cell’s contents can then be used as a
one-bit tag.

The case analysis for numeric constants has been replaced by the need to
reduce LIT combinators, but the amount of tag checking on all other cells
has been reduced. This representation is used in interpreted implementations
of graph reduction. For example, in the C programming language, the
reducer can be programmed to unwind the stack by looping while scanning
the low-order bit of left-hand side cells. When a nonpointer value is encoun-
tered, a case statement can then be used to jump to the appropriate graph-
rewriting code. This technique corresponds precisely to threaded code inter-
pretation [6], and is used by the version of TIGRE which is implemented in C.

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.

272 . P. J. Koopman, Jr.

spine stack
program
subgraphs

Fig. 7. Graph spine traversal.

3.1 Self-Modifying Threaded Code

There is an additional key insight which provides an approximately two-fold
speedup in the execution speed of graph reduction. This is gained by exploit-
ing the hardware support for graph traversal that already exists in many
conventional processors.

The generic graph shown in Figure 7 is executed by traversing the leftmost
spine, placing pointers to ancestor nodes onto a stack (the so-called “‘spine
stack”). When a combinator is encountered in the graph, some code to carry
out the graph rewrite is executed. The data structure is controlling the
execution of the program. Another, more insightful way to view this is that
the data structure is itself a program with two instruction types: pointer and
combinator. Then graph reduction is essentially a process of interpreting a
self-modifying threaded program that happens to reside in the node heap. In
other words, the graph is a program that consists mainly of calls to subrou-
tines. These subroutines then contain calls to other subroutines, and so on,
until finally, some other executable code, which performs a graph rewrite, is
found.

The key idea is that the spine stack is actually a subroutine return stack for
a threaded program. As control flows from node 0 to node 1 to node 2 to node
3 in the graph of Figure 7, these nodes are stored on the spine stack.
Eventually, a rewriting of the graph involving the right-hand side fields of
these nodes will be performed. So, what is actually needed on the stack are
pointers to the right-hand side fields of each node. If the left-hand sides of
each node are viewed as subroutine call instructions, then the return ad-
dresses which would be automatically saved on the return stack would be the
addresses of the right-hand fields of the spine of the graph, which is exactly
the desired behavior.

Combinator nodes, such as node 3 in Figure 7, contain some sort of token
value that invokes a combinator. At some point during program execution,
this value will have to be resolved to an address for code to be executed, so
the actual code addresses of the combinator action routines can be stored

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.

Cache Behavior of Combinator Graph Reduction . 273

Fig. 8. Example graph as self-modifying code.

instead of token values. In fact, a subroutine call to the combinator code can
be stored, so that the address of the right-hand side of node 3 will be pushed
onto the spine stack. Then, the combinator will have all its arguments
pointed to by the spine stack (which is now the subroutine return stack). A
pleasant side effect of this scheme is that there is now only one type of data
in the graph: the pointer. Hence there is only one type of node, and therefore
no conditional branching or case analysis is required at runtime. All nodes
contain either pointers to other nodes or pointers to combinator code. Figure
8 shows our running example of ((+11) 22) compiled using this scheme.
Since all node values (except the right-hand sides of LIT nodes) are subrou-
tine call instructions, we can simplify matters by saying that each field
contains a pointer that is interpreted as a subroutine call by the reduction
engine.

In such self-modifying implementations of TIGRE, graph nodes are repre-
sented by triples of 32-bit cells instead of pairs of 32-bit cells as found in
interpreted implementations.? The first cell of each triple contains a subrou-
tine call instruction while the second and third cells of the triple contain the
left-hand and right-hand sides of the node, respectively. The hardware’s
native subroutine calling mechanism is used to traverse the spine, using the
subroutine return stack as the spine stack. Figure 9 shows the example
graph as it appears in the VAX assembly-language implementation of
TIGRE. (Note that the jsb is the fast VAX subroutine call instruction which
only pushes th e program counter onto the return address stack, as opposed to
the slower funct ion call instructions which automatically allocate stack
frames.)

*There are associated costs with dedicating a third cell per node to increase speed. Aside from
the obvious memory space growth, three-word cells do not align well with cache blocks of 8 or 16
bytes. However, the high spatial locality of graph reduction (which is discussed in Section 5.3)
gives high probability that it is desirable to have adjacent nodes resident in cache simultane-
ously, minimizing wasted cache capacity caused by misalignment. A third cell is commonly used
in other graph reducers to speed up tag-checking; we simply use that same node for storing a
subroutine call instruction instead (and eliminate tag checking).

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992

274 . P.J. Koopman, Jr.

Fig. 9. Example graph ona VAX.

Evaluation of a program graph is initiated by performing a subroutine call
to jsb node of the root of a subgraph. The machine’s program counter then
traverses the left spine of the graph structure by executing the jsb instruc-
tions of the nodes following the leftmost spine. When a node points to a
combinator, the VAX simply begins executing the combinator code with the
return address stack providing addresses of the right-hand sides of parent
nodes for the combinator argument values. When graph nodes are rewritten,
only the pointer values (which are 32 bits in size on a VAX) need be
rewritten. The jsb opcode can be initialized upon acquisition of heap space
and thereafter never modified.

TIGRE performs subroutine call operations down the left spine of the
graph. When combinators are reached, they pop their arguments from the
return stack, perform graph rewrites and then jump to the new subgraph to
continue traversing the new left spine. The use of the return stack for graph
reduction is different than for “normal” subroutines in that subroutine
returns are never performed on the pointers to the combinator arguments but
rather, the addresses are consumed from the return stack by the combina-
tors. (This seems to be a characteristic of other combinator reducers as well).

The processor is in no sense interpreting the graph. It is directly executing
the data structure and using the hardware-provided subroutine call instruc-
tions to do the stack unwinding. In our experiments, we have found that
this technique exhibits performance that compares favorably with other
approaches described in the literature.

3.2 Implementing TIGRE

The availability of a fast subroutine-call instruction on most modern architec-
tures makes the TIGRE technique usable, in theory, on most computers. In
practice, however, there are issues having to do with modifications of the
instruction stream that make the approach difficult to implement on some
machines. In particular, machines with split instruction and data caches
typically do not directly support self-modifying code because the instruction

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.

Cache Behavior of Combinator Graph Reduction . 275

spine program
stack \ control memory
logic
ALU
sqatch '\. heap
registers memory

Fig. 10. Block diagram of the TIGRE
abstract machine.

DO_S: P ts £y g) x) -> ((£ x) (g x))
need2 (r8,r7) ; allocate 2 cells from heap
movl *(sp)+,r6 ; pointer to f into r6, popping spine stack
movl ré6, (r8) ; store f to build (f x)
movl *(sp), (x7) ; store g to build (g x)
movl 4 (sp),rl0 ; move pointer to pointer to x in ril0
movl (rl0),4(x7) ; store x in (g x)
movl (rl0),4(r8) ; store x in (f x)
movab -2 (r8),-4(rl0) ; rewrite subgraph root to point to (f x)
movab -2(r7), (rl0) ; rewrite subgraph root to point to (g x)
movab 4(r8), (sp) ; repoint top spine stack element to (f x)
jmp (ré6) ; start evaluating f
DO I: Po(IT) > ¢
movl *(sp),ré6 ; move pointer to f into ré
movab 4 (sp),sp ; Pop single argqument from spine stack
jmp (x6) ; "fall-through" to execute f
DO _K: 7 ((K £} x}) -> £ (note similarity to DO I)
movl *(sp),ré ; move pointer to f into ré6 -
movab 8(sp),sp / Pop BOTE arguments from spine stack
jmp (x6) ; "fall-through" to axecute f

Fig. 11. VAX-TIGRE implementation of S, K, and I combinators.

cache does not update modified cache-resident instructions. These problems
can be viewed as the result of inappropriate trade-offs in system design (at
least for the application of graph reduction) rather than the result of any
inherent limitation of truly general-purpose CPUs. Inasmuch as graph reduc-
tion is a self-modifying process, it is not surprising that efficient graph
reduction makes good use of self-modifying techniques.

Figure 10 shows a block diagram of a TIGRE abstract machine. As a
minimum, TIGRE requires a processing unit (with ALU and control logic), a
gpine stack /subroutine return stack, a small collection of registers for hold-
ing temporary values, program memory for holding combinator definitions,
and heap memory for holding the graph nodes. In the VAX implementation,

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.

276 . P. J. Koopman, Jr.
DO_IF: (((IF x) £) g) -> (I £) (if x true)
- : -> (Ig) (if x false)
movl *(sp)+,r6 ; pointer to x into r6, popping spine stack
jsb (x6) ; avaluate x, result in rll
movl 4 (sp),xrl0 ; pointer to root of subgraph in rl0
tstl rll ; test truth of rll
jeql L39
movl *(sp), (xrl0) ; if true, overwrite with f (else leave g)
L39: $DO I,-4(xrl0) ; place I in left side
movl (rlE),rG ; place either £ or g in 16
addl2 $8,sp ; pop last 2 arguments from spine stack
jmp (xr6) ; jump to £ or g
DO_LIT: ; (LIT n) -> leave n in register rll
movl *(sp)+,ril : load right-hand-side into ril
rsb ; end of evaluation - result is in rll
DO PLUS: ; ((+ x) v) -> (LIT z)

; get address of x in xé6

movl * (sp)+,r6]
evaluate x, leaving result in rll

jsb (re6) H

movl *(sp),r6 ; get address of y in r6

pushl rll ; stash value of x

jsb (x6) ; evaluate y, leaving result in ril

addl2 (sp)+,rll ; recover value of x from stack, cx‘:mpute z
movl (sp)+,r9 ; pop address of root of subgraph :.nte.j: r9
movl $DO LIT, -4(r9) ; place LIT combinator in left-hand side

; place result z in right-hand side

movl rll, (z9) d 3
end of evaluation — result is in rll

rsb H

Fig. 12. VAX-TIGRE implementation of some primitive operation combinators.

the stack memory, combinator memory, and graph memory all reside in the
same memory space. Figures 11 and 12 give sketches of the VAX_ assem.bly
code implementing the combinators for the SKI combinatoxj set. This co€ie isa
simple version written for clarity. The VAX implementation actually in use
has various small optimizations to eliminate redundant memory reads and
better exploit the pipeline of high-end VAX mainframe systems. _

Note that this code does not explicitly check for the case that an mgufﬁ»
cient number of arguments are supplied to a combinator. Such a situation is
treated as an exceptional condition which can be trapped in a num_ber
of ways. Our current implementation places several pointers to e.xc.ep.tx‘on-
trapping code beneath the base of the spine stack when the stack is initial-
ized. Thus, any combinator that attempts to evaluate arg}lments tbat have
not been supplied will generate a trap, invoking the exception-handling code.
An alternative method is to use the virtual-memory hardware to protect t}}e
memory page at the base of the spine stack. Then., a stack underﬂpw will
generate a page trap, which could be handled simply by returning the
weak-head normal form graph. .

In TIGRE, traversing the leftmost spine is typically less expensive than

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992

Cache Behavior of Combinator Graph Reduction . 277

rewriting the graph. This leads to some novel design decisions, one of which
affects the implementation of “projection” combinators such as I and K. The
implementations of these combinators as shown in Figure 11 do not modify
the graph at all, but rather redirect the flow of control of the graph evalua-
tion, thereby popping elements from the return stack as they execute. K and
I are two instances of the set of projection combinators which simply drop a
number of parent nodes while performing an indirection operation on the
topmost node on the spine stack. This optimization may degrade garbage
collection performance by, for example, leaving subgraphs attached to a K
node when they would have otherwise been abandoned, but our experience
thus far has been that the speedup realized by avoiding graph rewrites more
than makes up for this inefficiency.

4. MEASURING THE PERFORMANCE OF TIGRE

TIGRE has been implemented in C, VAX assembler, and MIPS R2000
assembler. (An initial exploration was carried out in Forth, a language noted
for its support of threaded code). Table I gives some benchmark results for
the various versions of TIGRE on several hardware platforms. In addition
to total CPU time, a speed rating in terms of reduction-applications-per-
second (RAPS) is given. Each graph rewriting induced by the execution of a
combinator counts as a reduction application.

The C implementation, which we use on Sun workstations and the Cray
Y-MP, uses threaded interpretation as described in Section 3. The version
written in VAX assembler uses the jsb instruction to perform self-modifying
threaded execution of the graph as discussed in Section 3.1. The MIPS R2000
assembly-language implementation, for use on the DECstation 3100 work-
station, uses a carefully written threaded interpretive loop instead of
direct execution. This is done because the instruction set does not provide
a full subroutine-call instruction, and also the instruction cache is not
automatically updated when code is modified.

In all of the implementations, simple stop-and-copy garbage collection
[11] is used. Every benchmark is run with a heap memory which is small
enough that several dozen garbage-collection cycles are required. As might
be expected, the versions of TIGRE implemented in assembly language are
significantly faster than those versions implemented in C.

The various TIGRE implementations have been run on a variety of hard-
ware platforms. The DECstation 3100 is a 16.7 MHz MIPS R2000-based
workstation. The VAX 8800 is a 22 MHz mainframe. The VAXstation 3200
is a high-end microVAX workstation. Cray Y-MP [26] is a vectorized super-
computer that has a fast scalar processing unit. The Sun 3/260 system is a 24
MHz Motorola 68020 workstation with cache memory. The Sun 3/75 system
is 2 16 MHz 68020 workstation with no cache memory. The C implementa-
tion on the Sun 3/75 and Sun 3/260 workstations is compiled by the GNU C
compiler [31] with the optimization switch turned on.

The benchmark programs, excerpts of which are shown in Figure 13, are
written in a polymorphic functional language which is essentially a simple

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992,

278

P. J. Koopman, Jr.

Table I. Benchmark Results for TIGRE

Platform Program Time Speed
(sec) { (RAPS)

DECstation 3100 | SKIfib(23) 2.20 | 495000
(16.7 MHz) Fib(23) 1.58 | 470000
NFib(23) 2.68 | 484000

Tak 12.58 | 420000

NthPrime(300) | 2.60 | 364000

8Queens(20) 5.63 | 433000

VAX 8800 SKIfib(23) 2.82 | 387000
(22 MHz) Fib(23) 2.10 | 355000
NFib(23) 3.55 | 366000

Tak 16.07 | 329000

NthPrime(300) | 3.91 | 242000

8Queens(20) 8.33 | 293000

VAXstation 3200 | SKIfib(23) 6.33 | 172000
Fib(23) 4.80 | 155000

NFib(23) 8.23 | 158000

Cray Y-MP SKIfib(23) 3.09 | 352000
(167 MHz) Fib(23) 240 | 310000
NFib(23) 4.25 | 305000

Sun 3/260 SKIfib(23) 8.62 | 126000
(24 MHz) Fib(23) 7.01 | 105000
NFib(23) 12.37 | 105000

Sun 3/75 SKIfib(23) 14.62 | 75000
(16.7 MHz) Fib(23) 12.75 58000
NFib(23) 22.02 | 59000

To obtain these benchmark results, the C implementation of TIGRE was used for the Sun and
Cray timings. Self-modifying assembly code was used for the VAX timings. The DECstation
timings were obtained from a threaded interpretive implementation written in MIPS R2000
assembler.

subset of Haskell [14]. Our compiler performs polymorphic type inference,
followed by translation to the intermediate language FLIC [22]. The FLIC
terms are then compiled into combinator graphs. The combinator graph
output produced for the Fib benchmark program is shown in Figure 14. No
strictness or sharing analysis, or any other kind of optimizations beyond
compiling to a fixed set of combinators, are used. The precise set of combina-
tors and the bracket abstraction algorithm used in our compiler are described
by Jones [25, Ch. 16]. Included in this set of combinators, in addition to S, K,
and I, are B, C, S', B*, and C’. Because most of these combinators were first
proposed by Turner [36], we refer to this as the “Turner set” of combinators.
Furthermore, a complete collection of primitive operation combinators as
specified in the FLIC language are also used.

The Fib(n) benchmark program is the standard recursive program for
computing the nth Fibonacci number. SKIfib(r) is the same program, but
compiled using only the S, K, and I combinators (in addition to FLIC
primitives). The Nfib(n) program is the commonly reported benchmark that
tallies the number of recursions used in computing a Fibonacci number. Tak
(heavy use of function calls), NthPrime(n) (computation of the nth prime),

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992

Cache Behavior of Combinator Graph Reduction . 279

£ib 0 = 0
fib 1 =1
fib (n+2) = fib (n+l) + fib n

nfib 0 = 1
nfib 1 = 1
nfib (n+2) = 1 + nfib (n+l) + nfib n

tak x y z { not (y<x) } = z
tak x y z = tak (tak {(x~-1) y z) (tak (y-1) z x) (tak (z-1) x y)

nthprime n =
nth n (2:sieve [3,5..1)
where
sieve (p:r) = p:(sieve [x|| x <- r, with x mod p == 0])

eightqueens n =
nth n (queens n)
where
queens 0 = [[]]
queens (n+l) = [q:b|| b <- queens n, q <- [1..8], with safe q b]

safe 9@ b = forall [not (checks qb i)|| i <- index b]
checks @ b i = (@ = b|[i) | (abs (gq-b!1i) == i+l)

Fig. 13. Excerpts of lazy functional programs used in benchmark studies. For our benchmarks,
we use a simple polymorphic language based on Haskell.

and 8Queens(n) (computation of n solutions to the 8-queens problem) are
versions of other commonly used benchmarks.

We now attempt to make some comparisons with two other techniques for
reducing similar kinds of combinator graphs. Comparisons of this type are
fraught with peril because of varying execution platforms and operating
system environments. Nonetheless, we can draw a few rough conclusions
about the performance of the TIGRE approach.

4.1 Hyperlazy Evaluation

Hyperlazy evaluation [21] focuses on only the three basic combinators S, K,
and I. This permits implementing combinator-graph reduction that is lazy at
two levels. It provides for lazy function evaluation and also lazy updating of
the graph in memory by using registers to pass small portions of the tree
between combinators.

The Hyperlazy evaluation scheme attempts to deal with common sequences
of graph manipulation operations not by creating more complicated combina-
tors, but rather by implementing a finite state machine that remembers the
sequence of the last few combinators that have been executed. This finite
state machine enforces a discipline of maintaining outputs of a combinator

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992

280 . P. J. Koopman, Jr.
#1 <#2,CONST_NIL> #28 <#29,.#7>
#2 <CONS, #3> $29 <BSTAR, #30>
#3 <#¢, 87> #30 <I,INT PLUS>
#7 <I,¥8> #18 <S,#19>
#8 <#9,#16> #19 <#20,#24>
#16 <I, #17> #20 <#21,#22>
#17 <#18,#25> #22 <#23,#24¢>
#25 <#26,#37> #24 <LIT,1>
#37 <#38,3#39%> #23 <C,INT_EQ>
#39 <#40,#36> #21 <CPRIME,IF>
#40 <C,INT MINUS> #9 <3S, #10>
#3838 <B, #7> $10 <#11,$15>
#26 <S,#27> #11 <¥$12,#13>
#27 <#28,#31> #13 <#14,#15>
#31 <#32,#24> #15 <LIT, 0>
#32 <#33,#34> #14 <C,INT_EQ>
#34 <#35,#36> #12 <CPRIME, IF>
#36 <LIT,2> 4 <§5,46>
#35 <C, INT MINUS> #6 "f£ib"
#33 <CPRIME, #30> #5 <TUPLE_n,2>

Fig. 14. Graph output of the lazy functional language compiler for Fib. This figure shows the
graph output produced for the Fib(r) program. Each node is represented by a node identifier
(which is an integer) along with the identifier or combinator for each of the left and right
children.

sequence in designated registers for use by the next combinator in the state
sequence. Implementing the finite state machine involves performing a case
analysis at the end of each combinator to jump to the next state based on the
next combinator executed from the graph.

One problem with this approach is a combinatorial explosion in the num-
ber of states (and therefore the number of code fragments to handle these
states) as the length of the “memory” of the system is increased or as the
number of combinators that is recognized by the system is increased. In the
actual system, the C combinator was used in addition to S, K, and I since it
resulted in significant efficiency improvements.

The reported speed for the Hyperlazy Evaluator shown in Table II is 4,000
nfib recursions per second. This speed was measured on an Acorn Archimedes
system (a RISC system) running at 8 MHz. It is difficult to make a direct
comparison between the ARM RISC processor and machines available to us,
but the VAXstation 3200 is probably the closest match among the machines
we tested. In any event, TIGRE seems to compare favorably against the
Hyperlazy approach.

4.2 Norma

The Normal Order Reduction MAchine (NORMA) [28] is a special-purpose
machine built specifically for reducing combinator graphs. It was at one time
considered to be the fastest graph reducer in existence. Among NORMA’s

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.

Cache Behavior of Combinator Graph Reduction . 281

Table II. Performance of TIGRE versus Hyperlazy Evaluation

Platform Language Combinator | Time Speed
Set (sec) | (nfib/sec)
VAXstation 3200 | TIGRE (assembler) | Turner [192] 11400
ARM | Hyperlazy | SKI [=1 4000
Table IIl. Performance of TIGRE versus NORMA
Platform Language Combinator | Time Speed
Set (sec) | (nNRAPS)
DECstation 3100 | TIGRE (assembler) | Tumner | 1.58 T 472000 |
NORMA NORMA Turner [31 [240000 |

features are a 370-bit-wide microinstruction, five cooperating processors, a
64-bit-wide memory bus, a 64-bit-wide hardware spine stack and extensive
use of semicustom chips to optimize performance. A highly structured node
representation is used that includes five tag fields in addition to two data
fields. NORMA also uses some of its processors to perform garbage collec-
tion operations and heap allocation in parallel with node processing and
arithmetic operations. The machine reduces the Turner set of combinators.

NORMA is rated at approximately 250,000 RAPS. Table III shows NORMA
performance compared to TIGRE performance. TIGRE is significantly faster
than NORMA for Fib(23) both in elapsed time and in RAPS when using the
same combinator set. Furthermore, TIGRE has additional advantages in that
it can be easily ported to new machines and easily extended to handle new
combinators.

4.3 Conclusions about the Performance of TIGRE

Based on these comparisons, TIGRE appears to be a reasonably fast combina-
tor-graph reducer. And because TIGRE is relatively simple, it can be easily
ported to new machines. Of course, the benchmark programs used in our
comparisons are unrealistic in their size and complexity (with the possible
exception of the exact real arithmetic benchmark, described in the next
section), and our selection is rather limited, due to the unavailability of a
standard benchmark suite. However, despite the small size of the programs,
it is worth noting that they generally consume very large amounts of heap
memory, and so the behavior relative to heap accesses is far from trivial. At
any rate, the good performance results we have obtained, even for this
limited set of benchmarks, are a strong preliminary indicator that the TIGRE
method is worth pursuing.

5. THE BASIS FOR THE ARCHITECTURAL STUDY

During the development and testing of TIGRE on several different machines,
we found it quite difficult to predict the speed of graph reduction on any

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.

282 . P. J. Koopman, Jr.

particular machine, despite knowing roughly how the various machines
compared with respect to conventional C programs. We conjectured that the
unexpected variations in performance were caused by hardware implementa-
tion differences among platforms, especially with regard to cache organiza-
tion and management. In order to attain a better understanding of this effect,
4 set of cache simulations was run to measure TIGRE’s use of cache memory.

Our measurements showed the TIGRE implementation on the DECstation
3100 to be the fastest (despite the need for an interpretive threading loop).
Thus, we decided to use this machine’s cache configuration as the starting
point for our investigation. This approach gives a starting point based on a
real system from which we can examine how variations in cache organization
affect graph-reduction performance.

The DECstation 3100 has split instruction and data caches. During execu-
tion of combinator-graph reduction, the instruction cache holds code to exe-
cute primitives of an abstract machine. The data cache contains the actual
combinator graph, which is the abstract machine program being executed.
Since the kernel of code required for SK-graph reduction 1s small, previous
simulations showed that the instruction cache on this machine experiences
essentially a 100% hit ratio after the cache becomes filled with combinator
code. Therefore, we concentrate our simulation efforts on the data cache
performance.

Because graph reduction may be thought of as an interpretive process of
executing a program expressed as a data structure, the data cache is actually
the cache of prime importance. In this situation, the instruction cache 1s
acting as a sort of microcode memory for storing code to execute primitive
operations, and the data cache actually contains both the interpreted code
(the program graph) and the program data. The approach of studying only
the data cache has the added advantage of largely decoupling the particulars
of the abstract machine implementation and the instruction set of the CPU
being used (which affect instruction cache access) from the mechanics of
graph reduction (which appears as accesses (o the data cache).

The Dinerolll trace-driven cache simulator program was used [13]. The
starting point for the simulations, based on DECstation 3100 characteristics,
were the following: split instruction-cache and data-cache organization (with
only the data-cache simulated), 64K-byte data cache size, 4-byte block size,
direct-mapped organization, write-through memory updates, and allocation
on cache write miss. Kabakibo et al. {17] and Smith {30! provide more
information on cache management strategies and terminology.

5.1 Parametric Analysis

In earlier experimentation, we performed exhaustive simulations of the cache
design space for a single program [20] and showed that unexpected parameter
interactions and nonglobal extrema in performance are unlikely across the
full search space. We therefore explore variations in single cache parameters
rather than use an exhaustive search, thus avoiding excessive consumption
of computational resources. The cache simulations we report here were

ACM Transactions on Programming Languages and Systems, Vol 14, No. 2, April 1992,

Cache Behavior of Combinator Graph Reduction . 283

type Bignat = [Int]

data Sign = Pos | Neg
type Bignum = (Sign, Bigmnat)

typsa Bigrat = (Bignum, Bignum)
type Homography = (Bigrat, Bigrat)

{- A term in a continued fraction -}
data CFterm = Z Bignum | H Homography
type Bigreal = [CFterm]

{- Soms interesting real numbers. -}
{- Sqxt 2 -}
sqrt2 = [Z(bignum i) |{ i1 <~ 1:[2,2..]] :: Bigreal

{- The transcendental constant a -}
e = [Z(1i) |i 1 <- two:(rest 0)] :: Bigreal
where { rest n = cone: (add (mult two (bignum n}} two) :one:
(rest (n+l)) }

{- Compute the homography obtained by absorbing the first
- n+l terms of the continued fraction. -}
real n (] {E{(zerxo, one), {(one, zexrc))] :: Bigreal
real n {Z(z)] [A((z,onea), (one, zero))]
real n (r as [E{(?)]) r
real 0 r
real (n+l1l) (x0:xl:r)

r
real n ((B{(hom2 x0 x1)) : r)

T T I

hom2 (Z z) (Z z') =
(gnorm (add (mult z z’) one, 2'), (2, one))
hom2 (Z x} (H((n,d), (n’,d’)}} =
{qnoxrm {add (mult n z) d, n}), gqnorm (add (mult n’ z}) d’, n’))
hom2 (H((n,d),(n’,d’}))) (Z z) =
(qnorm (add (mult n z) n’, add (mult 4 z) 4’), (n, d))
hom2 (H((n,d), (n’,d4’})) (H((nl,dl}, (nl’,dl’}}) =
(qnoxrm (add (mult n nl) (mult n’ dl1), add (mult d nl) (mult 4’ di)),
¢gnorm {add (mult n nil’) {(mult n’' dl’), add (mult 4 nl’)} (mult 4’ dl°)))

Fig. 15. Excerpts from a program for exact real arithmetic.

performed by varying individual parameters, one at a time, across a wide
range.

We use the same benchmark programs described earlier, but with some-
“f'hat smaller inputs so as to keep the memory traces down to a manageable
size. In addition, we add a fairly large, 600-line program that implements
exact real arithmetic based on continued fractions, as described by Vuillemin
(37]. Excerpts of this program, which uses relatively complex data structures,
are shown in Figure 15. The inputs to the benchmark programs are as
follows: Fib(19), NthPrime(90), Tak(18 12 6), 8Queens(3), and Real(10 e)
(which computes an expansion of the constant e).

(?omplete program executions are simulated in all cases except for Tak
which is terminated at 10 million data references. Overall, the traces range,:

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992,

284 . P. J. Koopman, Jr.

Table IV. Performance for Baseline Cache Organization: 64K-Byte Data Cache,
4-Byte Block Size, Direct Mapped, Write-Through, Write Allocate

Fib | NthPrime Tak | 8Queens Real

cache miss ratio || 0.1124 0.1600 | 0.1658 0.1675 | 0.2614

bus traffic ratio 0.5274 0.5339 | 0.6115 0.6047 | 0.7288

from 1.3 million to 3.7 million data references in length, not counting Tak’s
10 million data references. Spot checks of significantly longer cache traces
show no substantive variations in the results. The garbage collector is not
traced, and in any case is not invoked at all for any of the runs except in
Tak. An assumption of sequential allocation from the heap space as perform-
ed by our stop-and-copy garbage collection scheme is still reflected in these
simulations.

Table IV summarizes the results of simulating the baseline cache configu-
ration. Two important characteristics emerge from the simulation. The cache
miss ratio (fraction of cache accesses experiencing a cache miss) is a rela-
tively high 11% to 26% for all the programs. Furthermore, the bus traffic
ratio (the average number of 4-byte words transferred on the memory bus per
cache access) is between 0.53 and 0.73. As a result, graph reduction pro-
grams generate memory references in excess of DECstation 3100 available
bus bandwidth. (This is discussed in detail in a later section). We show that
varying the cache parameters can have a dramatic effect on both the cache
miss ratio and the bus traffic ratio.

5.2 Write Allocation: The Importance of a Write-Allocate Strategy

A cache is said to perform write allocation when a memory write that
generates a cache miss copies the data being written into a newly allocated
cache block, thereby allowing subsequent reads and writes to that address to
achieve cache hits. A write-no-allocate policy does not write the data to cache,
but instead transfers the data directly to memory.

Table V shows the results of varying the write allocation policy. We have
found that this design parameter is more important by far than any of the
other parameters, with cache miss ratios increasing by a factor of 1.64
(harmonic mean) when a write-no-allocate policy is used.

The reason for the extreme sensitivity to write-allocation policy lies with
the use of heap nodes. Graph reduction allocates nodes from a garbage-
collected heap frequently during program execution. As heap nodes are
allocated, the addresses of the new cells are generated without accessing
heap memory (when using many current garbage collection techniques).
After heap nodes are allocated, graph data is first written to the heap, then
read back from it for further reduction operations. The first time the node is
written, a cache miss is generated. A write-allocate strategy will load the
node into the cache, while a write-no-allocate strategy will simply write the
node value into main memory. The problem comes on the subsequent read of
this node. A write-no-allocate policy will experience a second cache miss,

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992

Cache Behavior of Combinator Graph Reduction . 285

Table V. Cache Miss Ratios with Varying Write-Allocation Strategy (64K-Byte Data Cache,
4-Byte Block Size, Direct Mapped, Write-Through)

Allocation strategy Fib | NthPrime Tak | 8Queens Real

write allocate 0.1124 0.1600 | 0.1658 0.1675 | 0.2614

write no allocate 0.2036 0.2322 | 0.2945 0.2905 | 0.3929

while a write-allocate policy will often get a cache hit on the previously
written element, as long as no intervening memory reference has bumped the
node out of cache. This second cache miss with a write-no-allocate policy
significantly degrades performance. The effect becomes even more
pronounced when a long sequence of writes, each generating a cache
miss, is performed before the first read. This can happen when performing a
sequence of graph rewritings on a small portion of the program graph.

As an example of the importance of this range of cache performances, the
VAX 8800 mainframe uses a write-no-allocate strategy in managing its
cache. This strategy is commonly used to simplify the cache control logic on
machines with large cache block sizes. This strategy, combined with the
longer latency for a cache miss than that found on the DECstation 3100,
accounts for most of the performance difference between the two machines. In
order to increase the VAX 8800’s speed, our graph reduction code performs a
dummy memory read (i.e., a memory read, the results of which are discarded)
each time a group of heap cells is allocated. This forces allocation of a cache
line before the initial write to the heap cell and can increase overall perfor-
mance by up to 20% despite the overhead of executing extra instructions to
perform the memory reads.

Graph reduction makes extremely heavy use of a garbage-collected heap, so
the effectiveness of write-allocation on cache miss ratios is quite pronounced.
However, the need for a write-allocate cache policy when using garbage-
collected heaps probably extends beyond the graph reduction domain. Since a
heap, by its very nature, is used in a write-followed-by-read manner, a
write-allocate cache policy is likely to be important to support any system
that heavily uses a heap.

5.3 Block Size: Strong Spatial Locality Means Larger Block Size

Figures 16 and 17 shows the results of varying block size (the number of
bytes in the smallest allocated unit of memory in the cache) over a range of 4
bytes to 1024 bytes. The cache miss ratio for all programs decreases up to a
cache size of 256 bytes. This suggests strong spatial locality.

This strong spatial locality is probably due to three different effects. The
first effect is that heap nodes are allocated from the memory space
in sequential memory locations, thus giving a high degree of locality for
many write operations. This locality would, of course, be absent in garbage
collection schemes that do not perform sequential allocation of heap space.

The read miss ratio curves in Figure 16, which show the cache miss ratio
for only read memory accesses, show a secondary effect causing spatial

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.

286 . P. J. Koopman, Jr.
0.3 -[
0.25
m
1
S 0.2 ¢
S
0.15 -
g
a
{ 0.1
1
O) ~ ~
ing o —— A
0 — . M Eﬂ—ﬁ——r_é—#g
4 3 16 32 64 128 256 512 1024
block size
*= Fb ‘0 NthPnme = Tak O 8Queens 4~ Real
0.12 +
0.1 -
r
é
a r 0.08
d a
t 0.06
m 1
1 O
p 0.04
5
0.02
3
08 v . .
4 8 16 32 64 128 256 512 1024
block size

Fig. 16. Cache miss ratios with varying block size. (64K-byte data cache, direct mapped,
write-through, write allocate).

locality. The read miss ratio reaches a minimum in the range of 16 to 128
bytes. This indicates that there is good spatial locality in references to
previously allocated data. (The sharp drop past 512 bytes in the NthPrime
test may be caused by accesses to structures spaced apart by a stride of 512 to
1024 bytes. This explanation is consistent with the high traffic ratio, dis-
cussed below). For the Real program, the large value of 128 bytes also
reflects the fact that the relatively complex data structures tend to cluster
together data in memory.

A third reason for spatial locality is that the spine stack is used to access

elements in a first-in last-out manner.
One could, at first glance, decide to build a machine with a 16-byte

to 256-byte cache block size based on the overall miss ratios alone. For con-

ACM Transactions on Programming Languages and Systems, Vol 14, No. 2, April 1992.

s Bt S~ AN Y bl PR 7T 11 101

Cache Behavior of Combinator Graph Reduction . 287

e Fib © NthPrime - Tak Q. 8Queens 4 Real

t
r
a 6¢
f
f 5 ¢+
1
C 4 L /
T 3 -
d
!. 2 - /
1
1 %.
0 ' -+ ' - : — : !
4 8 16 32 64 128 256 512 1024

block size

Fig. 17. Traffic ratios with varying block size. (64K-byte data cache, direct mapped, write-
through, write allocate).

ventional programs, this decision could be unwise, because the bus traffic
ratio can increase dramatically with an increased block size, especially for a
data cache. This heavy traffic can slow a system down by greatly increasing
the time required to refill a cache block after a miss. With combinator-
graph reduction, this effect is much less pronounced. The traffic ratio does
not increase appreciably until the block size is between 32 and 128 bytes in
size. So a machine with a 32-byte cache block size appears to be entirely
reasonable for this application.

Even given the above data, there is a serious inefficiency inherent in using
a large cache block size with a program that frequently allocates heap space.
This inefficiency is caused by the fact that when a write miss occurs the
cache must read in data for all words of the block not being written in order
to ensure valid data for the entire block, assuming the use of a write-allocate
policy. For example, with a block size of 128 bytes, a write miss caused by the
first write of a heap cell will cause 124 bytes of data to be read in to fill the
block. But, this data (assuming the usual case that the write miss was at
the beginning of a cache block during sequential allocation) is uninitialized
(since it is In the unallocated portion of the heap) and 1s soon written over
with new heap data.

There are several ways to overcome this inefficiency. One way is to provide
an instruction that allocates a cache block but does not initialize the data.
Another way that is likely to be more commonly available 1s to make use of a
subblock placement feature in the cache memory. A cache is said to have
subblock placement if portions of a single cache block have associated with
them individual data-valid flag bits. This permits the cache controller to

ACM Transactions on Programming Languages and Systems, Vol 14, No 2, April 1992,

288 . P. J. Koopman, Jr.

manage the cache in large blocks, thus reducing resources required for tag
storage, while still allocating individual words of data within each cache
block. For our discussion, we shall assume a common subblock size of one
4-byte word.

With subblock placement a write operation that results in a cache miss
causes the cache block to be allocated but left uninitialized, with all data-
valid flag bits set to false. Then, the single word being written is placed into
this block and the corresponding data-valid flag bit is set true. Subsequent
writes to this block will simply set the data-valid flag bit on appropriate
subblocks. Reads to this block will check the data-valid flag bit in order to
determine whether a cache hit has taken place.

Subblock placement alone solves the problem of superfluous data transfer
when performing initializing writes. However, it does not take advantage of
locality on cache read misses, since only single subblocks are loaded on read
misses. Therefore, a better strategy to use combines subblock placement with
prefetching on cache read misses. A simple prefetching strategy is to fill the
entire cache block from memory when a read miss is experienced, but do no
memory fetching when a write miss is experienced.

Figure 18 shows the read miss ratios for individual 4-byte words and traffic
ratios using subblock placement combined with a block-fill prefetch strategy
for read misses. The data in this graph only extends to a block size of 128
bytes because of a cache simulator design limitation of 32 subblocks per
block. The overall miss ratio for cache blocks is identical to that experienced
when not using subblock placement (because the blocks are the same size).

The read miss ratios are higher with subblock placement than without it.
This is caused by the fact that the usually wasted read-back of data per-
formed without subblock placement can occasionally bring in useful data
when a write miss occurs while updating a suspension data structure. The
higher read miss ratio may, however, be more than offset by the decrease in
the traffic ratio caused by suppression of these same read-backs. The read
miss ratios are lower for a block size of 8 bytes than for the same programs
with a block size of 4 bytes. (Tak is an exception, but its miss ratios are so
small as to be unimportant to this argument.) This indicates that, since cache
write misses often have much lower penalties (often zero) than cache read
misses, the read miss ratios dictate a block size of 8 bytes and offer a
performance advantage over a block size of 4 bytes if prefetching with block
filling is used. The flatness of the traffic ratio curves is likely due to the
elimination of superfluous reads during initialization of heap storage.

The choice of only 8-byte block sizes for use with subblock placement might
seem at first to diminish somewhat the case for large block sizes shown when
subblocks were not used. However, there are significant design considera-
tions beyond the abilities of available cache simulators that can yield
improved performance with larger block sizes, with or without subblock
placement. One consideration is the use of burst transfer modes that can
make transmission of a single block quite a bit less expensive than the
transmission of two blocks of half the size.

Another consideration is that on multiprocessor systems (even if running a

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.

Cache Behavior of Combinator Graph Reduction . 289

0.16 4
0.14 . /o
T 0.12 4 /o
€
ar 0.1 4 /
d a 0
t 008 ¢ / L,
m i
i o 006 4
s
s 0,04}
002 a a o o o
i ———— :!) .- ;
4 8 16 2 o4 128
block size
®- Fib O NthPrime ®- Tak 0O- 8Queens 4~ Real
08 1
t 078 + * ‘ :
I
a R — “"___——__o
2 0.61]. S——— o a
f 05 . ¢ . * ®
Lol
c 04
T 0.3 o
a
t 02¢%
i
o 01f
0 + + +
4 8 16 32 64 128
block size

Fig. 18. Cache performance using subblock placement and a block-fi i

;] -fill prefetch strategy with
varying block size. (64K-byte data cache, direct mapped, write-through, write allocate, 4 byte
subblock size. ’

§eria1.version of graph reduction), cache write misses can cause overhead for
1nyok1ng cache coherency protocols. Because the absolute number of write
misses far exceeds the number of read misses in even the subblock placement
data, any nonzero penalty for write block misses, which are still lowest in the
25§-byte block size range, can quickly overwhelm advantages gained from
using smaller block sizes to minimize the ratio of read misses.

. Unc‘ier all conditions it appears that a block size of 8 bytes brings reduc-
tlops in the miss ratio. Depending on the specific trade-offs between read and
write cache miss penalties and whether subblock placement is available
some machines will benefit from block sizes of up to 256 bytes. »

Moderate block sizes are commonly seen in mainframe systems. (For
example, the VAX 8800 has a 16-byte bus). Large block sizes are seldom seen

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.

290 . P. J. Koopman, Jr

Table VI. Cache Traffic Ratios with Varying Write-Through Strategy (64K-Byte Data Cache,
4-Byte Block Size, Direct Mapped, Write Allocate)

Memory update Fib | NthPrime Tak | 8Queens Real
write through 0.5274 0.5339 | 0.6115 0.6047 | 0.7288
copy back 0.2241 0.2711 | 0.3300 0.3274 | 0.4689

in practice, because most conventional programs do not have enough spatial
locality to justify very large block sizes. However, moderate-to-large block
sizes will become more commonly available as they are used to conserve chip
area with CPUs having on-chip cache. The significant performance increases
possible with this application give strong incentive to consider a system
having moderate-to-large block sizes.

5.4 Write-Through Policy: Copy-Back Reduces Bus Traffic

A write-through cache transmits modified data to system memory every time
the processor performs a store operation. A copy-back cache buffers the data
in cache until it must be flushed to make the cache block available for
another address. If multiple writes are performed to a single address, a
copy-back cache eliminates the requirement to use memory bus bandwidth
for all but the ultimate write.

Table VI shows the traffic ratio for a write-through versus copy-back
management policy. The cache miss ratios are the same since this policy does
not affect whether misses occur. However, the bus traffic generated for the
write-through method is significantly higher than for copy-back (a harmonic
mean factor of 1.88). This is caused by the fact that a very high percentage of
memory accesses are memory writes. (Between 37% and 47% of memory
references were writes on the programs simulated). This can cause severe
problems with system performance by causing memory bus saturation (this
actually happened on the DECstation 3100, as discussed later).

One of the promises of combinator-graph reduction is simple parallel
program execution. Since many multiprocessors are built with a common
memory bus, bus traffic is a prime consideration in predicting the limits to
parallel processing performance. Because graph reduction causes a high
number of memory writes, use of copy-back cache is highly desirable to avoid
bus saturation for a multiprocessor system. However, even with copy-back
cache the bus traffic is reduced by less than a factor of two, indicating that a
multiprocessor using a common data bus could have a severe bus bandwidth
bottleneck.

5.6 Cache Size

Figure 19 shows the results of varying cache size over a range of 128 bytes to
256K bytes. While different programs show different degrees of temporal
locality, the curves suggest that very large cache sizes will not significantly
change the miss ratio. So conventional hardware platforms are probably
adequate with respect to cache size.

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.

e e

Cache Behavior of Combinator Graph Reduction - 291

®- Fib 0- NthPrime ®&- Tak O 8Queens A Real

T
a \\
t
i \o\p_n A
o —-_g;u —_—n
- a :,E\ 9
0 + + # + + + + + + + {
128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K

block size

Fig. 19. Cache performance with varying data cache size. (4-byte block size, direct mapped,
write-through, write allocate).

Table VII. Cache Miss Ratios with Varying Associativity (64K-Byte Data Cache,
4-Byte Block Size, Write-Through, Write Allocate)

Associativity Fib | NthPrime Tak | 8Queens Real]
direct mapped || 0.1124 0.1600 | 0.1658 0.1675 | 0.2614
2-way set 0.1113 0.1447 | 0.1635 0.1596 | 0.2368
4-way set 0.1113 0.1340 | 0.1634 0.1595 | 0.2299
8-way set 0.1113 0.1259 | 0.1634 0.1595 | 0.2273

5.6 Associativity

Table VII shows the results of varying the associativity of the cache from
direct mapped (1-way associative) to 8-way associative. Multiway set associa-
tivity seems to bring modest performance improvement, but not enough to be
a decisive design factor.

There is a case in which higher associativity would bring important
benefits. If heap allocation were done in a nonsequential manner (due to the
use of a noncompacting garbage collector), then there would be increased risk
of conflicts between freshly allocated data and consequent performance
degradation due to increased cache misses. In this case, higher levels of
associativity would provide increased insurance against sets of heap data
that accidentally map into the same block of cache.

Many systems use direct mapped caches because they are simpler to build
and can be more easily made to run at high speeds [27]). The miss ratio

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992

292 . P. J. Koopman, Jr.

penalty of using such a direct mapped cache over a set associative cache is
quite small, so the performance trade-off of using direct mapped caches seems

desirable.

5.7 Comparison with Actual Measurements

Cache simulation results are an important architectural design tool. How-
ever, there is always the question of whether the results of such simulations
correspond to the “real world.” In order to establish some confidence in the
simulation results, a comparison was made between the results of a simula-
tion of the DECstation 3100 and the results of actual program execution.

Simulation results indicate that for the SKIfib benchmark, the MIPS
R2000 processor executes, on average, 27.82 instructions per combinator
reduction application. It also performs 33.95 memory reads including both
instruction reads and data reads per combinator reduction application, which
when multiplied by a combined instruction and data cache simulated miss
ratio of 0.0097, gives 0.33 cache read misses per combinator reduction. The
DECstation 3100 has a cache read miss latency of 5 clock cycles, resulting in
a cost of 1.65 clock cycles per combinator because of cache misses. This, when
added to the 27.82 cycle instruction execution cost (27.82 instructions at one
instruction per clock cycle), yields an execution time of 29.47 clock cycles per
combinator.

The DECstation 3100 has a cost of zero clock cycles for a cache write miss,
as long as the write buffer does not overflow. With an average of 4.74 writes
(at 6 block cycles per write using the write-through memory updating policy)
plus 0.33 cache miss reads (at 5 clock cycles per read) per combinator, a total
of at least 30.09 clock cycles is needed per combinator to provide adequate
memory bandwidth for the write-through strategy. This is somewhat longer
than the 29.47 clock cycle instruction execution speed, leading to the conclu-
sion that the DECstation 3100 implementation of TIGRE is constrained by
memory bandwidth.

As a result of this analysis, we calculate the simulated execution speed of
the DECstation 3100 to be 30.09 clock cycles per combinator. At 16.67 MHz,
this translates into a speed of 554,000 RAPS between garbage collections.

When actually executing the SKIfib benchmark, the DECstation 3100
performed approximately 495,000 reduction applications per second including
garbage collection time. Garbage collection overhead was measured at ap-
proximately 1%. This rather low cost is attributed to the fact that a small
number of nodes are actually in use at any given time, so a copying garbage
collector must typically copy just a few hundred nodes for each collection
cycle on the benchmark used. Virtual memory overhead can be computed
based on a 0.0091 miss ratio for a block size of 4K bytes, with 6.67 data
access per combinator, thereby giving a computed virtual memory miss ratio
of 0.00136 per combinator. Assuming 13 clock cycles overhead per TLB miss

(based on an 800 ns TLB miss overhead for a MIPS R2000 with a 16 MHz
clock as reported by Siewiorek and Koopman [29]) and noting that an average

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.

el A 1, St 5

Cache Behavior of Combinator Graph Reduction . 293

combinator takes 30.09 clocks, this gives a penalty of

0.00136 x 13
_ e
30.09 (clocks per combinator)
= 0.06%

Together with the 1% i
. garbage collection overh i
predicts a raw reduction rate of rhead, this 1.06% overhead

495,000 x 1.0106 = 500,000 RAPS.

This rate is 11% slower than the 554,000 RAPS predicted raw reduction rate
Some_ of this 11% discrepancy is due to the overhead of cache cold starts on ai
multiprogrammed operating system. The rest of the discrepancy is probabl

caused by b.urst.s of traffic to the write buffer, which can stall the l;oces ‘
under ‘certam ¢ircumstances. The simulators available to us did n;)t er So’i
exploring the behavior of a write buffer, but an examination of thp n:il

shows that write buffer stalls are quite likely. ° s

6. RESULTS

We ha\fe describfed an abstract machine for combinator-graph reduction. In
co;npfarlsogg against other reducers for combinator graphs based on a ﬁxed
Set of combinators, we find that TIGRE shows
. TS, good performance. Qur archi-
itsetc_turaTI s;mlflatlons show ffhat TIGRE exhibits unusual execution character-
; 1cts, 1ncf uding Fhe follown'lg: a very strong dependence on a write-allocate
srl(’)a ergty or efficient exec}ltlon, a high degree of spatial locality, and a high
g pot.lon of memory writes to total memory accesses. Thus, a system for
c:e}clu ufhthese programs efficiently should ideally have a write-allocate
e :Ste {):;1 " copy-back memory.updating and a relatively large block size of at
_ ! ytes (pr.eferably using subblock placement with a block-fill read
:HSS : rategy),. Smc; the combination of copy-back updating with write
ocation requires additional complexity i i i inati :
: _ Y in control logic, this combination i
notlpke.ly to appear w1thout evidence to suggest that it is useful for somlz
apIp 1cat10ns..Thls study is a piece of evidence in that vein.
expr;rzii;eiatrher azpfg [20]21 we described how the results of our simulation
s cou used to guide the desi
: :) gn of a RISC processor for
Si c.z]:;rlnblalator graph reduction. Although good improvements in speed are
gr Oj;ssi,r I(_ely are not great enough to warrant the effort of building a new
- fowever, users and developers of reducers for SK i
binator
graphs can use the results of our experi i 2 in sele
. perimentation to aid in selectin
i};a:;iware l;))llatff"or;n t}:iat will perform well. Furthermore the TIGRE approic}?
asonably fast and simple to implement on a variet ’ i
> : y of architectures, and
so provides a relatively e. i i Ny
o y easy way to obtain good efficiency for lazy functional

7. FURTHER WORK

Af grﬁat deal _Of further resezfrch is required to develop a full understandin
of the architectural considerations in practical functional programg

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2 April 1992

294 . P.J Koopman, Jr.

ming. In particular, we require a more extensive and realistic set of bench-
marks, as well as a new set of simulation experiments based on compiled
supercombinator reduction.

Although our set of benchmark programs are fairly standard with respect
to the literature in functional programming language implementation, it
must be realized that it is an extremely limited set. With the exception of the
Real(n) program, the benchmarks are unrealistically small and simple, and
they fail to use laziness in an interesting way. (The Real(n) program, on the
other hand, uses relatively complex infinite data structures, and compiles
into a combinator graph containing over 18,000 nodes.) Still, all of our
programs allocate large amounts of heap memory, and so we suspect that
their behavior relative to the data cache is not so different from larger
“production” programs. Our experience with the Real(n) seems to bear this
out, although many more experiments are needed.

With regard to compiled supercombinator reduction, such as that used in
TIM [10], it is clear that practical functional programming systems must be
based on supercombinators rather than Turner set combinators. We have put
off doing such experiments for several reasons. First, the performance of
compiled supercombinator reduction is highly dependent on the level of
compiling technology used. Optimizing compilers necessarily make implicit
assumptions about the underlying hardware. As an initial study, we thought
it prudent to study graph reduction in the absence of influences from such
assumptions. Second, compile-time analyses such as strictness analysis (1]
have the effect of shifting a larger portion of the emitted “code” to the
instruction cache. This is in contrast to the situation in our cache simulation
experiments, in which the instruction space 1s relatively small and fixed
(certainly small enough to fit entirely within the instruction cache on many
machines). Thus, experiments using compiled supercombinator reduction
would need to take into account the level of compiler optimizations, since
they will tend to increase instruction-cache usage in order to decrease data-
cache usage.

It is likely, of course, that the results of simulation experiments in the
context of super-combinator reduction will be different from those presented
in this paper. We believe it will be instructive to examine such differences.
Or, the results may be similar but less pronounced. Some pronounced eftects
in TIGRE may appear as only small quirks in data gained from supercombi-
nator-based experiments. With the TIGRE results in hand, there will be less
danger of overlooking such quirks, which may still have important conse-
quences for system efficiency.

We are presently extending TIGRE to a method called SuperTIGRE, which
will accommodate a form of compiled supercombinator reduction. The main
difference in SuperTIGRE from TIGRE is that the graph representation 1s
altered to accommodate variable-sized graph nodes (called “environments™),
as in TIM and the G-machine {24]. This necessitates the use of a TIM-like
“take” operation, but with compile-time analyses used to avoid take’s when-
ever possible. We hope to report on more simulation experiments with
SuperTIGRE in the future. Conducting controlled experiments in this setting

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992,

R DN E

AT A

SR sty RS

Cache Behavior of Combinator Graph Reduction . 295

Table VIII. Performance of TIGRE versus TIM

Platform Language | Time Speed
(sec) | (nfib/sec)

VAXstation 3200 | TIGRE 1.92 11400 |
- ARM TIM 1.96 11200

is somewhat of a challenge, as the effects of compile-time optimizations must
be af:counted for 1n addition to the choice of cache-management policies.

With SuperTIGRE, it will also be possible to make comparisons with
modern functional language implementations such as Lazy ML [3) and Clean
[34]. There are still challenges here, as the level of compiling technology
among the various systems is different. Still, some amount of direct compari-
s0n should be possible. For example, for extremely simple programs such as
NFib(n), we can already make a rough comparison with the TIM approach
(10, .‘?»8]. In TIGRE we can treat the definition of NFib(n) itself as the
deﬁn.ltion of a combinator and then implement (in a naive manner) this
“NFlb” combinator in a TIGRE reducer. This then corresponds to supercom-
binator reduction without strictness analysis. The result of this approach
ffsllong with the timing reported for TIM by Wray and Fairbairn [38], is giverj
in Table VIII. This gives us some hope that TIGRE graph reduction can
compete with compiled graph reduction approaches.

ACKNOWLEDGMENTS

The au'thors gratefully acknowledge Eric Schnarr, and especially Chris
Okasa:\kl, who implemented the Haskell-subset compiler used in some of our
experiments. The authors would also like to thank the reviewers, who

guggestt:éd many improvements to this paper, including the addition of several
Interesiing experiments.

REFERENCES

1. ABRAMSKY, 5., aND HankIN, C., Eps. Abstract [' -
C s o nierpretat
Ellis Horwood, 1987 pretation of Declarative Languages.

2. AUGUSTENN, A., AND vaN DER Hoevex, G. Combi '
. A N, G. natorgraphs as self-red
Tech. Rep. Univ. of Utrecht, 1984. BT FIUETE progTERS
3. AUGUSTSSQN, L. A compiler for lazy ML. In Proceedings of the ACM Symposium on Lisp
and Functional Programming (Austin, Tex., Aug. 1984), pp. 218-227.
4. BACI-FUS, J. Can programming be liberated from the von Neumann style? A functional style
and its algebra of programs. Commun. ACM. 21, 8 (Aug. 1978), 613-641.

5. ?gaﬂlENDREGT, H. P. The Lambda Calculus: Its Syntax and Semantics. Elsevier, New York

6. BeLL, J. Threaded code. Commun. ACM 16, 6 (June 1973), 370-372.

7. BURLEY, R. An overview of the four s i i o
; ystems in the VAX 8800 f _
(Feb. 1987). 10-19. amily. Digit. Tech. J. 4

8 Burx, G., PEyTON JONES, 8., axD RoBsoN, J. The spineless G-Machine. In Proceedings of

the 1988 ACM Conference on Lis - . .
p and Functional P
1988), pp. 25-37. rogramming (Snowbird, Utah, July

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992

296 .

9.

10.

11,

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27,

28.

29.

30.

P. J. Koopman, Jr.

DicrraL EQuipMENT CORPORATION. DECstation 3100 Technical Ouerview (EZ-J4052-28).
Maynard, Mass., 1989.

FaIReAIRN, J., AND WRraY, S. TIM: A simple, lazy abstract machine to execute supercombi-
nators. In Proceedings of the Conference on Functional Programmung and Computer Archi-
tecture (Portland, Oregon, 1987), G. Kahn, Ed., Springer-Verlag, pp. 34-45.

FenicHEL, R. R., anp YocHeLson, J. C.. A LISP garbage-collector for virtual-memory
systems. Commun. ACM. 12, 11 (Nov. 1969), 611-612.

HEnnEessy, J., anp Patrerson, D. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, San Mateo, Calif., 1990.

HiLL, M. D. Experimental evaluation of on-chip microprocessor cache memories. In Pro-
ceedings of the Eleventh International Sympostum on Computer Architecture (Ann Arbor,
Mich., June 1984), pp. 158-166.

Hupak, P., AND WADLER, P. Report on the Programming Language Haskell, Version 1.0,
Res. Rep. YALEU/DCS/RR-777, Apr. 1990.

Hucues, R. J. Supercombinators: A new implementation method for applicative languages.
In Proceedings of the 1982 ACM Symposium on Lisp and F unctional Programming (Pitts-
burgh, Penn., Aug. 1982), pp. 1-10.

Jounsson, T. Efficient compilation of lazy evaluation. In Proceedings of the ACM Confer-
ence on Compiler Construction (Montreal, Canada, June 1984), pp. 58-69.

KABAKIBO, A., MiLuTiNovic, V., SiLBEY, A., AND FURHT B. A survey of cache memory in
modern microcomputer and minicomputer systems. In Tutorial: Computer Architecture. D.
Gajski, V. Milutinovic, H. Siegel, and B. Furht, Eds. IEEE Computer Society Press, 1987,

pp. 210-227.
Koorman, P. An Architecture for Combinator Graph Reduction. Academic Press, Boston,

Mass., 1990.

KoopMmaN, P., aNDp LEE, P. A Fresh Look at Combinator Graph Reduction. In Proceedings of
SIGPLAN '89 Conference on Programming Language Design and Implementation (Portland,
Oregon, July 1989), SIGPLAN Notices. 24, 7 110-119.

KoopMaN, P.. Leg, P., anDp Siewiorek. Cache Performance of Combinator Graph Reduc-
tion. In Proceedings of the 1990 International Conference on Computer Languages (New
Orleans, Mar. 1990), IEEE, pp. 39-48.

NorMaN, A. C. Faster combinator reduction using stock hardware. In Proceedings of the
1988 ACM Conference on Lisp and Functional Programming (Snowbird, Utah, July 1988),
ACM, pp. 235-243.

Pevton Jongs, 8. L. FLIC—A functional language intermediate code. SIGPLAN Notices.
23, 8 (Feb. 1988), 30-48.

Pevton Jongs, S. L., CLack, C., SaLkiLp, J., aND Harpie, M. GRIP—A high-performance
architecture for parallel graph reduction. In Functional Programming Languages and
Computer Architecture G. Kahn, Ed. (Portland, Oregon, 1988), Springer-Verlag, pp. 98-112.
Pevrox Jongs, 8. L., anD SaLkiLp, J. The spineless tagless G-machine. In Proceedings of
the Fourth International Conference on Functional Programmung Languages and Computer
Architecture (London, Sept. 1989), pp. 184-201.

Peyron Jongs, S. L. The Implementation of Functional Programming Languages. Prentice-
Hall, London, 1987.

PrrrseURGH SupercoMpuTer CenTER. Facilities and Seruvices Guide. Pittsburgh, Penn ,
1989.

PrzysyLskl, S., Horowirz, M., aND HENNESSY, J. Performance tradeoffs in cache design. In
Proceedings of the 15th Annual International Symposium on Computer Architecture
(Honolulu, Hawaii, June 1988), IEEE Computer Society Press, pp. 290-298.

ScuEeveL, M. NORMA: A graph reduction processor. In Proceedings of the 1986 ACM
Conference on Lisp and Functional Programming (Cambridge, Mass., Aug. 1986), pp.
212-219.

SiEwIoREK, D., aND Koorman, P. A Case Study of a Parallel, Vector Workstation: The Titan
Architecture. Academic Press, Boston. In press.

SMETSERS, J. E. W. Compiling Clean to abstract ABC-machine code. Tech. Rep. 89-20,

Univ. of Nijmegen, 1989.

ACM Transactions on Programming Languages and Systems, Vol. 14, No. 2, April 1992.

-

v it cpe it A bl L

= eempas g el .~

U e Tt T

e o gy b o e g ey o [MM
1

31.
32.

33.

36.

37.

38.

Cache Behavior of Combinator Graph Reduction . 297

gMI’I‘H, A J},{ C?}c;;e r;imories, ACM Comput. Surv. 14, 3 (Sept. 1982), 473-530
TALLMAN, R. U Project C Compiler. In UNIX Progra ’ ’ i
documentation, Unix version 4.3, 1988. grammer s Manual. Online system
StovE, W. T he. Implementation of Functional Languages using Custom Hardware. Tech
Rep. No. 81, Univ. of Cambridge Computer Laboratory, 1984. ’ |

35. TurNERr, D. A. SASL Reference Manual. Univ. of St. Andrews, 1976.

TurNer, D. A. A new implementation techni icati
C chnique for applicative la _
Practice and Experience 9, 1 (Jan. 1979), 31-49. F nguages. Software

TurNER, D. A. Anoth i - i .
67 070 nother algorithm for bracket abstraction. J. Symbolic Logic. 44, 2 (1979),
VULLEMIN, J. Exact real com ‘ ic wi : :

’ puter arithmetic with continued fractions. In Proceedi
the 1988 ACM Conference on LISP and Functi : | Sroceeaings of
1988), pp. 14-27. nd Functional Programming (Snowbird, Utah, Aug.

Wray, S. C., anD FamrBarn, J. Non-strict]
] ‘3 ’ . - an ua _Pr * . .
Draft, Oct. 16, 1988. guages ogramming and implementation.

39. Wray, S. C. Private communication, Qct. 24, 1988,

Received July 1990; revised February 1991; accepted March 1991

ACM Transactions on Programming Languages and Systems, Vol 14, No. 2, April 1992

