
Cache Performance of Combinator Graph Reduction

Philip J. Koopman, Jr.
Harris Semiconductor

Melbourne, Florida 32902

Peter Lee Daniel P. Siewiorek
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

. Abstract
The Threaded Interpretive Graph Reduction Engine
(TIGRE) was developed for the efficient reduction of
combinator graphs in support of functional programming
languages and other applications. We present the results
of cache simulations of the TIGRE graph reducer with the
following parameters varied: cache size, cache organiza­
tion, block size, associativity, replacement policy, write
policy, and write allocation. As a check on our results, we
compare the simulations to measured performance on
real hardware. From the results of the simulation study,
we conclude that graph reduction in TIGRE has a very
heavy dependence on a write-allocate strategy for good
performance, and very high spatial and temporal locality.

Keywords: functional programming, combinators,
graph reduction, cache memory, architectural simulation.

Introduction

During the development of the TIGRE graph reducer
[1][2], the speed of graph reduction on different hardware
platforms repeatedly surprised us, in some cases failing to
meet expectations, and in other cases substantially ex­
ceeding predicted performance levels. For example, the
DECstation 3100 system [3] (which is based on the MIPS
R2000 processor chip [4]) performed 470,000 combinator
reduction applications per second (RAPS) for Turner's
set of SK-combinators [5][6]. This makes TIGRE,.to the
best of our knowledge, the fastest SK-combinator graph
reducer in existence. AV AX 8800 mainframe system [7]
with a faster clock rate and a wider system bus performed
only 355,000 RAPS. Finally, a Cray Y-MP [8], with a clock
speed ten times that of the DECstation 3100, performed
only 310,000 RAPS. Another unexpected result was that
a VAX mainframe implementation of TIGRE was sped
up by 20% with a slight code chang~ to circumvent the
write-no-allocate cache management strategy used by that
machine.

CH2854-8/90/0000/0039$01.00 © 1990 IBEE 39

These results have prompted us to undertake a
detailed study of the architectural issues affecting the
efficiency of graph reduction. The purpose of the study
is twofold. First, we would like to be able to predict, on
the basis of the hardware architecture, what kinds of
machines will best support graph reduction (and hence
functional languages). Second, we. would like to obtain
design-tradeoff data for both custom graph reduction
hardware and new reduction techniques. This is a report
of the first phase of the study - the cache behavior of
SK-combinator graph reduction.

Background

The Threaded Interpretive Graph Reduction Engine
(TIGRE) was developed to efficiently implement pure
combinator graph reduction in support of lazy functional
programming languages and other applications. The
basic philosophy underlying TIGRE is the elimination of
tags on data cells in order to avoid case analysis operations
when accessing a graph node.

One of the most awkward aspects of graph reduction
is the need to traverse the left spine of a graph, in the
process "unwinding" the right-side children onto what is
often referred to as the "spine" stack. Besides forcing one
to implement a case analysis on graph-node tags, it seems
also to require some kind of "control program" to control
the traversal. This is unfortunate, since the program that
we are actually interested in executing is essentially em­
bedded in the graph; the control program really ends up
being an interpreter. Hence, in this scheme we seem

Work done by Philip Koopman performed while at the Department of
Electrical and Computer Engineering, Carnegie Mellon University.
Research supported in part by NASNGoddard under contract NAG-
5-1046, also in part by the Office of Naval Research under contract
N00014-84·K..Q415 and in part by the Defense Advanced Research
Projects Agency (DOD), ARPA Order No. 5404, monitored by the
Office of Naval Research under the same contract. The views and
conclusions contained in this document are those of the authors and
should not be interpreted iiS representing the official. policies, either
expressed or implied, of DARPA or the U.S. Government.

forced to accept the efficiency penalties involved with
interpretation as opposed to direct execution.

The key insight underlying TIGRE is that the graph is
itself a program with two classes of instructions: pointer
instructions and combinator instructions. Graph reduc­
tion then becomes a process of executing a self-modifying,
threaded program which resides in the node heap. That
is to say, the graph is a program that consists mainly of
subroutines calls (i.e., pointer instructions). One call
leads to another call, which then leads to another, and so
on until, finally, some other executable code (i.e., a com­
binator instruction) is found.

Figure 1. Example program graph for the VAX im­
plementation of TIGRE.

Figure 1 shows a simple program graph for ((+ 22)
11) as implemented in the VAX assembly language ver­
sion of TIGRE. Each node in the graph contains a VAX
j sb subroutine call instruction as well as two subgraph
pointers (a function pointe~ in the middle node cell, and
an argument pointer in the rightmost node cell). Com­
binators and graph references are both represented by
pointers. Literal values are implicitly tagged as data items
by the fact that the function slot of a literal node always
points to the LIT combinator code. With this repre­
sentation scheme, there is only one explicit data type in
the graph: the pointer. Hence there is only one type of
node, and therefore no conditional branching or case
analysis for tag interpretation is required at run time.

Evaluation of a program graph is initiated by perform­
ing a subroutine call to the j sb node of the root of a
subgraph. The machine's program counter then traverses
the left spine of the graph .structure by executing the j sb
instructions of the nodes following the leftmost spine. As
the subroutine calls are executed, the return-address
stack accumulates references to graph nodes in the man­
ner of a spine stack. When a slot points to a combinator,
the VAX simply begins executing the combinator code,
with the return-address stack providing addresses of the

40

right-hand sides of parent nodes for the combinator's
argument values.

TIGRE in no sense interprets the graph. It directly
executes the data.structure, using the hardware-provided
subroutine· call instruction to do . the stack unwinding.
When combinator bodies are reached, the arguments are
popped from the return stack, the graph is rewritten, and
then a jump is made to the new subgraph to continue
traversing the (new) left spine. The use of the return stack
for graph reduction is slightly different than for "normal"
subroutines in that subroutine returns are never per­
formed on the pointers to the combinator arguments, but
rather, the addresses are consumed from the return stack
by the combinators.

This technique is similar to that previously reported
by Augusteijn & van der Hoeven [9). However, to our
knowledge they did not conduct an in-depth architectural
study of the approach.

The execution speed of TIGRE for the Turner set of
SK-combinators compares favorably with previously
reported combinator graph reducers, and for ~upercom­
binators it appears to be competitive with the G-machine
[10] and closure reducers such as TIM [11]. Table 1 shows
a summary of TIGRE performance on a number of plat­
forms. The· numbers shown for supercombinator im­
plementations give a RAPS rating normalized to the
Turner set implementations in order to reflect speedup
obtained by supercombinator compilation.

The basis for the architectural study

We conjectured that the unexpected performance varia­
tions observed among TIGRE versions were caused by
hardware implementation differences among platforms,
especially with regard to cache management policy. In
order to better understand the operation of TIGRE, a set
of cache simulations was run to measure TIGRE's use of
cache memory.

The first simulation experiment was an exhaustive
exploration of a number of cache design parameters to
search for the optimal combination. An exhaustive search
was performed to avoid the pitfalls of hill-climbing search
strategies that may become trapped at local extrema. The
second simulation experiment examined the sensitivity of
performance to changes in individual parameters.

The MIPS R2000 was chosen as the implementation
vehicle for the simulations for several reasons. Several
different R2000-based machines are available to us for
"reality checks" between simulator results and actual ex­
ecution times. The R2000 is a simple architecture that is
readily modeled, and information about the timing and
operation of the R2000 is readily available. The R2000
processor lacks a subroutine-call instruction; however,
the use of an interpretive loop instead of subroutine

Table 1.
TIGRE performance on a variety of platforms.

Combinator
e1atfQrm L.i:iogui:ig~ s~
DECstation ASSEMBLER SKI Set

3100 Turner Set
(16.7 MHz)

Supercombinator

V/:V<.8800 ASSEMBLER SKI Set
(22 MHz) Turner Set

Supercombinator

VAXstation 3200 ASSEMBLER SKI Set
Turner Set

Supercombinator

CrayY-MP
(167 MHz)

c SKI Set
Turner Set

threading does not affect data cache access patterns, and
so is irrelevant for examining data access behavior in the
second half of the study.

Phase 1: Exhaustive search of the design space

The goal of the first phase of the simulations was to use
memory access traces from TIGRE and a trace-driven
cache simulator to explore a wide range of values for
several independent cache parameters (such as cache
size, block size, and replacement policy). By simulating
all possible combinations of two or three discrete values
for each parameter, the performance of TIGRE over the
entire cache design space was mapped. As a result,
similarities and differences between the best-performing
sets of parameter combinations could lend insight into
what kind of cache memory organization best supports
TIGRE.

The dineroIII trace-driven cache simulator program
[12] was used. The simulation parameters varied were:
cache size (64K and 16K bytes), cache organization
(unified and split), block size (also known as line size, of
4, 8, and 16 bytes), associativity (direct-mapped and 4-way
set associative), replacement policy (LRU and FIFO),

41

Time Speed
e(Qg(!:!ID ~ ~
SKIFIB(23) 2.20 495000

FIB(23) 1.58 470000
NFIB(23) 2.68 484000

TAK 12.58 420000
NTHPRIME(300) 2.60 364000

QUEENS(20) 5.63 433000
FIB(23) 0.36 2046000

NFIB(23) 0.80 1626000

SKIFIB(23) 2.82 387000
FIB(23) 2.10 355000

NFIB(23) 3.55 366000
TAK 16.07 329000

NTHPRIME 3.91 242000
QUEENS(20) 8.33 293000

FIB(23) 1.22 611000
NFIB(23) 0.97 1339000

SKIFIB(23) 6.33 172000
FIB(23) 4.80 155000

NFIB(23) 8.23 158000
FIB(23) 2.77 269000

NFIB(23) 2.15 605000

SKIFIB(23) 3.09 352000
FIB(23) 2.40 310000

NFIB(23) 4.25 305000
TAK 14.69 360000

NTHPRIME(300) 3.40 277000

write policy (write-through and copy-back), and write
allocation (allocate on write miss, and no allocation on
write miss). Kabalcibo et al. [13] and Smith [14] provide
more information on cache management strategies and
terminology.

All meaningful combinations of parameters were run.
Some combinations, such as varying replacement policy
on a direct-mapped cache, are meaningless. The split
caches divide the available cache memory evenly between
instruction and data caches, as is commonly done on real
systems (e.g. a split 64K cache allocates 32K each to the
instruction cache and data cache). The fib (16)
benchmark using the SKI combinator set was chosen for
the exhaustive design space search. A large enough heap
was used to avoid the need to simulate garbage collection.

Table 2shows the best sixteen configurations based on
simulation results for the program skif ib (16) . The
primary ranking is by miss ratio, which has a strong effect
on program running time. Miss ratio is the number of
memory accesses that result in cache misses normalized
to the number of total accesses (e.g. 0.3000 would repre­
sent a 30% miss ratio). Traffic ratio is the number of
32-bit transfers on the data bus from the combination of

Table2.
The sixteen best cache configurations.

CACHE CACHE BLOCK ASSOCIA- REPLACE WRITE WRITE MISS 1RAFFIC
SIZE SPLITTING SIZE TIVITY POLICY POLICY ALLOCATE? RATIO RATIO

64K UNIFIED 16 4WAY. LRU COPY YES 0.0096 0.0767
64K SPLIT 16 4WAY LRU COPY YES 0.0096 0.0768
64K UNIFIED 16 4WAY LRU 1HRU YES 0.0096 0.1609
64K SPLIT 16 4WAY LRU 1HRU YES 0.0096 0.1610
16K UNIFIED 16 4WAY LRU COPY YES 0.0097 0.0773
16K UNIFIED 16 4WAY LRU 1HRU YES 0.0097 0.1612
64K UNIFIED 16 4WAY FIFO COPY YES 0.0098 0.0776
16K SPLIT 16 4WAY LRU COPY YES 0.0098 0.0777
64K SPLIT 16 4WAY FIFO COPY YES 0.0098 0.0779
16K SPLIT 16 4WAY LRU 1HRU YES 0.0098 0.1615
64K UNIFIED 16 4WAY FIFO 1HRU YES 0.0098 0.1615
64K SPLIT 16 4WAY FIFO 1HRU YES 0.0098 0.1617
64K SPLIT 16 DIRECT - COPY YES 0.0101 0.0795
64K SPLIT 16 DIRECT - 1HRU YES 0.0101 0.1627
64K SINGLE 16 DIRECT - COPY YES 0.0102 0.0799
64K SINGLE 16 DIRECT - 1HRU YES 0.0102 0.1632

Total data reads = 0.1585, Total Data writes = 0.1224, Total Instruction reads = 0.7191
1042523 MIPS R2000 instructions, 1449863 memoiy accesses, 37480 combinators.

cache misses and writes of modified cache contents to
memory, normalized to the total number of accesses.

Each simulation run involved a total of 1449863
memory accesses, 1042523 of which were instruction
reads. 71.9% of all memory accesses were instruction
reads, 15.9% were data reads, and 12.2% were data
writes. To avoid the possibility of misleading results
caused by an insufficiently large simulation data set size,
the simulation was rerun on several data points from
various regions of the simulated design space with a data
set ten times as large (created by running $kif ib with a
larger input). These expanded simulations yielded essen­
tially identical results.

Some obviously desirable characteristics can be in­
ferred from Table 2. The write allocation policy should
be set to write-allocate, and the block size should be set
to 16 bytes for good performance. There is relatively little
difference among the miss ratios, indicating that some of
the design parameters, including the cache size, have little
effect on performance. Details of the cache simulation
results showed that a unified cache has a slightly better
miss ratio than a split cache because the interpretive
program was quite small. Thus, a unified cache gives
more total cache memory for the data portion of the
program. However, split caches work better in practice,
since most RISC processors depend on the extra
bandwidth available from a split cache scheme for high
performance.

From the data in these tables, we conclude that a cache
design of 64K bytes, split I/D cache (giving 32K bytes each
for program and data caches), 16 byte blocks, 4-way set

42

associative, LRU replacement, copy-back, and write-al­
locate is the optimal strategy.

Phase 2: Parametric analysis

The initial exhaustive search of the design space gave a
good starting point for determining the optimal cache
design parameters. But, there was no precise indication
of the sensitivity of the performance to variation in the
parameters. For this reason, a second set of cache simula­
tions was conducted to measure the performance effects
of changing the parameters.

For this second set of simulations, the cache design
obtained from the first phase of the simulation study was
used as a baseline. Individual parameters were then al­
tered, one at a time, across a wide range to observe
performance trends. The first set of simulations con­
firmed that the instructions needed to run the combinator
reducer were almost immediately loaded into cache and
stayed in cache throughout the program execution.
Therefore, the parametric analysis simulations modeled
only the data accesses of the programs and collected
statistics for just the data cache (assuming a split I/D
cache scheme). The baseline configuration, against which
sensitivity to change was measured, was: 32K byte data­
cache size, 16 byte block size, 4-way set associative, LR U
replacement, copy-back, and write-allocate. The
benchmark program run was fib (18) , with data col­
lected for three implementations of the program: the SKI
combinator set, the Turner set, and supercombinator
compilation with strictness analysis.

The importance of a write-allocate strategy
Table 3 shows the results of varying the write allocation
policy. We have found that this design parameter is more
important by far than any of the other parameters, with
very poor cache hit ratios of76% to 85% awaiting the user
of a machine which incorporates a write-no-allocate
policy. A 95% or higher cache hit ratio is generally con­
sidered desirable for systems running conventional
software.

Table3.
TIGRE performance with varying cache

write allocation strategy.

MISS RATIOS

Allocation Strategy ~
write allocate 0.0341
write no allocate 0.1914

Turner set
0.0300
0.1522

~
0.0528
0.2433

The reason for the extreme sensitivity to write-alloca­
tion lies with the allocation of heap nodes. As heap nodes
are allocated, the addresses of the new cells are generated
without accessing heap memory (using a stop-and-copy
garbage collection algorithm). The first time the node is
written, a cache miss is generated. A write-allocate
strategy will load the node into the cache, while a write­
no-allocate strategy will simply write the node value into
main memory. The problem comes on the subsequent
read of this node, which typically happens within several
hundred clock cycles. A write-no-allocate policy will ex­
perience a second cache miss, while a write-allocate
policy will get a cache hit on the previously written ele­
ment. This second cache miss with a write-no-allocate
policy significantly degrades performance. The effect
becomes even more pronounced when a long sequence of
writes (each generating a cache miss) is performed in
succession before the first read, as can happen when
performing a sequence of graph rewrites on a small por­
tion of the program graph.

The Turner set data showed the least degradation
from using write-no-allocate because it does not create a
large number of superfluous nodes as the SKI set does (by
using the B and C combinators instead of less efficient
sequences of the S and K combinators). But, the Turner
set does have a large number of redundant accesses to
elements for intermediate graph rewriting that are
eliminated by the supercombinator approach, so the su­
percombinator version shows marked degradation in per­
formance from using a write-no-allocate strategy.

43

Strong spatial locality means large block size
Figure 2 shows the results of varying block size over a
range of 4 bytes to 8K bytes. The cache miss ratio
decreases up to a cache size of 2K bytes for the SKI and
Turner Set methods, and up to 8K bytes (the limit to block
size given 4-way set associativity) for the supercombinator
method. This suggests very strong spatial locality. This
spatial locality is probably due to the fact that short-lived
cells are allocated from the heap space in sequential
memory locations. (This sequentiality is an inherent
property of compacting garbage collection and heap al­
location schemes, such as the stop-and-copy garbage col­
lector used by TIGRE.)

One could, at first glance, decide to build a machine
with a 2K byte cache-block size based on the miss ratios
alone. For conventional programs, this decision would be

M .20
i
s
s .15
R
a
t .10 i
0

.05

.55

.50
T .45 r
a .40 r r .35 i
c .30
R .25 a
t .20 i
0 .15

.10

.05

' ' ' I \

4

\

\
\

\

16

- SKI

----TURNE

SUPER

;
I
I
I
I

I
I
I
I
I
I
I

64 256 lK 4K

Block Size (bytes)

i/
I

/I
I I

/ I
, I

-·-·"' I I

I -·-·-·--·-·-·-·-·-·-·-·-·-·----·-·--·-·-·--·-·-·-- -

/
/

/,,...,,,..

/

I
)

I
I

I
I

I
I

I
____________________ -1

SKI

TURNE

SUPER

4 16 64 256 lK 4K

Block Size (bytes)

Figure 2. TIGRE performance with varying cache block
size.

unwise, because the traffic ratio (the nUil1ber of words of
data moved by the system bus) usually increases dramati~
cally with an increased block size. Tll.is heavy traffic can
slow a system down by greatly increasing the time required
to refill a cache block after amiss. With combinator graph
reduction, this effect is much less pronounced. The traffic
ratio does not increase appreciably until the block size is
between 1K and 4K bytes in size. So, a machine with a 256
byte or 512 byte cache-block size is entirely reasonable for
this application.

The fact that the miss ratio stays very low until the
cache-block size increases to within a factor of between
four and sixteen of the total cache size gives further insight
into the behavior of graph reduction. The code in this
experiment tends to access approximately four to sixteen
regions of memory at a time, since the miss ratio begins to
climb when the 32Kbyte cache can hold fewer than sixteen
cache blocks. This suggests excellent temporal locality.

The observed temporal locality bodes well for virtual
memory access behavior. Since most translation
lookaside buffers are limited in size (for example, 64
entries addressing 4K bytes each on a MIPS R2000), good
spatial locality is important to limit the nUil1ber of TLB
nlisses. At a second level, good spatial locality also limits
thrashing of virtual memory pages between main memory
and secondary storage. devices. The result is that com­
binator graph reduction seems to provide excellent virtual
memory behavior even without the use of compacting
techniques (since no garbage collections were done for
these simulation runs).

High temporal locality means small cache size
Figure 3 shows the results of varying cache size over a
range of 128 bytes to 128K bytes. Since most newer
designs tend to use large cache memories to improve
performance (with 64K bytes in a data cache often the
minimum acceptable amount for a RISC implementa­
tion), it is surprising to see that performance for all three

M .35 - SKI
i .30 s ---- Turner
s .25 -·-·-·- Super
R .20 a
t .15 i
0 .10

.OS

1 8 s 2 2 32K 128K

Cache Size (bytes)

Figure 3. TIGRE performance with varying cache size.

44

implementations stays at approximately 95% to 98% hit
ratio with a cache as small as 2K bytes, which corresponds
to only 256 graph nodes. This suggests that combinator
graph reduction may have better temporal locality than
conventional programs. This temporal locality may be
due in part to a high infant mortality rate among allocated
heap nodes. ·

High temporal locality suggests that generational gar­
bage collection techniques [15] may be useful with com­
binator graph reduction, but this issue has not been
explored in detail.

A word of caution on the interpretation of the cache­
size data collected here is in order. The benchmarks used
are rather small a certain sense. They access a large
amount of heap space, so it cannot be said that the
programs are too small to exercise a large cache. How­
ever, only a few thousand heap nodes are actually active
(i.e., not garbage) at any given time during a computation,
so it might be argued that the good performance observed
for small caches is due to running small test programs.
Final resolution of this question will have to wait until a
diverse body of large programs is available for measure­
ment. This .is particularly important for the measure­
ments involving supercombinator compilation.

Write-through policy
Table 4 shows the results on miss ratio and traffic ratio for
a write-through versus copy-back memory update policy.
The cache miss ratios are the same, as expected, since this
policy does not affect whether misses occur. However,
the bus traffic generated for the write-through method is
significantly higher than for copy-back. This can cause
severe problems with system performance, even on a
uniprocessor.

With a write-througq policy with a block size of 16
bytes (4 words), 14.3% of data cache accesses for the SKI
implementation generate a bus transaction. This is
manageable on most systems. Unfortunately, it is more
common for processors· to have narrower buses to
memory, with most microprocessors supporting only a
4-byte bus. In this case, a memory bus access would be
generated on average on 57.2% of data accesses, which

Table4.
TIGRE performance with varying

memory update strategy.

MISS RATIO I TRAFFIC RATIO

M1<m.QO'. U12date SKI5~ Turner 5!<t Super.
copy-back 0.0341 0.0300 0.0528

0.2721 0.2209 0.4223

write-through 0.0341 0.0300 0.0528
0.5721 0.5431 0.6849

can swamp a bus, causing memory-bandwidth perfor­
mance limitations. This bus overloading talces place be­
cause a microprocessor bus can only sustain a data
transfer every 4 to 8 clock cycles, whereas a 57.2% bus-ac­
cess rate demands bandwidth corresponding to a transfer
for every 1.7 data memory accesses, which could cor­
respond to 1.7 clock cycles. Clearly, a copy-back policy is
desired to limit the effects of bus saturation.

The supercombinator implementation has even worse
bus-write characteristics. This is caused by a higher per­
centage of bus-write operations, since supercombinator
code does less graph traversing (and hence fewer reads)
per combinator. This effect is exacerbated by the fact that
supercombinator compilation reduces the redundancy of
computations, resulting in fewer instances of repeated
overwriting of nodes. This, in turn, limits the effectiveness
of the copy-back strategy (which attenuates bus-write
traffic only to the extent that nodes are written more than
once while the node is resident in the cache memory).
Thus, with supercombinators it is even more important to
use a copy-back strategy, but even this strategy is likely to
generate significant demands on bus bandwidth.

Associativity & Replacement Policy
Simulation results of varying the associativity of the cache
from direct-mapped (1-way associative) to 8-way associa­
tive showed a variation in miss ratios of less than 0.2%.
2-way set associative seems to bring a slight performance
improvement over direct-mapped, but beyond that there
is no discernible advantage to adding cache sets.

Simulation results of varying the replacement policy ·
for the cache similarly showed variations ofless than 0.1 %
in miss ratios. Least Recently Used (LRU) replacement
was found to be the best by a small margin. In the original
simulation with both program and memory sharing a
unified cache, LRU replacement was more important,
since it prevented the program words from being flushed
from the cachewhen using more than 1-way associativity.

Neither associativity nor replacement policy seem to
matter much for combinator graph reduction.

The optimal cache strategy
Based on the analysis of the findings of these simulations,
a cache design which minimizes complexity and cost while
achieving reasonable performance would have the follow­
ing characteristics: cache size of 16K bytes each for split
instruction and data caches, 16-byte block size, direct­
mapped, write-allocate, and copy-back. This cache con­
figuration was simulated to have a 98.94% hit ratio overall
for the SKI method (96.24% data hit ratio, and 99.99 + %
instruction hit ratio), and a traffic ratio of 0.0827 words
transferred on average per memory access.

Unfortunately, even though data prefetching or sub­
block filling could efficiently support a block size of 16

45

bytes, most microprocessors in workstations support
block sizes of 4 bytes. The same cache configuration with
a 4-byte block size was simulated to have a 96.80% hit ratio
overall (92.13% data hit ratio, and a 99.99 +%instruction
hit ratio) with bus traffic of 0.0599 words transferred on
average per memory access. This difference of 2.14% in
cache hit ratio between 16-byte and 4-byte block sizes
represents approximately a 44000 RAPS (nearly 10%)
speed penalty for a DECstation 3100 class machine.

Comparison with actual measurements
Cache simulation results are an important architectural
design tool. However, there is always the question of
whether the results of such simulations correspond to the
"real world". In order to establish some confidence in the
simulation results, a comparison was made between the
results of a simulation of the DECstation 3100 and the
results of actual program execution. The DECstation
3100 has a split cache with 64K bytes in each cache, a block
size of 4 bytes, direct-mapped organization, and uses
write-through memory updating with write-allocate cache
management. [3]

Simulation indicates that for skifib, the R2000
processor executes 27.82 instructions per combinator
reduction application (on average). The R2000 also per­
forms 33.95 memory reads (including both instruction
reads and data reads) per combinator reduction applica­
tion, which when multiplied by a simulated miss ratio of
0.0097, gives 0.33 cache read misses per combinator
reduction. The DECstation 3100 has a cache read miss
latency of 5 clock cycles, resulting in a cost of 1.65 clock
cycles per combinator because of cache misses. This,
when added to the 27.82 cycle instruction execution cost
(27.82 instructions at one instruction per clock cycle),
yields an execution time of 29.47 clock cycles per com­
binator.

The DECstation 3100 has a cost of zero clock cycles
for a cache write miss, so long as the write buffer does not
overflow. With an average of 4.74 writes (at 6 clock cycles
per write) plus 0.33 cache miss reads (at 5 clock cycles per
read) per combinator, a total of at least 30.09 clock cycles
is needed per combinator to provide adequate memory
bandwidth for the write-through strategy. This is some­
what longer than the 29.47 clock cycle instruction execu­
tion speed, leading to the conclusion that the DECstation
3100 implementation ofTIGRE is constrained by memory
bandwidth.

As a result of this analysis, we calculate the simulated
execution speed of the DECstation 3100 to be 30.09 dock
cycles per combinator. At 16.67 MHz, this translates into
a speed of 554000 RAPS between garbage collections.

When actually executing the skif ib benchmark, the
DECstation 3100 performed approximately 475000
reduction applications per second (RAPS) including gar-

bage collection time. Garbage collection overhead was
measured at approximately 1 %. This rather low cost is
attributed to the fact that a small number of nodes are
actually in use at any given time, so a copying garbage
collector must typically copy just a few hundred nodes for
each collection cycle on the benchmark used. Virtual
memory overhead can be computed based on a 0.0091
miss ratio for a block size of 4K bytes, with 6.67 data access
per combinator, giving a computed virtual memory miss
ratio of 0.00136 per combinator. Assuming 13 clock
cycles overhead per TLB miss (based on an 800 ns TLB
miss overhead for a MIPS R2000 with a 16 MHz clock as
reported by Siewiorek & Koopman [16]), and noting that
an average combinator takes 30.09 clocks, this gives a
penalty of:

0.00136 * 13 I 30.09 (clocks per combinator)
= 0.06%

Together with the 1 % garbage collection overhead,
this 1.06% overhead predicts a raw reduction rate of:

475000 * 1.0106 = 480000 RAPS
This rate is 15% slower than the 554000 RAPS

predicted raw reduction rate. Some of this 15% dis­
crepancy is due to the overhead of cache cold starts on a
multiprogrammed operating system. The rest of the dis­
crepancy is probably caused by bursts of traffic to the
write buffer, which stalls the processor when full.

The potential of special-purpose hardware

DECstation 3100 as a baseline
We have described various implementation methods and
performance data for TIGRE. This section uses those
data points to propose architecture and implementation
features which could be used to speed up the execution of
TIGRE. The reason for examining such features is to
determine the feasibility of constructing special-purpose
hardware, or, if construction of special-purpose hardware
is not attractive, the features that should be selected when
choosing standard hardware to execute TIGRE.

Since the best measured performance for TIGRE was
for the MIPS R2000 assembly language implementation,
the approach used for examining processor features to
support TIGRE will be made in terms of incremental
modifications to the MIPS R2000 processor. This ap­
proach will give a rough estimate for the potential perfor­
mance improvement, while maintaining some basis in
reality. For the purposes of the following performance
analysis, the characteristics of the SKI implementation of
the fib benchmark executing on the DECstation 3100
shall be used.

Since TIGRE has been shown to have some unusual
cache access behavior, the first area for improvement that
will be considered is changing the arrangement of cache

46

memory. Then, improvements in the architecture of the
R2000 will be considered.

Improvements in cache management

Copy-back cache
The most obvious limitation of the DECstation 3100 cache
is that it uses a write-through cache. This caused the
limiting performance factor to be bus bandwidth for
memory write accesses, instead of instruction read or data
read miss ratios. A simple improvement, then, is to
employ a copy-back cache. A cache simulation off ib for
the DECstation 3100 shows that this reduces the data
cache traffic ratio from 0.5461to0.2078, removing the bus
bandwidth as the limiting factor to performance. This
reduces the execution time of an average combinator from
30.09 clock cycles (the bus bandwidth-limited perfor­
mance) to 29.47 clock cycles (the cache hit ratio-limited
performance).

Increased block size
A second parameter of the cache that could be improved
is the block size. TIGRE executes well with a large block
size, so increasing the cache-block size from 4 bytes to, say
256 bytes, should dramatically decrease the cache miss
ratio, but would suffer from the limited width of the
memory bus. Using a wide bus-write buffer with a 4 byte
cache-block size can capture many of the benefits of a
large block size, and reduce bus traffic. A write buff er
width of 8 bytes (one full graph node) can be utilized
efficiently by a supercombinator compiler to get a very
high percentage of paired 4-byte writes to the left-and
right-hand sides of cells when updating the graph.

However, even if a very sophisticated cache
mechanism were used to reduce cache misses to the ab­
solute minimum possible (ideally, 0.0000 miss ratio), the
speedup possibilities are somewhat small. This is because
only 1.65 clock cycles of the 29.47 clock cycles per com­
binator are spent on cache misses to begin with.

Improvements in CPU architecture
The opportunities for improvement by changing the ar­
chitecture of the R2000 are somewhat more promising
than those possible by modifying the cache management
strategy. In particular, it is possible to significantly in­
crease the speed of stack unwinding and performing in­
directions through the stack elements.

Stack unwinding support
The one serious drawback of the R2000 architecture for
executing TIGRE is the lack of a subroutine call instruc­
tion. The current TIGRE implementation on the R2000
uses a five-instruction interpretive loop for performing
threading (i.e. stack unwinding). Since 1.37 stack unwind
operations are performed per combinator, this represents

6.85 instructions which, assuming no cache misses, ex­
ecute in 6.85 clock cycles.

But, there is a further penalty for performing the
threading operation through graphs with the R2000. A
seven-instruction overhead is used for each combinator to
perform a preliminary test for threading, and to access a
jump table to jump to the combinator code when thread­
ing is completed. (One of these instructions increments a
counter used for performance measurement. It can be
removed for production code, as long as measuring the
number of combinators executed is not important.) This
imposes an additional 7.00 clock cycle penalty on each
combinator.

So, the total time spent on threading is 13.85 clock
cycles per combinator. It takes three clock cycles to
simulate a subroutine call on the R2000:

f store current return address
SW $31, 0($sp)

f subroutine call
jal subr_address

f branch.delay slot instruction follows
f decrement stack pointer

addu $sp, $sp, -4

so it is reasonable to assume that a hardware-imple­
mented subroutine call instruction could be made to
operate in three clock cycles. Thus, if the instruction
cache were made to track writes to memory (permitting
the use of self-modifying code), a savings of 10.85 clock
cycles is possible. One important change to the instruc­
tion set would be necessary to allow the use of subroutine
call instructions - the subroutine call instruction would
have to be defined to have all zero bits in the opcode field
(so that the instruction could be used as a pointer to
memory as well). An alternate way to implement a sub­
routine call with a modifiable address field is to define an
indirect subroutine call that reads its target address
through the data cache, eliminating the need to keep the
instruction cache in synch with bus writes.

Stack access support
An important aspect of TIGRE's operation is that it
makes frequent reference to the top elements on the spine
stack. In fact, 4.61 accesses to the spine stack are per­
formed per average combinator. Most of the load and
store instructions that perform these stack accesses can
be eliminated by the use of on-CPU stack buffers that are
pushed and popped as a side effect of other instructions.

For spine-stack unwinding, two of the three instruc­
tions used to perform a subroutine call could be
eliminated with the use of hardware stack support, leaving
just a single j al instruction to perform the threading
operation at each node. Of course, the R2000 has a

47

built-in branch delay slot, so it probably not the case that
the actual time for the threading operation could be
reduced to less than two clock cycles. But, the second
clock cycle could be used to allow writing a potential stack
buffer overflow element to memory.

· Of the 4.61 instructions that access the spine stack, the
threading technique just described may be used to
eliminate the effect of 1.37 of the instructions per com­
binator. The remaining 3.24 instructions can also be
eliminated by introducing an indirect-through-spine~
stack addressing mode to the R2000. All that would be
required is to access the top, second, and third element of
a spine-stack buffer as the source of an address instead of
a register. A simple implementation method could map
the top of stack buff er registers into the 32 registers
already available on the R2000. This gives a potential
savings of3.24 clock cycles, since explicit load instructions
from the spine stack need not be executed when perform­
ing indirection operations.

Double word stores
TIGRE is usually able to write cells in pairs, with both the
left-and right-hand cells of a single node written at ap­
proximately the same point in the code for a particular
combinator. Thus, it becomes attractive to define a
"double store" instruction format. Such an instruction
would take two source register operands (for example, an
even/odd register pair), and store them into a 64-bit
memory doubleword. If the processor were designed with
a 64-bit memory bus, such a "double store" could take
place in a single clock cycle instead of as a two-clock
sequence. The savings of using 64-bit stores is 0.895 clock
cycles per combinator for the SKI implementations of
fib, and 1.192 clock cycles per combinator for .the Turner
set implementation of fib (measured by instrumenting
TIGRE code to count the opportunities for these stores
as the benchmark program is executed). Support of 64-bit
memory stores would speed up supercombinator defini­
tions even more, since the body of supercombinators often
contains long sequences of node creations. For example,

Tables.
Summary of possible performance improvements.

cumulative optimizations
current implementation
copy-back cache
100% cache hit ratio
subroutine call + self-modifying code
hardware stack for j al
hardware stack indirect addressing
8-byte store instructions

clocks per combinator ·
30.09
29.47
27.82
16.97
15.60
12.36
11.47

the supercombinator implementation of .fib can make
use of 1.33 64-bit stores per combinator.

Table 5 summarizes the efficiency improvements that
may be gained through the cache and processor architec­
ture changes just discussed. Nearly a three-fold speed
improvement is possible over the R2000 processor with
just a few architectural changes.

Further work

We recognize the fact that our benchmarks are not very
realistic. Larger benchmarks are required, as well as
more benchmarks based onsupercombinatorsrather than
the simple SK-combinators. Unfortunately, we have been
hindered by the unavailability of good benchmark suites.
We are working to develop a good range of benchmark
programs.

Results

We have found that an efficient cache for combinator
graph reduction has several unusual characteristics, in­
cluding: a very strong dependence on the write-allocate
strategy, very modest cache size requirements, and the
ability to effectively use very large block sizes.

The results of this research should help users of com­
binator graph reduction select commercial machines
which will perform efficiently. They may also influence
the course of design of special-purpose graph reduction
hardware in the future.

References

[1] Koopman, P. (1989) An Architecture for Combinator
Graph Reduction, Ph.D. Dissertation, Carnegie Mel­
lon University.

[2] Koopman, P. & Lee, P. (1989) A Fresh Look at
Combinator Graph Reduction. In Proceedings of
SIGPLAN '89 Conference on Programming Lan­
guage Design and Implementation, Portland OR, June
21-23, SIGPLAN Notices, 24(7), July 1989, 110-119.

[3] Digital Equipment Corporation (1989) DECstation
3100 Technical Overview (EZ-J4052-28), Digital
Equipment Corporation, Maynard MA.

48

[4] Kane, G. (1987) MIPS R2000 RISC Architecture, Pren­
tice Hall, Englewood Cliffs, NJ.

[5] Turner, D. A. (1979} A new implementation techni­
que for applicative languages. Software -Practice and
Experience, 9(1):31-49, January.

[6] Turner, D. A. (1979) Another algorithm for bracket
abstraction. Journal of Symbolic Logi.c, 44(2):67-
270.

[7] Burley, R. (1987) An overview of the four systems in
the VAX 8800 family. Digi.tal Technical Journal,
4:10-19, February.

[8] Pittsburgh Supercomputer Center (1989) Facilities
and Services Guide, Pittsburgh PA.

[9] Augusteijn, A. & van der Hoeven, G. (1984) Com­
binatorgraphs as self-reducing programs. Univer­
sity of Twente, the Netherlands.

[10] Peyton Jones, S. L. (1987) The Implementation of
Functional Programming Languages, Prentice-Hall,
London.

[11] Fairbairn, J. & Wray, S. (1987) TIM: A simple, lazy
abstract machine to execute supercombinators. In
Kahn, G. (ed.), Proceedings of the Conference on
Functional Programming and Computer Architecture,
Portland, pages 34-45, Springer Verlag, 1987.

[12] Hill, M. D. (1984) Experimental evaluation of on­
chip microprocessor cache memories, Proc.
Eleventh Int. Symp. on Computer Architecture, Ann
Arbor, June.

[13] Kabakibo, A., Milutinovic, V., Silbey, A. & Furht, B.
(1987) A survey of cache memory in modern
microcomputer and minicomputer systems. In:
Gajski, D., Milutinovic, V., Siegel, H. & Furht, B.
(eds.) Tutorial: Computer Architecture, IEEE Com­
puter Society Press, pp. 210~227.

[14] Smith, A. J. (1982) Cache memories,ACM Comput­
ing Surveys, 14(3):473-530, September.

[15] Appel, A., Ellis, J. & Li, K. (1988) Fast garbage
collection on stock multiprocessors. In Proceedings
of the Conference on Programming Language Design
and Implementation, Atlanta, June.

[16] Siewiorek, D. & Koopman, P. (1989)A Case Study
of a Parallel, Vector Workstation: the Titan Architec­
ture, Academic Press, Boston. In Press.

