

LOW COST MULTICAST NETWORK AUTHENTICATION

FOR

EMBEDDED CONTROL SYSTEMS

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

for the degree of

DOCTOR OF PHILOSOPHY

in the department of

ELECTRICAL AND COMPUTER ENGINEERING

Christopher Johnathan Szilagyi

B.S., Electrical and Computer Engineering, Johns Hopkins University

M.S., Electrical and Computer Engineering, Carnegie Mellon University

Carnegie Mellon University

Pittsburgh, Pennsylvania

May, 2012

 i

© Copyright 2012 by Christopher J. Szilagyi. All rights reserved.

Abstract ii

Abstract

Security for wired embedded control networks is becoming a greater concern as manufacturers

add increasing connectivity from these internal wired networks to the outside world. In the event

that an attacker gains access to an embedded control network, the attacker might manipulate po-

tentially safety-critical message traffic to induce a system failure. Protocols used in these net-

works omit support for multicast authentication to prevent masquerade and replay attacks. While

many approaches for multicast authentication exist, the unique constraints of embedded control

networks make incorporating these schemes impractical. Resource limited nodes must authenti-

cate short periodic messages to multiple receivers within tight real-time deadlines while tolerat-

ing potentially high packet loss rates.

 This work presents time-triggered authentication: a new multicast authentication technique to

prevent masquerade and replay attacks in wired embedded control networks. This approach takes

advantage of the existing temporal redundancy of many embedded control networks by verifying

messages across multiple samples using one message authentication code (MAC) per receiver

(OMPR), each being just a few bits in size. This approach can be applied to both state transition

commands and reactive control messages, and allows a tradeoff among authentication bits per

packet, application level latency, tolerance to invalid MACs, and probability of induced failure,

while satisfying typical embedded system constraints.

 This work also presents validity voting: a method to improve overall bandwidth efficiency

and reduce authentication latency of OMPR in time-triggered authentication by using unanimous

voting on message values and validity amongst a group of nodes. This technique decreases the

probability of successful per-packet forgery by using one extra bit per additional vote, regardless

of the number of total receivers.

Abstract iii

 We also show how to use two existing multicast authentication techniques (TESLA and a

master-slave approach using hash tree broadcast authentication) in conjunction with time-

triggered authentication in an embedded control network. We compared all four techniques in

terms of scalability with respect to per-packet assurance (probability of successful per-packet

forgery) and number of receivers. We also compared the techniques in terms of sensitivity to

packet loss, node failure, and node compromise.

 Finally, we demonstrated the applicability of time-triggered authentication using each of the

four techniques in two case studies. First, we implemented each technique in a simulated elevator

control network. Second, we examined the impacts of authentication on bandwidth for an auto-

motive network workload.

 Our comparisons and case studies show that OMPR and validity voting with few votes are the

most bandwidth efficient approaches for embedded control networks characterized by few re-

ceivers and weak per-packet assurance. TESLA and validity voting using many votes are the

most bandwidth efficient approaches for very large numbers of receivers or strong per-packet

assurance levels. A master-slave approach can be one of the most bandwidth efficient of all ap-

proaches, assuming a trusted master node is available and no passive nodes (non-transmitting)

are present in the network. Also, we show OMPR and TESLA are least sensitive to networks

where packet loss, node failure, and node compromise. Thus, these two approaches are better

suited to applications with requirements to tolerate these types of faults and failures than validity

voting or master-slave.

Acknowledgements iv

Acknowledgements

This thesis is dedicated to my family. Thank you all for your support and encouragement. To my

Mom and Dad: thank you for giving me all the tools I needed to succeed and teaching me how to

see the important things through to the end. To Frank and Emily: thank you for keeping me

humble like great siblings should. To Dave: thank you for joining me on this long journey and

making me take the time to have fun.

 I thank my academic advisor Professor Philip Koopman, for teaching me that if an idea is on-

ly obvious in hindsight, then it's probably a cool research result. Thank you for all your guidance

over these past few years. Also, I thank my committee members Professor Adrian Perrig, Profes-

sor Bruno Sinopoli, and Dr. Charles Weinstock for their support and feedback.

 I thank Erik Rennenkampf for championing this whole shebang and always having my back,

even in my absence. I thank George Reynolds for showing me this opportunity. I thank Kevin

Endlich for supporting me and handling so many details, both big and small. I thank George

Kalb for sparking my interest in security and showing me how easy reverse engineering can be.

Also, I thank Pat Tooman and Chris Meawad for continuing to support me while I finished.

 I would also like to thank Justin Ray for taking the time to answer so many of my questions

over the past few years. Thanks to Elaine Lawrence for keeping an eye out for me. Also, thanks

to Teddy Martin, Nik White, and Andrew Jameson for allowing me to use their elevator design.

 Finally, I thank my sponsors for funding this endeavor. This research was funded in part by

General Motors through the GM-Carnegie Mellon Vehicular Information Technology Collabora-

tive Research Lab.

Table of Contents v

Table of Contents

Abstract ... iii
Acknowledgements .. iv

1 Introduction ...1
 1.1 Problem statement ...2
 1.2 Time-triggered authentication ...3
 1.3 Thesis contributions ..4
 1.4 Thesis outline ..5

2 Background and related work ...6
 2.1 Design constraints ...6
 2.2 Attacker model ..11
 2.3 Authentication ...13
 2.4 Multicast authentication ..15
 2.5 Authentication in resource constrained wireless networks ...18
 2.6 Embedded network security ..19
 2.7 Fault tolerance ...21

3 Time-triggered authentication ..23
 3.1 Per-packet assurance ...26
 3.2 Time-triggered authentication assumptions ..28
 3.3 Using one MAC per receiver for time-triggered authentication29
 3.3.1 One MAC per receiver assumptions ..30
 3.3.2 Initializations..31
 3.3.3 Producing per-packet authenticator ...32
 3.3.4 Verifying a packet ..34
 3.3.5 Delayed or out of order messages ..35
 3.4 Verifying state-changing messages...36
 3.5 Verifying reactive control messages ...40
 3.6 Experimental analysis ...45
 3.6.1 No tolerance for invalid MAC tags ..46
 3.6.2 Tolerating invalid MAC tags ...49
 3.7 Discussion ...51

4 Validity voting ..53
 4.1 Properties for detecting disagreement ...55
 4.2 Validity voting assumptions ...56
 4.3 Initialization ..58
 4.4 Functions and state variables ..60
 4.5 Run-time verification ..62
 4.5.1 Producing a per-packet authenticator...62
 4.5.1 Verifying a packet ..65
 4.6 Integrating with time-triggered authentication ...68

Table of Contents vi

 4.7 Potential complications and tradeoffs ...69
 4.7.1 Packet loss ..69
 4.7.2 Tolerating compromised nodes ..70
 4.7.3 Node failure ...70
 4.8 Verification using model checking ...71
 4.8.1 Model description ..71
 4.8.2 Properties and results ...74
 4.8.3 Model limitations ...75
 4.9 Probability analysis ...77
 4.9.1 Experimental results...78
 4.10 Discussion ...82

5 Comparisons to other multicast authentication techniques ...84
 5.1 Metrics for comparison ...85
 5.2 TESLA ..87
 5.2.1 Modifications to TESLA..88
 5.2.2 Initialization ...88
 5.2.3 TESLA in time-triggered authentication ...90
 5.2.4 Tradeoffs with respect to key chains ...92
 5.2.5 Discussion ..93
 5.3 Master-slave ..94
 5.3.1 Hash tree broadcast authentication ..95
 5.3.2 Modifications to hash tree broadcast authentication96
 5.3.3 Initialization ...97
 5.3.4 Verifying messages ..97
 5.3.5 Master-slave in time-triggered authentication ...100
 5.3.6 Discussion ..102
 5.4 Comparisons ...105
 5.4.1 Scalability with respect to per-packet assurance105
 5.4.2 Scalability with respect to receivers ..109
 5.4.3 Loss tolerance ..112
 5.4.4 Node compromise and failure ..117
 5.5 Discussion ...118

6 Evaluation - Simulated elevator control network ...121
 6.1 Network simulation framework overview ..122
 6.2 Elevator system overview ...123
 6.3 Supporting system requirements ...125
 6.3.1 Safety requirements ...126
 6.3.2 High level system requirements ...127
 6.4 Identifying messages and state transitions to protect ..128
 6.4.1 Door controller ...129
 6.4.2 Drive controller ..133
 6.4.3 Safety monitor ..140
 6.4.4 Dispatcher ..140
 6.4.5 Car position indicator ...141

Table of Contents vii

 6.4.6 Messages to authenticate and receivers ...142
 6.5 Implementation of time-triggered authentication ...144
 6.5.1 Selecting time-triggered authentication parameters...................................144
 6.5.2 One MAC per receiver ...146
 6.5.3 Validity voting ...148
 6.5.4 TESLA ...150
 6.5.5 Master-slave ...152
 6.6 Analysis...154
 6.6.1 Bandwidth comparisons ...154
 6.6.2 Effects of history buffer size on system performance165
 6.6.3 Symmetric packet loss effects on history buffer output readiness168
 6.6.4 Symmetric packet loss effects on system performance172
 6.6.5 Forgery test ..175
 6.7 Discussion ...176

7 Evaluation - Automotive network ..178
 7.1 One MAC per receiver ..186
 7.1.1 One MAC per receiver - summary...187
 7.2 Validity voting ..189
 7.2.1 Validity voting - summary ...190
 7.3 TESLA ..193
 7.3.1 TESLA - summary ...194
 7.4 Master-slave ..196
 7.4.1 Master-slave - summary ...198
 7.5 Discussion ...200
 7.5.1 Limitations ...203

8 Technique modifications and variations ..205
 8.1 One MAC per receiver - Shared keys within groups ..205
 8.2 One MAC per receiver - Tuning on a per-message type and per-receiver basis206
 8.3 Validity voting - Tolerating asymmetric packet loss ..207
 8.4 Validity voting - Improving tolerance to packet loss and node failure.....................210
 8.5 TESLA - Using fewer key chains ...216
 8.6 Master-slave - Using different multicast authentication techniques217
 8.7 Multiple techniques in one system ..217
 8.8 Alternate response to forgery attempts ...218
 8.9 Composability with fault tolerance techniques ...218
 8.10 Summary ...219

9 Conclusions ...221
 9.1 Thesis contributions ..221
 9.1.1 Time-triggered authentication using one MAC per receiver221
 9.1.2 Validity voting ...223
 9.1.3 Comparisons with TESLA and hash tree broadcast authentication224
 9.1.4 Two case studies ..225
 9.2 Future work ...227

Table of Contents viii

10 References ...229
 10.1 Thesis publications..234

Appendix A - Automotive network workload analysis data ..235
 A.1 One MAC per receiver ...235
 A.2 Validity voting ...244
 A.3 TESLA ...271
 A.4 Master-slave ...280

List of Figures ix

List of Figures

3.1. Time-triggered authentication ..25
3.2. Per-packet assurance defined by forged samples required to induce system failure28
3.3. OMPR - multicast authenticator generation ..33
3.4. Simulated successful attack rates for four consecutive messages ...47
3.5. Minimum MAC bits per packet and history buffer size (consecutive)48
3.6. Simulated successful attack rate for two out of four messages ...50
3.7. Simulated successful attack rates varying fraction of valid packets50
3.8. Minimum MAC bits per message and history buffer size (non-consecutive)51
4.1. Three nodes cross checking message authenticity using validity voting54
4.2. Validity voting - multicast authenticator generation ...63
4.3. Pseudo-code for validity voting ...64
4.4. Example validity voting with non-overlapping attestations ..68
4.5. AVISPA model of three nodes authenticating message m1 with validity voting72
4.6. AVISPA validity voting model execution over five time slots ...73
4.7. Simulated per-packet forgery rates varying secondary confirmations80
4.8. Simulated per-packet forgery rates varying the number of compromised nodes81
4.9. Reductions in history buffer size using validity voting ...82
5.1. TESLA used in time-triggered authentication ...90
5.2. Master-slave used in time-triggered authentication ...101
5.3. Authentication bits per packet varying per-packet assurance (10 receivers)107
5.4. Authentication bits per packet varying number of receivers (Assurance = 2-8)110
5.5. Authentication bits per packet varying number of receivers (Assurance = 2-16)110
5.6. Ratio of packets authenticated to total transmitted varying packet loss114
6.1. Door controller state diagram ..130
6.2. Drive controller state diagram ...134
6.3. Effects of buffer size on single passenger delivery times ..166
6.4. Average delay of history buffer output readiness due to symmetric packet loss170
6.5. Average delay of history buffer output readiness due to packet loss (combined)171
6.6. Average passenger delivery times varying symmetric packet loss rate174
7.1. OMPR authentication bits per second..188
7.2. OMPR total bits per second transmitted on CAN bus ...188
7.3. Validity voting authentication bits per second...191
7.4. Validity voting total bits per second transmitted on CAN bus ..192
7.5. TESLA authentication bits per second ..195
7.6. TESLA total bits per second transmitted on CAN bus ..196
7.7. Master-slave authentication bits per second ..199
7.8. Master-slave total bits per second transmitted on CAN bus ..199
7.9. All techniques, authentication bits per second ...201
7.10. All techniques, total bits per second transmitted on CAN bus ..202

List of Tables x

List of Tables

2.1. Hash function processing time over 8 byte payload on S12X microcontroller10
5.1. Authentication bits per packet vs. per-packet assurance ..106
5.2. Summary of authentication technique characteristics ...120
6.1. Elevator message dictionary ...125
6.2. Door controller state transition guard conditions..130
6.3. Effects of message forgeries to force or deny state transitions in door controllers131
6.4. Drive controller state transition guard conditions ...135
6.5. Effects of message forgeries to force or deny drive controller state transitions137
6.6. Messages to be authenticated in the elevator, senders, and receivers143
6.7. Identifying largest tag size among all message types for OMPR ...145
6.8. Message types voted upon in validity voting ..149
6.9. Number of votes received for each message type by each node ...149
6.10. Baseline elevator bandwidth required with no authentication ..154
6.11. OMPR history buffer size, required per-packet assurance, and MAC tag size156
6.12. OMPR required bandwidth (Per-packet assurance = 2-7, number of samples = 7)156
6.13. OMPR required bandwidth (Per-packet assurance = 2-5, number of samples = 10)157
6.14. OMPR required bandwidth (Per-packet assurance = 2-3, number of samples = 20)157
6.15. VV history buffer size, required per-packet assurance, and MAC tag size158
6.16. VV required bandwidth (Per-packet assurance = 2-7, number of samples = 7)158
6.17. VV required bandwidth (Per-packet assurance = 2-5, number of samples = 10)159
6.18. VV required bandwidth (Per-packet assurance = 2-3, number of samples = 20)159
6.19. TESLA history buffer size, required per-packet assurance, and MAC tag size160
6.20. TESLA required bandwidth (Per-packet assurance = 2-7, number of samples = 7)160
6.21. TESLA required bandwidth (Per-packet assurance = 2-5, number of samples = 10)161
6.22. TESLA required bandwidth (Per-packet assurance = 2-3, number of samples = 20)161
6.23. MS history buffer size, required per-packet assurance, and MAC tag size162
6.24. MS required bandwidth (Per-packet assurance = 2-7, number of samples = 7)162
6.25. MS required bandwidth (Per-packet assurance = 2-5, number of samples = 10)163
6.26. MS required bandwidth (Per-packet assurance = 2-3, number of samples = 20)163
6.27. Total authentication bits per second ...164
6.28. Total bits per second transmitted on bus (including CAN protocol overhead)164
6.29. Percent increase in required bandwidth with authentication ..164
7.1. High assurance automotive messages ...180
7.2. Medium assurance automotive messages ...181
7.3. Low assurance automotive messages ..182
7.4. Non-authenticated automotive messages ..183
7.5. OMPR history buffer size, required per-packet assurance, and MAC tag size186
7.6. OMPR bandwidth summary ...187
7.7. VV history buffer size, required per-packet assurance, and MAC tag sizes189
7.8. Validity voting bandwidth summary ..191
7.9. TESLA history buffer size, per-packet assurance, MAC tag size, and key size...................194
7.10. TESLA bandwidth summary ..195
7.11. Master-slave history buffer size, required per-packet assurance, and MAC tag size196
7.12. Master-slave bandwidth summary ..198

List of Tables xi

7.13. Comparison of authentication bandwidth ...200
7.14. Comparison of total bandwidth ...201
7.15. Comparison of percent increase in total bandwidth ..201

Introduction 1

1 Introduction

While embedded control networks have traditionally been physically isolated, manufacturers are

increasingly adding connectivity amongst internal networks, to external networks (e.g., wireless

and Internet), and to multimedia devices [Koopman05]. This connectivity enables new features,

but also introduces new avenues for attacks on a system. In the event that an attacker accesses

the internal embedded control network, whether through physical manipulation or via a com-

promised network connection, they can trivially inject messages to disrupt system operation and

subsequently violate safety requirements.

 Such attacks have already been demonstrated on automotive control networks. Koscher et al.

[Koscher10] have demonstrated that an attacker able to connect to an automotive control net-

work (e.g., via a wireless connection through an attached MP3 player or laptop, or via physical

access) can inject messages to control safety-critical actuators. An attacker might access the em-

bedded control network through such a connection to engage an emergency brake in a car while

it is traveling on a highway, unlock doors and start the engine, or shut off headlights while trav-

eling at night.

 Embedded control networks commonly use protocols such as Controller Area Network

(CAN) [Bosch91], FlexRay [FlexRay05], and Time-Triggered Protocol (TTP) [TTTech03] for

multicast communication over a shared broadcast bus. In multicast communication, a transmit-

ting node broadcasts a single copy of a message to multiple receivers in the network (as opposed

to unicast communication where a node transmits a distinct copy of the same message for each

receiver). Applications include distributed automotive, aviation, robotics, and industrial control

systems. Safety, reliability, and cost have traditionally been the primary concerns in these sys-

Introduction 2

tems, with security a minor concern. Most embedded control networks do not have any built in

security to support authenticating nodes, encrypting data, restricting message types a node can

send, or preventing Denial of Service (DoS) attacks.

1.1 Problem statement

This thesis addresses the problem of masquerade and replay attacks on embedded control net-

works. Masquerade attacks [Schneier95] occur when a node sends a message in which it claims

to be a node other than itself. This attack can be performed by broadcasting during another

node's Time Division Multiple Access (TDMA) slot or by changing a message identifier value.

Replay attacks [Schneier95] occur when a previously sent message is recorded and retransmitted

by an attacker. Authentication allows a receiver to confirm the identity of a sender, typically via

cryptographic mechanisms such as a Message Authentication Code (MAC) or a Digital Signature

[Menezes96]. While wired embedded network protocols use error detection codes to verify mes-

sage integrity, these codes can readily be forged, and are no substitute for strong cryptographic

mechanisms.

 As a practical matter, a successful masquerade attack in current embedded systems typically

gives an attacker the ability to make a system unsafe in limitless ways. Multicast authentication

is needed to prevent such attacks in systems implementing a wired broadcast network.

Thesis statement: Integrating multicast authentication into embedded control network protocols

(e.g., CAN, FlexRay, or TTP) is challenging due to the limitations and requirements of these

networks. Resource limited nodes must authenticate short periodic messages to multiple receiv-

ers within tight real-time deadlines while tolerating potentially high packet loss rates. Further-

more, authentication must consume a relatively small proportion of bandwidth compared to the

Introduction 3

data being authenticated. A reasonable size for authenticators may be up to a few bytes of a data

payload, similar in size as existing error detection codes. However, most existing multicast au-

thentication techniques require hundreds or thousands of bits to authenticate each message. We

propose new techniques to provide multicast authentication while enabling tradeoffs to meet em-

bedded network constraints.

1.2 Time-triggered authentication

One simple method of reducing authentication bandwidth costs could be to use a single multicast

authenticator to authenticate an entire batch of samples of the same message type, but this has

several undesirable properties. While this approach could reduce bandwidth consumed by au-

thentication to an arbitrarily small fraction, it also effectively reduces the sampling for that mes-

sage type; a receiver cannot verify any of the messages in the batch until all are received. This is

a problem for real-time control. This could reduce system performance and responsiveness to

inputs. Further, it also reduces loss tolerance. If any of the samples in the batch suffer a transmis-

sion error, a receiver cannot verify any of them.

 This thesis proposes an authentication technique called time-triggered authentication. This

technique allows nodes in an embedded control network to verify periodic messages which drive

state-changes and actuations over multiple message samples, using authenticators only a few bits

in size. It allows verification of data integrity and authenticity on a per-packet basis and enables

perfect loss tolerance. Time-triggered authentication takes advantage of the existing temporal

redundancy in the system to amortize authentication bandwidth overhead across multiple period-

ic message samples. Transmitters truncate MAC tags to a number of bits based on the degree of

temporal redundancy and criticality of each sample (i.e. the effect of an individual message sam-

ple on actuator outputs).

Introduction 4

 Time-triggered authentication can be combined with any multicast authentication technique

based on symmetric authentication functions whose outputs can be truncated (e.g., hash based

MAC functions). This work evaluates the use of four multicast authentication techniques in con-

junction with time-triggered authentication: one MAC per receiver, validity voting, TESLA [Per-

rig00], and a master-slave approach based on hash tree broadcast authentication [Chan08].

 Our approach enables design tradeoffs among per-packet authentication cost, application level

latency, tolerance to invalid MACs, and probability of induced failure, while satisfying typical

embedded system constraints. Further tradeoffs can be performed based on the multicast authen-

tication technique used with time-triggered authentication.

1.3 Thesis contributions

This thesis makes four main contributions:

• Time-triggered authentication: an efficient technique for authentication of periodic messages

in a wired embedded network that enables a tradeoff amongst authentication bandwidth

overhead, application level latency, probability of maliciously induced failure, and tolerance

to occasional invalid authenticators. Time-triggered authentication is first applied to one

MAC per receiver.

• Validity voting: a technique that uses voting to allow a group of nodes to cross-check the va-

lidity of messages amongst themselves to improve the bandwidth efficiency of one MAC per

receiver. This technique expands the trade space to include number of votes and sensitivity to

packet loss.

• A comparison of one MAC per receiver and validity voting to two existing multicast authen-

tication techniques: TESLA and hash tree broadcast authentication using a trusted master.

Introduction 5

These comparisons illustrate tradeoffs amongst techniques which can be integrated with

time-triggered authentication.

• Two case studies in which we applied time-triggered authentication in conjunction with each

of the four techniques to representative embedded control network applications and observed

impacts on system resources and performance. Both applications use the CAN protocol.

Our techniques are intended to enable authentication in common embedded network protocols

(e.g., CAN, FlexRay, or TTP), without the need for any modifications of the protocol. However

all implementations in this work use the CAN protocol.

1.4 Thesis outline

This document is organized as follows: Chapter 2 covers background material such as design

constraints and work related to embedded network authentication. Chapter 3 introduces time-

triggered authentication using one MAC per receiver as a baseline multicast authentication tech-

nique. Chapter 4 builds on time-triggered authentication with validity voting to improve band-

width efficiency of one MAC per receiver using voting. Chapter 5 compares one MAC per re-

ceiver and validity voting with two existing multicast authentication techniques: TESLA and

hash tree broadcast authentication using a trusted master. Chapter 6 describes a case study in

which we implement all four techniques using time-triggered authentication in a distributed em-

bedded elevator simulation. Chapter 7 describes an application of these same techniques to an

industry automotive network workload. Chapter 8 discusses some variations on techniques. Fi-

nally, Chapter 9 discusses conclusions and future work.

Background and related work 6

2 Background and related work

This chapter discusses background material describing design characteristics of embedded con-

trol networks, our attacker model, and related work in securing embedded networks.

2.1 Design constraints

This section describes the typical embedded control network constraints and characteristics that

impact the design of multicast authentication mechanisms in those networks.

 Distributed embedded networks connect a number of hardware Electronic Control Units

(ECUs). These ECUs broadcast periodic samples of system state variables and sensor inputs via

a network using a protocol such as CAN, FlexRay, or TTP. These protocols are among the most

capable of those currently in use in wired embedded system networks. Many other protocols are

even more resource constrained, but have generally similar requirements. We assume that em-

bedded networks exhibit the following characteristics:

Time-triggered (periodic) communication - This work focuses on authenticating periodic mes-

sages that drive state changes and actuations. Real-time embedded control systems are often de-

signed to be time-triggered [Kopetz97]. A real-time system is time-triggered if all communica-

tions and processing activities are initiated at predetermined points in time from an a priori des-

ignated clock tick [Kopetz97]. Each node periodically broadcasts current values of state va-

riables and sensor inputs to the rest of the network. Safety-critical messages are often broadcast

with periods on the order of milliseconds to tens of milliseconds. Non-critical messages are

broadcast less often. ECUs running control loops act on the most recent input data and update

their outputs accordingly, requiring per-message authentication.

Background and related work 7

 We assume each node periodically broadcasts current values for a set of predefined message

types according to a predefined static schedule and all nodes know this schedule. Our time-

triggered authentication approach relies on a few specific characteristics of such static schedules:

• Each sample of a message type is broadcast at predefined points in time, or within a short

time span around that point in time (e.g., within one message period). Receivers know when

a message sample should be received by nodes in the network.

• Message types have a well defined broadcast period. Senders broadcast only one sample of a

message type during each period. For our approach, receivers must be able to easily identify

which period a particular message sample belongs to (i.e., a message sample should not ar-

rive on the "edge" between two broadcast periods). Extra samples of a message type within a

period indicate an error has occurred.

• Receivers can identify that a transmission error has occurred, either because a message has

not been received within the predefined time or the packet was malformed (e.g., error detec-

tion code is incorrect).

Protocols such as TTCAN [Führer00], FlexRay and TTP provide these properties using a static

TDMA schedule. However, TDMA is not absolutely necessary. The CAN protocol can also be

used as long as the application supports the three above properties. Our analyses on two repre-

sentative network workloads in Chapters 6 and 7 are implemented using the CAN protocol.

 Our time-triggered authentication technique may also be applied to periodic systems which

are not strictly time-triggered. System-wide time synchronization is not required either. Howev-

er, the system must support the three above properties to use time-triggered authentication.

 Embedded control networks might also include some event-triggered message traffic. These

communications are initiated as consequences of events (significant state changes in the system).

Background and related work 8

Event-triggered messages are typically sent once (possibly with a small number of retries), often

relying on acknowledgements to ensure message delivery. Time-triggered authentication is not

intended to provide message authenticity for event-triggered messages. Authentication of both

message types in one control network may require more than one technique. Chapter 5 discusses

techniques which are better suited to authenticating event-triggered messages.

Multicast communications over broadcast bus - Most distributed embedded networks are in-

herently multicast. This work assumes a single-hop network in which a set of ECUs communi-

cate over a shared communications bus. All nodes connected to the bus can receive every packet.

(In CAN, hardware performs message filtering at the receiver based on content.) Each packet

includes the sender's identity, often implicitly through a message identifier (CAN; FlexRay) or

time slot (TTP), but usually no explicit destination information. Multi-hop networks (e.g., net-

works with multiple routers or gateways) are outside the scope of this work.

Static network configuration - We assume the network configuration is fixed at design time,

with no runtime reconfiguration. While embedded networks typically have few nodes attached

(commonly 32 or fewer), there may be cases where more are attached. In our two case studies for

the elevator and automotive networks, the maximum number of receivers is 7 and 12. Some mes-

sages are consumed by a single receiver. We examine how four multicast authentication tech-

niques scale to larger numbers of receivers in Chapter 5.

Limited authentication bandwidth - Packet sizes are small in embedded network protocols

when compared to those in enterprise networks. Packets have maximum data payload sizes as

small as eight bytes in the case of CAN, with the larger payloads for FlexRay and TTP being 254

bytes and 236 bytes respectively. Cost, signal integrity, and network node synchronization con-

cerns limit data rates to 1 Mbit/sec for CAN and 10 Mbit/sec for TTP and FlexRay. Low-cost

Background and related work 9

embedded networks can be orders of magnitude slower than that. Networks are often run at near-

ly 100% bandwidth to minimize cost. Authentication should incur minimal bandwidth overhead

regardless of the protocol used.

 Our goal is to produce very small authenticators that consume just a few bytes of the data

payload of each packet. This size is similar to current error detection codes used in embedded

network protocols. Even though more advanced protocols such as TTP and FlexRay can send

larger packets, message workloads will likely be based upon or integrated with legacy implemen-

tations on more constrained protocols. For example, one of the target applications of the FlexRay

protocol is automotive control networks. These networks have historically been implemented

using one or more CAN busses, which use packets with data payloads of eight bytes or less. All

time slots for time-triggered messages in FlexRay must be the same length [FlexRay05], so time-

triggered message slots in FlexRay will likely be sized for eight byte data payloads (or slightly

more) for bandwidth efficiency.

 In Chapter 5, we show how authentication bandwidth overhead scales for each of four tech-

niques based desired per-packet forgery probability and number of receivers.

Resource limited nodes - Processing and storage capabilities of nodes are often limited due to

cost considerations. For example, the S12XD series, produced by Freescale [Freescale12], is a

family of 16-bit microcontrollers designed for use in general automotive body applications.

These microcontrollers provide up to 32 kilobytes of RAM, 512 kilobytes of flash memory, and

four kilobytes of EEPROM, with a core operating frequency of 80 MHz. Flash memory is gener-

ally not written except for software updates, so EEPROM holds non-volatile application data.

Buffering and storage for authentication consume space in RAM, which is far more expensive

and scarce than flash memory in such systems. Authentication mechanisms which require large

Background and related work 10

amounts of processing power or storage in RAM may not be feasible. More powerful ECUs are

impractical for most nodes in the system, and many nodes are 8-bit ECUs with significantly

smaller memories due to cost and power considerations.

 In this work, we do not perform a detailed analysis of processing and memory requirements

for techniques we use (this work instead focuses on bandwidth consumption and impacts to loss

tolerance). We limit techniques to those using symmetric cryptography (which execute an order

of magnitude faster than those using asymmetric cryptography). We assume that nodes have suf-

ficient processing and memory available to compute MAC functions for each packet received or

transmitted. Groza and Murvay [Groza11] provide an analysis of processing time required for an

S12X derivative microcontroller (with XGATE coprocessor) to perform MD5, SHA-1, and

SHA-256 hash functions. Table 2.1 shows the processing time required for these three functions

for the microcontroller operating frequency of 80 MHz. In this work, we use the HMAC algo-

rithm which requires two executions of a hash function.

Table 2.1. Hash function processing time over 8 byte payload on S12X microcontroller [Groza11].

 MD5 SHA-1 SHA-256

Execution time 373 µs 1.146 ms 2.755 ms

Tolerance to packet loss - Distributed embedded systems are subject to message blackouts from

environmental disturbances such as interference from large electric motors. High quality cable

shielding is often impractical due to cost, size, and weight limits. As such, authentication

schemes must tolerate packet losses as part of normal system operation.

Real-time deadlines - In real-time systems, processes must complete within specified deadlines.

Authentication of nodes must occur within a known time bound, with that bound being fast

Background and related work 11

enough to match the physical time constants of the system being controlled (as fast as tens of

milliseconds).

2.2 Attacker model

This thesis focuses on masquerade and replay attacks. Masquerade attacks occur when a node

sends a message in which it claims to be a node other than itself. This attack can be performed by

broadcasting during another node's Time Division Multiple Access (TDMA) slot or by changing

a message identifier value. Replay attacks occur when a previously sent message is recorded and

retransmitted by an attacker.

 This work uses a Dolev Yao attacker model [Dolev81] that controls the network (i.e. an at-

tacker may modify, inject, drop, or eavesdrop upon network traffic). This model assumes authen-

ticators are unforgeable unless an attacker has access to the appropriate key. However, because

we use small MAC tags in this work, there is a non-negligible probability of a single forged

packet being accepted as valid. Thus, we slightly modify this model by assuming an attacker can

also "guess" an authenticator; any message and MAC tag pair has a chance of randomly verify-

ing as correct based on the number of MAC bits used.

 We do not address how an attacker gains access to a network, but rather how to prevent mas-

querade and replay attacks from succeeding in the event that they do gain access. For example,

an attacker may gain access to the internal network through a compromised gateway connection

to an external network, malicious insider code, physically attaching a new node to the network,

or tampering with nodes. Attackers accessing the network through compromised nodes will have

access to the key material in those nodes and can send messages from those nodes. An attacker

must not be able to masquerade as any critical node they do not already control to perform a suc-

Background and related work 12

cessful attack, except with some acceptably low probability.

 Embedded networks may include a mixture of critical and non-critical nodes. Critical nodes

contain software "whose failure could have an impact on safety, or could cause large financial or

social loss." [IEEE610.12] This work assumes limited compromise of critical nodes. Once an

attacker has compromised more than one or two critical nodes, they can likely cause a successful

attack without having to resort to spoofed messages. Due to the potential for an attacker access-

ing the network through compromised nodes regardless of criticality, authentication approaches

which tolerate some level of node compromise for both critical and non-critical nodes are desira-

ble.

 Successful masquerade and replay attacks on embedded control networks can be viewed as

induced system failures, because they may cause unintended release of energy or violation of

safety or operational requirements of the system. The techniques proposed in this work will pre-

vent malicious failures due to masquerade and replay attacks from occurring no more often than

non-malicious failures. We use failure rates based on Safety Integrity Levels (SILs) [IEC61508]

to define acceptable rates of successful masquerade and replay attacks.

 This work assumes an attacker is aware of existing error detection mechanisms along with the

message schedule, and is capable of injecting well-formed packets at valid times. The message

schedule constrains an attacker to one forgery attempt per message period. For example, an at-

tacker is limited to injecting a message during valid time slot in a TDMA network such as TTP

or FlexRay, since transmitters are only permitted to transmit a single packet per time slot in such

protocols. Using CAN, receivers can identify if an attacker is "spamming" many samples of the

same message type based on the message schedule.

Background and related work 13

2.3 Authentication

Preventing masquerade attacks requires some method that provides data integrity and data origin

authenticity. All methods described in this work use hash based message authentication codes to

provide these properties. Further, to prevent replay attacks, all methods include the current time

or message round (agreed upon by both parties) .

 Data integrity is the property by which data has not been changed, destroyed, or lost in an un-

authorized or accidental manner [Shirey00]. Embedded network protocols often support data in-

tegrity using error detection codes, such as cyclic redundancy checks (CRCs) computed over the

header and data payload of a message. However, data integrity alone cannot prevent a masque-

rade attack. We assume an attacker is well aware of the widely known functions used in pub-

lished protocol standards and is capable of computing a correct error detection code for any

packet they modify or inject in the network.

 Data origin authenticity is the corroboration that the source of received data is as claimed

[Shirey00]. With this property, a receiver is able to identify the source of a message. Receivers

can confirm that messages have been transmitted only by the node assigned to send that message

type in the message schedule. Data origin authenticity also implicitly provides data integrity (if a

message is modified, the source has changed) [Menezes96].

 To provide these two properties, we use the keyed-hash based message authentication code

algorithm (HMAC): a message authentication code that uses a cryptographic key in conjunction

with a hash function [Krawczyk97]. A hash function is a computationally efficient function

mapping binary strings of arbitrary length to binary strings of some fixed length, called hash-

values [Menezes96]. A cryptographic hash function h has the following properties:

Background and related work 14

• Preimage resistance - Given the output hash-value h(x), it is computationally infeasible to

find input x.

• 2nd-preimage resistance - Given input x, it is computationally infeasible to find a second input

x' (x ≠ x'), such that h(x) = h(x').

• Collision resistance - It is computationally infeasible to find two inputs x and x', such that

h(x) = h(x'). The attacker may freely choose both x and x', so long as x ≠ x'.

A message authentication code algorithm is a family of functions hk parameterized by secret key

k, with the following properties [Menezes96]:

• Ease of computation - For a known function hk, given a value k and an input x, output hk (x)

is easy to compute.

• Compression - hk maps an input x of arbitrary finite bitlength to an output hk (x) of fixed bit-

length b.

Furthermore, given a description of the function family h, for every fixed allowable value of k

(unknown to an adversary), the following property holds:

• Computation-resistance - Given zero or more text-MAC pairs (xi, hk(xi)), it is computational-

ly infeasible to compute any text-MAC pair (x, hk(x)) for any new input x ≠ xi (including the

possibility for hk(x) = hk(xi) for some i).

 Without knowledge of the secret key k (shared only between sender and receiver), an arbitrary

MAC tag of b bits on an arbitrary plaintext message may be successfully verified with an ex-

pected probability 2-b [FIPS 198-1]. This property remains true even if the output of the MAC

function is truncated to an arbitrarily small number of bits. Truncating the output of a MAC

Background and related work 15

function does not reduce the security of the key or underlying cryptographic functions. In gener-

al, if a MAC is truncated, then its output length b should be as large as practical (e.g., 32 bits or

more). Fewer bits can be used so long as repeated trials to are not allowed for an attacker to

present a non-authentic message for verification [FIPS 198-1]. In our approach, we use MAC

tags of just a few bits in length. However, our required properties for static message schedules

(Section 2.1) do not allow for multiple attempts to forge a message sample.

 As a final note on authentication functions: a tempting option might be to use a secret key,

initialization vector, or final XOR as part of a CRC or other error detection code computation.

This approach has been proposed for safety-critical systems, which assume faults are random and

independent [Morris03]. Thus, it would be difficult for a fault to accidentally produce a correct

error detection code. Unfortunately, this approach is not cryptographically secure for a fault

model which includes a malicious attacker. Even a proprietary protocol can be fully reverse en-

gineered from its inputs and outputs [Ewing10].

2.4 Multicast authentication

To provide data origin authenticity and data integrity in a broadcast bus, multicast authentication

is needed. Many methods for multicast authentication already exist. However, none of these ap-

proaches is ideally suited for the constraints of embedded networks.

 The multicast nature of embedded network protocols makes authentication particularly chal-

lenging. Cryptographic mechanisms for point-to-point communications, such as appending a sin-

gle MAC to a message using a shared secret key between nodes, do not provide adequate securi-

ty in a multicast setting. If more than two nodes share the same key, a receiver cannot determine

which of the other nodes created the MAC. Multicast authentication requires some form of key

Background and related work 16

asymmetry, so that no receiver can masquerade as a sender. Sending one full-size MAC per re-

ceiver can provide multicast authentication, using one unique symmetric key per pair of commu-

nicating nodes. Unfortunately, bandwidth and processing overhead scales linearly with the num-

ber of receivers. This can require authenticators that are tens to hundreds of times larger than da-

ta payloads. For this reason, one MAC per receiver is often avoided for enterprise networks

broadcasting to hundreds or thousands of receivers. However, by taking advantage of the tem-

poral redundancy and small numbers of receivers in most embedded control networks, we modi-

fy this technique to produce authenticators just a few bits in size.

 Another asymmetric approach is to use digital signatures. This approach provides strong

source authentication using public and private keys, but the processing overhead makes it im-

practical for a resource constrained device to compute digital signatures for each message for

real time control. For example, pagers and Palm Pilots can take several seconds to compute a 512

bit RSA signature in resource constrained nodes [Brown00]. Some approaches suggest amortiz-

ing the cost of the digital signature over a set of packets [Miner01][Park02][Perrig00][Wong98].

But, a node would have to amortize the cost over several hundred messages for this to be effec-

tive, making it unsuitable for real-time control operations.

 Schemes using one-time digital signatures [Even89][Gennero97][Perrig01] allow senders to

sign messages much faster than with traditional digital signatures by using one-way hash func-

tions, at the expense of increased message sizes. Unfortunately, one-time digital signatures can

incur several kilobytes of authentication data per message. This makes them impractical for em-

bedded networks with small packet sizes and time-triggered communication, even if amortized

over many packets.

Background and related work 17

 Canetti et al. [Canetti99] suggest a multi-MAC scheme which appends k one-bit MACs to

each message, computed using k different keys. The keys are distributed amongst receivers such

that at least w receivers must conspire to forge a message. While this is more efficient than using

one MAC per receiver, it is vulnerable to collusion by multiple nodes that together can masque-

rade as some other node. Mitigating collusion can require hundreds or thousands of authentica-

tion bits per message.

 TESLA [Perrig00] uses time-delayed release of keys to provide asymmetry. By releasing keys

at a pre-specified interval after a MAC is released, receivers can confirm the authenticity of the

data from a sender. The released keys are computed using one-way hash chains. The cost of stor-

ing the entire chain of keys is prohibitive, so techniques are used to reduce memory overhead at

the expense of a small recomputation cost [Jakobsson02]. While TESLA sends a single MAC per

interval, it also requires the sender to include a key for each interval of messages to be authenti-

cated. In Chapter 5, we describe a slight modification of TESLA in which the sender truncates

the MAC tag to just a few bits, but we do not propose to truncate the key. Truncating the key ex-

ponentially reduces the security of this approach. Hu et. al. propose a variation on one-way hash

chains, called sandwich chains, which allows smaller keys to be released per message by regular-

ly initializing new key chains [Hu03]. However, this technique assumes the attacker does not

have the computational resources to break the current key before the next is released. Chapter 5

discusses further details and tradeoffs related to using TESLA within an embedded control net-

work. Bergadano also proposes a similar protocol using time-delayed release of keys [Bergada-

no00].

 Chan and Perrig [Chan08] propose a multi-MAC technique called hash tree broadcast authen-

tication in their work on secure aggregation. This technique requires the transmitter to send only

Background and related work 18

a single hash value to receivers (computed over a MAC for each receiver). Subsequently, all re-

ceivers exchange MAC tags to for verification of the sender's hash value. Chan and Perrig ex-

amine tree [Chan08], linear, and connected topologies [Chan10]. We examine the use of this

technique in a broadcast bus topology using a trusted master node.

 Luk et al. identify a set of seven cardinal properties of broadcast authentication in sensor net-

works [Luk06]. In their work, they show that viable broadcast authentication protocols exist that

satisfy any six of the seven properties, but not all seven simultaneously. In this work, most of our

design constraints (Section 2.1) are a subset of the seven desired properties. However, we also

consider embedded network applications which allow for weak per-packet assurance (Section

3.1).

2.5 Authentication in resource constrained wireless networks

Other approaches such as SPINS [Perrig02] and TinySec [Karlof04] apply security to resource

constrained wireless sensor networks. However, those approaches are specifically designed for

use in wireless networks, where energy (battery life) is typically the scarcest resource. Methods

for reducing overhead related to security often focuses on reducing energy consumption. These

network typically do not have real-time deadlines for safety-critical applications.

 For example, µTESLA [Perrig02], a version of TESLA and part of the SPINS security suite,

limits the number of authenticated senders and utilizes a base station for communications to re-

duce overhead. A base station is often cost-prohibitive for distributed embedded real-time con-

trol systems, which use peer-to-peer wired networks. An existing node, such as an embedded ga-

teway, might act as a base station, but would be an undesirable single point of failure and ob-

vious attack target for the entire network. A fully distributed approach is best for the types of

Background and related work 19

systems we are concerned with, though we do consider the use of master node in this work and

illustrate some of the benefits and issues with such an approach.

2.6 Embedded control network security

Morris and Koopman [Morris03] identify the potential for masquerade failures to cause acciden-

tal or malicious failures, via non-critical nodes masquerading as higher criticality nodes. They

propose the use of counter-measures of varying strengths to prevent masquerading failures be-

tween nodes of varying criticality. Their approach assumes non-malicious software faults or at-

tacks from a cryptologically unsophisticated attacker. Fault tolerance mechanisms are not neces-

sarily secure against malicious masquerade or replay attacks. Masquerade prevention for safety-

based systems typically uses bus guardians or a symmetric key shared among all trusted nodes.

Compromise of a single node would permit an attacker to masquerade as any system node.

 Wolf et al. [Wolf04] provide an overview of the security vulnerabilities of various in-vehicle

network protocols including Local Interconnect Network (LIN), Media Oriented System Trans-

port (MOST), CAN, and FlexRay. These vulnerabilities primarily focus upon DoS attacks in-

tended to disable networks. Additionally, they state the need for confidentiality and authentica-

tion. Wolf et al. suggest the use of digital signatures or the asymmetric MAC scheme proposed in

[Cannetti99] for authenticating sent packets along with gateways between individual in-vehicle

networks. These authentication schemes may not be suitable for some distributed embedded

networks, as discussed in Section 2.4.

 There have been several publications demonstrating attacks on the integrity and authenticity

of messages and nodes in embedded networks. Nilsson and Larson [Nilsson08] detail the actions

which an attacker might take, and demonstrate masquerade attacks on CAN using simulation.

Background and related work 20

Hoppe et al. [Hoppe07] and Lang et al. [Lang07] demonstrate a combination of eavesdropping

and replay attacks on CAN. Koscher et. al. [Koscher10] demonstrated the ease with which

spoofed messages allow an attacker to control safety critical actuators in a live automobile. With

access to the on board diagnostics port, they demonstrated that they could disable the braking

system in an automobile while driving.

 Nilsson and Larson [Nilsson08_2] propose a unicast authentication scheme using a 64-bit

MAC computed over four consecutive message samples. A transmitter divides the tag into four

parts, and places each part in the CRC field of the each of the four packets. This introduces a

four message period delay before the samples can be verified as a batch. It also requires a change

in the CAN protocol to support this approach (replacing the CRC). This approach uses a similar

idea to our approach, amortizing authentication costs over multiple samples, but batch authenti-

cates multiple samples to only a single receiver. This effectively reduces the sampling rate of the

system if receivers must act on the most recent system state variable and sensor data. This ap-

proach also reduces loss tolerance; if any of the four samples suffers a transmission error, all four

are lost. This approach also does not provide a specific means to prevent replay attacks, though

the work does discuss the need for ensuring fresh messages.

 Herrewege et al. [Herrewege11] propose an authentication approach called CANAuth, which

provides unicast authentication of individual messages samples by taking advantage of extra

bandwidth of an out-of-band channel provided by the CAN+ protocol. CANAuth transmits a 32-

bit nonce and 80 bit MAC tag for each message sample to be verified. Only a single MAC tag is

computed using HMAC, providing only unicast authentication and requiring an out-of-band

channel. Our analysis in Chapters 6 and 7 show that all four techniques we examine (including

TESLA) can provide multicast authentication to typical numbers of receivers in an embedded

Background and related work 21

network using fewer bits per packet for most levels of per-packet assurance.

 Two works by Groza and Murvay each propose the use of TESLA [Groza11] and BiBa [Gro-

za11_2] respectively and examine tradeoffs associated with each in a embedded control network

using CAN. For TESLA, they examine a trade space including number of key chains, key

lengths, memory requirements, and processing requirements. They also examine processing

overhead on a Freescale S12 microcontroller (commonly used in automotive applications). Our

work differs in that we focus bandwidth requirements, while varying MAC tag size. For the one-

time digital signature scheme BiBa, they examine the bandwidth consumed using this scheme for

authenticating critical message traffic. With a bus speed of 128 KBps, this scheme allowed for

authenticating 286 bits per second at a cost of a bus load of 16%. To authenticate 1000 bits per

second required a bus load of 100%. This analysis illustrates that one-time signatures can require

extremely high overhead for verifying even a few messages.

 Lastly, Chávez et al. [Chavez05] propose using RC4 encryption to provide confidentiality on

CAN buses. They dismiss authentication and non-repudiation as unnecessary in these networks,

under the assumption that message identifiers and error detection provide sufficient confirmation

of the sender's identity. Our work relaxes this assumption by assuming that sender identity can

be forged, for example as illustrated in publications that demonstrate such attacks.

2.7 Fault tolerance

Our proposed method for validity voting in Chapter 4 also shares some similarity with approach-

es for voting and detecting disagreement among nodes.

 Voting techniques and redundancy are a classic approach to improve system reliability [Neu-

man56]. These techniques enable fault detection and handling to prevent fault propagation in a

Background and related work 22

system. Typically system designers assume each input to a voter or comparator mechanism fails

randomly and independently of others. In our approach, nodes detect differing views of message

authenticity by voting on the validity of MAC tags from other nodes. We assume the outputs of

each MAC function can only be successfully forged randomly and independently of other MAC

functions.

 Our voting approach also has similarities to the TTP group membership service [TTTech03].

This service provides agreement on current operating mode and set of nodes believed to be cor-

rect and alive. In TTP, nodes encode membership information into packet error detection codes.

Disagreeing error codes indicate either the sender or receiver failed, and nodes take appropriate

action to segregate out the failed node. We use a similar technique, computing a MAC function

over a previous set of values seen from the network and a bit vector indicating each value's valid-

ity. In our approach, disagreeing authenticators indicate that an attacker may have fooled one or

more receivers. Nodes then reject potential forgeries.

Time-triggered authentication 23

3 Time Triggered Authentication

This section introduces time-triggered authentication, a new method for authenticating periodic

messages in wired embedded control networks.

 Time-triggered authentication uses the temporal redundancy present in most time-triggered

system designs to amortize authentication bandwidth overhead across multiple time-triggered

packets, while verifying each packet individually using truncated MAC tags.

 In time-triggered applications, nodes periodically broadcast current values of state variables

and sensor inputs to the rest of the network. Receivers then update outputs and actuators based

on the most current system state. This information is typically sampled faster than the time con-

straints of control stability requirements. As a rule of thumb, ten or more samples are sent within

the rise time of a control system or prior to a system deadline [Kopetz97][Franklin02]. Choosing

such a sample rate reduces the delay between a command and the system response, smoothes

outputs to steps in control input, and tolerates lost messages.

 System inertia often limits the effects of an individual message sample on the output of an ac-

tuator in the system. Typically, an actuator does not instantly reach a new output position com-

manded by an input to its controller. For example, typical passenger cars often have a maximum

acceleration of 3 to 4 m/s2 [SuperCoupe12], whereas throttle inputs are sampled on the order of

milliseconds. Suppose a passenger car has a maximum acceleration of 3 m/s2, and a throttle input

sampling period of 10 milliseconds. In the time it takes for such a car to increase its speed by 3

m/s (about 6.7 miles per hour), the throttle will have been sampled 100 times (all sustaining max-

imum acceleration). Greater changes in speed require even more samples sustaining a maximum

Time-triggered authentication 24

acceleration. Thus, a single message sample commanding maximum acceleration will produce a

very small observable increase in vehicle speed.

 This existing periodic sampling already grants resilience to transient faults. An undetected

fault affecting a single message sample is unlikely to cause a system failure (in the example ve-

hicle, a single fault affecting a sample of the throttle input cannot cause the vehicle to drastically

change speed). It may cause some vibration, slight delay in updating control outputs, or less

smooth control.

 From a fault tolerance point of view, if many input samples suffer undetected errors within a

short period of time, then an unsafe event might occur. Thus, a system design must ensure that so

many undetected errors have an very low probability of occurring together. Embedded network

protocols include an error detection code in each packet to prevent this. Similarly, from a securi-

ty point of view, if an attacker might cause a system to enter an unsafe state by forging a number

of message samples within a short period of time, then the design must ensure that enough forge-

ries cannot occur without very high probability of being detected. Our approach includes MAC

tags in each packet to detect such masquerade attacks.

 Because of this over-sampling, senders can authenticate state changes and actuations over

multiple packets using truncated MAC tags. All multicast authentication techniques in this work

use hash based MACs. The sender computes MAC tags for the packet as defined by the selected

multicast authentication mechanism. Then, the sender truncates each MAC tag to just a few bits

before appending tags to the data payload.

Time-triggered authentication 25

 Time-triggered authentication requires that the outputs of the MAC functions can be truncated

down to an arbitrarily few number of bits without compromising the security of the function or

the key. Only MAC functions that meet this requirement (e.g., hash based MAC functions) can

be used for time-triggered authentication. MAC functions that do not meet this criteria should

not be used.

 To reduce the rate at which masquerade attacks induce system failures, nodes verify state

changes and actuations over multiple time-triggered packets, each containing a truncated authen-

ticator (Figure 3.1). Nodes execute state-changes after receiving a sufficient number of packets

containing consistent values, each of which would trigger the same state change. Reactive con-

trol inputs are applied to actuators as they are received, relying on system inertia to force an at-

tacker to forge multiple packets within a short period of time to place the system in an unsafe

state.

Figure 3.1. Time-triggered authentication. This approach verifies state changes and actuations

across multiple truncated authenticators.

 The primary advantage of time-triggered authentication is that the system designer can per-

form a tradeoff among authentication bits per packet, application level latency for state changes

and physical actuations, and the acceptable probability of induced system failure for each mes-

sage type. Typical requirements for acceptable failure rates in systems containing wired embed-

ded networks might be defined at 10-3/hr, 10-6/hr, or 10-9/hr of undetected message errors de-

Time-triggered authentication 26

pending on the severity of the resulting failure. The system designer can determine the number of

authentication bits required per packet such that a successful masquerade attack can induce a ma-

licious system failure no more often than the failure requirements for sources of other non-

malicious failures.

 A secondary advantage of time-triggered authentication is that it can be combined with many

multicast authentication techniques that use MACs to validate packets during run-time. The

MAC tags in such approaches can be truncated to an arbitrarily small number of bits without

compromising the security of the underlying functions or keys. Further, being able to combine

time-triggered authentication with other multicast authentication techniques enables additional

tradeoffs amongst multicast authentication techniques. This work discusses tradeoffs amongst

different techniques in Section 5.

3.1 Per-packet assurance

This work shows that by verifying state changes and physical actuations over multiple truncated

authenticators, time-triggered authentication enables strong system-level assurance (very low

probability of maliciously induced failures) that those state changes and actuation commands are

correct and from a valid sender despite only having weak assurance that an individual packet

contains a valid message sample value.

 In time-triggered authentication, the degree to which an individual authenticator can be trun-

cated depends on the required level of per-packet assurance. We define per-packet assurance

level as the acceptable probability of successful forgery per packet. A weak per-packet assurance

level gives an attacker a high probability of successfully forging each packet. Using a strong per-

Time-triggered authentication 27

packet assurance level creates a low probability of successful packet forgery. Achieving a

stronger assurance level requires more authentication bits.

 A system with sampling rates faster than the physical dynamics of the system (e.g., a typical

time-triggered embedded control network) generally tolerates weaker per-packet assurance levels

than a system that sends infrequent periodic samples or a single sample for some change in sys-

tem state (e.g., an event-triggered system). In systems with high sampling rates, each packet has

less net effect on the overall system state, requiring many successful packet forgeries to induce a

system failure. However, in systems with low sampling rates or event-triggered systems, an at-

tacker might induce a system failure with a single (or very few) packets. A more severe failure

induced by a successful masquerade attack against a particular message type requires a receiver

to authenticate across more samples or have stronger assurance of each sample.

 Figure 3.2 shows the required per-packet assurance probability as we vary the number of sam-

ples an attacker must successfully forge consecutively to induce a system failure with probability

no higher than 10-9 per message round.

Time-triggered authentication 28

Figure 3.2. Per-packet assurance defined by forged samples required to induce system failure.
Per-packet assurance probability required to prevent system failure with probability no higher
than 10-9 per message round, varying the number of successfully forged samples required to

induce the system failure.

 We emphasize that the failure probability in Figure 3.2 is per message round. To achieve fail-

ure rates on a per-hour basis, a system designer must determine how many authentication bits are

needed to achieve a sufficiently low expected failure rate per message round, taking into consid-

eration the period of a particular message type.

3.2 Time-triggered authentication assumptions

Time-triggered authentication relies on multiple assumptions. This work assumes the following:

• The sampling rates of message types are sufficiently faster than the physical dynamics of the

system, such that an individual message sample only requires a weak level of per-packet as-

surance. Packets are transmitted at a rate fast enough for a receiver to authenticate multiple

consistent values for a message type within a system deadline or rise time of a system. In

Consecutively forged samples required to induce system failure

0 5 10 15 20 25 30

P
er

-p
ac

ke
t a

ss
ur

an
ce

 p
ro

ba
bi

lit
y

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Time-triggered authentication 29

Section 5, we examine which multicast authentication techniques scale best when individual

packets require stronger per-packet assurance.

• A certification authority exists to assign key material to components when they are manufac-

tured.

• Nodes use existing cryptographic one-way hash functions (e.g., SHA-1 [FIPS 180-3], MD5

[Rivest92], or SHA-256 [FIPS 180-3]) and MAC functions to implement authentication (e.g.,

HMAC [Krawczyk97]). We assume the underlying cryptographic primitives are secure. We

do not rely on specific MAC or one-way hash functions to implement our scheme.

• The outputs of selected MAC functions can be truncated to an arbitrarily small number of

bits without compromising the security of the MAC function, underlying hash function, or

any key material.

• The output lengths of MAC functions and sizes of keys are fixed at design time and cannot

change at run-time.

• The network configuration is fixed at design time; nodes are not installed or uninstalled on

the fly. A message schedule exists so all nodes are aware of the set of message types broad-

cast by each node. The set of receivers for each message type is also known by all nodes.

• Nodes remain synchronized to the nearest message round.

 We list other assumptions necessary for individual multicast authentication techniques in their

respective sections below.

3.3 Using one MAC per receiver (OMPR) for time-triggered authentication

This section describes how to combine One MAC per Receiver (OMPR) into time-triggered au-

thentication. OMPR is one of the most straightforward methods for multicast authentication; the

Time-triggered authentication 30

transmitter simply computes and sends one full-size MAC tag for each receiver along with the

message. Time-triggered authentication allows us to scale the tag size based on the required per-

packet assurance on a per-receiver and per-message type basis. First, this section states our as-

sumptions. Then it discusses key initialization and replay protection. It shows how to sign and

verify individual message values at run-time. Finally, it describes how to verify a series of indi-

vidual message values, each with weak per-packet assurance, to provide strong assurance for

state changes and actuations.

 When using OMPR, a sender computes one MAC tag for each receiver and truncates each to a

few bits. By using tags only a few bits in size, the sender can place one tag per receiver in the

data payload of a packet. This approach allows authentication on a per-packet basis (batch au-

thenticating multiple payloads is not required), has perfect loss tolerance, and perfect tolerance to

compromised nodes. However, bandwidth requirements scale linearly as per-packet assurance

and number of receivers increase.

3.3.1 OMPR Assumptions

When using OMPR, this work uses two assumptions in addition to those for time-triggered au-

thentication in Section 3.2:

• Each sender has sufficient computational resources to compute one MAC per receiver per

message value that is sent. The required computational resources depend on the cryptographic

function used.

• The number of available bits in a packet's data payload is greater than the number of receivers

of a packet. This allows authenticators for each receiver in the packet, leaving room for the

message value.

Time-triggered authentication 31

3.3.2 Initialization

Key establishment - To prevent one node from masquerading as another, the set of nodes at-

tached to the network must first established pair-wise shared secret keys. Keys are set up at ini-

tial installation or node replacement for maintenance. Any secure method of key establishment

can be used. Maintenance or factory personnel can program each node with the respective

shared keys when the node is installed into the system. This method might not be ideal since it

requires additional work by personnel to establish the keys, and places a large amount of trust in

these personnel. Alternately, another approach is to provide each node with a public and private

Diffie-Hellman [Diffie76] key pair, which has been digitally signed by the manufacturer's secret

key. Each node also has the manufacturer's public key. At time of installation, the nodes ex-

change their Diffie-Hellman public keys and certificates. Each pair of nodes then authenticates

the certificates and uses the Diffie-Hellman key exchange protocol to compute a shared secret

key for authentication. In a typical embedded system, all nodes wired to the network are known

at design time. It is reasonable to assume a node will know the standard configuration and what

nodes comprise the group it is communicating with. This is in contrast to enterprise networks,

where network nodes are expected to change continually.

 For a system with n nodes, this scheme might require establishing O(n2) keys. While this

overhead is high, it is incurred only once at time of installation, while the system is inactive.

Embedded networks have very stable hardware configurations, which often last for months or

years. Thus, a one-time key distribution cost is a minor concern in most situations. Keys are

stored as part of configuration data and do not change at run time. We assume system designs

use an appropriately secure key length (e.g., 80 bits) [Lenstra01].

Time-triggered authentication 32

Time synchronization - Time-triggered authentication uses time synchronization to prevent rep-

lay attacks. At system startup, each pair of communicating nodes securely synchronizes to a

common time base. Nodes agree upon the current time or TDMA round number using a protocol

such as Secure Pair-wise Synchronization [Ganeriwal05]. This can provide synchronization on

the order of microseconds to ensure freshness of messages for each message round, which can be

tens to hundreds of milliseconds. Global synchronization is not needed, since only pairs of nodes

share each secret key. For each packet to be broadcast, the sender includes the current time or

TDMA round number as an input to any cryptographically secure MAC function used (depend-

ing on the multicast authentication technique being used). Synchronized time values must not

roll over for some acceptably long period of time. This prevents the attacker from predicting the

MACs over this period of time even for identical data values via playing back previously record-

ed messages. Because the MAC function compresses data, there is no limit on the size of the

time value.

3.3.3 Producing a per-packet authenticator

When transmitting a message, the sender generates one MAC tag for each distinct receiver of the

packet. The sender computes each MAC function over the packet header, message value, and

synchronized time, using the appropriate pair-wise shared key for the corresponding receiver.

The outputs of these MAC tags are then truncated to just a few bits each, and the sender appends

the truncated MACs to the message value (Figure 3.3). Depending on the required per-packet

assurance for the message type, the size of each truncated MAC tag can be as little as a single

bit. By truncating tags to just a few bits, one MAC per receiver can be placed into each packet.

All authentication data can be self-contained in each packet, given that at least one bit is availa-

Time-triggered authentication 33

ble per receiver. This allows each packet to be verified independently and ensures that lost pack-

ets do not affect the verification of any other packet.

 Since the network configuration is fixed at design time, the location of each receiver's MAC

tag within a data payload can be assigned at design time. Receivers are preprogrammed with the

size and location of their respective MAC tags.

Figure 3.3. OMPR multicast authenticator generation. Example packet containing 32 bits of data

and four 8-bit MACs, for four receivers. Each receiver n shares a secret key Kn and synchronized

time tn with the sender. These values are included as inputs to the MAC function along with the

header and data. The outputs of the MAC function are truncated and appended to the data payl-

oad.

 System designers select the number of MAC tag bits to use for each receiver at design time.

The size of these outputs do not change during run-time. MAC tags do not necessarily need to be

Time-triggered authentication 34

truncated to the same number of bits in length. Different receivers may also have higher or lower

priority for message assurances. For example, some receivers might need stronger assurances

within shorter deadlines than other receivers. A sender can devote more MAC tag bits in the

payload for those receivers with more strenuous requirements for security.

 In the case that a message type's required per-packet assurance does not allow one truncated

MAC tag per receiver to be placed in a single packet's payload (i.e., the size of the data value and

truncated MAC tags exceed the size of a packet's payload), these MAC tags can be placed in a

subsequent packet. However, this increases the delay for receivers to verify a message sample

and decreases the loss tolerance of this approach.

3.3.4 Verifying a packet

Upon receiving any packet (or packets) containing a message value, a receiver first checks that

the transmitted packet is well formed according the embedded network protocol and checks the

error detection code. Then, if the packet is not malformed and the error detection code is correct,

the receiver verifies its designated MAC tag. The receiver recomputes a MAC function over the

same values the sender: packet header, message value, pair-wise and synchronized time, using

the appropriate pair-wise shared key. The receiver then compares the output tag of the MAC

function to the receiver's designated tag within the packet's payload.

 Receiving a packet and verifying its message value has one of three results:

 Lost - A message value is considered to be "lost" if the error detection code of the packet is

incorrect, the packet is malformed according to the embedded network protocol, or if no packet

is transmitted during a particular message period. This indicates that some error occurred during

transmission. This result encompasses most non-malicious transmission errors. Dropping packets

Time-triggered authentication 35

does not grant an attacker any extra benefit while attempting to forge messages. This work does

not address how to deal with malicious denial of service attacks, and assumes receivers take ap-

propriate action in the event of observing a significant number of dropped messages.

 Valid - If a message value is not lost and the recomputed tag matches the receiver's designated

tag in the packet's payload, the receiver accepts the message value in that packet as "valid." The

receiver trusts that the message value is indeed from the correct sender and the value has not

been tampered with during transmission.

 Invalid - If a message value is not lost, and the tag does not verify as valid, then a message

value is designated as "invalid." This indicates that the message value might be a forgery at-

tempt, or might have a transmission error undetectable by the error detection mechanisms in

place.

 By tampering with network traffic to inject or modify a message value, the attacker might oc-

casionally succeed in forging a MAC tag. If the packet contains b MAC tag bits for a receiver

using OMPR, the probability that any single MAC tag can be successfully forged is 2-b. If an at-

tacker correctly guesses the tag for the corresponding message value, then the receiver will ob-

serve a valid MAC tag.

3.3.5 Delayed or out of order messages

Timing delays may cause a message to be designated as invalid if a receiver uses a different time

input when verifying a MAC tag than the sender used in computing the MAC tag in the payload.

We assume nodes remain time synchronized to the nearest message round. However, in some

cases, a message broadcast may be delayed (e.g., in CAN a low priority message may be delayed

by a higher priority message).

Time-triggered authentication 36

 If there are well-defined time boundaries for message rounds, two techniques can prevent a

message from being accidentally designated as invalid. One possibility is for a receiver to try

multiple synchronized time values (e.g., current and previous message round numbers). Howev-

er, this increases the probability that an attacker could correctly guess a MAC tag (requiring

more MAC tag bits). Instead, a sender can include the least significant bit of the message round

number in the data payload. Thus, a receiver can identify a delayed message from a previous

message round.

3.4 Verifying state changing messages

Time-triggered authentication provides strong assurance for state-changes by authenticating over

a set of message values, each of which have weak per-packet assurance. A receiving node keeps

an explicit history buffer for the authentication results of each message type used in its internal

state machines. A history buffer acts like a First In First Out (FIFO) buffer in which receivers

store the n most recent message values and the verification results for each sample (“valid” or

“invalid”). At startup, nodes initialize history buffers so that all elements are set to a default val-

ue and stored as invalid.

 Receivers verify each message value individually using the process described in Section 3.3.4.

Lost message values are discarded and are not included in the buffer. Once verified as valid or

invalid, a receiver discards the oldest value in the history buffer, shifts all values by one index

position, and stores the newest value and its validity.

 Upon checking and storing the verification results of a newly received message value, a re-

ceiving node checks if the contents of the history buffer satisfy the conditions to commit to a

state change, as defined by its internal state machine. A node commits to a state change if a his-

Time-triggered authentication 37

tory buffer contains a sufficient number of valid message value samples that are all consistent. A

set of values for a message type is consistent if all valid values would trigger the same state tran-

sition (the values do not necessarily need to be equal). In the case that a transition depends on

multiple message types, the receiver would wait until all history buffers for those message types

satisfy the condition for the state transition.

 All values within the history buffer must be consistent for a state transition to be taken. If one

of the values is not consistent, a state transition cannot occur.

 Once a node commits a state change, the node clears its history buffers and resets them to de-

fault values stored as invalid.

 For example, a node that controls a door lock in an automotive network might monitor the

wheel speed message type, and automatically lock the door if the car is moving sufficiently fast.

If the speed threshold is set at fifteen miles per hour, the door lock node would record each re-

ceived message sample value and its validity in the history buffer. Once a sufficient number of

wheel speed message values in the history buffer are valid and are all at least fifteen miles per

hour, the node would commit to the transition and locks the door.

No tolerance for invalid MAC tags - Depending on the application, the system designer de-

cides how many samples in the history buffer must be valid before committing to a state transi-

tion. In most applications, a receiver waits for n out of n consecutive values in the history buffer

to be consistent and then commits to this transition. Committing to state changes after n of n

consecutive valid message values assumes the application does not require any tolerance to

invalid message values or that any single invalid message value indicates a malicious masque-

rade attack. If any of the n values were invalid, the state transition does not occur. Thus, in the

event of a single invalid message sample, a state transition cannot occur until another n subse-

Time-triggered authentication 38

quent valid samples have arrived.

 While it is likely that an attacker will be able to forge a single packet since we use just a few

authentication bits per MAC, it is unlikely that they will be able to forge so many within the his-

tory of the buffer as to cause a successful masquerade attack, subsequently maliciously inducing

a state change. Thus, this approach allows receivers to verify many message samples using weak

per-packet assurance to achieve strong system-level assurance. If each message value is transmit-

ted along with b authentication bits per receiver, the probability of per-packet forgery Pp is 2-b.

The probability of forging n consecutive message values in a history buffer is:

 �� � ����� (1)

Tolerating invalid MAC tags - Optionally, it may also be useful for some applications to have

some level of tolerance to invalid message values. Allowing state changes to occur after validat-

ing a subset of MAC tags in the history buffer grants this approach a degree of tolerance to in-

terspersed invalid MAC tags. Without this tolerance, an attacker might increase message latency

or prevent authentication altogether while remaining undetected by occasionally injecting invalid

packets. Packets with a correct CRC but invalid MAC might also be caused by non-malicious

faults. For example, if the sender's and receiver's notions of time differ due to a temporary inter-

nal fault, the receiver would see an invalid MAC. Additionally, some message corruptions might

be missed by error detection mechanisms, so occasional invalid MAC tags might result from

transmission errors.

 When tolerating interspersed invalid MAC tags, a state change occurs when at least k out of

the past n time-triggered message values in the history buffer are consistent and valid. This al-

lows a receiver to tolerate n - k invalid MAC tags interspersed within a series of n message val-

Time-triggered authentication 39

ues. State changes occur as soon as k message values out of the most n most recent have consis-

tent values and are valid. An attacker can successfully forge at least k of a set n values in a histo-

ry buffer with a binomial probability of:

�� ��	
� �
���
�
1 � ������

�

���
 (2)

 We emphasize that all message values in the history buffer (including the invalid ones to be

tolerated) are all consistent.

Tradeoffs for state changing message verification - This approach for authenticating state-

changing messages enables the system designer to perform a tradeoff among authentication bits

per packet, application level latency, tolerance to invalid MACs and probability of an induced

failure. Based upon the criticality of the message, the designer trades increased authentication

bandwidth and latency for lower probability of induced failure, and trades increased tolerance to

invalid MACs for increased probability of induced failure.

 Additionally, system characteristics and requirements might constrain these tradeoffs. For ex-

ample, in a system with hard real-time deadlines, the maximum number of samples to authenti-

cate over might be limited to the minimum number of samples of a message type expected to

contain consistent message values within the maximum tolerated delay for a state change. The

number of samples might be further constrained if extra slack is needed to tolerate unexpected

operating conditions such as lost packets. Adding slack for unexpected operating conditions

means that there would be fewer message samples to authenticate over, decreasing the possible

size of the history buffer. To authenticate over fewer samples, a system designer could increase

the number of bits per MAC tag, reduce the number of invalid MAC tags to tolerate, or even ad-

Time-triggered authentication 40

just the permissible overall probability of maliciously induced failure.

Effects of lost packets and message blackouts - Each individual lost packet will cause a single

message round delay before a state change can occur. In the event that the contents of a history

buffer becomes stale and no longer accurately reflect the current state of the system due to a

large number of consecutive packet losses (e.g., during a network blackout), a receiver can reset

the contents of the history buffer and declare its contents as invalid. This work assumes that a

receiver takes an appropriately safe action if it detects a network failure due to a significant

number of lost packets.

3.5 Verifying reactive control messages

The verification process for reactive control messages takes advantage of the characteristic that

the sampling rates of messages are much faster than the physical dynamics of the system, enabl-

ing the use of weak per-packet assurance to provide strong system level assurance against unde-

sired actuations. Unlike state-changing message verification, nodes running feedback control

loops verify and act upon each message packet as it arrives. Each correctly formed and valid

message causes a controller to update its output to a physical actuator. This output in turn causes

some physical change in an actuator output. However, because messages are sampled much fast-

er than the step response time there is a damped physical response to any single message value.

 For reactive control messages, the receiver does not explicitly retain an authentication history

buffer in memory, but relies instead upon a damped response to messages. The system state may

be forced to an unsafe value in some situation if the controller accepts too many successfully

forged packets commanding the actuator to some position or action within a period of time. But,

the damped response to messages requires an adversary to successfully forge multiple packets

Time-triggered authentication 41

within that period of time to compromise system operation. This creates an implicit history buf-

fer, using the physical inertia in a system. The physical position or motion of actuators reflects

the cumulative effects of the most recent valid message values that have been applied to the sys-

tem.

 Receivers verify each message value individually using the process described in Section 3.3.4.

If a message value is valid, the receiver applies it as an input to the reactive control loop. If a

message value is invalid or lost, the receiver applies a safe input to its internal control loop. What

constitutes a safe input depends on the application, but when applied to a controller should not

violate safety requirements (i.e., harming users, equipment, or property). Examples of safe ac-

tions might be:

• Completely cease actuator movement.

• Return actuator to a safe position.

• Use a default value that partially moves an actuator towards a safe position.

• Use a default value that does not cause the system to exert additional energy into environ-

ment.

• Ignore the lost or invalid value, and use the previous valid value, assuming correct messages

will resume shortly.

 Further, a safe action upon observing a lost packet is likely to be different than the safe action

for invalid message values. Lost packets may be considered the results of a non-malicious fault,

allowing a receiver to ignore the lost value and use the previous valid message value. However,

invalid MAC tags might be considered specifically malicious. Thus, a receiver might instead ac-

tively counter the observed forgery attempt, moving an actuator to a safe position or stopping the

system.

Time-triggered authentication 42

 For example, consider a door controller for an elevator. When a passenger enters the elevator

car and pushes a button for another floor, the doors should close. However, if the door reversal

sensors detect anything in the way of the door (usually a passenger), then the doors should reo-

pen. Similarly, if a transmission error occurs during the message carrying the door reversal sen-

sor values, one safe thing to do is to reopen the doors. During each execution of the door con-

troller's control loop, the door controller updates its output to the door motors, indicating whether

the doors should continue closing, stop moving, or open. After each execution of the door con-

troller's control loop, the door motors can only close a fraction of the way if the door reversal

sensors indicate the doorway is clear. An unsafe situation might occur if an attacker continually

spoofs the door sensor message on the network to indicate the doorway is clear, despite a person

being in the way. If the attacker can successfully forge a sufficient number of door reversal sen-

sor messages to contain a value indicating "Door way is clear," the door might not reopen and

crush a passenger. For this particular example, if a door controller observes a single packet with

an invalid MAC tag, a safe input to the door controller is to reopen all the way. However, for lost

messages, the door controller might ignore the first few lost message values before deciding to

reopen the doors. Reopening the doors does not exert energy into the environment that could in-

jure passengers. Resetting the door to a known safe position also effectively forces an attacker to

start over with their forgery attempts.

No tolerance for invalid MAC tags - First, this section considers applications in which invalid

MAC tags should never occur except in the event of a malicious attack (i.e., non-malicious faults

cannot cause an invalid MAC tag to be produced). The receiving controller assumes a single

invalid MAC tag indicates a malicious attack and attempts to place the system into a safer state.

Upon observing even a single invalid MAC tag, the receiving controller aborts any updates to a

Time-triggered authentication 43

physical actuator based on incoming message values, and instead uses a default action to cause a

physical actuator to cease all movement or return to a safe position. When the controller takes

this safe action, the physical effects of any successfully forged message samples do not persist in

the integrated system state and any attempts at forcing an undesired actuation must start over.

 The system designer defines the maximum duration that a receiving controller can tolerate ar-

bitrary input values for a single message type before the system enters an unsafe state. For a

maximum duration consisting of n message periods, an attacker must successfully forge n con-

secutive message values for that message type to succeed in an undetected masquerade attack.

The system designer then selects the appropriate number of authentication bits per receiver such

that the probability of an induced failure is sufficiently low. The probability of a successful for-

gery for any individual message sample containing b MAC tag bits to a particular receiver is

equal to 2-b. Again, this approach only uses a few bits per receiver. While this only provides

weak per-packet assurance, each successfully forged message will only cause some increment of

physical change produced by the receiving node. If a successful masquerade attack requires an

attacker to forge n consecutive MAC tags, each containing b bit MAC tags per receiver, the

probability of an attacker succeeding per message round is bounded by equation (1) in Section

3.4.

Tolerating invalid MAC tags - In some applications, continuing operation despite occasional

invalid authenticators might be preferable to stopping the system and resetting it to a known safe

state. As with state-changing messages, occasional invalid authenticators might occur due to

non-malicious errors, such as transient time synchronization issues or network errors missed by

error detection codes. A receiving controller might continue operation despite seeing one or more

message values with an invalid authenticator. Then, if the receiver detects too many invalid tags

Time-triggered authentication 44

within a period of time, the receiver decides that a malicious attack is underway and acts accor-

dingly.

 For each invalid MAC tag to be ignored, the receiver still takes some safe default action tem-

porarily. This might be to just reuse the most recent valid message value or output a default safe

value to the actuator.

 During an actual masquerade attack, this tolerance might effectively grant an attacker a few

extra "free" tries to induce a system failure. When tolerating invalid tags in our approach, at least

k of the n most recent message samples must have valid authenticators. A receiver will tolerate

up to n - k invalid MAC tags, before declaring an attack is occurring and taking an appropriately

safe action to deny further attack opportunities (such as ceasing actuator motion or moving to a

safe position). An attacker can successfully forge at least k of a set n values with a binomial

probability given by equation (2) in Section 3.4.

Tradeoffs for reactive control message verification - Like verification for state-changing mes-

sages, this approach enables multiple tradeoffs. A system designer can tradeoff among authenti-

cation bits per packet, duration before an attack should be detected, tolerance to invalid MAC

tags, and probability of an induced failure. Based upon the criticality of the message, the design-

er trades increased authentication bandwidth for lower probability of failure. Selecting a longer

duration before an attack should be detected also lowers the probability of induced failure. The

system designer can also trade increased tolerance to invalid MACs for increased probability of

induced failure.

Time-triggered authentication 45

3.6 Experimental analysis

In this section we discuss characteristics of our approach and experimental results of simulated

attacks. The results of this section are intended as a "sanity check" to confirm the probability eq-

uations used in Sections 3.4 and 3.5.

 Per our attacker model, an attacker may insert or modify packets in valid time intervals for a

particular message type. Computing the MAC over the pair-wise synchronized time or TDMA

round number ensures freshness of messages. At best, an attacker may only inject a packet once

per message round. To be conservative in our analysis, the attacker performs masquerade at-

tempts against a single isolated receiver, so an attacker only needs to guess one truncated MAC

per packet.

 We have experimentally confirmed the probability of successful forgery attacks against our

approach using a software simulation written in C. In our simulation, an attacker node continual-

ly sends packets containing a known message value and randomly generated MAC values to the

receiver. The receiver node verifies the packet using HMAC-SHA-256 and retains a history buf-

fer of the n most recent authentication results. Once the receiver counts a sufficient number of

valid MACs in its history buffer, the simulator records an attack event and the number of at-

tempted forgeries before the successful attack occurred. After a successful attack, the simulator

reset to its initial state and began again. We simulated attacks on state-changing and reactive

control messages for both authentication of consecutive packets and authentication of a fraction

of packets in a history buffer.

 For state-changing messages, we created a simple state machine with two states. The receiver

begins in the first state. When a sufficient number of values in the history buffer have a consis-

Time-triggered authentication 46

tent value, it triggers a transition to the second state. The second state automatically transitions

back to the first state and clears the history buffer. Attacks on state-changing messages were con-

sidered to be successful once the attacker forced a state change, and further packet forgeries were

applied to the next state change after clearing the history buffer.

 For reactive control messages, we modeled a simple open loop system (no feedback). If a

packet contained a valid MAC tag, the receiver would increment its output by a constant amount

towards the input value. For a packet with an invalid MAC tag, the receiver would decrement its

output by the same constant amount (i.e., moving to a safe position by a predefined amount). The

system only accepts two inputs (zero and one). In this simple system, the attacker must success-

fully forge a sufficient number of samples to force the output to an "unsafe state." A successful

attack was recorded for each message round the attacker was able to force the output to be an

unsafe value. The physical state was not reset when the output reached an unsafe state.

 We measured the number of successful attack events over a period of time long enough to

record at least one hundred successful attack events per data point. We computed the successful

attack rate as average successful attack events per message round and compared this rate to the

probability of successful attack defined in equations (1) and (2) in Section 3.4. From our results

we confirmed that equations (1) and (2) can be used as upper bounds on the probability of suc-

cessful attacks on our approach. These equations can be used to define the required number of

packets and authentication bits per packet to achieve a desired failure rate and tolerance to

invalid MACs for the system.

3.6.1 No tolerance for invalid MAC tags

Figure 3.4 shows the simulated successful attack rate on both state-changing and reactive control

Time-triggered authentication 47

message types, using a fixed history buffer size of four packets containing one to six authentica-

tion bits per packet. In this experiment, a successful attack was recorded if the four most recent

message samples were successfully forged. As more bandwidth is devoted to authentication, the

successful attack rate decreases exponentially according to equation (1).

Figure 3.4. OMPR - Simulated successful attack rates for four consecutive messages.

 The successful attack rates in Figure 3.4 should be no greater than the probability of success-

ful attack defined by equation (1). As expected, the successful attack rate for reactive control

messages matches equation (1) since simulated attacks were counted for any message round the

attacker successfully forced the output to its desired position, and the physical state was not reset

if this position was reached (the implicit history buffer was not cleared). (Equation (1) is indis-

tinguishable from the simulated reactive control successful attack rate if plotted on Figure 3.4.)

 The successful attack rate for state-changing messages is less than the rate for reactive control

messages because successful attacks on reactive control messages containing few authentication

bits are likely to come in bursts in consecutive message rounds. A forgery attempt on the packet

after an initial attack event has a better probability of prolonging the attack in comparison to

Authentication bits per packet

1 2 3 4 5 6

A
ve

ra
ge

 a
tta

ck
 e

ve
nt

s
pe

r
m

es
sa

ge
 r

ou
nd

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Reactive Control;
Simulation and Equ. 1
State-changing

Time-triggered authentication 48

forging a full set of n packets to initiate a successful attack. The simulated successful attack rate

for state-changing messages is less because the history buffer is cleared after each state change.

 With more bits per packet, the likelihood of successful attacks occurring on successive reac-

tive control messages decreases, as indicated by the converging rates in Figure 3.4. We use equa-

tion (1) as a conservative upper bound on the successful attack rate for both reactive control and

state-changing messages.

 Typical requirements for acceptable failure rates in systems containing wired embedded net-

works might be defined at 10-3/hr, 10-6/hr, or 10-9/hr of undetected message errors depending on

the severity of the failure. An induced failure from a masquerade attack should occur no more

often than the required rate of failure. Figure 3.5 shows the minimum number of messages in the

history buffer for a given number of authentication bits per message to achieve an expected suc-

cessful attack rate of 10-3/hr, 10-6/hr, or 10-9/hr. The number of packets and bits were obtained

using the three successful attack rates as expected values for one forgery attempt per millisecond

over the course of an hour, each succeeding with probability given by equation (1).

Figure 3.5. Minimum MAC bits per packet and history buffer size (consecutive messages) required

to authenticate to failure rates at 1000 packets per second.

Authentication bits per packet
2 4 6 8 10 12 14 16

H
is

to
ry

 b
uf

fe
r

si
ze

 (
pa

ck
et

s)

0

5

10

15

20

25

30
10-3/hr

10-6/hr

10-9/hr

Time-triggered authentication 49

3.6.2 Tolerating invalid MAC tags

If we permit interspersed invalid MACs in the authentication history buffer, we gain tolerance to

some non-malicious faults and malicious attempts to disrupt authentication of state-changing

messages. But increasing this tolerance also increases the probability of an induced failure. At-

tacks may succeed against some control systems if the attacker forges some fraction of the most

recent reactive control messages. As this fraction decreases, the probability of induced failure

increases.

 Figure 3.6 shows the simulated successful attack rate on state-changing and reactive control

message types requiring two successful forgeries out of four packets, each containing one

through six authentication bits. As the number of bits per packet for authentication increases, the

probability of a successful attack decreases exponentially.

 The successful attack rate on reactive control messages in Figure 3.6 matches equation (2) be-

cause attack events were counted so long as two of the four most recent message samples were

successfully forged, and the output was not reset once this threshold was reached. (Equation (2)

is indistinguishable from the simulated reactive control successful attack rate if plotted on Fig-

ures 3.6 and 3.7.) The successful attack rate for reactive control messages is greater than that for

state-changing messages because successful attacks on reactive control messages can persist as

long as the most recent n packets contain k valid MACs. The difference between lines in Figure

3.6 is greater than the difference between lines in Figure 3.4 because there are multiple combina-

tions of successful forgeries in the most recent packets which can cause successful attacks to

persist. We do not attempt to provide an equation due to the complexity of the combinations. Ra-

ther, we use equation (2) as conservative upper bound for both message types.

Time-triggered authentication 50

Figure 3.6. Simulated successful attack rate for two out of four messages.

 Figure 3.7 illustrates how the difference between simulated successful attack rates for reactive

control and state-changing messages changes as the number of required successful forgeries is

varied for a buffer of eight packets each containing two authentication bits. With a lower fraction

of required valid packets, there are more possible combinations which can cause a successful at-

tack to persist for reactive control message types, causing a greater successful attack rate.

Figure 3.7. Simulated successful attack rates varying fraction of valid packets. History buffer of

eight packets with two authentication bits each.

 Figure 3.8 illustrates tradeoffs between history buffer size and authentication bits per packet

Authentication bits per packet
1 2 3 4 5 6

A
ve

ra
ge

 a
tta

ck
 e

ve
nt

s
pe

r
m

es
sa

ge
 r

ou
nd

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Reactive Control;
Simulation and Equ. 2
State-changing

Valid packets (out of eight)
2 4 6 8

A
ve

ra
ge

 a
tta

ck
 e

ve
nt

s
pe

r
m

es
sa

ge
 r

ou
nd

10-5

10-4

10-3

10-2

10-1

100

Reactive Control;
Simulation and Equ. 2
State-changing

Time-triggered authentication 51

needed for expected successful attack rates of 10-3/hr, 10-6/hr, or 10-9/hr, requiring all but two

valid MACs. The number of packets and bits were obtained using the three successful attack

rates as expected values for one forgery attempt per millisecond over the course of an hour, each

succeeding with probability of equation (2). For example, with four authentication bits per mes-

sage, if all packets in a history buffer must be valid, the history buffer must include at least the

last eleven packets to authenticate to 10-6/hr (Figure 3.5). If all but two packets must be forged in

the history buffer, then the history buffer must include the past fifteen packets, in which thirteen

must be valid (Figure 3.8).

Figure 3.8. Minimum MAC bits per message and history buffer size required to authenticate to

failure rates at 1000 messages per second given two invalid packets in the buffer.

3.7 Discussion

This chapter introduces time-triggered authentication. This approach takes advantage of existing

temporal redundancy present in most time-triggered system designs to amortize authentication

bandwidth overhead across multiple time-triggered packets. We illustrate how time-triggered

authentication can provide strong assurance for state changes and actuations by verifying mul-

tiple packets, each with weak per-packet assurance.

Authentication bits per packet
2 4 6 8 10 12 14 16

H
is

to
ry

 b
uf

fe
r

si
ze

 (
pa

ck
et

s)

0

5

10

15

20

25

30
10-3/hr

10-6/hr

10-9/hr

Time-triggered authentication 52

 This new approach has several advantages. Time-triggered authentication enables a fine-

grained engineering tradeoff among authentication bits per packet, application level latency, to-

lerance to invalid MAC tags, and probability of maliciously induced failure. It also allows re-

ceivers to perform authentication on a per-packet basis (amortizing does not require batch au-

thentication of many samples). This allows receivers to immediately resume authentication after

packet losses cease. Time-triggered authentication can also be combined with many multicast

authentication approaches that use MACs.

 Time-triggered authentication also has several limitations. This approach relies on the periodic

broadcasts of message types. Time-triggered authentication only provides advantage to the de-

gree that messages are oversampled. This approach also requires careful handling of packet loss

in conjunction with history buffers. For state-changing messages, receivers must monitor for

long message blackouts and reset history buffers if the data values and verification results con-

tained within those history buffers become stale. Further, for reactive control messages, receivers

must take appropriately safe actions for both packet losses and invalid messages.

 In this section, we use OMPR in conjunction with time-triggered authentication. This multi-

cast authentication approach is uncomplicated, requiring a sender to compute one MAC tag for

each receiver of a message sample. It also allows for perfect loss tolerance and tolerance to com-

promised nodes. However, the scalability of OMPR is limited. The processing requirements

scale linearly as the number of receivers increase. Further, the bandwidth requirements scale li-

nearly as both the per-packet assurance and number of receivers increase.

Validity voting 53

4 Validity Voting

This section introduces validity voting to build on the approach for time-triggered authentication

using OMPR. This method integrates voting techniques to improve the bandwidth efficiency and

subsequently reduce the application level latency of time-triggered authentication. While using

OMPR is efficient in terms of bandwidth for a very small number of receivers or very weak per-

packet assurance, the linear scaling gives poor performance for many receivers or stronger per-

packet assurances. Validity voting still uses one MAC per receiver, but using voting allows it to

provide stronger per-packet assurances to a larger number of receivers, for a given number of

authentication bits per packet.

 The main limitation of using one MAC per receiver is that each sender must redundantly

transmit one MAC tag for each distinct receiver of a message value. Using one MAC tag per re-

ceiver introduces unused redundancy because each receiver only benefits from a single MAC

tag. If limited to a few bytes per packet to authenticate to a large number of receivers, a sender

may have to amortize authentication over too many packets to meet real-time deadlines.

 Validity voting uses this redundancy to force an attacker to forge many MAC tags to fool

an entire group of receivers, rather than just forging a single MAC tag to fool the targeted receiv-

er. To force an attacker to do this, a group of receiving nodes takes a unanimous vote on whether

message values were valid or not. Once a sender has transmitted a message value and MAC tag

to each receiver in the group, the receivers engage in an attestation process. During this attesta-

tion process, each node in the group exchanges indications of the received value and its validity

with other members of the group.

Validity voting 54

 Figure 4.1 illustrates validity voting among three receivers in a network with four nodes (N1,

N2, N3, and N4). In step 1, N1 first broadcasts message m1, authenticating it to nodes N2, N3, and

N4. In steps 2-4 receivers then include an indication of whether message m1 was valid or invalid

when they broadcast their respective messages. After step 4 completes, nodes N2, N3, and N4

have received the authenticator from node N1 and two votes on the authenticity of message m1.

Figure 4.1. Three nodes cross checking message auth enticity using validity voting.

 To attest to the validity of a particular message value, each member computes its MACs (one

for each receiver) over that sender's value in addition to its own transmitted value and an indica-

tor bit to denote the attested value's validity, whether the MAC tag for that message value was

valid or invalid. By using this process, voters only need to transmit a single additional bit for

Validity voting 55

each value they vote upon, "piggy-backing" votes onto messages already scheduled for transmis-

sion. They do not need to explicitly retransmit the values being voted upon.

 To vote on multiple values at once, a group member uses the same process. Each message can

carry multiple validity bits (one for each value being attested to) in a bit-array called a validity

vector. A validity vector contains one bit for each message value being voted upon (those bits

and the corresponding message values are all included as inputs to the MAC functions). The

members of the group append this validity vector into the packets they transmit during their des-

ignated time periods in the message schedule.

 Once all members of a receiving group have transmitted, each member takes a unanimous

vote on the validity of the message value from the originating sender, rejecting any value the

group disagrees upon or indicates as invalid. Group members accept the originating sender's val-

ue if the sender's packet contained a valid MAC tag, all packets attesting to that value also had

valid MAC tags, and all attesting packets indicated the previous sender's value was valid. Any

disagreement on validity or invalid MAC tags indicate a masquerade attempt, whereas unanim-

ous agreement of validity and no invalid MAC tags indicate no such attempt. Thus, a successful

forgery of a single message value requires an attacker to spoof many authenticators and fool an

entire group or receivers, rather than just one authenticator when using one MAC per receiver.

4.1 Properties for detecting disagreement

Validity voting uses secure hash based MAC functions to enable voting on message validity and

subsequently detect disagreement on message values. Without knowledge of the key, an attacker

can at best guess the MAC tags for any message value it injects or modifies. Further, because

nodes compute each tag with different keys, successfully forging one MAC tag does not assist

Validity voting 56

the attacker in forging another tag. Assuming a secure MAC function, each attempt to forge a

MAC tag by an attacker succeeds randomly and independently of any other attempt on another

MAC tag.

 Since each MAC tag can only be successfully forged randomly and independently of another

MAC tag, a receiver can vote on the results of verification of multiple MAC functions computed

over the same value. The attestation process in validity voting creates a series of indirect second-

ary confirmation channels from the sender to each receiver, and from each receiver to all other

receivers. Upon completing the attestation process, each node in a receiving group gets one au-

thenticator from the originator of a message value and several subsequent secondary confirma-

tion authenticators from other receivers in the group. By taking a unanimous vote on the validity

of these authenticators, this approach significantly reduces the probability of successful forgery.

 We also take advantage of the collision resistance of the underlying hash functions so that

nodes do not have to explicitly retransmit values being compared using these secondary indirect

channels. By computing the MAC function over the current value, any values being attested to,

and the validity of those attestations, the MAC tags should only be valid if the sender and receiv-

er agree on the values and validity of all packets.

4.2 Validity voting assumptions

Validity voting makes several assumptions necessary for it to be used. First, all assumptions for

time-triggered authentication must hold. Further, all assumptions for using one MAC per receiv-

er must also hold. Validity voting still requires each sender to compute one MAC for each dis-

tinct receiver of a message value.

Validity voting 57

In addition to the previous assumptions, this approach makes the following assumptions:

• If no transmission error or interference occurs during the broadcast of a message, then all re-

ceivers observe the exact same bit values transmitted on a broadcast bus by a legitimate sender

during that message period. All receivers of a message type should see the same value in an

error free transmission. Thus, receivers in a group do not need to explicitly retransmit a mes-

sage value they are voting upon.

• The number of available bits in a packet's data payload is greater than the number of receivers

of a packet plus the number of message values that packet attests to. This allows authentica-

tors for each receiver in the packet and indicators of the validity of observed message values,

leaving room for the message value in the packet.

• Any node participating in a vote is already scheduled to transmit its own message type. Validi-

ty voting does not require modification of the message schedule to add additional messages to

pass along votes. Voting only requires adding a few bits to packets which are already sche-

duled to be transmitted.

• Only critical nodes engage in voting with each other, and we assume an attacker compromises

very few, if any, critical nodes. If an attacker has already compromised one or more critical

nodes, then they can likely already trigger a system failure without resorting to spoofing mes-

sages. Non-critical nodes may also engage in voting. However, non-critical nodes are less

likely to be rigorously secured against compromises and failures that might allow falsified

votes. Section 4.9 discusses how to tolerate a small number of compromised voters when im-

plementing validity voting.

Validity voting 58

4.3 Initialization

Key establishment - Nodes establish key material for validity voting in the same fashion as one

MAC per receiver. Each node must establish a pair-wise shared secret key with any node they

communicate with.

Replay protection- Similarly, time synchronization is the same for validity voting and one MAC

per receiver. Each pair of communicating nodes must be synchronized to the nearest message

round to ensure freshness of messages.

Voting schedule - Validity voting also requires a voting schedule to be defined at design time.

This fixed schedule gives each node a priori knowledge of which message types contain votes

for samples of another message type. Thus, nodes know which nodes are voting on a message

value and when those votes should arrive according to the network message schedule.

 A voting schedule can be created so long as a set of nodes is expected to broadcast at regular

intervals as described in Section 2.1.

 The system designer defines voters for each message type MV to be voted upon. Each node

that consumes a message type can potentially transmit a vote on that message type. Part of a

message schedule often includes the list of nodes which consume each message type. If not im-

mediately available, this list can be reverse engineered from the design. For a node N that rece-

ives message type MV to be selected as a voter, it must meet several requirements:

• Node N must already be scheduled to transmit a message type MN that is consumed by other

receivers of MV. Creating a new message type to broadcast a single voting bit requires signif-

icant bandwidth. If a potential voter already communicates with other consumers of a mes-

sage type, then a new message type does not need to be created; only a single voting bit

Validity voting 59

needs to be added to an existing message type. If necessary, votes can also be placed in mul-

tiple message types broadcast by N to reach more of the receivers of MV.

• Message type MN must have equal or higher criticality than message type MV. In safety-

critical systems, non-critical system components should not be able to induce faults in critical

components.

• Message type MN must be broadcast at a rate equal to or faster than message type MV. If node

N broadcasts MN slower than MV, then there are samples of MV that will not be voted upon by

MN (e.g., if MV is broadcast every ten milliseconds and MN is broadcast every hundred milli-

seconds, then there are nine samples of MV that cannot be voted upon). Because there are

samples that cannot be trusted, this effectively reduces the sampling rate of MV. Conversely,

if the voting message type MN is broadcast more frequently than MV, then there will be more

than one sample of MN that vote on the same sample of MV. This adds unnecessary voting

bits. The greater the disparity in sampling rates, the less bandwidth efficient validity voting

becomes. Ideally, using message types that are broadcast at the same rate provides the most

efficient use of bandwidth for voting.

 Assigning the best placement for votes in the schedule is somewhat subjective. There might

be multiple options for assigning votes into various message types. The "best fit" depends on the

application and the tradeoffs associated with validity voting. This work uses three heuristics

when selecting votes to help maximize the bandwidth efficiency of validity voting:

• Minimize the number of message types transmitted by a single node carrying votes for MV.

• Maximize the number of receivers of MV that receive votes.

• Use message types with periods as similar as possible to that of MV.

Validity voting 60

 Chapters 6 and 7 illustrates the use of these requirements and heuristics when applying votes

to a elevator network workload and industry automotive network workload.

 When completed, the voting schedule contains the following information for each message

type MV being voted upon:

• A lookup table entry that lists the message types which carry votes for MV.

• Which bit of a validity vector in a packet of a voting message type is assigned to MV.

• Any time offsets for a receiver to locate votes for a particular sample (e.g., the votes for a

sample of MV might be assigned to be broadcast within the same message round or a subse-

quent message round).

• The ordering of message values a receiver is to recompute MACs over for verification.

 When concluded, each node in the system is programmed with this voting schedule. Using

this schedule, when a node receives a message value on the network, that node knows which fu-

ture messages carry votes on that message value's validity and when they are scheduled to arrive.

Thus, there is a fixed delay before each message value can be completely verified. Conversely, if

the messages carrying the votes do not arrive in the expected time periods, a receiver can take

appropriate action based on the lost packets.

4.4 Functions and state variables

To check for discrepancies in packet value or validity, each node n maintains three state vectors:

a value vector Rn, validity vector Vn, and confirmation vector Cn. We use a subscript to denote

the identity of the node that produces a variable (e.g., Rn is the value vector produced by node n).

Nodes initialize all vectors to default values (e.g., zeroes).

Validity voting 61

 The value vector Rn stores the most recently received value (valid or not) for each message

type defined in the message schedule that node n consumes or participates in voting on. Receiv-

ers record lost packets as a predefined error code 'lost' if they detect a transmission error (indi-

cated by an incorrect error checking code or no packet broadcast in a message period).

 The validity vector Vn contains the authentication results of each entry in the value vector. A

node stores a '1' value if the most recent value for the corresponding message type was valid and

a '0' value if invalid.

 Finally, the confirmation vector Cn contains an array of counters for positive secondary con-

firmations of validity. Cn contains one counter for each message type in Rn.

 We first define a function to look up which message types are voted on by a received message

type M in the voting schedule. The function getMessageTypesVotedOn(M) looks up message

type M in the voting schedule and produces a vector ids, which contains the indices of Rn, Vn,

and Cn that correspond to the message type ID numbers voted on by M.

 We define a function getMostRecent(ids, Rn, Vn, Cn) to obtain a subset of received values,

their validity, and confirmations. The indices in ids indicate which message types to look up in

Rn, Vn, and Cn. This function produces a triple <rn, vn, cn> of vectors; where rn is an ordered sub-

set of Rn containing |ids| values recently received by node n, vn is a subset of Vn containing the

validity bits for each element in rn, and cn is a subset of Cn containing confirmation counters for

each element in rn. The order of values in rn, vn, and cn is the same as the indices of ids. Two

nodes executing getMostRecent during the same message round should obtain the set of message

types, because they share the same message schedule and should have received the same set of

message samples on the broadcast bus.

Validity voting 62

 The function setNewest(M, msg, validity, Rn, Vn, Cn) replaces the element of Rn for the mes-

sage type M broadcast in the current message period with value msg. The corresponding element

in Vn is set to '1' if validity is 'valid', and '0' if validity is 'invalid'. The corresponding element in

Cn is set to zero.

 The functions updateValidity(ids, vn, Vn) and updateConfirmations(ids, cn, Cn) overwrite the

|ids| elements in Vn or Cn with the elements of vn or cn respectively, using the indices of ids.

4.5 Run-time verification

4.5.1 Producing a per-packet authenticator

Validity voting modifies the sending process for time-triggered packets (Section 3.3) to allow

senders to attest to the validity of the most recently received message value samples of a set of

message types (as defined by the voting schedule) in addition to authenticating the current mes-

sage value (Figure 4.2).

Validity voting 63

Figure 4.2. Validity voting - multicast authenticat or generation. Message generation process for 32

bits of data and three 8-bit MACs, using unique sha red keys and synchronized times for three re-

ceivers. This packet includes three validity bits, attesting to three prior message values.

 When transmitting message type MS, the sender obtains the message types the packet will at-

test to using getMessageTypesVotedOn(MS) to produce ids. For each receiver i, a sender S com-

putes the MAC function over the current header and message value, shared secret key kiS, syn-

chronized time t, and vectors rS and vS produced by getMostRecent(ids, RS, VS, CS). Before com-

puting the MAC functions, the sender replaces any element of rS with an 'invalid' value if the va-

lidity vector vS indicates the that value's packet contained an invalid authenticator. We use

MMAC as a short hand notation for a function that computes an array of MAC tags (one per re-

ceiver) and truncates each MAC tag to just a few bits.

 The sender includes the array of truncated MAC tags in the data payload as before, but also

includes the validity vector vS. This allows receivers to recompute the MAC function over the

Validity voting 64

same values as the sender, replacing values with 'invalid' for those indicated by vS. After broad-

casting their packet, the sender optimistically sets its own validity vector assuming its packet

containing the current sample of MS is received correctly and contains a valid authenticator. Fig-

ure 4.3 provides pseudo-code for the send process.

Send process, performed by node S:
• Ready to send message value mS of type MS to all nodes
• ids ← getMessageTypesVotedOn(MS)
• <rS, vS, cS> ← getMostRecent(ids, RS, VS, CS)
• For any element of vS that is '0', replace the corresponding element of rS with 'invalid'
• tag_arrayS ← MMAC(mS | t | rS | vS)
• Broadcast {mS | vS | tag_arrayS}
• setNewest(mS, 'valid', RS, VS, CS)

Receive process, performed by node i:
• Receive {mS | vS | tag_arrayS}
• ids ← getMessageTypesVotedOn(MS)
• If transmission error occurs

• setNewest('lost', 'valid', Ri, Vi, Ci)
• Return from receive process

• <ri, vi, ci > ← getMostRecent(ids, Ri, Vi, Ci)
• For any element of sender's vS that is '0', replace the corresponding element of receiver's ri with 'invalid'
• tagi ← MACkis(mS | t | ri | vS)
• If (tagi = tag_arrayS[i])

Accept new value as valid
• setNewest(mS, 'valid', Ri, Vi, Ci)
• vi ← bitwiseAnd(vi, vS)
• updateValidity(ids, vi, Vi)
• For each element in vi that is '1', increment ci counters
• updateConfirmations(ids, ci, Ci)

• Else,
Reject previous values the current MAC tag included

• setNewest(mS, 'invalid', Ri, Vi, Ci)
• Set all elements in vi to '0'
• updateValidity(ids, vi, Vi)

Final Verification process, performed by receiver i:
After Receive process is completed, perform final verification step for each message type that node i should have
received all z secondary confirmations:
• Reject value as masquerade attempt if bit in Vi is '0'
• Accept value as lost if bit in Vi is '1' and (value from Ri is "lost" or confirmations in Ci < z)
• Accept value (valid and not lost) if the corresponding bit from Vi is '1' and number of confirmations in Ci equals z.

Figure 4.3. Pseudo-code for validity voting. Messag e generation and verification processes during

time t.

Validity voting 65

Attesting to message values in this way has several benefits:

• A sender does not need to explicitly retransmit any values it is attesting to. By including

them as inputs to the MAC function, two nodes observing different values from the network,

each will get a different resulting MAC tag after computing the same MAC function. With

multiple attestations, there is an increased probability that a group of receivers will detect any

differences in observed message values.

• A single invalid message value (detected and recorded by a voting receiver) cannot cause fu-

ture messages to be marked as invalid. By replacing any invalid message value with the pre-

defined 'invalid' error code and explicitly including a validity bit prevents further message

values from being falsely marked as invalid. Both the sender and receiver will compute the

MAC function over the same error code, instead of potentially different values.

• A symmetric packet loss does not cause any message values to be marked as invalid. Similar

to the way invalid message values are handled, using a predefined error code for any 'lost'

values allows all nodes to compute their MAC functions over the same set of values, rather

than whatever erroneous value might have been observed from the network.

4.5.2 Verifying a packet

We break down the message verification into two processes. Each time a receiving node gets

new messages from the network, the receiver executes the Receive process for each new mes-

sage value it has received. Once the Receive process is completed for all new values, it executes

the Final Verification process on each value for which all of its z secondary confirmations should

have been received (Figure 4.3).

Validity voting 66

Receive process - First, for the received message type MS, the receiving node i executes getMes-

sageTypesVotedOn(MS) to produce ids, which contains the message types voted on by MS. If a

transmission error occurs, receiver i records a 'lost' value for the received message type, marks it

as valid, commits this information using the setNewest function, and exits the receive process

without incrementing any confirmation counters. Otherwise, the receiver executes getMostRe-

cent to obtain the most recent set of message values ri received from the network that are voted

on by this sample of MS, corresponding validity vector vi, and confirmation vector ci. The receiv-

er replaces any element of ri with an 'invalid' value if the sender's transmitted validity vector vS

indicates the sender believes that value's packet contained an invalid authenticator. The receiver

recomputes the MAC function, and compares the MAC tags.

 The MAC tags should only be equal if the sender and receiver agree on the current and prior

values (with the infrequent exception of MAC collisions). If they match, the receiver accepts the

current value as valid. If the tags do not match, the receiver rejects the current value and all prior

values that the sender is attesting to. Because the attested values are sent implicitly as inputs to

the MAC function, the receiver cannot determine which value caused the disagreement and con-

servatively rejects all attested values.

 For a valid packet, receivers update their validity vectors for each attested value. Receivers

record an attested value as invalid if either the sender's valid packet indicated it was invalid or

the receiver originally saw that value as invalid. Receivers perform a bitwise logical And opera-

tion on the vi and vS vectors. For any value in ri that is still considered valid in vi after the vote,

the receiver increments the corresponding counter in the confirmation vector ci. This process on-

ly allows a value to remain valid if all voters unanimously agree the message value is valid.

Validity voting 67

 Once this process is complete, the results are committed to the complete vectors Ri, Vi, and Ci.

Final Verification process - Once the Receive process is completed for any new message val-

ues, the receiver checks any message values for which all of its z secondary confirmations should

have been received. A receiver checks for three possible outcomes for a value in the following

order:

 Invalid - First, if the bit in the validity vector Vi is '0', then the receiver rejects the value as

invalid. Either the original packet containing that message value had an invalid authenticator, at

least one of the attesting packets had an invalid authenticator, or at least one voting node

claimed that the packet was a masquerade attempt.

 Lost - Second, if the bit in Vi is '1', and the value is 'lost', then the receiver accepts that the

packet suffered a transmission error and no other receivers claimed it to be a masquerade at-

tempt. Similarly, receivers accept a value as lost if it is valid, but an insufficient number of posi-

tive confirmations were received (i.e., confirmations in Ci < z).

 Valid - Finally, if Vi indicates the value is valid, the value is not 'lost', and the counter in the

confirmation vector Ci indicates a sufficient number of positive confirmations from other voting

nodes, then the value is accepted as valid.

 For a received value to be accepted as valid, there must be a unanimous vote on the authentic-

ity of the value. The packet originally containing that value must have a valid MAC tag, all z

attesting packets must also have valid MAC tags, and the validity vectors of each attesting mes-

sage must indicate each voter observed a valid MAC tag in the original packet. To fool a single

receiver into accepting an injected value, an attacker must successfully forge not only the MAC

Validity voting 68

tag for that receiver, but must also successfully forge the z other tags to or from the rest of the

voting nodes.

 We emphasize that successfully forging one or two packets, then provoking receivers to drop

further attestation packets does not increase an attacker's chance of forging a message. Verifica-

tion of a message value requires a node to receive all packets containing votes for that value. By

dropping any attesting packets, the packets targeted for forgery will also be dropped by receivers.

4.6 Integrating with time-triggered authentication

Validity voting can be added to OMPR to verify individual packets in time-triggered authentica-

tion. Once a value is transmitted and received by a group of receivers, at subsequent times in the

same message round (or subsequent message round), each voter in the group transmits with its

vote. This process then repeats according to the message schedule for the network. Figure 4.4

shows an example where message types M2 and M3 vote on message type M1. Each round, re-

ceivers obtain the current sample of M1 then must wait for the next sample of M2 and M3 before

executing the Final Verification process on a sample of M1.

Figure 4.4. Example validity voting with non-overla pping attestations. Receivers complete verifica-

tion of m 1 values using votes contained in m 2 and m 3 by the time the next value of type m 1 is sent.

 Nodes verify state changes and actuations over the final verification results of several mes-

sage samples, as described in Section 3 (each final verification result is a single entry of the his-

tory buffer). There are no changes to the process for verifying state changing and reactive con-

Validity voting 69

trol messages. However, when using validity voting, the verification results of each individual

message sample are delayed slightly, since a receiver must wait for votes to arrive.

 The message generation and verification processes for validity voting described in Section 4.5

enable quick recovery from transient network errors or masquerade attacks. As soon as the

source of transmission interference or attack ceases, receivers simply resume authenticating over

new values. Final verification can then be performed again after a short delay once all votes on

the new value are received. Old corrupted values cannot interfere with authentication of future

values. This approach limits the effects of a single packet loss or masquerade attempt to only the

few previous packets that are voted upon. The effects cannot extend to any values for which re-

ceivers have already accepted or rejected based on the final verification process.

4.7 Potential complications and tradeoffs

4.7.1 Packet loss

This approach introduces a design tradeoff between loss tolerance and probability of successful

packet forgery. By requiring more secondary confirmations, this approach reduces the probabili-

ty that an attacker successfully forges individual packets. However, this also increases the num-

ber of packets lost by a single transmission error. If a packet is lost by all nodes due to a symme-

tric fault, the number of positive confirmations for the values attested to by the lost packet will

not be high enough for those values to be accepted. Nodes will drop all packets attested to by the

lost packet. Section 8 shows several ways to improve this approach's tolerance to transient packet

losses.

 Another limitation of our approach is that an asymmetric packet loss (some receivers see a

well-formed packet, while others drop the packet) will be interpreted as invalid. MAC tags will

Validity voting 70

disagree because two nodes observed and recorded different sets of values. Section 8 shows me-

thods to resolve this, including the use of an additional bit vector (similar to the validity vector).

This vector allows voting nodes to indicate which packets were lost, reducing the impact of an

asymmetric packet loss to that of a symmetric packet loss.

4.7.2 Tolerating compromised nodes

Relying on secondary confirmations from other nodes introduces a tradeoff between tolerance to

compromised nodes and probability of successful per-packet forgery. Compromised nodes could

assist in forgery attempts, attesting that a forged packet from an attacker is valid. The probability

that this secondary confirmation is successfully forged is equal to one. To tolerate a fixed num-

ber of compromised nodes w, a node must receive w additional positive confirmations before fi-

nally accepting a value (in addition to the z confirmations already expected). System designers

may trade tolerance to node compromise for increased probability of successful forgery. Howev-

er, it is important to avoid adding vulnerable (more likely to be targeted for node compromise

attacks) nodes to the vote simply to increase the number of votes.

 This work assumes the number of compromised nodes is limited to one or two nodes. If an

attacker controls multiple critical nodes in the system, then the attacker can likely cause the sys-

tem to fail in other ways without resorting to masquerade attacks.

4.7.3 Node failure

While this approach automatically recovers once transient faults cease, this approach (as de-

scribed in this chapter) cannot continue to operate in the event of a permanent node failure. Such

a permanent failure could cause all samples of a message type carrying votes to be repeatedly

lost. Section 8 shows several ways to handle a permanent voter failure.

Validity voting 71

4.8 Verification using model checking

To confirm that this voting technique for authentication is secure, we implemented and model-

checked this technique using the Automated Validation of Internet Security Protocols and Appli-

cations (AVISPA) framework [AVISPA12]. Model-checking is a formal method based tech-

nique for verifying properties of concurrent finite-state systems. Model-checking security proto-

cols allows designers to identify flaws which allow an attacker to circumvent the protocol. Our

goal is to use model-checking to ensure an attacker cannot successfully forge a packet despite

full control over the network, and control over some nodes. This requires verification that validi-

ty voting provides data origin authenticity and data integrity. When AVISPA tests for data origin

authenticity, it tests for data integrity implicitly as well.

 AVISPA uses a Dolev Yao attacker model [Dolev81], giving the attacker full control over the

network. This is similar to our attacker model in Section 2. However, the Dolev Yao model as-

sumes that all cryptographic primitives are unforgeable unless the attacker obtains the correct

key material. This work addresses the probability the attacker successfully guesses authenticators

in Section 4.9.

4.8.1 Model description

The model is a simple network configuration (Figure 4.5) consisting of three nodes N1, N2, and

N3, broadcasting message types m1, m2, and m3 respectively. Each node is modeled as an inde-

pendent process, broadcasting and receiving according to a fixed schedule. We model the broad-

cast bus using point-to-point channels, sending a copy of every message simultaneously on each

Validity voting 72

channel. However, all messages in AVISPA are passed through the attacker [AVISPA12] regard-

less of channel definitions, resulting in a bus-like topology.

Figure 4.5. AVISPA model of three nodes authenticat ing message m 1 with validity voting. Node N 1

directly authenticates m 1 to N2 and N 3. In subsequent time slots, N 2 and N3 exchange indirect con-

firmations of m 1's validity and vote on the results.

 Nodes communicate according to a round-robin TDMA schedule, in which each node takes a

turn broadcasting, then the cycle repeats (as per Figure 4.6). The schedule is hard-coded into the

model for simplicity. The three nodes execute over five time slots, allowing each node to com-

plete the final verification process on one value of each message type (Figure 4.6). In each slot,

one node sends while the other two receive and update their vote based on the received message.

In this model, nodes transmit the current value of their message type, and attest to the validity of

the most recent value of the other two. Nodes compute MAC functions over the current value of

their message type, the two previous values transmitted by the other nodes, and the validity of

those two other message types. Each node receives a direct authenticator and one indirect sec-

ondary confirmation of validity for each message type.

 When transmitting message values, the state machines for all nodes are hard-coded to accept

messages in two specific formats. First, the format of received data in the model can be that of a

well-formed transmission (free of errors) specified in Section 4.5. Second, a message can be lost.

To model a transmission error, the second allowed format for received data in the model is a sin-

Validity voting 73

gle constant value "lost." When a node receives this constant, it records the message value as

"lost" and records its validity as true. Because the model only specifies these two message for-

mats, the attacker model can inject a well-formed packet or drop a packet. Message losses can be

asymmetric, as there is no limitation on the attacker model to inject symmetric message traffic to

all receivers.

Figure 4.6. AVISPA validity voting model execution over five time slots. This allows each node to

cross-check each of three message types.

 The model assumes valid m2 and m3 values have been previously transmitted at the start of

the model without attacker interference (for simplicity, nodes in our model do not vote on these

previous values). During time slot one, N1 sends m1 with authenticators for N2 and N3, attesting

to the validity of prior values of m2 and m3. Nodes N2 and N3 receive m1 and check its authentici-

ty. If m1 is valid, N2 updates its value and validity vectors for m1 and m3, while N3 updates its

own vectors for m1 and m2. If m1 is invalid, N2 and N3 reject m1 and the previous values of m2

Validity voting 74

and m3 as invalid. In time slot two, N2 broadcasts m2 and attests to whether m1 and m3 were va-

lid. N1 and N3 update their vectors accordingly. At the conclusion of time slot two, N3 has re-

ceived both its direct authenticator for m1 and the secondary confirmation from N2. N3 performs

a unanimous vote on its validity vector entry for m1 and the validity included in N2's transmis-

sion. N3 accepts the value of m1 if the direct authenticator was valid, the packet containing the

secondary confirmation was valid and indicated m1 was valid, and the value of m1 was not re-

ceived as 'lost.' This process continues over the next three time slots, each node voting once it

has received the direct authenticator and secondary confirmation for each message type.

4.8.2 Properties and results

AVISPA verified the data origin authenticity property for each message type for all receivers us-

ing OFMC and Cl-Atse, backend components of AVISPA that check this property [AVISPA12].

To provide data origin authenticity, MAC functions can be modeled as keyed hash functions. To

test a transmitted variable for data origin authenticity, AVISPA uses a pair of functions: witness

and request. These functions also implicitly test for data integrity. For each transmitted message,

the sender executes the witness function. This indicates to the model-checker a node with a spe-

cific identity transmitted that value. Upon voting and accepting a message as valid, a receiver

executes the request function. This function tests that the identity of the supposed sender and the

value itself are the same as the ones specified in the corresponding witness function. If not, then

the attacker has managed to successfully forge a packet.

 AVISPA detected one trivial attack using parallel sessions starting in the same message

round. This attack requires nodes the execute the same protocol twice simultaneously, accepting

two values in each time slot. This occurred because both instances of the network configuration

used the same set of keys (e.g., the same key K12 was shared between nodes N1 and N2 of the

Validity voting 75

first instance and between N1 and N2 of the second instance, allowing nodes of one instance to

forge messages on a second instance). This attack was detected because of an error in the design

of the model. In an implementation on a real system, two networks would use different sets of

keys to prevent such an attack from occurring. Further, such an attack could not be performed on

a single network. Existing embedded network protocols do not allow transmission of multiple

packets over a bus within a time slot.

 After modifying the model to disallow multiple parallel sessions, AVISPA reported that the

protocol was safe. AVISPA was not able to find any masquerade attacks, including tests where

the attacker controlled one of the three nodes. The attacker was not able to successfully forge

either the explicitly transmitted value or the validity vector in each packet. Further, adding an

indirect secondary confirmation from another receiver does not permit an attacker successfully

"over ride" the validity of an explicitly transmitted message value (even when that secondary

confirmation comes from a node under the complete control of the attacker in AVISPA). Simi-

larly, allowing an attacker to drop packets does not enable an attacker to successfully forge a

value. This confirms our expectations, as a receiver only accepts a value if all direct and indirect

authenticators agree on the value of a valid packet.

4.8.3 Model limitations

The model has several limitations.

 First, the network configuration in the model is limited to three nodes. The number of nodes

was limited to keep the model simple and allow the model checker to verify the model in a rea-

sonable amount of time. Using three nodes allows AVISPA to check if adding a secondary con-

firmation of an explicitly transmitted value introduces any vulnerabilities that allow an adversary

Validity voting 76

to successfully forge values. Adding additional nodes to enable more votes beyond the first

should not produce different results, since validity voting requires a unanimous vote on the valid-

ity of a message.

 Second, the model only executes a round robin TDMA schedule over five time slots. This al-

lows each node to verify a single copy of each of the three message types (one from each node).

Extending the duration of the model to include more time slots and verify multiple samples of

each message type should not change the verification results. Values transmitted in time slots

subsequent to the first five cannot interfere with the authentication of the first sample of each of

the three message types. All voting completes after node N2 transmits in time slot five. Further

values cannot alter the results of a completed vote. Also, values which are already voted upon are

not used in further validity voting. A more complex voting schedule should not change the re-

sults either, since nodes share a message and voting schedule. Thus, they know which message

samples a message type carries votes for.

 Also, transmissions are instantaneous in the model, and nodes can act upon messages without

any delay. In real hardware, often the network interface controller on a node executes indepen-

dently of the processor running the main control loop. The network interface reads messages

from the network and stores the most current copy of a message type in mailboxes. Then once

the microcontroller starts the next iteration of the main control loop, it accesses those mailboxes

to get the most up to date sample of each message type the node consumes. This simplification in

the model should not change the results. This aspect can cause an offset in time before a message

can be voted upon by a receiver. However, such a time delay is finite in a real-world time-

triggered network application where nodes are time-synchronized. We perform this modification

in the elevator example in Chapter 6.

Validity voting 77

 The model also limits an attacker to inject only a well-formed packet or a "lost" constant val-

ue. The model assumes nodes in a real-world application detect transmission errors using error

checking codes within the packet, nodes can detect when no messages have been transmitted on

the network during a time slot, and nodes can detect malformed packets that do not conform to

the network protocol standards. All transmission errors in the model are represented by a node

receiving a "lost" constant value.

 Lastly, because AVISPA assumes MAC tags are unforgeable unless an attacker holds the key,

AVISPA cannot analyze the probability that an attacker successfully guesses truncated authenti-

cators. Section 4.9 shows a probability analysis and results of simulated attack.

4.9 Probability analysis

To spoof an individual packet to a single receiver, an attacker must successfully forge the au-

thenticator designated for that receiver in the packet and all subsequent confirmations of validity.

The probability of successfully forging a single secure MAC tag of b bits in length is 2-b. When

attempting to forge a subsequent confirmation, the attacker has two opportunities to succeed.

First, the attacker may succeed in forging a MAC tag in the initial packet intended for a receiver

that votes on that message. For each initial attempt that fails (indicated by validity vectors in

packets), the attacker must attempt to forge each subsequent confirmation and alter the appropri-

ate bit in the validity vector when the voter transmits. Thus, a secondary confirmation can be

forged with probability 2-b + 2-b (1-2-b). If a voter updates its validity vector with another voter's

validity before transmitting its own, the probability of successfully forging each confirmation

beyond the first decreases slightly with each confirmation. We do not attempt to assign an exact

probability based on these tertiary interactions in subsequent confirmations; instead we use

2-b + 2-b (1-2-b) as a conservative upper bound for each confirmation. This probability is also the

Validity voting 78

same for a receiver that does not constantly update its validity vectors as soon as votes arrived,

and instead simply waits till all votes were received before performing the unanimous vote (in

some cases this is easier to implement).

 The probability Pp-vv of successfully forging an individual packet with z subsequent confirma-

tions and at most w compromised nodes is bounded by:

����� � 2�� 	2��
 2���1
 2����
���

 (3)

 Using time-triggered authentication, receivers validate state-changing and reactive control

messages over multiple packets for each message type they consume. Since each sample of a

message type is verified independently, adding votes will decrease the probability of per-packet

forgery (strengthen per-packet assurance). Equations (1) and (2) in Section 3 show that the upper

bound on the probability PA of successful masquerade attack requiring n out of n or k out of n

valid time-triggered packets.

4.9.1 Experimental results

We experimentally confirmed the probability of successful forgery attacks against our approach

using an embedded CAN network simulator written in Java [Koopman12] (Section 6 describes

the simulator in detail). We modified the simulator to allow masquerade attacks. As per our at-

tacker model, the simulated attacker may examine, modify, or replace any transmitted packet, so

long as they obey the network schedule. The implemented attacker model does not drop packets.

 The simulated network consists of a set of six nodes, broadcasting according to a round-robin

schedule. Each node takes a turn sending, then the cycle repeats. The attacker targets one mes-

sage type to forge, and attempts to fool a single receiver. After attempting to forge the initial

Validity voting 79

packet, the attacker examines subsequent packets which attest to their forged packet. The attack-

er modifies any packets that indicate the initial forgery failed (visible to the attacker in the validi-

ty vector in packets). If the targeted receiver completes the Final Verification process and ac-

cepts the forged packet as valid and not lost, the simulator increments a counter for successful

packet forgeries.

 We measured the number of successful packet forgeries over a period of time long enough to

record at least one hundred successful attack events per data point. We computed the successful

forgery rate as average successful packet forgeries per message round and compared this rate to

the probability of successful attack defined in equation (3).

 Figure 4.7 shows the successful attack rate and the expected rate given by equation (3), vary-

ing the number of indirect secondary confirmations from zero to four and using two bits per re-

ceiver in each packet. Using four confirmations decreases the probability of per-packet forgery

by almost three orders of magnitude, requiring four extra bits (one in the validity vector of each

packet carrying a vote). To achieve a similar probability using only one MAC per receiver with

zero confirmations, each MAC tag would need to be at least eleven bits. By using our voting me-

chanism, we only need three bits per receiver and four bits for the validity vector if we use four

secondary confirmations, reducing authentication bandwidth costs by eight bits per receiver.

Validity voting 80

Figure 4.7. Simulated per-packet forgery rates vary ing secondary confirmations. MAC tags are

three bits per receiver.

 Figure 4.7 also shows the experimental results initially match the upper bound, then diverge

from the upper bound as the number of confirmations increases. This is due to each node updat-

ing its validity vector with each received confirmation (taking a unanimous vote between the

two) before transmitting its own confirmation, rather than simply sending whether the initial au-

thenticator as valid or not. We also carried out experiments using one to four bits per receiver,

varying confirmations from zero to four, with results that similarly support equation (3). These

experiments assumed zero compromised nodes.

 We also tested the effect of compromised nodes on the probability of successful forgery. Fig-

ure 4.8 shows the effect of increasing the number of compromised nodes on average attack

events per message round. These experiments used three bits per receiver with a total of four

secondary confirmations. The resulting successful packet forgery rates correspond to the same

rates as those shown in Figure 4.7. Increasing the number of compromised nodes has the same

effect on the probability of successful packet forgery as removing the same number of confirma-

tions.

Total secondary confirmations

0 1 2 3 4

A
ve

ra
ge

 p
ac

ke
t f

or
ge

rie
s

pe
r

m
es

sa
ge

 r
ou

nd

10-4

10-3

10-2

10-1

100

Upper bound (Equ. 3)
Experimental

Validity voting 81

Figure 4.8. Simulated per-packet forgery rates vary ing the number of compromised nodes. MAC

tags are three bits per receiver with four total se condary confirmations.

 Figure 4.9 illustrates the effect of integrating our voting technique with our time-triggered

authentication approach. Typical required failure rates for safety-critical systems might be de-

fined at 10-3/hr, 10-6/hr, or 10-9/hr. Figure 4.9 shows the number of authentication bits per packet

and number of valid time-triggered packets to achieve a failure rate of 10-9/hr using our time-

triggered authentication approach alone (zero confirmations) and when combined with our vot-

ing technique (one, four, and eight confirmations). The number of packets and bits were obtained

using the 10-9/hr as an expected value for one forgery attempt per millisecond over the course of

an hour, each succeeding with probability given by equations (1) and (3). For example, given

four secondary confirmations, we can achieve an induced failure rate of 10-9/hr using 3 bits per

receiver over five time-triggered packets.

Compromised nodes (out of
four secondary confirmations)

0 1 2 3 4

A
ve

ra
ge

 p
ac

ke
t f

or
ge

rie
s

pe
r

m
es

sa
ge

 r
ou

nd

10-4

10-3

10-2

10-1

100

Upper bound (Equ. 3)
Experimental

Validity voting 82

Figure 4.9. Reductions in history buffer size using validity voting. Authentication bits per packet

and total packets to authenticate over required to achieve induced failure rate of 10 -9/hr on one

message type broadcast once per millisecond.

4.10 Discussion

This chapter introduces validity voting, a technique that integrates voting techniques to improve

the bandwidth efficiency of OMPR, or reduce the application level latency of time-triggered au-

thentication.

 The main benefit of validity voting is that it enables several tradeoffs. By increasing the num-

ber of votes on a message, the system designer can decrease the number of authentication bits

per receiver, increase the number of receivers, or decrease the number of time-triggered samples

to authenticate over. Increasing the number of votes also decreases the loss tolerance of this ap-

proach.

 Validity voting also has several limitations:

• First, like OMPR, the per-packet bandwidth overhead scales nearly linearly with the number

of receivers, limiting the maximum number of receivers in practice. It's main virtue is that

Authentication bits per packet
2 3 4 5 6 7 8

H
is

to
ry

 b
uf

fe
r

si
ze

 (
pa

ck
et

s)

0

5

10

15

20

25

30
Zero confirmations
(No voting)
One confirmation
Four confirmations
Eight confirmations

Validity voting 83

votes can be used to produce a smaller scaling constant than OMPR. With limited bandwidth

for authentication, this approach cannot scale to hundreds or thousands of receivers. Howev-

er, embedded networks typically have only tens of receivers.

• Increasing the number of votes also increases sensitivity to packet losses. If one message

sample suffers a symmetric transmission error, then any messages it carries votes for will al-

so be declared lost. In the event of an asymmetric packet loss, a message may be declared

invalid, since nodes will disagree on the message value. Chapter 8 describes methods to im-

prove tolerance to asymmetric packet loss.

• This approach also assumes a fixed number of compromised nodes to tolerate when deter-

mining the number of authentication bits, history buffer size, and secondary confirmations. If

the number of compromised nodes exceeds this assumed number, no guarantees can be made

about induced failure rates. However, in an embedded network containing critical nodes, if

the attacker compromises more than one or two critical nodes they can likely cause the sys-

tem to fail without resorting to masquerade attacks.

• Lastly, this section does not address permanent faults (i.e., node failure) that permanently

disrupt authentication of multiple message types. Chapter 8 discusses methods to improve to-

lerance to node failure.

Comparisons to other multicast authentication techniques 84

5 Comparisons to other multicast authentication techniques

This section compares four multicast authentication techniques that can be used in conjunction

with time-triggered authentication.

 One of the advantages of time-triggered authentication is that it can be combined with many

multicast authentication techniques. Any multicast authentication technique using MACs can be

used so long as the MAC outputs can be truncated without compromising the security of the un-

derlying functions or key (e.g., hash-based MAC functions). This allows the system designer to

perform tradeoffs among different authentication techniques to find which best satisfies the re-

quirements of the system.

 This work identifies four low overhead mechanisms to authenticate time-triggered messages

on a per-packet basis. Each technique spans a range of tradeoffs, which might influence whether

it is suitable for authenticating time-triggered messages in a particular system. The first tech-

nique we examine is OMPR (Section 3), which we use as a baseline multicast authentication

technique in our initial work on time-triggered authentication. The second approach is validity

voting (Section 4). Voting adds complexity, but allows a group of nodes to cross-check the valid-

ity of messages amongst themselves to reduce authentication overhead. Third, we apply TESLA

[Perrig00], which uses time-delayed release of keys. Lastly, we introduce a master-slave authen-

tication approach, based on Chan and Perrig's hash tree broadcast authentication using a trusted

base station node [Chan08].

 To determine which of these approaches are most suitable for embedded control networks, we

compare them in terms of scalability with respect to number of receivers and per-packet assur-

ance, and the effects of packet loss, node failure, and node compromise on each. We also note

Comparisons to other multicast authentication techniques 85

any tradeoffs unique to each approach which may make it more or less desirable for certain sys-

tem applications.

 One of our overall goals is to minimize the number of authentication bits required per packet.

This overhead is primarily affected by two system factors: number of receivers and required per-

packet assurance. Authenticating to more receivers might require more symmetric authenticators

per packet, depending on the approach. The assurance probability required for a packet deter-

mines how many authentication bits are needed for each symmetric authenticator. This section

shows how bandwidth overhead scales for each approach with respect to these two factors.

 System requirements regarding permanent and transient faults may also make one approach

more desirable over another. This section shows the effects of transient packet loss on authenti-

cation and how long each approach takes to recover from such faults. Also, tolerance to node

compromise and failure can be affected by reliance of receivers on other nodes to authenticate

messages (e.g., using a trusted master to authenticate all messages). We discuss each approach's

tolerance to node compromise and failure. We do not discuss full denial of service attacks in-

tended to prevent all transmissions on the network.

5.1 Metrics for comparisons

This section defines our metrics for comparing multicast authentication approaches for use in

time-triggered authentication. Our primary goal, beyond preventing malicious faults, is to mi-

nimize bandwidth consumed by authentication. Depending upon the multicast authentication

technique used, authentication overhead can be sensitive to the number of receivers and the re-

quired level of per-packet assurance. Second, in a safety-critical application, authentication ap-

proaches should be able to recover quickly from transient faults and resume authentication. Last-

Comparisons to other multicast authentication techniques 86

ly, some tolerance to permanent faults and node compromise is desirable. We identify potential

single points of failure for these approaches.

 Other metrics for comparison are also possible based on our design criteria in Section 2 (e.g.,

processing and memory overhead). We assume senders have sufficient computational resources

to compute one MAC function per receiver and have sufficient memory capacity to store symme-

tric keys for nodes they communicate with. We also assume a node is able to store temporary

values as well as all key material. Key chains for TESLA can be stored using an efficient con-

struction, such as the one described by Jakobsson [Jakobsson02]. Systems that have severely

constrained nodes (in terms of processing and memory) and do not conform to these assumptions

require further tradeoff analyses at design time.

Scalability with per-packet assurance level - For each approach, we examine how the number

of per-packet authentication bits increases with respect to the per-packet assurance level. Per-

packet assurance is defined in Section 3 as the acceptable probability of successful forgery per

packet. A weaker per-packet assurance level gives an attacker a higher probability of successful-

ly forging each packet, but requires fewer authentication bits per packet. Conversely, using a

stronger per-packet assurance level creates a lower probability of successful packet forgery, but

requires more authentication bits per packet.

Scalability with receivers - We also examine how per-packet authentication overhead increases

as the number of receivers increases. Many multicast authentication approaches are designed to

scale well to hundreds or thousands of receivers based on certain assumptions. Some techniques

we discuss scale poorly to large numbers of receivers, and are only suited to networks with few

nodes. Other techniques scale well to thousands of receivers, but have a high baseline overhead

that makes them scale poorly to very few receivers.

Comparisons to other multicast authentication techniques 87

Loss tolerance - We show how overall network throughput decreases as packet loss increases to

illustrate the impact of inter-node and inter-packet dependencies for authentication. Schemes

such as validity voting and master-slave authentication require a sender to rely on one or more

other nodes to confirm the authenticity of packets. We define fragility as the number packets lost

due to a single transmission error affecting one packet.

 We also examine the robustness of each approach, showing how much time must pass before

an approach recovers from a transient network error and receivers can resume authentication.

Tolerance to node compromise and failure - Lastly, we discuss the impact of node failures and

compromises on each approach. Schemes that require a higher level of inter-node dependency

for authentication are more sensitive to node compromise and failure. Node failures can prevent

the authentication of more message types than those sent by the failed node. Further, for these

schemes with dependencies, attackers can forge any message if they control a sufficient number

of nodes in the network.

5.2 TESLA

TESLA [Perrig00] uses time-delayed release of keys for multicast communications. This ap-

proach requires loose time-synchronization between a sender and receivers that consume that

sender's message types. During each time interval, the sender uses a different key to authenticate

broadcast messages within that interval of time. TESLA generates a chain of MAC keys using a

one-way hash function. Each key is kept secret by the sender until after all receivers should have

obtained the messages authenticated with that key, then the sender releases the key during a pre-

Comparisons to other multicast authentication techniques 88

defined subsequent time interval. Receivers then use the disclosed key to verify messages release

during its corresponding time interval.

 By releasing keys at a pre-specified delay after a message and MAC tag are released (in a

time-synchronized network), receivers can confirm the authenticity of the data from a sender. An

attacker cannot obtain a secret key before other receivers to use it to forge messages on behalf of

a valid sender. An attacker also cannot use a key after its designated release interval. Receivers

discard late messages that arrive after the time at which the corresponding key should have been

released, since receivers cannot trust an attacker did not attempt to forge those messages on the

sender's behalf.

 This key release approach requires a single MAC tag to authenticate each value regardless of

the number of receivers, so long as they are time-synchronized with the sender. As a security re-

quirement, TESLA requires that a sender and all receivers be loosely time-synchronized, so re-

ceivers can detect keys and messages that arrive at irregular times (indicating an attacker may

have tampered with the message). Our assumption that nodes synchronize to the current message

round fulfills this security requirement.

5.2.1 Modifications to TESLA

This approach does not modify the TESLA protocol other than to truncate the size of the MAC

tags released based on the needed assurance level of individual samples of a message type.

5.2.2 Initialization

Key chains - During initialization, each sender generates a key chain of some predetermined

length N [Perrig00]. The sender first selects a random seed value KN as the last key of the chain.

The sender then iterates a public one-way (pre-image resistant) hash function F. The sender

Comparisons to other multicast authentication techniques 89

computes the chain by recursively using Ki = F(Ki+1) for i = N-1, N-2, ..., 0. To avoid crypto-

graphic weaknesses, TESLA avoids using the same keys for deriving the next key in the chain

and for computing MACs. A sender computes keys for MACs using another one-way function

F': K'i = F'(Ki). During runtime, the sender will release keys in the order K'0, K'1, ..., K'N-1, K'N.

 This work assumes nodes are able to store key chains that are sufficiently long for regular op-

erations. Jakobsson [Jakobsson02] describes a storage efficient mechanism for one-way chains of

length N only requiring log(N) storage at a cost of log(N) computations to access an element.

Time synchronization - To maintain security, TESLA requires receivers to be loosely time syn-

chronized with each sender. At minimum, receivers must know the upper bound on each sender's

clock. This upper bound defines how quickly a sender can release a key for a previous MAC tag.

The strict time synchronization used in OMPR and validity voting satisfies this requirement.

 When using TESLA in time-triggered authentication, we assume the time synchronization

error between a sender and receivers is much less than the broadcast period for a message type.

A sender and receivers synchronize time to a sufficiently fine clock-tick granularity, such that

the sender can release the key on the next sample of the same message type. The time synchroni-

zation approaches discussed in Section 3 already provides this level of synchronization.

 See TESLA [Perrig00] for further details on timing requirements.

Key establishment - At initialization, receivers must be loosely time synchronized with each

sender, know the disclosure schedule of keys, and receive an authenticated key of the one-way

key chain. The sender transmits all key disclosure schedule information and the first key to be

released from the one-way key chain using an authenticated channel (e.g., digitally signed broad-

cast or unicast to individual receivers).

Comparisons to other multicast authentication techniques 90

5.2.3 TESLA in time-triggered authentication

During runtime, a sender computes a MAC tag for the value transmitted during the current time

interval using the key corresponding to that interval. When transmitting message m during the

interval corresponding to key K'i, the sender computes tag ti = MACK'i(m). The sender does not

need to include the current time or message round in the MAC computation since keys are al-

ready assigned to specific time intervals. Because we are authenticating periodic messages, the

sender truncates the MAC tag based upon the required per-packet assurance needed for that mes-

sage type. The sender transmits the value and corresponding tag during the current interval i. In a

subsequent interval, the sender releases the key for a prior interval Ki (Figure 5.1). Once the key

is received in that subsequent interval, all receivers can compute K'i and verify the tag in the

prior interval and accept or reject those values.

Figure 5.1. TESLA used in time-triggered authentica tion. TESLA uses time-delayed release of keys

to provide asymmetry. The key released in the curre nt message round for a message type authen-

ticates the data value for that message type in the previous round.

 As in time-triggered authentication for periodic messages, we truncate each MAC tag based

on assurance required for the sample it authenticates. However, we cannot truncate the released

keys. Truncating the key exponentially reduces the security of this approach. We assume each

time-triggered sample requires the release of a complete key; senders do not "batch authenticate"

Comparisons to other multicast authentication techniques 91

multiple samples of the same message type at once. For this work, we assume a secure symme-

tric key size is eighty bits [Lenstra01]. Other approaches exist that allow release of smaller keys

by regularly initializing new key chains [Hu03], but we do not address those in this work. The

approach described by Hu et al. enables a tradeoff between key size and the frequency of estab-

lishing new key chains (establishment of a key chain requires the sender to broadcast messages

as described in Section 5.2.2).

 A message is recorded as valid if the receiver computed MAC tag matches the tag received

for from the sender. If the receiver computed MAC tag does not match the sender's tag, the re-

ceiver records the message value as invalid. A receiver may drop the message value if either the

packet containing the message value and tag or the subsequent packet containing the key suffer a

transmission error.

 If a key is lost due to a transmission error, TESLA requires recomputation of those lost keys

once a subsequent key is received to verify that the received keys are indeed part of the key chain

committed to by the sender during key initialization.

 Recovery of lost keys also allows receivers to verify message samples for which the corres-

ponding key material was lost. Once a receiver obtains a later key, the receiver can iterate the

one-way function to recover any previously lost keys. This allows a receiver to authenticate a

previously lost message value if that message value and its tag are correctly received but the

packet containing the corresponding key is lost. This recovery mechanism is useful for state-

changing message types, since a receiver waits for several consistent values before committing to

the state change. Conversely, key recovery is less useful for reactive control message types. Re-

ceiving controllers use the most recent value to update controller outputs; old values are typically

discarded.

Comparisons to other multicast authentication techniques 92

5.2.4 Tradeoffs with respect to key chains

For nodes which broadcast multiple message types, TESLA enables a tradeoff among the num-

ber of key chains maintained by a transmitting node, processing and memory overhead for key

chains, bandwidth for authentication, and loss tolerance (and associated recovery of lost keys). A

transmitting node might maintain one key chain for all message types that it broadcasts to mi-

nimize authentication bandwidth overhead. It also reduces processing and memory overhead for

keys. Each message round, a sender computes one MAC tag for each message sample it trans-

mits using one key. In the subsequent message round, it releases that single key. This approach

has the advantage of amortizing the bandwidth cost of transmitting key material over samples of

many message types. One disadvantage of maintaining a single key chain is that if a single key is

lost, a receiver cannot verify any of the message samples until a subsequent key is correctly re-

ceived and the lost key is recovered. For state-changing messages, this creates a delay in verify-

ing multiple message samples. For reactive control messages, loss of a key may cause a receiver

to also lose a sample of multiple message types (increasing the fragility).

 Alternatively, a sender can maintain one distinct key chain for each message type it broad-

casts. This approach requires more authentication bandwidth overhead, processing, and memory

overhead for keys. Each message round, a sender computes MAC tags using the respective key

chains for each message type. In the subsequent round, the sender releases multiple keys, one for

each message type. The advantage of maintaining many key chains over maintaining a single key

chain is decreased fragility. Loss of a key only affects one message type instead of all message

types broadcast by the sender.

Comparisons to other multicast authentication techniques 93

 Lastly, a system designer can group message types and maintain a key chain for each group of

message types. For example, message types could be grouped by required assurance, safety criti-

cality, message period, or system function.

5.2.5 Discussion

TESLA performs well in terms of bandwidth requirements for large numbers of receivers, requir-

ing only one MAC tag and key per transmitted packet. The required per-packet assurance of the

authenticated message value determines the size of the single MAC tag. The disadvantage with

respect to embedded networks is that a key must be sent for each interval. This creates a high

minimum bandwidth requirement per packet even for message types with few receivers or re-

quiring low per-packet assurance. However, this bandwidth can be amortized if a sender trans-

mits multiple message types.

 TESLA also has excellent tolerance to packet loss (low fragility) and node failures. If a re-

ceiver drops a packet, that packet does not affect any other packet. This approach is also robust

to transient faults, recovering as soon as the next message value and subsequent key are received.

Once correct transmissions resume, the receiver will have to perform extra hash computations

during that message round to recover dropped keys and verify the current key is part of the key

chain. Additionally, node failure or compromise does not affect messages from any other node.

 The time synchronization requirement for TESLA is not a disadvantage when comparing

TESLA to other approaches in conjunction with time-triggered authentication. The time syn-

chronization requirement of TESLA might be considered a limitation in enterprise systems.

However, time-triggered authentication already has tighter time synchronization requirements

than the loose time synchronization requirements of TESLA.

Comparisons to other multicast authentication techniques 94

5.3 Master-slave

In a master-slave authentication approach, a trusted "master" node attests to the authenticity of

all messages transmitted by other nodes on a broadcast bus. This approach is similar to using a

base station node to perform the same function in a wireless sensor network. Transmitter and re-

ceiver nodes on the broadcast bus are "slaves" in the sense that they rely completely upon the

master node for trust in messages. Each slave node establishes a symmetric key with the master

node. Slave nodes authenticate each value they transmit to the master node using a single MAC

tag. The master node is responsible for regularly computing a broadcast authenticator over values

observed on the bus and transmitting this broadcast authenticator to all slave nodes. This diffe-

rentiates this approach from a master-slave communication protocol where the master explicitly

controls which node transmits next.

 The master node could use any method for broadcast authentication, depending on the re-

quirements of the system. For example, the master could simply compute one MAC tag per re-

ceiver, compute a digital signature, or use TESLA. The cost of the broadcast authentication is

amortized by authenticating a batch of messages values (of different message types) at once to

the receivers.

 In this work, for master-slave authentication, we use hash tree broadcast authentication, pro-

posed by Chan and Perrig [Chan08]. All nodes are organized into a tree topology, with the base

station as the root of the tree. When the base station transmits, the base station first computes a

MAC tag for each receiver, using a symmetric key shared with that receiver. However, the base

station does not transmit all the MAC tags. Instead, it computes a hash tree where all MAC tags

are placed at the leaf nodes of the tree. The base station then transmits the single resulting root

hash value. Each receiver then releases its MAC tag. Once all the tags have been released and all

Comparisons to other multicast authentication techniques 95

receivers can recompute the base station's hash tag and confirm the authenticity of the entire

batch of messages. Since only the base station knows all the keys used to compute the leaves of

the hash tree, an attacker cannot derive the root hash value.

 We modify and apply this idea to a broadcast bus topology, whereas Chan and Perrig applied

hash tree broadcast authentication for linear, tree, and fully-connected network topologies

[Chan08][Chan10].

5.3.1 Hash tree broadcast authentication

In Chan and Perrig's work [Chan08], a spanning tree is first constructed over the network topol-

ogy. All communication occurs over the links of this tree. The tree is anchored with its root at the

base station. Sensor nodes are placed as the leaf nodes. Intermediate nodes between the root and

leaf nodes act as aggregators and disseminators of information.

 When the base station at the root transmits a message msg to the leaf nodes, it computes a

MAC tag for each receiver i using the key shared between the base station and that receiver:

tagi = MACKi(N|| msg), where N is a nonce or timestamp and Ki is a symmetric key established

between node i and the base station. To avoid congesting the links in the tree, the base station

does not broadcast all tags. Instead it computes a hash tree over the set of MAC tags computed

using each of the keys shared with nodes in the network. For example, for nodes 1 through n, the

base station would compute a hash tree over the values {MACK1(N|| msg), MACK2(N|| msg), … ,

MACKn(N|| msg)}. The base station then distributes the root r of this hash tree, message msg, and

nonce N to its intermediate child nodes, which subsequently disseminate it to the leaf nodes.

 Once the leaf nodes have received the root of the hash tree, each leaf disseminates its own tag.

As the tags from the leaf nodes pass up through the intermediate nodes, the intermediate nodes

Comparisons to other multicast authentication techniques 96

exchange any "off path" vertices of the tree amongst themselves and then to their child nodes.

Leaf nodes do not need every MAC tag used to compute the root of the hash tree, each merely

needs to confirm that its MAC tag was included in the hash tree [Chan08]. By using intermediate

nodes to exchange off path vertices of the hash tree, this approach reduces message traffic con-

gestion across any single link in the network.

 Eventually, each leaf node will be able to recompute the root hash value using its own MAC

tag along with the other off path vertices of the hash tree. Each node can then verify that its

MAC tag was included in the base station's root hash.

5.3.2 Modifications to hash tree broadcast authentication

This work uses a variation on hash tree broadcast authentication to allow a trusted master node to

perform a batch authentication of a set of message values. First, each slave node authenticates its

message value to the master node. The other slave nodes attached to the broadcast bus are able to

observe the values transmitted by other slaves, but cannot immediately authenticate those values.

The master node then broadcasts a message indicating whether the set of message values from

the slave nodes were all valid or not using a variation of hash tree broadcast authentication.

 Since a broadcast bus uses only a single communication link, intermediate nodes are not

needed to exchange off-path vertices of the hash tree to minimize message traffic congestion on

any single link for two reasons. First, all message traffic is already exchanged over the single

link of the network. Second, all nodes connected to the broadcast bus are able to observe every

message transmitted on the bus. Instead of creating a binary spanning tree over the network, we

use a spanning tree with only two levels: a master node at the root and all slave nodes as leaf

nodes on the level below the master node.

Comparisons to other multicast authentication techniques 97

 When broadcasting a message, the root node computes a MAC for each receiver. However,

instead of computing a binary hash tree over the MAC tags, it simply computes a single hash of

all the MAC tags.

5.3.3 Initialization

Key establishment – Each transmitting slave node i in the network establishes a key Ki with the

master node. This key is used to compute MAC tags to authenticate messages to the master node.

 Each slave node j that consumes any message types establishes key K'j with the master node.

The master node computes a MAC tag for receiver j, using this key. The master includes this tag

in the hash tree.

 Any node that both transmits and receives messages establishes both keys with the master.

Time synchronization – As in Section 3, each slave node performs pair-wise time synchroniza-

tion with the master node.

5.3.4 Verifying messages

This master-slave approach using the modified hash tree broadcast authentication executes over

three phases to authenticate message values from u transmitters to v receivers. This approach

does not require that the set of u transmitters be the same as the set of v receivers.

Phase 1 - Slaves authenticate messages to master - In this phase, each transmitting slave node

i computes a MAC over the message mi it will broadcast during time t (synchronized with the

master node) using key Ki it shares with the master node: slave_tagi = MACKi(t || mi). During the

time t, node i broadcasts <mi, tagi>. The master node and all slave nodes record message mi.

However, only the master node is able to verify the authenticity of mi. The slave nodes must wait

Comparisons to other multicast authentication techniques 98

for the master node to attest to the validity of messages. If a message from a slave node suffers a

transmission error, a receiver (both master and slave nodes) records a predefined error code 'lost'

for that message.

Phase 2 - Master broadcasts hash tree broadcast authenticator - In the second phase, the

master node computes a hash tree broadcast authenticator (as described in Section 5.3.2) to attest

to the validity of the all messages broadcast by slave nodes. If all messages from the slave nodes

were valid, the master broadcasts a single-bit 'valid' message along with the hash value r. To at-

test to messages from u transmitting slaves nodes at time t + 1, the master node computes a MAC

tag for slave node i using the shared key K'i: master_tagi = MACK'i(t + 1 || 'valid' || m1 || m2 || ... ||

mu). The master does not need to retransmit the messages it is attesting to, since all slave nodes

attached to the bus should observe the same messages as the master. For any message the master

did not receive due to a transmission error, the master replaces that message value with the 'lost'

error code. The master then computes hash r over these tags for slave nodes that consume any of

the messages from the u senders. For v receivers, the master computes hash r over {master_tag1,

master_tag2, ..., master_tagv}. The master node then broadcasts <'valid', r> onto the bus at time

t + 1.

 If any of the messages from transmitting slave nodes had invalid authenticators, the master

instead broadcasts a single-bit 'invalid' message and the MAC tags are computed over only the

single-bit 'invalid' message and the synchronized time with each receiver. The master then hash-

es the tags together and broadcasts the message and hash as per normal.

Phase 3 - Slaves exchange MAC tags to verify master's hash - In the last phase, each receiv-

ing slave nodes releases its MAC tag so that all receivers can verify the master's hash and subse-

Comparisons to other multicast authentication techniques 99

quently validate messages from the u transmitters. Phase three results in one of three outcomes

for all u messages: valid, invalid, or lost.

 Valid - If the master node broadcast the 'valid' confirmation message in phase two, each re-

ceiving slave node i computes master_tagi = MACK'i(t + 1 || 'OK' || m1 || m2 || ... || mu), using its

key K'i and time t + 1. If a transmission error prevented a slave node from receiving one of the

messages (from phase one) that the tag is computed over, the node replaces that value with the

'lost' error code when computing the MAC tag. Each slave node then releases this MAC tag.

Once all v slave nodes transmit their MAC tags, those nodes compute the hash over that set of

tags and compares to the master's hash r. If the hashes match, the receiver accepts all u messages

attested to as valid (with the exception of those messages that were lost in phase one, which are

recorded as such).

 Invalid - If the master's message contained a 'valid' bit and the received hash does not match

the computed hash, it indicates that an attacker might have attempted to tamper with the master's

message in phase two. Since the receiving slave nodes cannot determine the validity of those

messages broadcast in phase one, they reject all u message values as invalid.

 If the master's message contained the 'invalid' message, indicating some of the messages from

transmitters were not valid, the receivers can then reject all u messages from phase one as

invalid.

 The received hash and computed hash may also not match in the event of an asymmetric

packet loss; some nodes recorded one or more the u message values as lost, while other nodes

received the value correctly.

Comparisons to other multicast authentication techniques 100

 Lost - The u messages from phase 1 are recorded as 'lost' in two cases. First, if the master

node's attestation message from phase two suffers a transmission error, the receivers simply

record all u messages as being 'lost.' Second, if any tag from any of the v nodes broadcasting in

phase 3 suffers a transmission error and the master's message contained a 'valid' message bit,

then no receiver can verify the master's hash. In this case, receivers also record all u message

values as 'lost.' If the master's message contained an 'invalid' bit, receivers always conservatively

reject the u message values as invalid.

5.3.5 Master-slave in time-triggered authentication

When using this master-slave approach in a system application where messages are broadcast at

regular intervals, each execution of the three phases can be overlapped. Each slave node that is

broadcasting a message value during a message round (and also receives messages from the pre-

vious round) can also include the MAC tag for the previous round in their transmission. This

halves the number of transmissions by any slave nodes needed for verifying a round of message

values (Figure 5.2). Thus, a slave node transmits only two truncated MAC tags in a data payload.

The first MAC tag authenticates its current value to the master node. The second MAC tag is

computed over the values observed on the network in the previous round.

Comparisons to other multicast authentication techniques 101

Figure 5.2. Master-slave used in time-triggered aut hentication. Each packet contains two MAC

tags. The first authenticates the current broadcast value to the master node. The second tag is

used to verify the master's hash from the previous message round.

 Slave nodes truncate the MAC tags to a few bits based on required per-packet assurance. The

master truncates each of the MAC tags and resulting hash it computes based on the same re-

quired per-packet assurance. The approach is only as secure as the MAC or hash with the fewest

bits; all MACs and the hash for each execution of the three phases of this approach should be the

same number of bits. If the MAC tag produced by the sender in phase one is smaller than the

master's hash, the attacker could potentially guess that MAC tag more easily than the master's

hash to inject a forged message value from that sender. Similarly, if the master's hash in phase

two has fewer bits than the sender's MAC tag in phase one, then an attacker could inject a forged

value from a sender and attempt to spoof the master's hash instead.

 When creating a message schedule (or defining broadcast periods for message types), the

master node should be scheduled to broadcast its attestation message sufficiently quickly to al-

low verification of individual samples for each message type. Thus, the master node broadcast

period should be less than or equal to that of the message type with the shortest period being

broadcast on the network. Further, the master node should be scheduled to authenticate messages

to slave node receivers that are able to promptly broadcast their tag so that other receivers can

Comparisons to other multicast authentication techniques 102

confirm the master's hash. Receivers cannot verify the hash until all receivers of the master's

hash have released their tags.

5.3.6 Discussion

This approach has two primary advantages. First, authenticating via a master or base station node

is very efficient in terms of bandwidth on a broadcast bus in comparison to all nodes broadcast-

ing multicast authenticators. Having one node authenticate messages from all nodes requires a

single broadcast authenticator. In this approach based on hash tree broadcast authentication,

slave nodes only transmit two MAC tags, each of which can be truncated.

 Using hash tree broadcast authentication also has the advantage of distributing the authentica-

tion bits of the master's attestation amongst the slave node transmissions instead of only placing

them in a transmission from the master node. If the master node used another multicast authenti-

cation mechanism (e.g., OMPR or TESLA to send the master's attestation), it might have to in-

troduce extra packets to broadcast the authenticator. Since the master's authenticator should be

broadcast at same frequency as the fastest message types, adding additional packets from the

master would significantly increase bandwidth costs (each packet in CAN uses a minimum over-

head of 90 bits per packet). Using hash tree broadcast authentication, the master only needs to

send a single hash.

 Using a trusted master node also introduces several disadvantages, regardless of the broadcast

authentication mechanism used. First, the master node is a single point of failure. If the master

suffers a permanent failure, no authentication can be performed. Second, this approach has high

fragility, being very sensitive to packet losses.

Comparisons to other multicast authentication techniques 103

 Using a trusted master also allows an attacker to attempt two guesses to forge an authentica-

tor. First, the attacker can attempt to forge the tag for the master in phase one. Second, if the

master's message indicates that one of the tags was invalid, the attacker can attempt to forge the

master's broadcast authenticator. If the probability of successful forgery on either authenticator is

2-b, where each authenticator is truncated to b bits, then the probability of successful per-packet

forgery is given by equation (4). This is the same probability as forgery attempts on secondary

confirmations in validity voting (Section 4.9).

����� � 2�	
 2�	�1
 2�	� (4)

 Using an approach based on hash tree broadcast authentication exacerbates the impact of node

failure. If a single receiving node suffers a failure, that node might not transmit the MAC tag that

would allow the rest of the network to verify the master's hash value. A single failed node might

prevent all authentication. Chapter 8 describes approaches to improve tolerance to node failures.

Similar approaches could be used in conjunction with master-slave.

 This multicast authentication approach may not be suitable for networks with a large number

of silent receivers that would otherwise never transmit; each of those receivers must now trans-

mit a message on the network to participate in verifying the master's hash. This would signifi-

cantly increase bandwidth requirements for authentication. For those types of networks, this mas-

ter-slave approach using hash tree broadcast authentication should not be used. The master node

can authenticate the messages from the previous round using another mechanism such as TES-

LA.

Comparisons to other multicast authentication techniques 104

 Node compromise is only a concern for this approach if the attacker gains control over the

master node. If the master node is compromised, the attacker can forge any message desired.

Compromised slave nodes can only forge messages they already are expected to send.

 Lastly, there is a potential security vulnerability when authenticating all messages through a

trusted master in conjunction with time-triggered authentication. In time-triggered authentica-

tion, packet losses are considered non-malicious; invalid packets are considered malicious. As

described in section 5.3.4, the master explicitly attests to the validity of the messages transmitted

in phase one of this approach. The attack is executed as follows:

1. During phase one, the attacker selects a message type to attempt to spoof and attempts to

guess the authenticator attached on a sample. Because we use few authentication bits,

there is a moderate probability of successful forgery per packet.

2. In phase two, the attacker intercepts and observes the master's message. If it indicates no

forgery attempts, the attacker knows they guessed the MAC tag correctly during phase

one. If otherwise, the attacker drops the master's packet.

3. The attacker then repeats steps one and two until a sufficient number of forgeries have

been successful to induce a system failure.

 While this attack might technically allow an attacker to successfully forge many message

samples over time, the attacker is forced to drop many messages from the master. Even with sin-

gle bit tags, the attacker will drop about every other (50 percent) messages from the master on

average. If tags are four bits, the attacker is forced to drop about fifteen out of sixteen (93.75

percent) messages from the master. With more bits the percentage of dropped packets is even

higher. Since at most two tags per packet are needed, system designers are likely to use relatively

large tags for a high per-packet assurance. With so many dropped packets, a receiver is likely to

Comparisons to other multicast authentication techniques 105

assume the network has suffered a blackout and take an appropriate safe action, precluding an

attack from achieving the desired effect. If this attack is a concern, the validity bit in the master's

attestation message can be omitted. The receiver then always computes the MAC tag in phase

three over the messages observed during phase one, assuming none have been tampered with.

Thus, an attacker cannot watch a master's messages to see if they successfully guessed the MAC

tag, and the verification in phase three will only be successful if the master and slave nodes ob-

served the same messages during phase one.

5.4 Comparisons

In this section, we compare each of the four techniques in terms of scalability with per-packet

assurance, scalability with receivers, loss tolerance, and node failure/compromise.

5.4.1 Scalability with per-packet assurance

We first show how the required authentication overhead of each approach scales as we vary the

per-packet assurance. We calculate the per-packet authentication overhead assuming a fixed

number of receivers. For OMPR and TESLA, we assume that each has a probability of success-

ful per-packet forgery Pp of 2-b requires b bits per MAC tag. For validity voting, equation (3)

gives an upper bound on the probability of per-packet forgery success after receiving z confirma-

tions from other voting receivers, where w of the voters are compromised. We use this equation

to determine the number of MAC tag bits required to achieve a probability of per packet forgery

equal to or less than those for the other schemes. For master-slave, the probability is

2-b + 2-b(1-2-b), as discussed in Section 5.3.6.

 Table 5.1 provides the per-packet authentication bandwidth cost for each of the four tech-

niques when applied to various per-packet assurance probabilities given R receivers. This table

Comparisons to other multicast authentication techniques 106

shows the number of authentication bits per MAC tag, multiplied by the number of required tags,

plus any added overhead. For validity voting, each transmitter includes v validity bits in their

packet (one for each message type it carries a vote for). Table 5.1 also assumes zero compro-

mised nodes (w = 0). TESLA requires a key of size K. Master slave always uses at most two

MAC tags in each packet. These calculations omit any packet fragmentation that may occur if a

value and authenticator cannot fit within a single physical packet for a given network protocol.

Table 5.1. Authentication bits per packet vs. per-p acket assurance

 Per-packet authentication overhead (bits)
Per-packet
assurance

OMPR Validity Voting TESLA Master/
Slave 1 Vote 2 Votes 4 Votes

2-2 2×R 2×R + v 2×R + v 1×R + v 2 + K 3×2
2-4 4×R 3×R + v 2×R + v 2×R + v 4 + K 5×2
2-8 8×R 5×R + v 4×R + v 3×R + v 8 + K 9×2
2-16 16×R 9×R + v 6×R + v 4×R + v 16 + K 17×2
2-32 32×R 17×R + v 12×R + v 8×R + v 32 + K 33×2
2-64 64×R 33×R + v 22×R + v 14×R + v 64 + K 66×2
2-128 128×R 65×R + v 44×R + v 27×R + v 128 + K 130×2

 In Figures 5.3 through 5.5, we assume all transmitting nodes broadcast to all R receivers and

transmit their messages according to a round-robin schedule. Key size K is eighty bits for TES-

LA. For simplicity in validity voting, we assume nodes transmit a vote for the v message values

most recently received from the bus. For all receivers to obtain one vote on each sample of each

message type, each node votes on the two most recent message values (v = 2). For two votes,

each node votes on the three most recent message values (v = 3). For four votes, each node votes

on the five most recent message values (v = 5). Chapters 6 and 7 detail application of techniques

to more complex message schedules.

Comparisons to other multicast authentication techniques 107

 Figure 5.3 shows an example of the per-packet authentication overhead required as we vary

the per-packet assurance, using ten receivers (R = 10). This example omits any added bandwidth

due to packet fragmentation.

Figure 5.3. Authentication bits per packet varying per-packet assurance. Ten total receivers.

 With no trusted master, Figure 5.3 shows that one MAC per receiver and validity voting have

lower bandwidth consumption than TESLA in networks requiring weak per-packet assurance.

This characteristic makes one MAC per receiver and validity voting most applicable to time-

triggered embedded control networks with sampling rates faster than time constants in the sys-

tem. Eventually, stronger per-packet assurance levels forces the size of the MAC tags to require

more bits than the key that TESLA releases. For ten receivers, one MAC per receiver requires

less bandwidth than TESLA for per-packet assurances of 2-8 or higher. Figure 5.3 also illustrates

how voting can be used to lower the required authentication bandwidth at the cost of some added

complexity and lower loss tolerance. By using one or two votes, we can achieve a 2-16 (or even

Per-packet assurance (acceptable probability of forgery)

A
ut

he
nt

ic
at

io
n

ov
er

he
ad

 p
er

 p
ac

ke
t (

bi
ts

)

0

20

40

60

80

100

120

140

160

180

200

OMPR
1 Vote
2 Votes
4 Votes
TESLA
Master-Slave

2-2 2-8 2-16 2-32 2-64 2-80

Comparisons to other multicast authentication techniques 108

2-32 if using four votes) probability of per packet forgery success while using less authentication

bandwidth than required by TESLA.

 Figure 5.3 shows that for an embedded control network with ten receivers, using typical sam-

pling rates, one MAC per receiver and validity voting can be used to achieve strong system level

assurances using our time-triggered authentication approach. Typical embedded control networks

often follow the rule of thumb of sampling message types at least ten times within a system

deadline or the rise time of a control output [Franklin02][Kopetz97]. Using an assurance proba-

bility of 2-8 per packet, we achieve a probability of induced system failure of 10-9 per message

round if receivers authenticate over at least four message samples. For a message type sampled

once per millisecond, an expected failure rate of 10-9/hour can be achieved if the receiver authen-

ticates over at least seven samples using a 2-8 per packet assurance probability. For systems re-

quiring stronger per-packet assurance, such as 2-16, an induced system failure probability of 10-9

per message round can be achieved by authenticating over just two samples. For a message type

sampled once per millisecond, a receiver would need to authenticate over at least four samples

using this level of per-packet assurance to achieve an expected failure rate of 10-9/hour. Embed-

ded control networks following the rule of thumb of sampling message types at least ten times

within a system deadline or the rise time of a control output should be able to authenticate state

changes and actuations over four to seven samples, while still maintaining a margin of error for

unanticipated operating conditions (e.g., transient packet losses). We use 2-8 and 2-16 as examples

in our analysis in following sections. Systems with less stringent system level assurance re-

quirements could use weaker levels of per-packet assurance (e.g., 2-2 or 2-4).

 Figure 5.3 also shows that TESLA has the lowest per-packet authentication cost for networks

with ten receivers requiring per-packet assurance stronger than 2-80. This makes TESLA the most

Comparisons to other multicast authentication techniques 109

efficient approach of the four for systems where a change in system state must be authenticated

over a single or very few packets with iron-clad security guarantees.

 For systems in which a trusted master node is available, using a master-slave approach can

achieve extremely low authentication overhead per packet as compared to the three other ap-

proaches. While a master-slave approach scales well with respect to per-packet assurance, the

size of the authenticators eventually becomes larger than the bandwidth required by TESLA.

Note that Table 5.1 and Figure 5.3 show the per-packet bandwidth overhead incurred by each

slave node. The master's transmitted hash requires an additional message type to be broadcast on

the network.

5.4.2 Scalability with respect to receivers

Next, we examine how each approach scales with respect to the number of receivers while fixing

the per-packet assurance level. While a typical embedded network only has tens of nodes, ap-

proaches that scale linearly with the number of receivers eventually become inefficient in com-

parison to schemes like TESLA. Again, we calculate the total number of authentication bits per

packet in the same way as the previous section (Table 5.1). In the example in Figure 5.4, we fix

the per-packet assurance at a probability of 2-8 and vary the number of receivers. In Figure 5.5,

we fix the per-packet assurance at a probability of 2-16. For this example, we also ignore added

bandwidth overhead due to packet fragmentation.

Comparisons to other multicast authentication techniques 110

Figure 5.4. Authentication bits per packet varying number of receivers. Probability of per-packet

forgery success fixed at 2 -8.

Figure 5.5. Authentication bits per packet varying number of receivers. Probability of per-packet

forgery success fixed at 2 -16.

Receivers

0 5 10 15 20 25 30

A
ut

he
nt

ic
at

io
n

ba
nd

w
id

th
 p

er
 p

ac
ke

t (
bi

ts
)

0

50

100

150

200
OMPR
1 Vote
2 Votes
4 Votes
TESLA
Master-Slave

Receivers

0 5 10 15 20 25 30

A
ut

he
nt

ic
at

io
n

ba
nd

w
id

th
 p

er
 p

ac
ke

t (
bi

ts
)

0

50

100

150

200
OMPR
1 Vote
2 Votes
4 Votes
TESLA
Master-Slave

Comparisons to other multicast authentication techniques 111

 For networks with no trusted master, Figures 5.4 and 5.5 shows that one MAC per receiver

and validity voting require low authentication bandwidth per packet in networks with moderate

numbers of receivers. These approaches can be applied in embedded control networks with mod-

erately few receivers, commonly eight to sixteen (the example automotive network workload in

Section 7 has a maximum of twelve receivers for any message type).

 Similarly to Figure 5.3, Figures 5.4 and 5.5 also illustrates how validity voting enables better

scaling with respect to receivers. This allows a sender to authenticate a value to more receivers

for a given bandwidth than when using one MAC per receiver alone.

 These figures also illustrate that validity voting reduces MAC tag sizes by a greater number of

bits for stronger per-packet assurances. For a per-packet assurance of 2-8, adding a single vote

decreases the number of authentication bits per receiver by three bits. Whereas, for 2-16, adding a

single vote decreases the authentication bits per receiver by seven bits.

 This figure shows that TESLA is the most bandwidth-efficient non-master approach for high

numbers of receivers. In the example with a fixed per-packet assurance of 2-16, using OMPR be-

comes less efficient than TESLA after there are more than six receivers. However, using four

votes remains more efficient than TESLA until there are more than 23 receivers in this example.

For a per-packet assurance of 2-8, OMPR becomes less efficient than TESLA after more than 11

receivers, and validity voting with four votes becomes less efficient than TESLA after more than

28 receivers.

 For networks with the option of using a trusted master, a low per-packet authentication over-

head can be maintained regardless of the number of receivers. However, this also assumes that

each of these receivers also transmits meaningful data upon which it can "piggy-back" the neces-

sary authenticators. Receivers which would otherwise not transmit are required to send authenti-

Comparisons to other multicast authentication techniques 112

cation data. Figures 5.4 and 5.5 show only the authentication bits required for each slave node's

transmissions (where each packet contains two MAC tags). A master's message would use fewer

authentication bits, only containing a hash the size of a single MAC tag.

5.4.3 Loss tolerance

We experimentally tested the loss tolerance of each approach using an embedded CAN network

simulator written in Java [Koopman12]. For this work, we use a network of six nodes broadcast-

ing according to a round-robin schedule. Each node takes turns broadcasting a single message

type consisting of a sixteen bit data value, associated authentication data and CAN packet over-

head. We selected a per-packet assurance of 2-8 as an example of a per-packet assurance proba-

bility one might assign to message types in an embedded control.

 We implemented all four authentication schemes in the simulator. Every node authenticates

each of its packets to all five other nodes in the network. For one MAC per receiver and validity

voting, each sender includes one MAC tag for each receiver. With a per-packet assurance of 2-8,

at most eight authentication bits are required per tag. Thus, all value and authentication data for

these two approaches fit within a single data payload. We tested validity voting using one vote,

two votes, and four votes. Master-slave authentication required an additional master node to be

added to the simulation, for a total of seven nodes and message types. With two tags per packet

in the master-slave approach, no packet fragmentation occurred. TESLA required two CAN

packets to transmit the value, MAC tag, and key for each message type in each round. We simu-

lated TESLA with recovering previously lost keys, and without recovering previously lost keys.

 We simulated the effects of a symmetric omissive fault model [Azadmanesh00] on network

packets to observe each approach's sensitivity to packet losses and how long each takes to recov-

Comparisons to other multicast authentication techniques 113

er after transient faults cease. In a symmetric omissive fault model, either all nodes receive a

packet broadcast on the network or none receive it. This type of fault may occur due to network

blackouts or if a node simply fails to transmit during a message period. We apply this fault mod-

el by having the network drop a percentage of packets during execution. We use the built-in fault

injection capabilities of the simulator to inject omissive faults during execution. The simulator

applies this drop percentage uniformly across all message types. All injected faults affect only a

single packet; prolonged effects require multiple faults.

Fragility - Sensitivity to packet losses - During execution, nodes recorded the overall ratio of

authenticated data values to the total number of values transmitted (i.e., network goodput norma-

lized over total execution time) to identify sensitivity to packet loss. Increasing authentication

dependencies among nodes and packets make approaches more sensitive to each packet loss,

causing the loss of multiple data values when a single packet is lost. Figure 5.6 shows the ratio of

authenticated data values to the total transmitted as we vary the percentage of dropped packets.

For each data point, we ran the simulator for a sufficient number of message rounds to observe at

least one hundred drop events.

Comparisons to other multicast authentication techniques 114

Figure 5.6. Ratio of packets authenticated to tota l transmitted varying packet loss.

 One MAC per receiver has the highest ratio of accepted data values to transmitted values as

packet loss increases, because it has no inter-node or inter-packet dependencies. Thus, this

scheme represents an ideal bound on the maximum ratio of processed data values to transmitted

data values.

 TESLA (with key recovery) had the same loss tolerance as OMPR. Since keys are initially

computed by iterating a hash function, a receiver can simply recompute lost keys if a subsequent

key is eventually received. Thus, a message value was only lost if the packet containing the value

suffered a transmission error. Loss of only the key temporarily prevented verification of a value

until another key was successfully received.

 TESLA (without key recovery) is more sensitive to packet loss than one MAC per receiver

due to the use of time-delayed key release for authentication. A data value will be lost if the

Packet loss ratio

0.0001 0.001 0.01 0.1 1

R
at

io
 o

f d
at

a
va

lu
es

 a
ut

he
nt

ic
at

ed

to
 to

ta
l d

at
a

va
lu

es
 tr

an
sm

itt
ed

0.0

0.2

0.4

0.6

0.8

1.0

OMPR; TESLA
with key recovery
1 Vote
2 Votes
4 Votes
TESLA without key
recovery
Master-Slave

Comparisons to other multicast authentication techniques 115

packet containing that data value, or either of the two fragment-bearing packets containing the

subsequent key material are lost.

 When using validity voting, increasing the number of votes increases sensitivity to network

faults. If any vote that confirms a value is lost, then the packet containing the value voted upon is

also lost. If one of these confirmation packets is lost, then all values attested to will also be

marked as lost.

 Master-slave authentication suffers the greatest degradation in processed data values as packet

losses increases, because all packets from one round must be received to verify the previous

round. If the master node's hash value or any subsequent MAC tag used to verify the hash are

lost, then all values in the prior message round are also lost.

 Figure 5.6 illustrates that schemes which have few or no dependencies among nodes or pack-

ets for authentication, such as one MAC per receiver, TESLA, and validity voting with one or

two votes, are best suited for lossy networks. For systems deployed in environments where little

network interference is anticipated, approaches which require more interaction among nodes and

message types for authentication can be used. Validity voting where most nodes participate in

voting on a majority of each others' messages or master-slave authentication could be used in

systems where transmission errors are sufficiently rare.

Robustness - Recovery time from transient faults - While most approaches have some sensi-

tivity to packet losses, all approaches recover quickly from transient faults. When used in safety-

critical applications, an authentication approach must be able to resume authentication quickly

after a transient fault ceases. An example of such a fault is a temporary network blackout due to

an electric motor starting. We experimentally tested the length of time from the point at which a

transient packet losses ceased to the point at which the first message value transmitted after the

Comparisons to other multicast authentication techniques 116

fault was successfully authenticated. To simulate these types of faults, we deterministically in-

jected a single lost packet for a message type and measured the time until authentication resumed

for that message type. Additionally, we dropped packets for all message types long enough to

stop all authentication, then ceased all interference simultaneously to simulate the end of a net-

work blackout. We observed similar recovery times in both cases and recorded the worst case.

 We do not consider recovery of packets lost during the fault, as nodes in embedded control

networks act on the freshest data values concerning the current system state to update outputs

and actuator positions. Nodes discard stale data values after short period of time. Also, this work

does not address malicious denial of service attacks on these networks.

 One MAC per receiver resumes authentication immediately upon the receipt of the next mes-

sage value after a transient network fault ceases. This recovery time is ideal due to no dependen-

cies.

 While validity voting is more sensitive to packet losses because of inter-node dependencies,

it automatically resumes authentication after a message value and all subsequent votes are re-

ceived. In this simulation, validity voting recovered within one message round. Verification of a

value never depends on prior packets. Only subsequently received packets are used to authenti-

cate a value. Votes are scheduled to be received within one message round of the value they are

associated with.

 TESLA recovers from transient network faults as soon as a data value and the subsequent key

are received. In our simulation this occurs in just slightly over one message round. However, this

delay could be reduced by scheduling a message type's keys to be released later in the message

round after its value is released. Upon receiving a data value for any message type, a receiver can

authenticate that value once the associated key is released in the subsequent message round. Re-

Comparisons to other multicast authentication techniques 117

ceivers must also recompute any lost keys in order to verify the authenticity of keys and values

transmitted after the fault ceases. Thus, sufficiently long network blackouts might increase re-

covery time.

 Master-slave takes at most three message rounds to recover from a transient fault in our simu-

lation. Once the fault ceases, receivers must wait until the beginning of a new message round.

Receivers can begin verifying message values again once all values in that round, the master

node's hash, and the tags in all packets in the following round have been received.

5.4.4 Node compromise and failure

Reliance on other nodes for authentication also reduces an approach's tolerance to node com-

promise or failure. TESLA and one MAC per receiver have perfect tolerance to node compro-

mises or failures. An attacker controlling a compromised node can only spoof message values

that would be sent from that node. A node failure would not prevent any other messages from

being authenticated other than ones transmitted by the failed node.

 Validity voting (Section 4) can only tolerate a fixed number of compromised nodes, specified

at design time. An attacker might use a compromised node to assist in a message forgery attempt

by casting a positive vote for that message. By tolerating w votes are compromised out of a z to-

tal votes, the per-packet assurance is defined by z - w useable votes (see equation (3) in Section

4). If an attacker is able to compromise more than w voting nodes in the system, they might be

able to cause message forgeries to succeed more often than defined failure requirements for the

system.

Comparisons to other multicast authentication techniques 118

 Baseline validity voting as described in Section 4 does not account for permanent node fail-

ures. Tolerance to failed nodes needs to be added. Section 8 describes how to tolerate failed

nodes, using methods like group membership.

 Master-slave authentication's tolerance to node compromise relies primarily on the master

node remaining uncompromised. The master node is a single point of failure. If an attacker com-

promises the master node, the attacker has complete control over the network and can transmit

any value it wishes. However, if the master node remains uncompromised, the approach retains

perfect tolerance to compromise of any slave node. A compromised slave node can only spoof

messages that would be sent from that node.

 Permanent node failures have a more severe impact on master-slave authentication. In the

event the master node fails, no authentication is possible. If a slave node fails, it will not release

the MAC tags necessary for other nodes in the network to validate previous message rounds. To

resolve this, a master node might periodically broadcast the current set of nodes it believes to be

operating correctly. Thus, receivers can recompute the master's hash value over the tags released

by correctly operating nodes.

5.5 Discussion

Table 5.2 summarizes the results of this chapter, discussing characteristics of each technique and

types of embedded networks they best apply to.

 Our analysis shows that the most bandwidth efficient approach depends primarily on the

number of receivers, and is influenced to a lesser extent by per-packet assurance levels in net-

works where no trusted master is available. For example, one MAC per receiver and validity vot-

ing are the most bandwidth efficient approaches for networks characterized by few receivers and

Comparisons to other multicast authentication techniques 119

weak per-packet assurance levels. TESLA and validity voting using many votes are the most

bandwidth efficient approaches for very large numbers of receivers or strong per-packet assur-

ance levels. A master-slave approach is also very bandwidth efficient, assuming a trusted master

node is available. We also show that despite some approaches being more sensitive to transient

packet losses, all approaches recover automatically within one to three message rounds. Lastly

we find approaches with no inter-node dependencies for authentication, such as one MAC per

receiver and TESLA, are most robust to node compromises or failures.

Comparisons to other multicast authentication techniques 120

Table 5.2. Summary of authentication technique char acteristics

 Summary
One MAC
per receiver

• Best applied to embedded control networks characterized by very few
receivers and weak per-packet assurance levels.

• Perfect tolerance to transient packet losses.

• Nodes resume authentication immediately after transient network failures
cease.

• Perfect tolerance to node compromise or failure.

Validity voting • Best for systems with few receivers; can provide strong per-packet assur-
ance by increasing votes. Enables authentication to more receivers or
stronger per-packet assurances than one MAC per receiver using the
same number of bits. If using many votes, validity voting is competitive
with TESLA for scalability even to strong per-packet assurance levels.

• Increasing voting also makes this approach more sensitive to packet
losses.

• Authentication resumes within one message round after transient network
faults cease.

• Only tolerates a fixed number compromised nodes. Node failures might
require network reconfiguration.

TESLA • Best for systems characterized by many receivers and very strong per-
packet assurance levels.

• Has higher per-packet authentication overhead than one MAC per receiv-
er and validity voting when applied to few receivers and weak per-packet
assurance levels.

• Time-delayed key release slightly decreases loss tolerance due to inter-
packet dependencies.

• Authentication can resume within one message round.

• Perfect tolerance to node compromise or failure.

Master-slave • Requires a trusted master node.

• Scales well to any number of receivers (so long as none are silent receiv-
ers). Also scales well with respect to per packet assurance levels.

• Very sensitive to packet losses, because all nodes participate in verifying
each message round.

• Recovers from transient packet losses within three message rounds.

• Master node is a single point of failure. Perfect tolerance to node com-
promise so long as only slave nodes are compromised. Failed slave nodes
require reconfiguration out of the system by the master node.

Evaluation - Simulated elevator control network 121

6 Evaluation - Simulated elevator control network

We implemented time-triggered authentication in a simulated embedded control network of an

elevator system. The embedded network simulator is a bit-level accurate CAN protocol simula-

tor, allowing controllers to communicate using periodic messages [Koopman12]. In this proof of

concept, we first identify safety requirements of the system and possible attacks in which mes-

sage forgeries could induce system failures that could violate those safety requirements or cease

elevator operations. We then apply time-triggered authentication in conjunction with all four

techniques described in previous sections (one MAC per receiver, validity voting, TESLA, and

master-slave) to prevent such attacks and examine the performance impacts of each.

 The embedded network simulator has been used in several research projects as well as the

project component of graduate level course work in the Electrical Engineering Department of

Carnegie Mellon University. Examples of research projects that have used the embedded net-

work simulator (or variations thereof) include graceful degradation of distributed embedded sys-

tems [Nace02][Shelton03] and embedded network gateway survivability [Ray09]. The simulator

is also used in the project component of the Carnegie Mellon University graduate course 18-649

Distributed Embedded Systems. Students use the embedded network simulator to design an ele-

vator system. Associated project tasks include development of system requirements, design and

implementation of state machines for controllers, analysis of bandwidth consumption, and ro-

bustness testing of system designs to injected faults. All code and design documentation for the

elevator and the underlying network simulation framework are available [Koopman12].

 While not the most obvious example for a security analysis, we selected the elevator system

as an implementation platform because it is representative of safety-critical embedded networks

Evaluation - Simulated elevator control network 122

in industry. This system contains nodes running control loops that consume both reactive control

messages and state-changing messages. The simulation uses a CAN bus to broadcast periodic

messages to receivers. Any node (malicious or not) which spoofs an input to a safety-critical

node could cause the system to violate safety requirements. Such a violation could potentially

result in injury or death of users in a real system. The elevator design also has performance and

passenger comfort requirements that a system designer may also protect from malicious attacks

to a lesser degree.

6.1 Network simulator framework overview

The elevator system executes on top of a CAN network simulation framework, written in the Ja-

va programming language.

 The network simulation is built around an event queue that acts as the physical layer of the

network and controls all time-related actions (e.g., passenger behaviors, control loop executions

and message broadcasts) in the simulation. The queue maintains an ordered set of events and as-

sociated times to execute them. During execution, the event queue increments an internal counter

that represent clock ticks (each clock tick represents one nanosecond) that have passed. At each

clock tick, the event queue executes the events for that time.

 At initialization, the simulation builds a set of nodes (sensors, actuators, and controllers) and

registers them with the central event queue. Each node connected to the network is an instance of

a Java class that exchanges data through the event queue. To simulate periodic control loop ex-

ecution, each node registers a function callback and simulation time with the event queue. When

the event queue reaches that time, it executes the function callback. The node then reads new in-

puts, updates internal state variables, and updates outputs. Once the control loop function com-

Evaluation - Simulated elevator control network 123

pletes, the node re-registers with the event queue for its next control loop execution. One limita-

tion of the simulator is that control loop executions occur "instantly." The simulator does not at-

tempt to model execution time.

 To minimize processing requirements, the simulation models all physical signals and CAN

network packets as semi-public state variables that are updated at discrete intervals. All network

messages and physical signals are propagated to receivers at predefined periods. Typically, these

periods match the control loop period of the message's source. While this might be considered a

limitation of the simulator, in real embedded control networks most inputs (including continuous

analog inputs) are sampled periodically. Nodes register message types they output and their pe-

riods with the event queue. Nodes also subscribe to a set of messages through the event queue.

At the predefined frequency, the event queue pulls data from the source node and propagates the

messages to mailbox variables. Each node accesses the newest copy of each network message

type and physical signal through these mailboxes. The event queue can also model the CAN pro-

tocol at the bit-level of the physical layer. It models bus arbitration when multiple nodes attempt

to broadcast on the bus at the same time. It will also models other aspects of the CAN protocol,

such as bit stuffing. This allows for detailed bandwidth analysis for projects using the network

simulation framework.

6.2 Elevator system overview

The simulated elevator system services a building with eight floors. Passengers "arrive" in the

simulation at predefined floors and times, and then press the hall call button (up or down) at that

floor. A centralized control system, called the dispatcher, monitors hall and car call button mes-

sages on the network and determines which floor to service next for optimum performance to

minimize overall passenger delivery time. The dispatcher updates the desired floor, which is

Evaluation - Simulated elevator control network 124

broadcast at regular intervals over the network to the other controllers. Based on the desired

floor, the drive controller commands the drive motor to raise or lower the car within the hoistway

to that floor. Once the elevator arrives at the desired floor, the door controllers command the

door motors to open and close the doors for each hallway appropriately. The car has front and

back doorways (each with left and right doors that open simultaneously), allowing the elevator to

service a front hallway, a back hallway, or both at each floor. Once inside the elevator car, a pas-

senger waits for the doors to close, and then presses a car call button to be delivered to the cor-

responding floor. Again, the dispatcher determines the next floor to be visited and the drive

moves the car to that floor. The car position indicator displays the current floor to the passengers

so they can exit the car at the correct floor.

 The elevator simulation consists of a set of nodes (sensors and controllers) that communicate

over a simulated CAN bus using periodic messages. Table 6.1 lists the source nodes, message

types they broadcast, message period, replication of source nodes, and a brief description of the

contents of the message. Some nodes (and their respective messages) are replicated. The replica-

tion column indicates how many copies of that message are broadcast. "Floor" indicates that a

copy of that node is present at every floor. "Hall" indicates that a copy of that node exists for

both front and back halls. "Side" indicates that a copy of the node is present for both left and

right sides, referring to the two doors of each entrance to the elevator car. "Direction" indicates

that a copy of the node exists for both up and down directions.

Evaluation - Simulated elevator control network 125

Table 6.1. Elevator message dictionary. Contains message types, source nodes, periods, replica-
tion, and descriptions. [Koopman12]

Sensors
Source Node

Name
Message

Name
Period
(ms)

Replication
Description

At Floor Sen-
sor

AtFloor 50
10

(floor, hall)
Boolean value indicating if the car is currently at that
floor and hallway.

Car Level
Position Sen-

sor

Car Level
Position

50 1
(single)

Integer value that provides the vertical position of the car
within the hoistway in millimeters.

Door Closed
Sensor

Door Closed 50
4

(hall, side)
Boolean value indicating if a particular car door is com-
pletely closed.

Door reversal
Sensor

Door Rever-
sal

10
4

(hall, side)
Boolean value indicating whether an object is blocking a
door, preventing it from closing.

Weight Sen-
sor

Car Weight 50
1

(single)
Integer value that provides the current weight of the con-
tents of the elevator car.

Door Opened
Sensor

Door Opened 50
4

(hall, side)
Boolean value indicating if a particular car door is com-
pletely open.

Hoistway
Limit Sensor

Hoistway
Limit

50
2

 (direction)
Boolean value indicating if the car has exceeded the top
or bottom of the hoistway.

Controllers

Source Node
Name

Message
Name

Period
(ms) Replication Description

Safety Moni-
tor

Emergency
Brake

50
1

(single)

Boolean value indicating if the safety monitor has de-
tected a safety violation and engaged the emergency
brake.

Drive Control
Drive Com-

mand
10

1
(single)

Contains integer values providing the current speed and
direction of the drive (i.e., how fast the car is moving).

Door Control
Door Motor
Command

10
4

(hall, side)
Integer value indicating the current command from the
door controller to door motor (stop, close, or open).

Car Position
Indicator

Car Position 50
1

(single)
Integer value providing the current floor being displayed
to passengers within the elevator car.

Dispatcher DesiredFloor 50
1

(single)
Integer values providing the next floor and direction the
car should be commanded to travel to.

Hall Button Hall Call 100
17

(floor, hall,
direction)

Boolean value indicating if the call button in the corres-
ponding floor/hallway/direction has been pressed by a
passenger waiting in a hall.

Car Button Car Call 100
10

(floor, hall)

Boolean value indicating if the call button for the corres-
ponding floor/hallway has been pressed by a passenger
inside the car.

6.3 Supporting system requirements

The elevator system design we built our authentication mechanisms into fulfills a series of high

level system requirements and safety requirements. The creators of the simulated elevator de-

Evaluation - Simulated elevator control network 126

signed it to deliver passengers efficiently while still being robust to non-malicious failures. How-

ever, the design does not prevent maliciously induced failures due to message forgeries.

6.3.1 Safety requirements

Our highest priority for message authentication is to prevent induced failures that violate safety

requirements. At no point should an attacker be able to successfully forge a sufficient number of

message values to induce such a failure. We use the following requirements from original set of

safety requirements for the elevator [Koopman12]:

R-S1. All doors shall remain closed while the elevator is between floors.

R-S2. Doors shall remain closed if there is no landing for that hallway at a floor.

R-S3. Door motors shall not be commanded to any value other than open for any longer than 200

milliseconds if a door reversal is detected.

R-S4. If the elevator car is overweight, the drive speed shall be set to zero, and the direction to

 stop.

R-S5. The elevator car shall not exceed hoistway limits.

 To support requirements R-S1 through R-S5, we address attacks where the attacker creates or

modifies messages with values that do not reflect the real state of the elevator system, controllers

subsequently act upon those falsified messages and place the system in a state which violates one

or more of these safety requirements. We identify state transitions in controllers that might be

targeted to violate these requirements and apply authentication to the associated message types

those transitions are based upon. We also identify time bounds in terms of the number of mes-

sage samples if an attack must be detected within a certain amount of time (e.g., a door controller

can expect to receive twenty samples of the Door Reversal message type within the 200 millise-

Evaluation - Simulated elevator control network 127

cond time limit defined by R-S3). This gives us maximum sizes for history buffers when using

time-triggered authentication.

 We omit one safety requirement from the original list of elevator safety requirements [REF

18-649]. The omitted requirement defines an acceptable drive acceleration profile and is not af-

fected by network message traffic. It is addressed completely within the design of the drive con-

troller.

6.3.2 High level system requirements

Our second priority for message authentication is to prevent induced failures which prevent the

elevator system from accomplishing its mission: delivering passengers. We use the following

system level requirements from the initial creators of the elevator [Koopman12]:

R-T1. The elevator shall deliver all passengers eventually.

R-T2. Any unsafe condition shall cause an emergency stop.

R-T3. An emergency stop should never occur.

 To support requirement R-T1, we use authentication to ensure that an attacker cannot stealthi-

ly perform a denial of service attack using message forgeries. Without authentication, a falsified

value for a message type could cause the elevator to stop delivering passengers without trigger-

ing an observable failure. Further, an attacker could cease falsifying messages to allow the sys-

tem to return to normal operation without being detected. As with safety requirements we identi-

fy state transitions and associated message types that should be protected to support this re-

quirement. There is no bounds on time limits for detecting these types of forgeries. Authenticat-

ing many samples will eventually allow receivers to detect such attacks. However, we do not de-

Evaluation - Simulated elevator control network 128

fine explicit or implicit history buffer sizes for message types that could be used for such denial

of service attacks.

 To support requirements R-T2 and R-T3, we authenticate messages to the safety monitor. The

safety monitor node watches physical signals and network messages to detect when the system

state violates these requirements. The safety monitor then triggers the emergency brake. If the

safety monitor detects too many invalid authenticators on falsified inputs, it can trigger the

emergency brake. While this could be a denial of service attack on the elevator, triggering the

emergency brake is considered a safe action.

 We omit high level requirements related to passenger satisfaction and optimization, as we are

primarily concerned with safely delivering passengers.

6.4 Identifying messages and state transitions to protect

Next, we identify transitions within internal state machines of controllers which could violate our

requirements due to spoofed messages. Thus, we can define which messages need to be authenti-

cated.

 There are six safety critical nodes in the system that require authentication of their inputs. The

controllers responsible for actuations related to safety requirements are the door controllers and

the drive controller. The safety monitor is responsible for engaging the emergency brake if ne-

cessary. Spoofed inputs to these nodes could cause undesired state transitions which could vi-

olate safety requirements.

 There are also two mission critical nodes in the system that require authentication of inputs:

the dispatcher and car position indicator. If an attacker spoofs messages to these nodes, they

might cause the elevator to cease operation or deliver passengers to incorrect floors.

Evaluation - Simulated elevator control network 129

 In the following sections, we perform a brief analysis to show the possible effects of message

forgeries against each of these eight nodes. Then we provide the list of messages and the nodes

to which they should be authenticated.

6.4.1 Door Controller

The general behavior of the door controllers is as follows:

• Monitor the Desired Floor message from the dispatcher to determine which floor and hallway

the doors are expected to open at next.

• Once at the desired floor and hallway, open doors for that hallway completely.

• Wait until the dwell count down completes.

• Close the doors, unless the door reversal occurs or the car is overweight.

 Figure 6.1 shows the state diagram for a door controller. Table 6.2 provides the guard condi-

tions for each state transition. Door controllers execute their control loops and update their out-

puts every ten milliseconds.

Evaluation - Simulated elevator control network 130

DoC.T.1
DoC.T.2DoC.T.4

DoC.T.5

DoC.T.3

DoC.T.7 DoC.T.6

State 0: Open
Signal DoorMotor = Stop
CAN message DoorMotor = Stop
Countdown = Countdown – 10 ms

State 4: Reset Dwell
Signal DoorMotor = Stop
CAN message DoorMotor = Stop
Countdown = 2000 ms

State 1: Opening
Signal DoorMotor = Open
CAN message DoorMotor = Open
Countdown = 2000 ms

State 2: Closed
Signal DoorMotor = Stop
CAN message DoorMotor = Stop

State 3: Closing
Signal DoorMotor = Close
CAN message DoorMotor = Close

Figure 6.1. Door controller state diagram [Martin10].

Table 6.2. Door controller state transition guard conditions [Martin10].

Transition Guard Condition
DoC.T.1 Door Open message for is true.
DoC.T.2 Dwell count down reaches zero AND

All Door Reversal messages are false AND
Car Weight message is less than max elevator capacity.

DoC.T.3 All Door Closed messages are true AND
All Door Reversal messages are false AND
Car Weight message is less than max elevator capacity.

DoC.T.4 At Floor message corresponding to Desired Floor message's floor and hallway is true AND
All Door Motor Command messages indicate doors have stopped AND
Drive Command message speed is zero.

DoC.T.5 Any Door Reversal message is true OR
Car Weight message is greater than or equal to max elevator capacity.

DoC.T.6 No condition. Always take this transition.
DoC.T.7 Any Door Reversal message is true OR

Car Weight message is greater than or equal to max elevator capacity.

Evaluation - Simulated elevator control network 131

 To determine the effects of using message forgeries to force undesired state changes or deny

normal state changes, we examined the effects of each. Table 6.3 summarizes the effects of forc-

ing or denying each state transition and related messages. For each, we determine whether an

attack could cause a possible denial of service (undetected by the system), violate a safety re-

quirement, or have no effect.

Table 6.3. Effects of message forgeries to force or deny state transitions in door controllers.

State
transition

Effects of forced transition Effects of denied transition Associated message types

DoC.T.1 Possible denial of service.
Door only opens partially, if at
all.

Possible denial of service.
Door could remain closed inde-
finitely.

Door Opened

DoC.T.2 No effect.
Door starts the closing process.
However, closing occurs in next
state.

Possible denial of service.
Door could remain open indefi-
nitely.

Door Reversal
Car Weight

DoC.T.3 Possible denial of service or
safety violation (Requirement
R-S3).
Doors could remain locked in
position while door reversal is
true.

Possible denial of service.
Door controllers continue to
command door motors to close,
which prevents the drive from
moving the car.

Door Closed
Door Reversal
Car Weight

DoC.T.4 Possible safety violation (Re-
quirements R-S1, R-S2).
Doors could open between
floors or while car is in motion.

Possible denial of service.
Car arrives at desired floor, but
doors never open.

At Floor
Desired Floor
Door Motor Command
Drive Command

DoC.T.5 Possible denial of service.
Doors could be forced to re-
peatedly open.

Possible safety violation (Re-
quirement R-S3).
Doors could close on a passen-
ger or object when a door rever-
sal should occur.

Door Reversal
Car Weight

DoC.T.6 No effect.
Transition always taken.

No effect.
Transition always taken.

None

DoC.T.7 Possible denial of service.
Doors could be forced to remain
open.

No effect.
Door could start closing sooner.

Door Reversal
Car Weight

 State transitions DoC.T.3 and DoC.T.4 could be forced or denied to create a system state

which violates safety requirements. For transitions DoC.T.3 and DoC.T.4, forcing the transition

causes a discrete state change could be a safety violation. Triggering DoC.T.3 could violate safe-

ty requirement R-S1 and R-S2, while DoC.T.4 could violate R-S3. Using time-triggered authen-

Evaluation - Simulated elevator control network 132

tication, we designate the associated messages as state changing message types for these transi-

tions. For these transitions to complete, the door controller must be sure that the values of each

message type have not been tampered with prior to committing the transitions. Door controllers

will retain an explicit history buffer for the associated message types in memory for use with

these two transitions. There is no maximum number of samples for explicit history buffers; in-

creasing the size of these buffers simply delays the corresponding state transitions.

 For transition DoC.T.5, during each control loop execution that an attacker successfully de-

nies the transition will cause the controller to command the door motor to continue to close the

door on a passenger obstructing the doorway. After a sufficient amount of time (200 millise-

conds), an attacker will have successfully caused the system to violate safety requirement R-S3.

Using time-triggered authentication, we designate the associated message types as reactive con-

trol message types for DoC.T.5. Door controllers do not keep an explicit history buffer for the

associated message types for this transition. Instead, we rely on the implicit history buffer that

exists for each door. An attacker must successfully forge at least 20 consecutive samples of the

Door Reversal message type to deny this state transition long enough to violate a safety require-

ment. There is no maximum time limit before the doors reopen if the car is overweight.

 Transitions DoC.T.1, DoC.T.2, DoC.T.3, DoC.T.4, DoC.T.5, DoC.T.7 could be forced or de-

nied to perform a stealthy denial of service attack, stopping the doors from performing their

normal function. Any of these could be exploited to violate requirement R-T1, however there is

no time bounds for detecting denial of service attacks.

Implementation notes for time-triggered authentication in door controllers - For the door

controllers, we implemented explicit history buffers for the At Floor, Door Closed, Door Motor

Command, Door Reversal, Desired Floor, and Drive Command message types for use with tran-

Evaluation - Simulated elevator control network 133

sitions DoC.T.3 and DoC.T.4. The dynamics of the elevator system create an implicit history

buffer for the Door Reversal message type for use with DoC.T.5. Lastly, we also authenticate the

Door Open message type to monitor for forgery attempts designed to perform denial of service.

All of these message types are authenticated to the door controller.

 If a door controller detects forgery attempts (invalid authenticators) on messages attempting

to force state transitions DoC.T.3 or DoC.T.4, the door controller resets their history buffer and

aborts the state change. For DoC.T.5, if it detects forgery attempts on its associated message

types, it reopens the doors to avoid a safety violation. In an implementation in a real system, the

system designer can take whatever action is appropriate and safe if such a malicious fault is de-

tected.

6.4.2 Drive Controller

The general behavior of the door controllers is as follows:

• Monitor Desired Floor message from the dispatcher to determine which floor to travel to

next.

• If not currently at the desired floor, accelerate to slow speed (0.25 m/s) towards the desired

floor.

• Once at slow speed, accelerate to fast speed (5.0 m/s) towards the desired floor.

• Once the car has reached the commit point, begin decelerating to slow speed.

• Continue at slow speed until the desired floor has been reached, then stop the car.

Evaluation - Simulated elevator control network 134

 Figure 6.2 shows the state diagram for the drive controller. Table 6.4 provides the guard con-

ditions for each state transition. The drive controller executes its control loop and updates its

output every ten milliseconds.

DC.T.1

DC.T.2

DC.T.3

DC.T.4

DC.T.5

DC.T.6

DC.T.7

DC.T.8

State 0: Stopped
Signal to Drive = Stop, Stop
CAN message

- DriveCmd = 0, Stop

State 3: Down/Slow
Signal to Drive = Slow,Down
CAN message

- DriveCmd = DriveSpeed,Down

State 4: Down/Fast
Signal to Drive = Fast, Down
CAN message

- DriveCmd = DriveSpeed, Down

State 2: Up/Fast
Signal to Drive = Fast, Up
CAN message

- DriveCmd = DriveSpeed, Up

State 1: Up/Slow
Signal to Drive = Slow, Up
CAN message

- DriveCmd = DriveSpeed, Up

Figure 6.2. Drive controller state diagram [Martin10]

Evaluation - Simulated elevator control network 135

Table 6.4. Drive controller state transition guard conditions [Martin10].
Transition Guard Condition
DC.T.1 Car Level Position message indicates commit point reached OR

Any Door Closed message is false OR
Any Door Motor Command message is not stop OR
Emergency Brake message is true OR
Hoistway Limit message is true OR
Car Weight message is greater than max car capacity

DC.T.2 At Floor message for desired floor is true OR
Any Door Closed message is false OR
Any Door Motor Command message is not stop OR
Emergency Brake message is true OR
Hoistway Limit message is true OR
Car Weight message is greater than max car capacity

DC.T.3 At Floor message for desired floor is false AND
Desired floor is below current position AND
All Door Closed messages are true AND
All Door Motor Command messages are stop AND
Emergency Brake message is false AND
Hoistway Limit message is false AND
Car Weight message is less than or equal to max car capacity

DC.T.4 Car Level Position message indicates commit point not reached AND
Drive Command message indicates slow speed has been reached AND
All Door Closed messages are true AND
All Door Motor Command messages are stop AND
Emergency Brake message is false AND Hoistway Limit message is false AND
Car Weight message is less than or equal to max car capacity

DC.T.5 Car Level Position message indicates commit point not reached AND
Drive Command message indicates slow speed has been reached AND
All Door Closed messages are true AND
All Door Motor Command messages are stop AND
Emergency Brake message is false AND
Hoistway Limit message is false AND
Car Weight message is less than or equal to max car capacity

DC.T.6 At Floor message for desired floor is false AND
Desired floor is above current position AND
All Door Closed messages are true AND
All Door Motor Command messages are stop AND
Emergency Brake message is false AND
Hoistway Limit message is false AND
Car Weight message is less than or equal to max car capacity

DC.T.7 At Floor message for desired floor is true OR
Any Door Closed message is false OR
Any Door Motor Command message is not stop OR
Emergency Brake message is true OR
Hoistway Limit message is true OR
Car Weight message is greater than max car capacity

DC.T.8 Car Level Position message indicates commit point reached OR
Any Door Closed message is false OR
Any Door Motor Command message is not stop OR
Emergency Brake message is true OR
Hoistway Limit message is true OR
Car Weight message is greater than max car capacity

Evaluation - Simulated elevator control network 136

 Again, we examined the effect of message forgeries intended to force or deny state transi-

tions. Table 6.5 summarizes the effects of forcing or denying each state transition and related

messages. For each, we determine whether an attack could cause a possible denial of service

(undetected by the system), violate a safety requirement, or have no effect. Undetected denial of

service attacks violate requirement R-T1.

Evaluation - Simulated elevator control network 137

Table 6.5. Effects of message forgeries to force or deny drive controller state transitions.
Transition Effects of forced transition Effects of denied transition Associated message types

DC.T.1 No effect.
Drive decelerates to slow speed
early before reaching commit
point. This is safe, but slows per-
formance.

Potential safety violation (R-S1,
R-S4, R-S5, R-T2)
Car might exceed hoistway limit
or move while doors opening,
emergency brake being engaged,
or weight exceeding capacity.

Car Level Position
Door Closed
Door Motor
Emergency Brake
Hoistway Limit
Car Weight

DC.T.2 Potential denial of service.
Drive could stop between floors.

Potential safety violation
Same as denying DC.T.1.

At Floor
Desired Floor
Door Closed
Door Motor
Emergency Brake
Hoistway Limit
Car Weight

DC.T.3 Potential safety violation (R-S1,
R-S4, R-S5, R-T2)
Car might begin moving while
doors are open, emergency brake
engaged, hoistway limit tripped,
or weight exceeded.

Potential denial of service.
Drive could never move to next
desired floor.

At Floor
Desired Floor
Door Closed
Door Motor
Emergency Brake
Hoistway Limit
Car Weight

DC.T.4 No effect.
Drive will always attempt to go to
fast speed between floors during
normal operation. Drive does not
instantly change speed. Next state
tests whether drive should begin
slowing down.

No effect.
Drive will never reach fast speed.
This is safe, but slows perfor-
mance.

Car Level Position
Door Closed
Door Motor
Emergency Brake
Hoistway Limit
Car Weight

DC.T.5 No effect.
Same as forcing DC.T.4.

No effect.
Same as denying DC.T.4.

Car Level Position
Door Closed
Door Motor
Emergency Brake
Hoistway Limit
Car Weight

DC.T.6 Potential safety violation.
Same as forcing DC.T.3.

Potential denial of service.
Same as denying DC.T.3.

At Floor
Desired Floor
Door Closed
Door Motor
Emergency Brake
Hoistway Limit
Car Weight

DC.T.7 Potential denial of service.
Same as forcing DC.T.2.

Potential safety violation
Same as denying DC.T.2.

At Floor
Desired Floor
Door Closed
Door Motor
Emergency Brake
Hoistway Limit
Car Weight

DC.T.8 No effect.
Same as forcing DC.T.1.

Potential safety violation.
Same as denying DC.T.1.

Car Level Position
Door Closed
Door Motor
Emergency Brake
Hoistway Limit
Car Weight

Evaluation - Simulated elevator control network 138

 Forcing transitions DC.T.3 and DC.T.6 could trigger potential safety violations. Both of these

initiate drive motor acceleration, causing a discrete change in elevator behavior (stopped to mov-

ing). Both of these could violate requirements R-S1, R-S4, R-S5, and R-T2. Using time-triggered

authentication, we designate the associated messages as state-changing messages. The drive con-

troller will retain an explicit history buffer for the associated message types for use with these

two transitions. There is no maximum number of samples for explicit history buffers; increasing

the size of these buffers simply delays the corresponding state transitions.

 Denying transitions DC.T.1, DC.T.2, DC.T.7, and DC.T.8 could also cause the system to vi-

olate requirements R-S1, R-S4, R-S5, and R-T2. Using time-triggered authentication, we authen-

ticate the message types associated with these state transitions as reactive control messages. The

drive controller will not keep an explicity history buffer. Instead, we rely on the implicit history

buffer that exists for these messages. An attacker must successfully forge multiple samples of a

message to actually violate one of the requirements. For example, if attempting to cause the car

to exceed the hoistway limits of the elevator shaft, an attacker could forge messages to force the

car to travel an extra meter beyond the top or bottom floor. An attacker could either forge the Car

Level Position message to force the car to travel at fast speed for an extra second (due to extra

slack time built into the design for stopping). Alternately, they could forge the At Floor message

to force it to travel an extra four seconds at slow speed. The sensors broadcasts the Car Level

Position and At Floor messages every fifty milliseconds. This creates a maximum implicit histo-

ry buffer size of twenty samples for the Car Level Position message and eighty samples for At

Floor for their respective transitions. The other messages associated with these state transitions

do not have defined maximum delays before slowing or stopping the elevator car. For example,

while the emergency brake is engaged, there is no requirement defined for the simulation for

Evaluation - Simulated elevator control network 139

maximum time before the drive shuts off. For simplicity, we use the same maximum history buf-

fer size as for Car Level Position.

 Transitions DoC.T.2, DoC.T.3, DoC.T.6, or DoC.T.7 could be forced or denied to perform a

stealthy denial of service attack, stopping the doors from performing their normal function. Any

of these could be exploited to violate requirement R-T1, however there is no time bounds for de-

tecting denial of service attacks.

Implementation notes for time-triggered authentication in door controllers - For the drive

controller, we implemented explicit history buffers for verifying the authenticity of the At Floor,

Desired Floor, Door Closed, Door Motor Command, Emergency Brake, Hoistway Limit, and Car

Weight message types for use as with transitions DC.T.3 and DC.T.6. The elevator dynamics

provide implicit history buffers for the At Floor, Car Level Position, Desired Floor Door Closed

Door Motor Command, Emergency Brake, Hoistway Limit, and Car Weight message types for

use with transitions DC.T.1, DC.T.2, DC.T.7, and DC.T.8. Lastly, we also authenticate these

message types for the purpose of monitoring for forgery attempts intended to deny elevator oper-

ations.

 If the drive controller detects forgery attempts (invalid authenticators) on messages attempting

to force state transitions DC.T.3 or DC.T.6, the drive controller resets their history buffers and

aborts the state change. For DC.T.1, DC.T.2, DC.T.7, and DC.T.8, if it detects forgery attempts

on its associated message types, it slows or stops the drive accordingly to avoid a safety viola-

tion. In an implementation in a real system, the system designer can take whatever action is ap-

propriate and safe if such a malicious fault is detected.

Evaluation - Simulated elevator control network 140

6.4.3 Safety monitor

In the simulation, the safety monitor is an omnipotent node that is able to access all system state

variables. It does not have an internal state machine; it only monitors signals and messages and

outputs a signal to inform the network if the emergency brake has been engaged.

 The safety monitor in the simulation was originally created as a debugging mechanism to as-

sist students in identifying safety violations. The safety monitor engages the emergency brake

instantly if it detects a violation based on system state variables. The simulation represents the

engagement of the emergency brake by throwing an exception which causes the simulation to

halt with a description of the violation outputted to the screen. There is no maximum delay de-

fined for engaging the emergency brake.

Implementation notes for time-triggered authentication in the safety monitor - In our im-

plementation, the safety monitor verifies the authenticity of all message types it monitors: At

Floor, Car Weight, Door Closed, Door Motor Command, Door Reversal, Drive Control, and

Hoistway Limit. We do not implement any explicit history buffers. If the safety monitor detects

an invalid authenticator, the simulation currently only logs the invalid authenticator and prints it

to standard output. In a real system, such a safety monitor might trigger the emergency brake if

too many invalid authenticators are observed. However, in the simulation, we do not trigger the

emergency brake since it would cause the simulation to throw an exception and halt.

6.4.4 Dispatcher

The dispatcher is responsible for deciding what floor to go to and informing the rest of the net-

work. Forging messages to this node can only cause a denial of service. The dispatcher consumes

At Floor, Car Weight, Door Closed, Door Open, and Car Position messages. For brevity, we

Evaluation - Simulated elevator control network 141

omit a detailed analysis. However, forgery of any of these messages could prevent elevator op-

eration; forgeries cannot induce a failure to violate safety requirements.

Implementation notes for time-triggered authentication in the dispatcher - In our implemen-

tation, the dispatcher verifies the authenticity of the At Floor, Car Weight, Door Closed, Door

Open, and Car Position message types to monitor for forgeries intended to stop elevator opera-

tions. If the dispatcher detects invalid authenticators, the simulation currently logs the invalid

authenticator and prints the detection to standard output. The dispatcher does not use any explicit

history buffers.

 The dispatcher also consumes the Hall Call and Car Call message types. However, the dis-

patcher does not authenticate these messages. The dispatcher design tolerates failed hall call and

car call buttons. After a predefined time limit, the dispatcher will travel to a floor that it has not

received a call for to ensure that no passengers have been waiting at that floor. Forging Hall Call

and Car Call messages could reduce elevator performance by forcing the elevator to visit all

floors in an operating scenario where there are few passengers. However, the performance is no

different than the worst case operating scenario where high volumes of passengers are constantly

arriving at and traveling to all floors.

6.4.5 Car position indicator

The car position indicator displays the floor the elevator car is currently at to the passengers.

This indicator must display the correct floor so that passengers will exit the car at the correct

floor. Forging messages to this node can only cause a denial of service. The car position indica-

tor consumes Drive Command, At Floor, Desired Floor, and Car Level Position messages. For

Evaluation - Simulated elevator control network 142

brevity, we omit a detailed analysis. However, forgery of any of these messages could prevent

elevator operation.

Implementation notes for time-triggered authentication in the car position indicator - In our

implementation, the car position indicator verifies the authenticity of the At Floor, Car Level Po-

sition, Drive Command, and Desired Floor message types to monitor for forgeries intended to

stop elevator operations. The car position indicator does not implement any explicit history buf-

fers.

6.4.6 Messages to authenticate and receivers

Table 6.6 defines the set of messages to be authenticated from the source node to receiver nodes

within the elevator network. Based on our analysis in Sections 6.4.1 through 6.4.5, we authenti-

cate any message which could be forged to violate any of our safety or high level requirements.

Evaluation - Simulated elevator control network 143

Table 6.6. Messages to be authenticated in the elevator, senders, and receivers.
Message Sender Receivers

Door
Contr.
(F/L)

Door
Contr.
(F/R)

Door
Contr.
(B/L)

Door
Contr.
(B/R)

Drive
Contr.

Safety
Monitor

Dispatcher Car Po-
sition

Indicator
Door
Motor
Command

Door Con-
trollers

X X X X X X

Door
Reversal

Door Re-
versal

Sensors

X X X X X

Drive
Command

Drive
Controller

X X X X X X

At Floor At Floor
Sensors

X X X X X X X X

Car
Weight

Car
Weight
Sensor

X X X X X X X

Desired
Floor

Dispatcher X X X X X X

Door
Closed

Door
Closed
Sensors

X X X X X X X

Door
Open

Door Open
Sensors

X X X X X

E-Brake Safety
Monitor

 X

Hoistway Hoistway
Limit Sen-

sors

 X X

Car Level
Position

Car Level
Position
Sensor

 X X

Car
Position

Car Posi-
tion Indi-

cator

 X X

 We implemented time-triggered authentication for each message in Table 6.6 for each receiv-

er within the elevator simulation as described in the implementation notes for each controller in

Sections 6.4.1 through 6.4.5. No receivers verify the authenticity of the Hall Call and Car Call

message types from the button controllers. Forgeries against these message types can be ad-

dressed as described in Section 6.4.4.

Evaluation - Simulated elevator control network 144

6.5 Implementation of time-triggered authentication

This section briefly discusses pertinent implementation details related to each multicast authenti-

cation technique (one MAC per receiver, validity voting, TESLA, and master-slave) for use with

time-triggered authentication.

6.5.1 Selecting time-triggered authentication parameters

We chose parameters for time-triggered authentication such that attacks should successfully in-

duce failures no more often than a rate of 10-9 failures per hour. Equation (1) in Chapter 3 gives

an upper bound on the probability during each message round of having successfully forged the

n most recent consecutive message samples in a history buffer, each with probability 2-b. We use

this equation to define the number of samples and required per-packet assurance. First, we use

this probability of successful attack per message round as an expected rate of attack success per

message round. For message types broadcast at ten millisecond periods, our desired failure rate

becomes approximately 2.777×10-15 failures per message period. We then use Equation (1) and

select for appropriate values of n samples in the history buffer and b bits per MAC tag for each

technique, such that the result is less than our desired failure rate. For simplicity, we use the

same failure rate for messages with fifty millisecond periods as well. Achieving the same failure

rate for fifty millisecond messages requires approximately the same values for n and b.

 From our analysis in sections 6.4.1 through 6.4.5, our maximum history buffer size is twenty

samples for Car Level Position and Door Reversal message types. Other message types with less

stringent timing requirements can be verified over more samples if desired, though we use twen-

ty as the largest history buffer size we implemented for all message types. This conforms to our

assumption that message types are sampled sufficiently quickly to allow us to verify messages

Evaluation - Simulated elevator control network 145

over multiple message samples. For discrete state transitions, such as opening doors or engaging

the drive motor, this will create a delay of no more than one second. When authenticating over

twenty message samples in a history buffer, the required per-packet assurance is 2-3 to achieve

our desired failure rate (n = 20, b = 3).

 To define the minimum number of samples to verify messages over, we used OMPR to de-

termine the largest authenticators that could be placed within one packet along with the data val-

ues using the CAN communication protocol. Table 6.7 shows the number of data bits already

used and the number of remaining bits if the packet size were increased to the full eight bytes.

For simplicity, we treat each message and receiver with equal criticality. However, a system de-

signer has the option of devoting more of the available payload bits to authenticating messages

related to safety critical functionality over those that are only related to performance characteris-

tics of the system. For our maximum per-packet assurance, we use the maximum tag size defined

by the At Floor message type. With a per-packet assurance of 2-7, we must verify messages over

at least seven message samples in a history buffer (n = 7, b = 7).

Table 6.7. Identifying largest tag size among all message types for OMPR. Highlighted table cells
show largest tag size we use in the system.

Message Type Receivers to be
authenticated to

Data bits
in payload

Available bits
in payload

Maximum
bits per tag

Number of
samples to
verify over

Door Motor
Command

6 2 62 10 5

Door Reversal 5 1 63 12 5
Drive Command 5 16 48 8 7
At Floor 6 1 63 7 7
Car Weight 6 8 56 8 7
Desired Floor 5 16 48 8 7
Door Closed 6 1 63 9 6
Door Open 4 1 63 12 5
E-Brake 1 1 63 63 1
Hoistway 2 1 63 31 2
Car Level
Position

1 32 32 32 2

Car Position 1 8 56 28 2

Evaluation - Simulated elevator control network 146

 We implemented each of the four multicast authentication techniques using three sets of pa-

rameters for time-triggered authentication (n = 7, b = 7), (n = 10, b = 5), and (n = 20, b = 3). For

simplicity, we used the same per-packet assurance for all message types. Thus, we also used the

same history buffer size for all message types.

 While this section will primarily focus on the trade-off among per-packet assurance and num-

ber of samples to verify over, time-triggered authentication also allows significant customization

of these parameters on a per-receiver, per-message type, and per-state transition basis. Using the

same per-packet assurance for each message type simplifies implementation significantly, but

may not provide optimal performance for a system. For example, suppose two nodes broadcast at

different sampling rates; one transmits every ten milliseconds, and the other at every twenty mil-

liseconds. If a receiver consumes both of those message types for a state transition, the system

designer can verify the faster message over more samples (e.g., ten samples of the ten millise-

cond message would arrive in the same time it takes to receive five samples of the twenty milli-

second message type). This would allow them to use smaller authenticators for the ten millise-

cond period message to save bandwidth. An in-depth analysis of these customizations within the

elevator system is beyond the scope of this work.

6.5.2 One MAC per receiver

For OMPR, each sender computers a MAC tag for each receiver using a corresponding symme-

tric secret key. We used the Java Cryptography Extension library to define key material and

MAC functions within the simulation. We used the Mac class to use the HMAC algorithm for

computing all MAC tags. Specifically, we used HMAC in conjunction with the MD5 algorithm.

At startup, the underlying network simulation framework creates and assigns symmetric keys to

Evaluation - Simulated elevator control network 147

nodes and MAC functions defined by each key. Our implementation does not perform key estab-

lishment or time synchronization. We assume these are already in place at simulation start time.

 At the beginning of each control loop execution, receiving nodes verify message authenticity

and record message values and their validity within history buffers. Since all authenticators are

placed within the same packet as the message value, receivers immediately verify and store the

verification results. Nodes also record whether the value suffered a transmission error. If a mes-

sage is lost, the receiver does not update the contents of their history buffer for that message

type.

 Once new output values have been determined, nodes compute MAC tags at the end of their

control loop execution. A transmitting node calls the MAC function defined by the key corres-

ponding to each receiver of a message. The sender's inputs to the function include the data values

within the payload and current simulation time. All tags fit within a single data payload for all

message types. The simulation then inserts the MAC tags into the predefined locations within the

payload. Execution of these functions within the simulation is "instantaneous" because

processing time for nodes is not modeled within the simulation.

 For a message type with a period of T milliseconds, the network simulation propagates a new

sample of that message type on the network after every T milliseconds pass. Since we assume a

fixed transmission schedule for messages, each node should always have the most up to date

message value every T milliseconds, unless a controller executes at the same time the new sam-

ple is broadcast. Without coordinating control loop executions and message broadcasts, for a

controller executing every T milliseconds, the worst case delivery time to receivers in the simula-

tion is 2T after that node executes its control loop (e.g., control loops execute and just miss

transmissions occurring at the same time). However, since we assume a static message schedule,

Evaluation - Simulated elevator control network 148

we scheduled message broadcasts to occur between control loop executions (this also assumes

control loop executions and message periods do not drift out of synch). Thus, receivers have the

latest message value after T milliseconds. A receiving node is able to verify and act on n message

samples and the corresponding votes after nT milliseconds from the time the transmitter sends

the first.

6.5.3 Validity voting

For validity voting, we first examined what message types could carry votes on others. The main

limitation in validity voting is that only receivers that share authentication channels with a sender

(i.e., the sender computes MAC tags to those receivers) can vote on messages from that sender to

one another. Further, for one of those receivers to attest to the validity of a message from that

sender, it must also share an authentication channel with the other receiver it attests to.

 We only use existing authentication channels for validity voting, as listed in Table 6.6. We do

not add new authenticators to any message types to other receivers that are not already listed in

Table 6.6. For several message types, adding new MAC tags to a packet would exceed the

payload size for the parameters we selected.

 While we were limited in the number of votes that could be added in this network, we were

able to implement validity voting using one, two, and three votes. Nodes only attest to messages

consumed by the door controllers and drive controller. Nodes vote on the message types as de-

scribed in Table 6.8 and Table 6.9. Table 6.8 lists each transmitting node, that node's message

type, the number of voting bits added (one for each message type it votes on), and the message

types it votes upon. Table 6.9 shows how many votes each node receives for each message type.

Numbers in brackets indicate messages from multiple nodes that broadcast the same time.

Evaluation - Simulated elevator control network 149

Table 6.8. Message types voted upon in validity voting

Sender Sender's message type Voting bits Message types voted upon

Door Controllers Door Motor Command 5 Drive Speed, Door Reversal [4]

Drive Controller Drive Command 0 None

Car Position Indicator Car Position 1 Car Level Position

Safety Monitor Emergency Brake 7 Door Closed [4], Car Weight, Hoistway Limit [2]

Dispatcher Desired Floor 5 Door Closed [4], Car Weight

Table 6.9. Number of votes received for each message type by each node

Receiver Message type Votes received

for message type

Nodes votes are received from

Door Controllers Door Reversal [4] 3 Three other Door Controllers

Drive Speed 3 Three other Door Controllers

Car Weight 1 Dispatcher

Door Closed [4] 1 Dispatcher

Drive Car Level Position 1 Car Position Indicator

Hoistway Limit [2] 1 Safety Monitor

Car Weight 2 Safety Monitor, Dispatcher

Door Closed [4] 2 Safety Monitor, Dispatcher

 Message broadcast periods also limited the number of votes we could implement in the eleva-

tor. Messages only carry votes for other message types with the same broadcast period. For ex-

ample, the Door Motor Command message type only votes on other message types that are

broadcast at ten millisecond periods. Similarly, the Car Position, Emergency Brake, and Desired

Floor messages carry votes for other message types with fifty millisecond periods.

 In our implementation, we again have nodes compute MAC tags at the end of their control

loops using the same key material and MAC functions defined for one MAC per receiver. We

modified the inputs to the functions to include the most current message value for the message

Evaluation - Simulated elevator control network 150

types being voted upon, along with a bit vector indicating which message values were valid or

invalid. For invalid and lost message values, the transmitter uses predefined error codes as inputs

for message values, as described in Chapter 4.

 For messages that are voted upon, receivers can verify the validity of a value in a packet, but

must wait for the confirmations carried in other message types before using the value being

voted upon. This creates an extra message period delay before a receiver can use the message

value being voted upon. As with one MAC per receiver (not coordinating message transmissions

and control loop executions), for a controller executing every T milliseconds, the worst case de-

livery time to receivers (including voters) in the simulation is 2T after that node executes its con-

trol loop. Voting nodes (which also execute every T milliseconds) then include their votes in

their own messages after their next control loop execution, which the network simulation propa-

gates to receivers every T milliseconds. Again, the worst case delay to receive votes is 2T milli-

seconds. Nodes receive a message sample and all votes in the simulation after no more than 4T

milliseconds, regardless of the number of votes. In our implementation, we scheduled node

transmissions to occur just after control loop executions completed. Thus the delay for receiving

each transmission was only T milliseconds. A node in our implementation is able to verify and

act on n message samples and the corresponding votes after (n + 1)T milliseconds from the time

the transmitter sends the first.

6.5.4 TESLA

For TESLA, nodes must also transmit a key in addition to a message value and its MAC tag. In

our implementation, we transmit an eighty bit key for each sample of a message type. We trans-

mit the key corresponding to each message sample in the subsequent message round. Since we

are limited to sixty-four bit data payloads in CAN, we used two data payloads to transmit the

Evaluation - Simulated elevator control network 151

message value, MAC tag, and key for the previous sample. In our implementation, the first payl-

oad includes the value, MAC tag, and the first portion of the key for the previous message round.

The second data payload contains the remainder of that key. Our implementation omits the key

establishment and time synchronization procedures required for TESLA.

 We used a simplified abstraction of key chains in our implementation. We assume that key

generation and storage algorithms of TESLA are correct and secure. A full implementation of

TESLA would require each transmitting node to iterate a hash function to generate a sequence of

keys along with an appropriate storage algorithm. Based on time constraints for development and

debugging, we did not implement the key chain generation and storage. Instead, our "key chain"

in the simulation is a series of incrementing eighty-bit integers whose values correspond to the

message round number (i.e., 0, 1, 2, 3, ...). While such a simplified implementation would not be

secure in a real system, our attacker model does not attack key material for any schemes. Imple-

mentations of TESLA in a real-world safety-critical system should implement the correct algo-

rithm for key chain generation, as published [Perrig00].

 At the beginning of control loop executions, nodes store new message values and tags that are

received. If the node receives the key for the prior message round, it will verify the authenticity

of that message value. The node then stores the value and its validity in corresponding history

buffers. Receivers also store the most recently received key. If a receiver stores an explicit histo-

ry buffer for state-changing message types, it will attempt to recover values for which it received

the message value and tag, but not the subsequent key. In TESLA, once a node receives a key, it

can always compute prior keys that might have been lost to transmission errors. Thus, a node can

verify any prior message value for which the corresponding key was initially lost. The receiver

records these recovered values in history buffers for state-changing messages as per normal. For

Evaluation - Simulated elevator control network 152

reactive control message types, receivers do not attempt to recover old values, since only the

most recent value is used to update controller outputs.

 Similarly to validity voting, TESLA creates a one message round delay before receivers ob-

tain both a value and its key. After coordinating controller executions and message transmission

schedules in our implementation, a node is able to verify and act on n message samples after (n +

1)T milliseconds from the time the transmitter sends the first.

6.5.5 Master-slave

For master-slave, we added a trusted master node to the network. Each transmitting node authen-

ticates its message to the master node. This master node verifies the authenticity of each message

broadcast on the network. It then transmits a single bit message along with a hash tree broadcast

authenticator (as described in Chapter 5) indicating if all messages observed in the previous

round were valid or any were invalid. In our implementation, the master node executes and

transmits this broadcast authenticator every ten milliseconds to allow receivers to verify all mes-

sages.

 The most challenging aspect of implementing master-slave in the elevator network was coor-

dinating verification of messages that were broadcast at two different rates (ten and fifty millise-

cond periods) using a single master node. Slave nodes that execute control loops at ten millise-

cond intervals (fast slave nodes) can easily participate and verify messages. However, nodes ex-

ecuting at fifty millisecond intervals (slow slave nodes) posed several challenges:

• During four of five ten-millisecond periods, the master node only attested to messages being

broadcast every ten milliseconds. However, every fifth ten-millisecond period, the master at-

tested to message types broadcast at both the ten-millisecond and fifty-millisecond.

Evaluation - Simulated elevator control network 153

• Slave nodes could only exchange messages to verify the broadcast authenticator at the rate at

which they executed their control loops. Thus, for four of five ten-millisecond periods, the

master node would only compute MAC tags for receivers executing every ten-milliseconds

and hashed those together. On the fifth ten-millisecond period, the master computed MAC

tags for both fast and slow receivers.

• Slower receivers do not necessarily obtain every sample of message types broadcast faster

than their control loop periods. The network simulation framework creates a mailbox for

each CAN message type each node receives. This mailbox only records the most recent sam-

ple of each message type. Thus, slower receivers might attempt to verify a master's hash tree

broadcast authenticator using out-of-date message values.

 We resolved the first two challenges by storing a predefined table indicating when samples of

a message type was expected to be transmitted on the network. This allowed each node to verify

the master's hash tree broadcast authenticator over the correct set of values. Every fifth ten-

millisecond period, faster slave nodes would verify values from the slower slave nodes as well.

 For the third challenge, we altered the slower receivers control loop periods. Every ten milli-

seconds, the slower slave nodes would execute and store a copy of the message types broadcast

at this faster interval. Then, every fifty milliseconds, these nodes would execute their full control

loop.

 Another option to address these concerns would have been to use multiple messages from the

master node to authenticate messages to groups of receivers executing at different rates. One

message type could have been transmitted every ten milliseconds for the ten millisecond nodes,

and the second message type could have been transmitted every fifty milliseconds for the fifty

millisecond nodes.

Evaluation - Simulated elevator control network 154

 Using master-slave creates a one message round delay before receivers obtain both a value

and its subsequent confirmation. After coordinating controller executions and message transmis-

sion schedules in our implementation, a node is able to verify and act on n message samples after

(n + 1)T milliseconds from the time the transmitter sends the first.

6.6 Analysis

6.6.1 Bandwidth comparison

We first compared bandwidth consumption for each technique. Table 6.10 shows the bandwidth

consumption of the messages transmitted within for the elevator network without authentication.

We computed all packet sizes using the worst case CAN message size equation provided in the

analysis of worst case CAN message delays performed by Ellims et al. [Ellims02].

Table 6.10. Baseline elevator bandwidth required with no authentication
Message Type Period

(msec)
Payload
(bytes)

Packet size
(bits)

Per-packet
bandwidth
(bits/sec)

Replication Message type
bandwidth
(bits/sec)

Door Motor 10 1 90 9000 4 36000
Door Reversal 10 1 90 9000 4 36000
Drive Speed 10 2 100 10000 1 10000
AtFloor 50 1 90 1800 10 18000
Car Weight 50 1 90 1800 1 1800
Desired Floor 50 2 100 2000 1 2000
Door Closed 50 1 90 1800 4 7200
Door Open 50 1 90 1800 4 7200
EBrake 50 1 90 1800 1 1800
Hoistway 50 1 90 1800 2 3600
Car Level Position 50 4 120 2400 1 2400
Car Position 50 1 90 1800 1 1800
Hall Call 100 1 90 900 17 15300
Car Call 100 1 90 900 10 9000

Total Bandwidth (bits/sec) 152100

We then computed the additional bandwidth consumed when applying each of the four multicast

authentication techniques. We computed the required bandwidth for the three sets of time-

triggered authentication parameters we defined in Section 6.5.1:

Evaluation - Simulated elevator control network 155

1. Per-packet assurance = 2-7, number of samples = 7.

2. Per-packet assurance = 2-5, number of samples = 10.

3. Per-packet assurance = 2-3, number of samples = 20.

Evaluation - Simulated elevator control network 156

One MAC per Receiver - We assigned MAC tags of equal size to each receiver for each mes-

sage type. Tables 6.11, 6.12, and 6.13 shows the required bandwidth for each parameter set.

Payload bytes include both the data values and authentication.

Table 6.11. OMPR history buffer size, required per-packet assurance, and MAC tag size.

History buffer size
(samples)

Required per-packet
assurance

MAC tag size (bits)

7 2-7 7
10 2-5 5
20 2-3 3

Table 6.12. OMPR required bandwidth (Per-packet assurance = 2-7, number of samples = 7)

Message
Type

Period
(msec)

Total authen-
tication bits

Payload
(bytes)

Packet
size

(bits)

Per-packet
bandwidth
(bits/sec)

Replication Message type
bandwidth
(bits/sec)

Door Motor 10 42 6 140 14000 4 56000
Door
Reversal 10 35 5 130 13000 4 52000
Drive Speed 10 42 8 160 16000 1 16000
AtFloor 50 56 8 160 3200 10 32000
Car Weight 50 49 8 160 3200 1 3200
Desired Floor 50 42 8 160 3200 1 3200
Door Closed 50 49 7 150 3000 4 12000
Door Open 50 35 5 130 2600 4 10400
EBrake 50 7 1 90 1800 1 1800
Hoistway 50 14 2 100 2000 2 4000
Car Level
Position 50 14 6 140 2800 1 2800
Car Position 50 14 3 110 2200 1 2200
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000

Total Bandwidth (bits/sec) 219900
Authentication Bandwidth (bits/sec) 20800

Evaluation - Simulated elevator control network 157

Table 6.13. OMPR required bandwidth (Per-packet assurance = 2-5, number of samples = 10)

Message
Type

Period
(msec)

Total authen-
tication bits

Payload
(bytes)

Packet
size

(bits)

Per-packet
bandwidth
(bits/sec)

Replication Message type
bandwidth
(bits/sec)

Door Motor 10 30 4 120 12000 4 48000
Door Rever-
sal 10 25 4 120 12000 4 48000
Drive Speed 10 30 6 140 14000 1 14000
AtFloor 50 40 6 140 2800 10 28000
Car Weight 50 35 6 140 2800 1 2800
Desired Floor 50 30 6 140 2800 1 2800
Door Closed 50 35 5 130 2600 4 10400
Door Open 50 25 4 120 2400 4 9600
EBrake 50 5 1 90 1800 1 1800
Hoistway 50 10 2 100 2000 2 4000
Car Level
Position 50 10 6 140 2800 1 2800
Car Position 50 10 3 110 2200 1 2200
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000

Total Bandwidth (bits/sec) 198700
Authentication Bandwidth (bits/sec) 15800

Table 6.14. OMPR required bandwidth (Per-packet assurance = 2-3, number of samples = 20)

Message
Type

Period
(msec)

Total authen-
tication bits

Payload
(bytes)

Packet
size

(bits)

Per-packet
bandwidth
(bits/sec)

Replication Message type
bandwidth
(bits/sec)

Door Motor 10 18 3 110 11000 4 44000
Door Rever-
sal 10 15 2 100 10000 4 40000
Drive Speed 10 18 5 130 13000 1 13000
AtFloor 50 24 4 120 2400 10 24000
Car Weight 50 21 4 120 2400 1 2400
Desired Floor 50 18 5 130 2600 1 2600
Door Closed 50 21 3 110 2200 4 8800
Door Open 50 15 2 100 2000 4 8000
EBrake 50 3 1 90 1800 1 1800
Hoistway 50 6 1 90 1800 2 3600
Car Level
Position 50 6 5 130 2600 1 2600
Car Position 50 6 2 100 2000 1 2000
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000

Total Bandwidth (bits/sec) 177100
Authentication Bandwidth (bits/sec) 10800

Evaluation - Simulated elevator control network 158

Validity voting (VV)- For this technique, we reduced the size of authenticators based on the

number of votes for each message type. Voting bits were added as discussed in Section 6.5.3.

Table 6.15 shows tag sizes for each history buffer size for each level of voting. In some cases,

adding extra votes did not reduce MAC tag size. We included these votes in our implementation

to examine the effects of additional votes in the experimental analysis (Section 6.6.2-4). Tables

6.16, 6.17, and 6.18 shows the required bandwidth for each parameter set. Payload bytes include

both the data values and authentication.

Table 6.15. VV history buffer size, required per-packet assurance, and MAC tag size.
History buffer size

(samples)
Required per-

packet
assurance

MAC tag size
w/ zero votes

(bits)

MAC tag size
w/ one vote

(bits)

MAC tag size
w/ two votes

(bits)

MAC tag size
w/ three votes

(bits)
7 2-7 7 4 3 3
10 2-5 5 3 3 2
20 2-3 3 2 2 2

Table 6.16. VV required bandwidth (Per-packet assurance = 2-7, number of samples = 7)
Message

Type
Period
(msec)

Total authen-
tication bits

Payload
(bytes)

Packet
size

(bits)

Per-packet
bandwidth
(bits/sec)

Replication Message type
bandwidth
(bits/sec)

Door Motor 10 47 7 150 15000 4 60000
Door Rever-
sal 10 19 3 110 11000 4 44000
Drive Speed 10 26 6 140 14000 1 14000
AtFloor 50 56 8 160 3200 10 32000
Car Weight 50 33 6 140 2800 1 2800
Desired Floor 50 47 8 160 3200 1 3200
Door Closed 50 33 5 130 2600 4 10400
Door Open 50 35 5 130 2600 4 10400
EBrake 50 14 2 100 2000 1 2000
Hoistway 50 11 2 100 2000 2 4000
Car Level
Position 50 11 6 140 2800 1 2800
Car Position 50 15 3 110 2200 1 2200
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000

Total Bandwidth (bits/sec) 212100
Authentication Bandwidth (bits/sec) 14300

Evaluation - Simulated elevator control network 159

Table 6.17. VV required bandwidth (Per-packet assurance = 2-5, number of samples = 10)
Message

Type
Period
(msec)

Total authen-
tication bits

Payload
(bytes)

Packet
size

(bits)

Per-packet
bandwidth
(bits/sec)

Replication Message type
bandwidth
(bits/sec)

Door Motor 10 35 5 130 13000 4 52000
Door Rever-
sal 10 13 2 100 10000 4 40000
Drive Speed 10 18 5 130 13000 1 13000
AtFloor 50 40 6 140 2800 10 28000
Car Weight 50 25 5 130 2600 1 2600
Desired Floor 50 35 7 150 3000 1 3000
Door Closed 50 25 4 120 2400 4 9600
Door Open 50 25 4 120 2400 4 9600
EBrake 50 12 2 100 2000 1 2000
Hoistway 50 8 2 100 2000 2 4000
Car Level
Position 50 8 5 130 2600 1 2600
Car Position 50 11 3 110 2200 1 2200
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000

Total Bandwidth (bits/sec) 192900
Authentication Bandwidth (bits/sec) 10380

Table 6.18. VV required bandwidth (Per-packet assurance = 2-3, number of samples = 20)
Message

Type
Period
(msec)

Total authen-
tication bits

Payload
(bytes)

Packet
size

(bits)

Per-packet
bandwidth
(bits/sec)

Replication Message type
bandwidth
(bits/sec)

Door Motor 10 18 3 110 11000 4 44000
Door Rever-
sal 10 11 2 100 10000 4 40000
Drive Speed 10 14 4 120 12000 1 12000
AtFloor 50 24 4 120 2400 10 24000
Car Weight 50 16 3 110 2200 1 2200
Desired Floor 50 18 5 130 2600 1 2600
Door Closed 50 16 3 110 2200 4 8800
Door Open 50 15 2 100 2000 4 8000
EBrake 50 3 1 90 1800 1 1800
Hoistway 50 5 1 90 1800 2 3600
Car Level
Position 50 5 5 130 2600 1 2600
Car Position 50 6 2 100 2000 1 2000
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000

Total Bandwidth (bits/sec) 175900
Authentication Bandwidth (bits/sec) 6460

Evaluation - Simulated elevator control network 160

TESLA - This scheme required us to add an additional message type to transmit keys for the

message types being authenticated. All keys were eighty bits in size. Each sample required only

a single MAC tag (Table 6.19 shows tag and key sizes). All messages except Hall Call and Car

Call message types require two packets. Tables 6.20, 6.21, and 6.22 shows the required band-

width for each parameter set. Payload bytes include both the data values, key, and authentication.

Table 6.19. TESLA history buffer size, required per-packet assurance, and MAC tag size.
History buffer size

(samples)
Required per-packet

assurance
MAC tag size (bits) Key size (bits)

7 2-7 7 80
10 2-5 5 80
20 2-3 3 80

Table 6.20. TESLA required bandwidth (Per-packet assurance = 2-7, number of samples = 7)
Message

Type
Period
(msec)

Total authen-
tication bits

Payload
(bytes)

Sample
size

(bits)

Per-sample
bandwidth
(bits/sec)

Replication Message type
bandwidth
(bits/sec)

Door Motor 10 87 12 280 28000 4 112000
Door Rever-
sal 10 87 11 270 27000 4 108000
Drive Speed 10 87 13 290 29000 1 29000
AtFloor 50 87 11 270 5400 10 54000
Car Weight 50 87 12 280 5600 1 5600
Desired Floor 50 87 13 290 5800 1 5800
Door Closed 50 87 11 270 5400 4 21600
Door Open 50 87 11 270 5400 4 21600
EBrake 50 87 11 270 5400 1 5400
Hoistway 50 87 11 270 5400 2 10800
Car Level
Position 50 87 15 310 6200 1 6200
Car Position 50 87 12 280 5600 1 5600
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000

Total Bandwidth (bits/sec) 409900
Authentication Bandwidth (bits/sec) 41760

Evaluation - Simulated elevator control network 161

Table 6.21. TESLA required bandwidth (Per-packet assurance = 2-5, number of samples = 10)
Message

Type
Period
(msec)

Total authen-
tication bits

Payload
(bytes)

Sample
size

(bits)

Per-sample
bandwidth
(bits/sec)

Replication Message type
bandwidth
(bits/sec)

Door Motor 10 85 11 270 27000 4 108000
Door Rever-
sal 10 85 11 270 27000 4 108000
Drive Speed 10 85 13 290 29000 1 29000
AtFloor 50 85 11 270 5400 10 54000
Car Weight 50 85 12 280 5600 1 5600
Desired Floor 50 85 13 290 5800 1 5800
Door Closed 50 85 11 270 5400 4 21600
Door Open 50 85 11 270 5400 4 21600
EBrake 50 85 11 270 5400 1 5400
Hoistway 50 85 11 270 5400 2 10800
Car Level
Position 50 85 15 310 6200 1 6200
Car Position 50 85 12 280 5600 1 5600
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000

Total Bandwidth (bits/sec) 405900
Authentication Bandwidth (bits/sec) 40800

Table 6.22. TESLA required bandwidth (Per-packet assurance = 2-3, number of samples = 20)
Message

Type
Period
(msec)

Total authen-
tication bits

Payload
(bytes)

Sample
size

(bits)

Per-sample
bandwidth
(bits/sec)

Replication Message type
bandwidth
(bits/sec)

Door Motor 10 83 11 270 27000 4 108000
Door Rever-
sal 10 83 11 270 27000 4 108000
Drive Speed 10 83 13 290 29000 1 29000
AtFloor 50 83 11 270 5400 10 54000
Car Weight 50 83 12 280 5600 1 5600
Desired Floor 50 83 13 290 5800 1 5800
Door Closed 50 83 11 270 5400 4 21600
Door Open 50 83 11 270 5400 4 21600
EBrake 50 83 11 270 5400 1 5400
Hoistway 50 83 11 270 5400 2 10800
Car Level
Position 50 83 15 310 6200 1 6200
Car Position 50 83 12 280 5600 1 5600
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000

Total Bandwidth (bits/sec) 405900
Authentication Bandwidth (bits/sec) 39840

Evaluation - Simulated elevator control network 162

Master-Slave (MS)- Master-slave required a single additional message type to be added for

transmissions from the master node. Each message type required one or two MAC tags. Message

types transmitted by the master or sensors required only a single tag. Tag size is one bit higher

than used for OMPR (Table 6.23). Messages from controllers that must verify the master's

broadcast authenticator must transmit two. Tables 6.24, 6.25, and 6.26 shows the required band-

width for each parameter set. Payload bytes include both the data values and authentication.

Table 6.23. MS history buffer size, required per-packet assurance, and MAC tag size.
History buffer size

(samples)
Required per-packet

assurance
MAC tag size (bits)

7 2-7 8
10 2-5 6
20 2-3 4

Table 6.24. MS required bandwidth (Per-packet assurance = 2-7, number of samples = 7)
Message

Type
Period
(msec)

Total authen-
tication bits

Payload
(bytes)

Packet
size

(bits)

Per-sample
bandwidth
(bits/sec)

Replication Message type
bandwidth
(bits/sec)

Master 10 8 2 100 10000 1 10000
Door Motor 10 16 3 110 11000 4 44000
Door Rever-
sal 10 8 2 100 10000 4 40000
Drive Speed 10 16 4 120 12000 1 12000
AtFloor 50 8 2 100 2000 10 20000
Car Weight 50 8 2 100 2000 1 2000
Desired Floor 50 16 4 120 2400 1 2400
Door Closed 50 8 2 100 2000 4 8000
Door Open 50 8 2 100 2000 4 8000
EBrake 50 16 3 110 2200 1 2200
Hoistway 50 8 2 100 2000 2 4000
Car Level
Position 50 8 5 130 2600 1 2600
Car Position 50 16 3 110 2200 1 2200
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000

Total Bandwidth (bits/sec) 181700
Authentication Bandwidth (bits/sec) 6720

Evaluation - Simulated elevator control network 163

Table 6.25. MS required bandwidth (Per-packet assurance = 2-5, number of samples = 10)
Message

Type
Period
(msec)

Total authen-
tication bits

Payload
(bytes)

Packet
size

(bits)

Per-sample
bandwidth
(bits/sec)

Replication Message type
bandwidth
(bits/sec)

Master 10 6 1 90 9000 1 9000
Door Motor 10 12 2 100 10000 4 40000
Door Rever-
sal 10 6 1 90 9000 4 36000
Drive Speed 10 12 4 120 12000 1 12000
AtFloor 50 6 1 90 1800 10 18000
Car Weight 50 6 2 100 2000 1 2000
Desired Floor 50 12 4 120 2400 1 2400
Door Closed 50 6 1 90 1800 4 7200
Door Open 50 6 1 90 1800 4 7200
EBrake 50 12 2 100 2000 1 2000
Hoistway 50 6 1 90 1800 2 3600
Car Level
Position 50 6 5 130 2600 1 2600
Car Position 50 12 3 110 2200 1 2200
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000

Total Bandwidth (bits/sec) 168500
Authentication Bandwidth (bits/sec) 5040

Table 6.26. MS required bandwidth (Per-packet assurance = 2-3, number of samples = 20)
Message

Type
Period
(msec)

Total authen-
tication bits

Payload
(bytes)

Packet
size

(bits)

Per-sample
bandwidth
(bits/sec)

Replication Message type
bandwidth
(bits/sec)

Master 10 4 1 90 9000 1 9000
Door Motor 10 8 2 100 10000 4 40000
Door Rever-
sal 10 4 1 90 9000 4 36000
Drive Speed 10 8 3 110 11000 1 11000
AtFloor 50 4 1 90 1800 10 18000
Car Weight 50 4 2 100 2000 1 2000
Desired Floor 50 8 3 110 2200 1 2200
Door Closed 50 4 1 90 1800 4 7200
Door Open 50 4 1 90 1800 4 7200
EBrake 50 8 2 100 2000 1 2000
Hoistway 50 4 1 90 1800 2 3600
Car Level
Position 50 4 5 130 2600 1 2600
Car Position 50 8 2 100 2000 1 2000
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000

Total Bandwidth with CAN protocol overhead (bits/sec) 167100
Authentication Bandwidth (bits/sec) 3360

Evaluation - Simulated elevator control network 164

Comparisons - In Table 6.27, we show the total authentication bandwidth and total message

bandwidth (including CAN protocol overhead) for each of the four techniques for our three sets

of time-triggered authentication parameters.

Table 6.27. Total authentication bits per second

Technique Time-triggered authentication parameters
PPA = Per-packet assurance, n = history buffer size (samples)
PPA = 2-7, n = 7 PPA = 2-5, n = 10 PPA = 2-3, n = 20

One MAC per receiver 20800 15800 10800
Validity voting 14300 10380 6460
TESLA 41760 40800 39840
Master-slave 6720 5040 3360

Table 6.28. Total bits per second transmitted on bus (including CAN protocol overhead)

Technique Time-triggered authentication parameters
PPA = Per-packet assurance, n = history buffer size (samples)
PPA = 2-7, n = 7 PPA = 2-5, n = 10 PPA = 2-3, n = 20

One MAC per receiver 219900 198700 177100
Validity voting 212100 192900 175900
TESLA 409900 405900 405900
Master-slave 181700 168500 167100

*Total bits per second without authentication is: 152100 bits per sec (same for all values of n)

Table 6.29. Percent increase in required bandwidth with authentication (including CAN protocol
overhead)

Technique Time-triggered authentication parameters
PPA = Per-packet assurance, n = history buffer size (samples)
PPA = 2-7, n = 7 PPA = 2-5, n = 10 PPA = 2-3, n = 20

One MAC per receiver 44 % 31 % 16 %
Validity voting 39 % 27 % 16 %
TESLA 170 % 167 % 167 %
Master-slave 20 % 11 % 10 %

 Table 6.27 shows a reduction in authentication bandwidth overhead as we use weaker per-

packet assurance and amortize authentication over more samples. Master-slave has the lowest

authentication overhead, requiring only one MAC tag for each message type authenticated to the

master and another MAC tag for each message type from a receiver that verifies the hash tree

broadcast authenticator. Master-slave also has very low impact on overall network bandwidth,

Evaluation - Simulated elevator control network 165

since only one message type was added for the master's broadcast authenticator, and there are no

silent receivers in the system. Validity voting requires the second lowest bandwidth for authenti-

cation. Voting on message authenticity (despite the limitations in the number of possible votes)

saved between four to six kilobits per second in authentication data over one MAC per receiver.

Validity voting provides a greater reduction in authentication bandwidth when MAC tag sizes

are larger. TESLA adds approximately forty kilobits per second of authentication data for all pa-

rameters, primarily due to the key material that must be transmitted.

 Table 6.28 shows similar decreases in overall bandwidth for one MAC per receiver and va-

lidity voting. However, for TESLA, two sets of parameters require the same bandwidth. This is

due to the quantization of payload sizes in CAN. The protocol defines payload size by the num-

ber of bytes, rather than the number of bits in the payload. Since there are only one or two MAC

tags in messages for these techniques, reducing a MAC tag by a few bits may not reduce the

overall payload size by more than one byte. Table 6.29 shows the percent increase in required

bandwidth after incorporating each authentication technique.

6.6.2 Effects of history buffer size on system performance

After implementing each technique in the elevator, we examined the effect of each technique on

elevator performance. Specifically, we measured delivery times for passengers for our three his-

tory buffer sizes (n = 7, 10, and 20). Figure 6.3 shows the average passenger delivery times as we

vary the history buffer size for each technique. For this experiment, the elevator car begins at the

first floor, a passenger makes a hall call at the seventh floor and wants to travel to the first floor.

For each data point, we executed this single-passenger workload one hundred times. While the

transition delays and elevator dynamics remained constant for each run of the simulator, the pas-

senger behaviors can affect delivery times. Passengers update their internal variables at discrete

Evaluation - Simulated elevator control network 166

intervals (e.g., they check doors every 100 milliseconds and check/press call buttons every 200

milliseconds). The simulation also adds a randomized offset for passenger actions of up to a few

hundred milliseconds. Thus, we averaged the delivery times over many executions of the pas-

senger workload. Delivery times varied no more than two seconds from one another for each da-

ta point.

History buffer size (number of samples)

5 10 15 20 25

A
ve

ra
ge

 p
as

se
ng

er
 d

el
iv

er
y

tim
e

(s
ec

on
ds

)

35

36

37

38

39

40

OMPR

History buffer size (number of samples)

5 10 15 20 25

A
ve

ra
ge

 p
as

se
ng

er
 d

el
iv

er
y

tim
e

(s
ec

on
ds

)

35

36

37

38

39

40

Validity voting

(a) (b)

History buffer size (number of samples)

5 10 15 20 25

A
ve

ra
ge

 p
as

se
ng

er
 d

el
iv

er
y

tim
e

(s
ec

on
ds

)

35

36

37

38

39

40

TESLA

History buffer size (number of samples)

5 10 15 20 25

A
ve

ra
ge

 p
as

se
ng

er
 d

el
iv

er
y

tim
e

(s
ec

on
ds

)

35

36

37

38

39

40

Master-slave

(c) (d)

Figure 6.3. Effects of buffer size on single passenger delivery times. (a) One MAC per receiver, (b)

validity voting, (c) TESLA, and (d) master-slave. History buffer size varied from seven samples to

twenty samples.

Evaluation - Simulated elevator control network 167

 One interesting side-effect of the using different authentication schemes is that each technique

affects elevator dynamics slightly differently due to delays in verification of various message

types. In particular, passenger delivery times are slightly less for the techniques that have a per-

packet verification delay. We emphasize that adding a per-packet delay does not increase the ve-

rification speed of individual samples or history buffers. The decrease in delivery time is due to

the effects of per-packet verification delays on drive controller transitions to slow the car as it

approaches a floor. Thus, we do not compare delivery times between techniques.

 Instead of comparing overall delivery times between techniques, we instead focus on the in-

crease in delivery times for individual techniques. The effects of elevator dynamics do not

change by varying time-triggered authentication parameters. Drive transitions for slowing the car

are treated as reactive control and require only one sample to trigger the transition. We observed

that the delivery times showed a linear increase as we increased history buffer size. This is as

expected, since increasing history buffer sizes for state-changing messages creates a delay before

each associated state transition can occur. Increases in delays should be similar for each tech-

nique. For each technique, the average delivery time increased by approximately 1.5 seconds as

we increase delays in transitions from seven samples to twenty samples. This increase is primari-

ly due to delays in verifying message types broadcast at fifty millisecond intervals for starting

drive motion to and from the passenger's floor, as it must verify the desired floor before moving.

Delays in the door controller state transitions have less effect on overall delivery delays. These

delays in opening doors are mostly due to waiting for several samples of the Drive Command

message (ten millisecond period) to indicate the drive is stopped. The values fifty millisecond

period messages the door controllers rely on for opening doors actually satisfy the door control-

ler's state transition conditions before the drive actually comes to a complete stop.

Evaluation - Simulated elevator control network 168

6.6.3 Symmetric packet loss effects on history buffer output readiness

Our second set of experiments examined the effect of packet loss on state transition delays. In a

symmetric omissive fault model, either all nodes attached to the network receive the message or

none receive it [Azadmanesh00]. To do this, we injected symmetric omissive faults into the net-

work simulation framework as it propagated messages to receivers. Thus, all nodes drop the af-

fected packet.

 We varied the packet loss rate between zero and twenty percent for all message types broad-

cast on the network. For each technique, we measured the number of message periods that

passed before a node received and verified a sufficient number of messages for a history buffer

of size twenty to allow a node to commit to a state change. Once the history buffer output was

ready, we recorded the number of message rounds that had passed, reset the buffer, and restarted

the experiment. We repeated this experiment for at least one thousand history buffers, and com-

puted the average results. For validity voting, we examined the packet loss effects on message

types that received one vote, two votes, and three votes.

 We can calculate how many message periods a receiver can expect to wait to receive n

samples of data, and L is the fraction of packets lost. If x different message types must be re-

ceived to verify our desired message, then the probability that a node will receive and be able to

verify a sample is (1-L)x. The number of message periods until we receive n error-free samples is

n/(1-L)x. Figure 6.4 shows the expected number of samples and the experimental results for each

technique. For one MAC per receiver, we observed an average time till the state-changing histo-

ry buffer output was ready increased by a factor of 1/(1-L) times the number of samples in the

history buffer. For validity voting with one vote, it increased by a factor of 1/(1-L)2; for two

votes, it increased by a factor of 1/(1-L)3; and for three votes, it increased by a factor of 1/(1-L)4.

Evaluation - Simulated elevator control network 169

The delay for TESLA was less than a factor of 1/(1-L)2 despite requiring two packets to verify

each sample. The delay was only slightly higher than that for one MAC per receiver, since pre-

viously lost keys can be recovered corresponding to received, but unverified message values

could not be until the next key arrived. The delays we observed for messages verified using the

master-slave scheme do not conform to this equation for all message types. We experimentally

tested the delay for a ten millisecond period message type. During most message rounds, verifi-

cation depends only on the ten millisecond message types broadcast in the network. Every fifth

message period, verification of that message also requires receipt of messages from nodes trans-

mitting every fifty milliseconds. In the worst case, verifying messages using master-slave require

broadcasts from eight other nodes. Thus, the delay factor should be no greater than (1-L)8.

Evaluation - Simulated elevator control network 170

Symmetric packet loss ratio

0.00 0.05 0.10 0.15 0.20

S
am

pl
e

pe
rio

ds
 u

nt
il

hi
st

or
y

bu
ffe

r
ou

tp
ut

 r
ea

dy

19

20

21

22

23

24

25

26

OMPR - Experimental
OMPR - Expected

Symmetric packet loss ratio

0.00 0.05 0.10 0.15 0.20

S
am

pl
e

pe
rio

ds
 u

nt
il

hi
st

or
y

bu
ffe

r
ou

tp
ut

 r
ea

dy

20

22

24

26

28

30

32

VV 1 vote - Experimental
VV 1 vote - Expected

(a) (b)

Symmetric packet loss ratio

0.00 0.05 0.10 0.15 0.20

S
am

pl
e

pe
rio

ds
 u

nt
il

hi
st

or
y

bu
ffe

r
ou

tp
ut

 r
ea

dy

20

25

30

35

40

45

VV 2 votes - Experimental
VV 2 votes - Expected

Symmetric packet loss ratio

0.00 0.05 0.10 0.15 0.20

S
am

pl
e

pe
rio

ds
 u

nt
il

hi
st

or
y

bu
ffe

r
ou

tp
ut

 r
ea

dy

15

20

25

30

35

40

45

50

55

VV 3 votes - Experimental
VV 3 votes - Expected

(c) (d)

Symmetric packet loss ratio

0.00 0.05 0.10 0.15 0.20

S
am

pl
e

pe
rio

ds
 u

nt
il

hi
st

or
y

bu
ffe

r
ou

tp
ut

 r
ea

dy

20

22

24

26

28

30

32

TESLA - Experimental
TESLA - Expected

Symmetric packet loss ratio

0.00 0.05 0.10 0.15 0.20

S
am

pl
e

pe
rio

ds
 u

nt
il

hi
st

or
y

bu
ffe

r
ou

tp
ut

 r
ea

dy

0

20

40

60

80

100

120

140

Master-slave - Experimental
Master-slave- Expected

(e) (f)

Figure 6.4. Average delay of history buffer output readiness due to symmetric packet loss. Sym-
metric packet loss rate was varied from zero to twenty percent. History buffer size was fixed at

twenty samples. Techniques are (a) one MAC per receiver, (b) validity voting - one vote, (c) validity
voting - two votes, (d) validity voting - three votes, (e) TESLA, (f) master-slave.

Evaluation - Simulated elevator control network 171

 Figures 6.5 shows the average number of message periods that pass before a history buffer

output is ready as we vary the symmetric packet loss rate for all techniques together for compari-

son.

Symmetric packet loss ratio

0.00 0.05 0.10 0.15 0.20

S
am

pl
e

pe
rio

ds
 ti

ll
hi

st
or

y
bu

ffe
r

ou
tp

ut
 r

ea
dy

0

20

40

60

80

100

120

OMPR
VV - 1 Vote
VV - 2 Votes
VV - 3 Votes
TESLA
Master-slave

Figure 6.5. Average delay of history buffer output readiness due to symmetric packet loss (com-

bined figures 6.4.a through 6.4.f). Symmetric packet loss rate was varied from zero to twenty per-

cent. History buffer size was fixed at twenty samples.

 We observed an exponential increase in the time until a history buffer output was ready as we

increased the symmetric packet loss rate, as expected from the equations. One MAC per receiver

suffered the least delays since all data and authentication is stored within the same packet. TES-

LA had only slightly longer delays than one MAC per receiver. In TESLA, despite requiring a

key to be transmitted for each message value, a receiver will be always eventually be able to re-

cover message values with lost keys. Once the receiver obtains another key, the receiver can

compute all previous keys to recover any unverified message values for which a corresponding

key was not received. However, if there are several dropped keys in a row, when a receiver re-

Evaluation - Simulated elevator control network 172

covers unverified message values, it might recover more samples than are required for the buffer

output to be ready. Thus, a few samples go unused for a state change. For validity voting, as we

increase the number of votes, the average time until the history buffer output increased with re-

spect to the number of votes being used. Lastly, master-slave suffered the highest delays. If ei-

ther the master's message or any slave's message carrying a MAC tag necessary to verify the

master's hash is lost, then all values in the previous round are also lost.

 We only performed these experiments on message types being used as state-changing mes-

sages. Losses of reactive control message values will trigger a system to perform a safe action. If

a receiver observes too many packet losses for a reactive control transition (e.g., too many Door

Reversal message values are lost when closing the doors) the system should perform a safe ac-

tion. The number of lost samples to tolerate is up to the system designer.

6.6.4 Symmetric packet loss effects on system performance

Next, we experimentally examined the effects of packet loss on system performance for each

multicast authentication technique we implemented in the elevator. We use a modified symme-

tric omissive fault model for this set of experiments. If our fault model were to drop packets at

any time during execution, there are points in time where dropping packets will actually speed up

passenger delivery times. This occurs when the a packet loss delays drive controller state transi-

tions to slow or stop the drive speed; dropping a packet at this instant delays the transition to re-

duce speed and the car continues longer at a higher speed. Triggering this elevator-specific beha-

vior can speed up elevator performance significantly, masking the delays these experiments are

intended to observe. For example, a single packet loss while at a speed of 5 m/s allows the drive

to travel up to an additional 0.25 meters, reducing delivery time by 0.25 seconds.

Evaluation - Simulated elevator control network 173

 If the elevator is designed to stop at the absolute minimum distance, then a single packet loss

could cause the elevator to miss the desired floor and exceed hoistway limits. Thus, the original

developers of the elevator system added slack time to make the system more robust to packet

losses or other delays that might propagate through the system and trigger this failure. In a real

elevator system, slack time is likely to be programmed into the system. Further, the system is

likely to begin slowing down and/or stopping if too many packet losses occur before the slack

time is used up during normal operation.

 Instead of attempting to account for these elevator-specific effects, we modify the fault model

so it does not drop packets if the elevator should be slowing down to avoid triggering this acci-

dental speed up in performance.

 We varied the rate of packet loss from zero to twenty percent, and measured the average pas-

senger delivery time over one hundred executions of the first passenger workload in Section

6.6.2. We fixed the history buffer size at twenty samples. Figure 6.6 shows the average delivery

times for each technique.

Evaluation - Simulated elevator control network 174

Symmetric packet loss ratio

0.00 0.05 0.10 0.15 0.20

A
ve

ra
ge

 p
as

se
ng

er
 d

el
iv

er
y

tim
e

(s
ec

on
ds

)

37

38

39

40

41

OMPR

Symmetric packet loss ratio

0.00 0.05 0.10 0.15 0.20

A
ve

ra
ge

 p
as

se
ng

er
 d

el
iv

er
y

tim
e

(s
ec

on
ds

)

37

38

39

40

41

Validity voting

(a) (b)

Symmetric packet loss ratio

0.00 0.05 0.10 0.15 0.20

A
ve

ra
ge

 p
as

se
ng

er
 d

el
iv

er
y

tim
e

(s
ec

on
ds

)

37

38

39

40

41

TESLA

Symmetric packet loss ratio

0.00 0.05 0.10 0.15 0.20

A
ve

ra
ge

 p
as

se
ng

er
 d

el
iv

er
y

tim
e

(s
ec

on
ds

)

40

45

50

55

60

Master-slave

(c) (d)

Figure 6.6. Average passenger delivery times varying symmetric packet loss rate. Symmetric
packet loss rate was varied from zero to twenty percent. History buffer size was fixed at twenty

samples. Techniques are (a) one MAC per receiver, (b) validity voting, (c) TESLA, and (d) master-
slave.

 As we increase the packet loss rate up to twenty percent, the average delivery time for one

MAC per receiver increases by 0.83 seconds. TESLA increases by slightly more (1.15 seconds at

twenty percent packet loss), though this was likely due to the recovery behavior discussed in

Section 6.6.3 where a few extra message periods pass before unverified messages can be recov-

Evaluation - Simulated elevator control network 175

ered and a state transition executed. The validity voting implementation delivery times increased

by 2.08 seconds at twenty percent packet loss. This was likely due to the implementation being a

mixture of one MAC per receiver and validity voting using one, two, and three votes. Lastly, as

expected, the master-slave implementation suffers the worst delivery delays of an additional

20.37 seconds at twenty percent packet loss (more than a fifty percent increase in delivery time

due to few state transition delays). This is due to the high degree of inter-packet dependencies for

this technique.

6.6.5 Forgery test

Our final set of experiments consisted of simple brute force guessing attacks against a state-

changing message type for each technique. Once a successful state transition was forced, we re-

set the history buffer and the state machine and allowed the attacker to begin again with no de-

lay. We recorded the number of successful attacks (triggering a state transition) per message

round. The purpose of these experiments was simply to verify the probability of successful attack

and successful per-packet forgery is less than or equal to the expected success rates described in

the equations of Chapters 3, 4, and 5. For brevity, we omit a detailed review of the results. The

resulting success rate for brute force guessing attacks were slightly less than the equations in

Chapters 3, 4, and 5. This is due to the history buffer being reset and an attack requiring all sam-

ples in the history buffer to be successfully forged. Thus, there are message rounds where an at-

tack cannot yet have occurred after the history buffer is reset. This same result is demonstrated in

Chapter 3 for attacks against state-changing messages. The experimental attacks on reactive con-

trol message types produced similar results.

 The attacker model used against OMPR and TESLA was the same as the one used in Chapter

3. The attacker model used against validity voting was the same as the one in Chapter 4. For

Evaluation - Simulated elevator control network 176

master-slave, we used a slightly different attacker model. The attacker would first attempt to alter

the message value from a slave node that is authenticated to the master node. The attacker then

intercepts the master's message in the next message round, and examines the validity bit. If the

bit is a '1,' then the attacker knows it successfully forged the tag on the initial attempt. If not, the

attacker attempts to alter the master's validity bit before passing the message along to the slave

nodes. The results were slightly less than equation (4) in Chapter 5, due to the attack being per-

formed on a state-changing message type.

6.7 Discussion

In this chapter, we showed our analysis of the elevator system to identify which message types to

authenticate along with time triggered parameter selection. We compared bandwidth consump-

tion for each technique, varying time-triggered authentication parameters. Finally, our experi-

mental results showed effects of varying time-triggered authentication parameters on system per-

formance (passenger delivery time in the elevator) for each technique, and effects of symmetric

packet loss on history buffer output readiness and system performance. We also performed brute

force forgery attacks to confirm equations in Chapters 3, 4, and 5.

 By varying time-triggered authentication parameters (per-packet assurance and history buffer

size) we illustrate several tradeoffs for all techniques. Increasing per-packet assurance (decreas-

ing history buffer size) increases bandwidth costs for authentication but decreases application

level latency. Conversely, reducing per-packet assurance (increasing history buffer size) reduces

bandwidth costs but increases application level latency.

Evaluation - Simulated elevator control network 177

 Adjusting time-triggered authentication parameters had a similar effect on elevator system

performance for all techniques. Varying the history buffer size from seven samples up to twenty

increased passenger delivery times by approximately 1.5 seconds for all techniques.

 In the presence of packet losses, we showed that system performance and history buffer out-

put readiness for one MAC per receiver and TESLA were least affected. The implementation of

validity voting (which built upon one MAC per receiver to introduce one, two and three votes on

messages) was more sensitive to packet losses. We showed that increasing the number of inter-

dependencies amongst packets for verification significantly increased the amount of time before

a history buffer output was useable. The master-slave scheme was extremely sensitive to packet

losses and suffered long delays in both history buffer output readiness and system performance.

 Our analysis also illustrates some of the tradeoffs among techniques. While the bandwidth

analysis shows that master-slave has very low authentication bandwidth overhead, the experi-

mental analysis shows it has very high sensitivity to packet losses. Validity voting allows us to

reduce the authentication bandwidth overhead of one MAC per receiver at the cost of increased

sensitivity to packet losses. One MAC per receiver required higher authentication bandwidth

overhead than master-slave and validity voting, but is the least sensitive to packet losses. TESLA

required the highest authentication bandwidth overhead (which remained relatively constant re-

gardless for our three sets of time-triggered authentication parameters), but was can also recover

unverified state-changing message values for which key material has been lost. Recovering reac-

tive control message values is possible, but may not be useful if the system acts only upon the

most recent message values.

Evaluation - Automotive network 178

7 Evaluation - Automotive network

Our second proof of concept analyzes the impacts on bandwidth consumption when applying

time-triggered authentication (for each of the four techniques) to an automotive network work-

load. The workload is from a high-speed CAN bus in an industry production automotive system.

 The workload contains almost all of the information required for our analysis: node identifier

numbers (both senders and receivers), message identifier numbers, message periods, and payload

sizes. However, the workload has been sanitized of system data; it does not include any node or

message names. Also, the identifier numbers have been randomized, such that ID numbers of the

workload provided in this work do not reveal CAN bus identifier numbers for messages, remov-

ing priority information. The workload also does not include information related to what any of

the messages are used for. We did not have access to the system or a model of the system these

messages are used within. We also do not have requirements associated with the system.

 Our bandwidth consumption analysis in this section requires a few pieces of information not

included in the workload provided by industry: requirements for system failure rates and per-

packet assurance (i.e., we need to know how many samples that can be authenticated over).

Since we do not have access to the system and design information related to the workload, we

used typical values commonly found in embedded control networks.

 For system failure rates, we selected three common rates used in industry: 10-9 failures per

hour, 10-6 failures per hour, and 10-3 failures per hour. These failure rates were not part of the

provided workload. As in earlier sections, we assume successful forgery of a single message type

could induce a system failure. These failure rates were selected based on common standards,

such as IEC 61508 [IEC61508]. We elected to assign different failure rates to illustrate the flex-

Evaluation - Automotive network 179

ibility of our time-triggered authentication approach and effects of using different failure rates on

parameter selection. The workload is divided into four levels of assurance:

• High - For messages in this group we selected parameters such that forgery success rates

should be no higher than 10-9/hr. There are twenty-four message types in this group. These

messages have periods between ten and one hundred milliseconds.

• Medium - For messages in this group we selected parameters such that forgery success rates

should be no higher than 10-6/hr. This group contains thirty-two message types. Most mes-

sage periods in this group are similar to those in the high assurance group, with some longer

periods up to one second.

• Low - We selected parameters such that forgery success rates should be no higher than

10-3/hr. There are twenty-two message types in this group. Message periods for this group

range from twenty milliseconds up to five seconds.

• None - We did not apply authentication to these message types, nor do these message types

participate in authentication. This group consists of messages with periods mostly slower

message periods and messages broadcast in response to non-periodic events. There are eigh-

ty-seven message types in this group.

 We emphasize that for this analysis, these ratings do not represent security risks in the au-

tomotive system this workload is from. We do not speculate on the failure modes of the system

this workload is from, since we have limited information about the workload. The failure rates

were selected arbitrarily. Appropriately assigning requirements for system-level and per-packet

assurance levels requires analysis of the system design (which we did not have access to).

Evaluation - Automotive network 180

 Tables 7.1 shows the list of message types in the high assurance level along with broadcast

period, sender number, receivers, and payload size. Table 7.2 shows the medium assurance level

group of messages. Table 7.3 shows the low assurance level group. Finally, Table 7.4 shows the

list of message types that we did not apply authentication to.

Table 7.1. High assurance automotive messages.
Message

ID
Period
(ms)

Sender
ID

Payload
 (bits)

Number of
Receivers

Receivers

ID_009 10 ECU_05 44 8 ECU_02, ECU_03, ECU_04, ECU_06, ECU_07, ECU_09,

ECU_11, ECU_13

ID_008 10 ECU_07 49 1 ECU_09

ID_047 10 ECU_07 49 9 ECU_01, ECU_04, ECU_05, ECU_06, ECU_08, ECU_09,

ECU_12, ECU_13, ECU_14

ID_040 12 ECU_07 62 1 ECU_09

ID_001 12 ECU_09 55 2 ECU_02, ECU_07

ID_007 12 ECU_09 64 12 ECU_01, ECU_02, ECU_03, ECU_04, ECU_05, ECU_06,

ECU_07, ECU_08, ECU_10, ECU_11, ECU_13, ECU_14

ID_039 20 ECU_07 36 2 ECU_09, ECU_11

ID_042 20 ECU_07 24 1 ECU_04

ID_025 25 ECU_02 52 1 ECU_09

ID_029 25 ECU_02 64 1 ECU_09

ID_030 25 ECU_02 64 4 ECU_05, ECU_07, ECU_09, ECU_11

ID_038 25 ECU_07 56 1 ECU_09

ID_036 25 ECU_09 64 3 ECU_05, ECU_07, ECU_11

ID_074 25 ECU_09 16 1 ECU_02

ID_046 30 ECU_05 52 2 ECU_09, ECU_11

ID_057 30 ECU_05 60 2 ECU_02, ECU_09

ID_076 35 ECU_11 52 1 ECU_09

ID_077 35 ECU_11 34 1 ECU_09

ID_078 35 ECU_11 34 1 ECU_09

ID_058 50 ECU_07 33 4 ECU_05, ECU_06, ECU_11, ECU_13

ID_081 50 ECU_07 45 4 ECU_02, ECU_04, ECU_05, ECU_09

ID_061 50 ECU_13 46 3 ECU_05, ECU_07, ECU_11

ID_098 100 ECU_09 37 1 ECU_07

ID_060 100 ECU_13 12 1 ECU_07

Evaluation - Automotive network 181

Table 7.2. Medium assurance automotive messages.
Message

ID
Period
(ms)

Sender
ID

Payload
 (bits)

Number of
Receivers

Receivers

ID_006 6 ECU_02 32 1 ECU_04

ID_004 10 ECU_07 64 10 ECU_02, ECU_04, ECU_05, ECU_06, ECU_08, ECU_09,

ECU_10, ECU_12, ECU_13, ECU_14

ID_005 10 ECU_07 64 11 ECU_01, ECU_02, ECU_04, ECU_05, ECU_06, ECU_08,

ECU_09, ECU_10, ECU_12, ECU_13, ECU_14

ID_010 12 ECU_02 61 4 ECU_04, ECU_06, ECU_07, ECU_09

ID_003 12 ECU_09 9 1 ECU_02

ID_026 12 ECU_09 31 1 ECU_02

ID_027 12 ECU_09 62 2 ECU_02, ECU_04

ID_048 12 ECU_09 59 1 ECU_10

ID_052 12 ECU_09 61 1 ECU_10

ID_041 20 ECU_04 26 3 ECU_02, ECU_07, ECU_11

ID_045 20 ECU_04 27 1 ECU_07

ID_024 20 ECU_07 11 5 ECU_02, ECU_05, ECU_06, ECU_13, ECU_14

ID_049 20 ECU_07 62 12 ECU_01, ECU_02, ECU_03, ECU_04, ECU_05, ECU_06,

ECU_08, ECU_09, ECU_11, ECU_12, ECU_13, ECU_14

ID_028 25 ECU_02 16 1 ECU_09

ID_033 25 ECU_02 45 1 ECU_09

ID_106 25 ECU_05 17 1 ECU_09

ID_031 25 ECU_09 54 1 ECU_02

ID_034 25 ECU_09 62 1 ECU_02

ID_035 25 ECU_09 57 8 ECU_04, ECU_05, ECU_06, ECU_07, ECU_08, ECU_11,

ECU_13, ECU_14

ID_037 25 ECU_09 48 2 ECU_07, ECU_11

ID_075 50 ECU_09 40 2 ECU_04, ECU_07

ID_018 100 ECU_05 24 1 ECU_01

ID_020 100 ECU_05 34 2 ECU_07, ECU_08

ID_053 100 ECU_05 54 12 ECU_01, ECU_02, ECU_03, ECU_04, ECU_06, ECU_07,

ECU_09, ECU_10, ECU_11, ECU_12, ECU_13, ECU_14

ID_059 100 ECU_06 9 2 ECU_05, ECU_08

ID_023 100 ECU_07 18 1 ECU_05

ID_021 100 ECU_08 18 1 ECU_05

ID_102 250 ECU_05 58 6 ECU_04, ECU_06, ECU_07, ECU_09, ECU_13, ECU_14

ID_101 250 ECU_08 44 1 ECU_09

ID_083 500 ECU_06 16 3 ECU_05, ECU_07, ECU_08

ID_017 1000 ECU_05 17 2 ECU_01, ECU_11

ID_117 1000 ECU_05 45 3 ECU_02, ECU_04, ECU_09

Evaluation - Automotive network 182

Table 7.3. Low assurance automotive messages.
Message

ID
Period
(ms)

Sender
ID

Payload
 (bits)

Number of
Receivers

Receivers

ID_044 20 ECU_04 3 1 ECU_07

ID_002 25 ECU_02 53 1 ECU_09

ID_056 25 ECU_02 64 11 ECU_01, ECU_04, ECU_05, ECU_06, ECU_07, ECU_08,

ECU_09, ECU_11, ECU_12, ECU_13, ECU_14

ID_082 25 ECU_06 60 3 ECU_01, ECU_06, ECU_07

ID_032 25 ECU_09 1 2 ECU_02, ECU_07

ID_054 30 ECU_05 16 2 ECU_02, ECU_09

ID_088 35 ECU_11 16 2 ECU_05, ECU_07

ID_089 35 ECU_11 3 ECU_02, ECU_05, ECU_07

ID_084 50 ECU_07 36 8 ECU_03, ECU_04, ECU_05, ECU_06, ECU_11, ECU_12,

ECU_13, ECU_14

ID_085 50 ECU_07 36 8 ECU_03, ECU_04, ECU_05, ECU_06, ECU_11, ECU_12,

ECU_13, ECU_14

ID_087 50 ECU_07 28 1 ECU_05

ID_043 100 ECU_04 6 6 ECU_02, ECU_05, ECU_07, ECU_08, ECU_09, ECU_11

ID_013 100 ECU_05 57 8 ECU_01, ECU_02, ECU_06, ECU_07, ECU_09, ECU_10,

ECU_11, ECU_13

ID_016 100 ECU_05 9 2 ECU_07, ECU_11

ID_022 100 ECU_07 47 10 ECU_01, ECU_03, ECU_04, ECU_05, ECU_06, ECU_08,

ECU_10, ECU_11, ECU_12, ECU_13

ID_080 100 ECU_07 40 1 ECU_09

ID_113 500 ECU_09 56 2 ECU_05, ECU_08

ID_136 500 ECU_09 64 1 ECU_02

ID_014 1000 ECU_05 3 1 ECU_10

ID_120 1000 ECU_07 25 9 ECU_04, ECU_05, ECU_06, ECU_08, ECU_10, ECU_11,

ECU_12, ECU_13, ECU_14

ID_118 1000 ECU_09 44 8 ECU_02, ECU_04, ECU_05, ECU_07, ECU_10, ECU_11,

ECU_12, ECU_13

ID_012 5000 ECU_05 33 1 ECU_04

Evaluation - Automotive network 183

Table 7.4. Non-authenticated automotive messages.
Message

ID
Period
(ms)

Sender
ID

Payload
 (bits)

Number of
Receivers

Receivers

ID_011 Event ECU_08 64 14 ECU_01, ECU_02, ECU_03, ECU_04, ECU_05, ECU_06,

ECU_07, ECU_08, ECU_09, ECU_10, ECU_11, ECU_12,

ECU_13, ECU_14

ID_015 100 ECU_05 56 5 ECU_01, ECU_06, ECU_07, ECU_11, ECU_12

ID_019 1000 ECU_14 1 2 ECU_05, ECU_13

ID_050 12 ECU_09 28 1 ECU_05

ID_051 12 ECU_10 13 1 ECU_09

ID_055 25 ECU_09 33 2 ECU_05, ECU_07

ID_062 20 ECU_07 47 6 ECU_04, ECU_05, ECU_06, ECU_08, ECU_10, ECU_14

ID_063 Event ECU_08 64 1 ECU_05

ID_064 Event ECU_08 64 1 ECU_14

ID_065 Event ECU_08 64 1 ECU_07

ID_066 Event ECU_08 64 1 ECU_03

ID_067 Event ECU_08 64 1 ECU_01

ID_068 Event ECU_08 64 1 ECU_11

ID_069 Event ECU_08 64 1 ECU_06

ID_070 Event ECU_08 64 1 ECU_12

ID_071 Event ECU_08 64 1 ECU_13

ID_072 Event ECU_08 64 1 ECU_04

ID_073 Event ECU_08 64 1 ECU_10

ID_079 50 ECU_09 10 1 ECU_07

ID_086 100 ECU_03 3 1 ECU_05

ID_090 100 ECU_01 8 1 ECU_05

ID_091 100 ECU_01 16 1 ECU_05

ID_092 100 ECU_01 8 1 ECU_05

ID_093 1500 ECU_01 6 2 ECU_05, ECU_11

ID_094 100 ECU_09 64 2 ECU_05, ECU_08

ID_095 100 ECU_05 64 1 ECU_09

ID_096 100 ECU_05 33 1 ECU_09

ID_097 100 ECU_09 60 6 ECU_02, ECU_05, ECU_06, ECU_08, ECU_10, ECU_11

ID_099 100 ECU_02 11 1 ECU_05

ID_100 100 ECU_09 64 12 ECU_01, ECU_02, ECU_03, ECU_04, ECU_05, ECU_06,

ECU_07, ECU_08, ECU_10, ECU_12, ECU_13, ECU_14

ID_103 250 ECU_09 63 3 ECU_05, ECU_08, ECU_10

ID_104 250 ECU_09 14 3 ECU_05, ECU_08, ECU_10

ID_105 250 ECU_09 29 2 ECU_05, ECU_07

ID_107 500 ECU_09 61 8 ECU_01, ECU_02, ECU_04, ECU_05, ECU_06, ECU_07,

ECU_08, ECU_10

ID_108 1000 ECU_09 49 2 ECU_05, ECU_08

ID_109 500 ECU_05 16 1 ECU_09

ID_110 500 ECU_09 23 1 ECU_02

ID_111 500 ECU_02 30 4 ECU_04, ECU_05, ECU_08, ECU_09

ID_112 1000 ECU_09 24 1 ECU_05

ID_114 500 ECU_05 34 1 ECU_09

ID_115 500 ECU_10 17 1 ECU_09

ID_116 1000 ECU_05 64 6 ECU_02, ECU_04, ECU_07, ECU_09, ECU_13, ECU_14

ID_119 1000 ECU_09 8 1 ECU_11

ID_121 500 ECU_10 27 1 ECU_05

Evaluation - Automotive network 184

Message
ID

Period
(ms)

Sender
ID

Payload
 (bits)

Number of
Receivers

Receivers

ID_122 1000 ECU_05 64 4 ECU_04, ECU_07, ECU_13, ECU_14

ID_123 1000 ECU_05 48 1 ECU_07

ID_124 1000 ECU_05 32 1 ECU_10

ID_125 Event ECU_05 64 1 ECU_08

ID_126 Event ECU_14 64 1 ECU_08

ID_127 Event ECU_07 64 1 ECU_08

ID_128 Event ECU_03 64 1 ECU_08

ID_129 Event ECU_01 64 1 ECU_08

ID_130 Event ECU_11 64 1 ECU_08

ID_131 Event ECU_06 64 1 ECU_08

ID_132 Event ECU_12 64 1 ECU_08

ID_133 Event ECU_13 64 1 ECU_08

ID_134 Event ECU_04 64 1 ECU_08

ID_135 Event ECU_10 64 1 ECU_08

ID_137 Event ECU_09 64 1 ECU_08

ID_138 Event ECU_02 64 1 ECU_08

ID_139 Event ECU_05 64 1 ECU_08

ID_140 Event ECU_14 64 1 ECU_08

ID_141 Event ECU_07 64 1 ECU_08

ID_142 Event ECU_03 64 1 ECU_08

ID_143 Event ECU_01 64 1 ECU_08

ID_144 Event ECU_11 64 1 ECU_08

ID_145 Event ECU_06 64 1 ECU_08

ID_146 Event ECU_12 64 1 ECU_08

ID_147 Event ECU_13 64 1 ECU_08

ID_148 Event ECU_04 64 1 ECU_08

ID_149 Event ECU_10 64 1 ECU_08

ID_150 1000 ECU_09 56 1 ECU_08

ID_151 1000 ECU_07 56 1 ECU_08

ID_152 1000 ECU_14 56 1 ECU_08

ID_153 1000 ECU_04 56 1 ECU_08

ID_154 1000 ECU_01 56 1 ECU_08

ID_155 1000 ECU_13 56 1 ECU_08

ID_156 1000 ECU_06 56 1 ECU_08

ID_157 1000 ECU_02 56 1 ECU_08

ID_158 1000 ECU_07 56 1 ECU_08

ID_159 1000 ECU_10 56 1 ECU_08

ID_160 1000 ECU_12 56 1 ECU_08

ID_161 Event ECU_08 64 2 ECU_02, ECU_09

ID_162 Event ECU_08 64 1 ECU_09

ID_163 Event ECU_08 64 1 ECU_02

ID_164 Event ECU_09 64 1 ECU_08

ID_165 Event ECU_02 64 1 ECU_08

 Our analysis also requires us to assign per-packet assurance levels to message types. Since we

did not have access to the characteristics of the physical dynamics of the system, we performed a

sensitivity analysis based on common sampling rates. Sensor inputs are typically sampled faster

Evaluation - Automotive network 185

than the time constraints of control stability requirements. As a rule of thumb, ten or more sam-

ples are sent within the rise time of a control system or prior to a system deadline [REF Ko-

petz][REF Controls book]. This number of samples gives us our history buffer size (the number

of messages we can verify state changes and actuations over). For our sensitivity analysis, we

used history buffer sizes of five, ten, and twenty. We assume all messages use the same history

buffer size. Thus, all message types within a group use the same per-packet assurance level.

 The number of nodes and numbers of receivers for each message type in this network con-

forms to our assumptions in Section 2. In an embedded network, there are typically at most tens

for receivers for a message. In this network, there are fourteen total nodes. The number of re-

ceivers for each message type ranges from one to twelve. Only nine nodes broadcast messages

that require authentication (ECU_2, ECU_4, ECU_5, ECU_6, ECU_7, ECU_8, ECU_9,

ECU_11, and ECU_13). There are five nodes which only consume messages and do not broad-

cast authenticated messages (ECU_1, ECU_3, ECU_10, ECU_12, and ECU_14). These five

nodes do, however, broadcast non-authenticated messages. In this analysis, non-authenticated

messages transmitted by these nodes do not participate in voting or master-slave authentication

schemes.

 Another note of interest is that many message types already have full data payloads, which

will require a second (or third) CAN packet to transmit authenticators. In Section 3 and 4, we

assumed that data payloads were small enough such that at least one MAC tag bit could be

placed within a packet for each receiver. The message types for the elevator network also had

room for one MAC tag per receiver in the data payloads (at least seven bits could be placed in a

payload for each receiver without exceeding the sixty-four bit payload size of CAN); TESLA

was the only technique that required an additional packet (due to the key). The bandwidth im-

Evaluation - Automotive network 186

pacts of authentication in this workload will be greater than those in the elevator since nodes

must transmit additional packets for authentication for all techniques.

 The baseline automotive network workload (with no authentication applied) consumes

478782 bits per second. This value only includes periodic message types; it omits the impacts of

the non-periodic message types, since we do not have information on mean inter-arrival times for

those message types. In the following sections, we apply each authentication technique while

varying the history buffer size. We then summarize the impacts of each authentication technique

on network bandwidth.

7.1 One MAC per receiver

For OMPR, we first determined the MAC tag size for each receiver based on the failure rate as-

sociated with each message type along with the number of samples for the history buffer. Tables

7.5. lists the history buffer size, per-packet assurance and number of bits per MAC tag for each

assurance level group (high, medium, and low).

Table 7.5. OMPR history buffer size, required per-packet assurance, and MAC tag size.
History buffer size

(samples)
Desired failure rate Required per-packet

assurance
MAC tag size (bits)

5
10-9/hr 2-10 10
10-6/hr 2-8 8
10-3/hr 2-6 6

10
10-9/hr 2-5 5
10-6/hr 2-4 4
10-3/hr 2-3 3

20
10-9/hr 2-3 3
10-6/hr 2-2 2
10-3/hr 2-2 2

 Tables in Appendix A provide a detailed breakdown of bandwidth required for authentication

and the messages of the workload.

Evaluation - Automotive network 187

7.1.1 One MAC per receiver - summary

Table 7.15 summarizes the results of applying one MAC per receiver to the automotive work-

load. Using one MAC per receiver, as we increase the number of samples in a history buffer,

there is a exponential decrease in the bandwidth consumed by authentication. Similarly, there is

an exponential decrease in total bandwidth consumption (including CAN protocol overhead). As

we increase the history buffer size, it approaches the baseline workload bandwidth of 478782

bits per second. However, one MAC per receiver will always require at least one bit per receiver

no matter how samples messages are verified over.

Table 7.6. OMPR bandwidth summary.
 History buffer size (samples)

5 10 20
Bandwidth increase
due to authentication (bits per second)

90525

45292

25482

Total bandwidth
including CAN protocol overhead (bits per second)

745662

629660

588735

Percent increase in total bandwidth over baseline 56 % 32 % 23 %

Evaluation - Automotive network 188

History buffer size (samples)

4 6 8 10 12 14 16 18 20 22A
ut

he
nt

ic
at

io
n

ba
nd

w
id

th
 o

ve
rh

ea
d

(b
its

 p
er

 s
ec

on
d)

20000

30000

40000

50000

60000

70000

80000

90000

100000

One MAC per receiver

Figure 7.1. OMPR authentication bits per second (no CAN protocol overhead, varying history buf-
fer size from five samples to twenty samples).

History buffer size (samples)

4 6 8 10 12 14 16 18 20 22

T
ot

al
 w

or
kl

oa
d

ba
nd

w
id

th
 (

bi
ts

 p
er

 s
ec

on
d)

580000

600000

620000

640000

660000

680000

700000

720000

740000

760000

One MAC per receiver

Figure 7.2. OMPR total bits per second transmitted on CAN bus (includes CAN protocol overhead)

Evaluation - Automotive network 189

7.2 Validity voting

For validity voting, we applied the maximum number of votes for every message type. All votes

were used to reduce the size of authenticators (optionally, votes can also be used to reduce the

number of message samples to verify over). We included votes only if they provided some

bandwidth savings. Table 7.16 shows the size of each MAC tag when zero votes are received for

that message type, one vote is received for the message type, and two votes are received for that

message type. Table 7.16 also shows occurrences where increasing the number of votes did not

decrease the MAC tag bit size (marked N/A). When adding a vote to decrease tag size while

maintaining per-packet assurance, the tag size decreases by a fraction based on the number of

votes. Using v votes reduces tag size by a factor of slightly less than 1/(v+1). For example, using

one vote decreases tag size to almost half the bits; two votes decreases tag size to a little more

than one third the bits; three votes decreases the tag size to a little more than one quarter. Thus,

votes save more bandwidth when used to reduce tag sizes for higher per-packet assurances.

Table 7.7. VV history buffer size, required per-packet assurance, and MAC tag sizes (for zero
votes, one vote, and two votes). N/A indicates votes do not provide any bandwidth reduction.

History buffer
size

(samples)

Desired failure
rate

Required per-
packet

assurance

MAC tag size
zero votes

(bits)

MAC tag size
one vote

(bits)

MAC tag size
two votes

(bits)

5
10-9/hr 2-10 10 6 4
10-6/hr 2-8 8 5 4
10-3/hr 2-6 6 4 3

10
10-9/hr 2-5 5 3 N/A
10-6/hr 2-4 4 3 2
10-3/hr 2-3 3 2 N/A

20
10-9/hr 2-3 3 2 N/A
10-6/hr 2-2 2 N/A N/A
10-3/hr 2-2 2 N/A N/A

 As with the elevator network workload, we applied votes based on the message types con-

sumed by each message type. For one receiver to vote on a message to another, both receivers

Evaluation - Automotive network 190

must consume that message type from the sender. Nodes receiving votes must consume at least

one message type from the voting node. Further, any message types carrying votes must be

broadcast at a rate greater than or equal to the message type they vote upon.

 We also limited message types to vote on messages of equal or lower criticality (a message in

the high assurance group can vote on a message in the medium assurance group, but not vice

versa). This limitation was primarily based on the tag sizes for messages of each assurance level.

In a message that carries a vote, the tag designated for a receiver should be at least as many bits

as the tag designated for the same receiver in the message being voted upon. The tag sizes for

message types requiring low assurance have fewer bits than those requiring higher assurance.

Thus, if a lower assurance message type carries a vote for a higher assurance message, it could

create a vulnerability that could allow an attacker to more easily forge a samples of the higher

assurance message.

 Based on these limitations, we were able to apply at most two votes for any message type.

However, messages can carry votes for any number of other message types.

 Tables in Appendix A provide a detailed breakdown of bandwidth required for authentication

and the messages of the workload.

7.2.1 Validity voting - summary

Table 7.8 summarizes the results of applying validity voting to the automotive network work-

load. Validity voting uses one MAC per receiver as a base for multicast authentication, and uses

voting to reduce bandwidth consumption (or history buffer size). Figures 7.3 shows the authenti-

cation bits per second added to the workload bandwidth for each history buffer size, while Figure

Evaluation - Automotive network 191

7.4 shows the total bandwidth used by the workload (including CAN protocol overhead). Figures

7.3 and 7.4 also show the results of applying one MAC per receiver to allow comparison.

Table 7.8. Validity voting bandwidth summary.

 History buffer size (samples)
5 10 20

Bandwidth increase
due to authentication (bits per second)

72368 38856 24039

Total bandwidth
including CAN protocol overhead (bits per second)

702694 619584 587702

Percent increase in total bandwidth over baseline 47 % 29 % 23 %

History buffer size (samples)

4 6 8 10 12 14 16 18 20 22A
ut

he
nt

ic
at

io
n

ba
nd

w
id

th
 o

ve
rh

ea
d

(b
its

 p
er

 s
ec

on
d)

20000

30000

40000

50000

60000

70000

80000

90000

100000

One MAC per receiver
Validity voting

Figure 7.3. Validity voting authentication bits per second (no CAN protocol overhead, varying his-
tory buffer size from five samples to twenty samples.

Evaluation - Automotive network 192

History buffer size (samples)

4 6 8 10 12 14 16 18 20 22

T
ot

al
 w

or
kl

oa
d

ba
nd

w
id

th
 (

bi
ts

 p
er

 s
ec

on
d)

560000

580000

600000

620000

640000

660000

680000

700000

720000

740000

760000

One MAC per receiver
Validity voting

Figure 7.4. Validity voting total bits per second transmitted on CAN bus (includes CAN protocol

overhead).

 Table 7.8 and Figures 7.3 and 7.4 confirms that voting produces the greatest reduction in au-

thentication bandwidth for stronger per-packet assurance levels (i.e., smaller history buffer siz-

es). Voting provides the greatest reduction in authentication bandwidth overhead for stronger

per-packet assurance levels and greater numbers of receivers. For a history buffer size of five

samples, more votes could be applied that reduced bandwidth consumption. Reducing total

bandwidth from a 56% increase to 47%. For a history buffer size of ten samples, the reduction

was from 32% to 29%. For twenty samples, there was less than one percent difference. With

weaker per-packet assurances (larger history buffer sizes), fewer votes could be applied to reduce

authentication bandwidth. Appendix A provides all the votes applied to reduce bandwidth.

 While validity voting provides less bandwidth savings as MAC tag size decreases, it can in-

stead be used to strengthen per-packet assurance (reducing the number of samples a receiver

must verify state-changes or actuations over) without increasing bandwidth overhead. This as-

Evaluation - Automotive network 193

pect of validity voting is likely more useful to reduce application level latency using the same

MAC tag sizes as those for history buffer sizes of twenty samples.

7.3 TESLA

For TESLA we used the same per-packet assurance levels and history buffer sizes as those for

one MAC per receiver and a key size of eighty bits (Table 7.9). To allow verification of each

message sample individually, transmitters must also send a key used to compute the correspond-

ing MAC tag. As in elevator implementation, nodes are scheduled to transmit the key during the

message round after the round in which the corresponding value and MAC tag are transmitted.

Transmitting a key required at least one additional packet to be broadcast for each message type.

This analysis did not examine the bandwidth required for transmitting one key for multiple mes-

sage types from the same sender.

 For simplicity, we assume each node maintains one key chain for each message type they

transmit. This workload does not contain information about what messages are used for by each

receiver, how often nodes execute their control loops, or whether batch-authenticating multiple

message types together using a single key chain would be acceptable. Unfortunately, this ap-

proach requires transmitting an eighty bit key for every sample of every message type, which

creates a very high bandwidth requirement. In Section 5.2.4, we discuss some tradeoffs asso-

ciated with using fewer key chains.

Evaluation - Automotive network 194

Table 7.9. TESLA history buffer size, per-packet assurance, MAC tag size, and key size.
History buffer size

(samples)
Desired failure rate Required per-packet

assurance
MAC tag
size (bits)

Key size
(bits)

5
10-9/hr 2-10 10 80
10-6/hr 2-8 8 80
10-3/hr 2-6 6 80

10
10-9/hr 2-5 5 80
10-6/hr 2-4 4 80
10-3/hr 2-3 3 80

20
10-9/hr 2-3 3 80
10-6/hr 2-2 2 80
10-3/hr 2-2 2 80

 Tables in Appendix A provide a detailed breakdown of bandwidth required for authentication

and the messages of the workload.

7.3.1 TESLA - summary

Table 7.10 summarizes the results of applying TESLA to the automotive network workload. The

authentication overhead is mostly constant. Figures 7.5 and 7.6 show the decrease in bandwidth

as history buffer size increases. Although the tag sizes decreases exponentially as the history buf-

fer size increases, the transmitted key material makes up a majority of bandwidth required for

authentication. Thus, altering the size of the history buffer does not provide much benefit when

authenticating with TESLA (Percent increase over baseline workload bandwidth is between

147% and 140%). Also, since the changes in tag sizes from one history buffer parameter value to

another are at most a few bits in size, this reduction often is not large enough to reduce the payl-

oad size by a byte. This further reduces the effects of changing history buffer sizes for TESLA.

 As shown in Section 5, TESLA is best suited for applications which require very high per-

packet assurance (e.g., event-triggered systems which must verify state changes or actuations

Evaluation - Automotive network 195

over single samples), or applications which must scale to hundreds or thousands of receivers

(e.g., enterprise systems which distribute media to thousands of consumers).

 Bandwidth for this approach could be reduced by authenticating multiple message types from

a single sender using one key chain, rather than using one key chain for each message type.

Table 7.10. TESLA bandwidth summary.

 History buffer size (samples)
5 10 20

Bandwidth increase
due to authentication (bits per second)

263537

250917

245377

Total bandwidth
including CAN protocol overhead (bits per second)

1184004

1170289

1149747

Percent increase in total bandwidth over baseline 147 % 144 % 140 %

History buffer size (samples)

4 6 8 10 12 14 16 18 20 22A
ut

he
nt

ic
at

io
n

ba
nd

w
id

th
 o

ve
rh

ea
d

(b
its

 p
er

 s
ec

on
d)

244000

246000

248000

250000

252000

254000

256000

258000

260000

262000

264000

266000

TESLA

Figure 7.5. TESLA authentication bits per second (no CAN protocol overhead), varying history
buffer size from five samples to twenty samples.

Evaluation - Automotive network 196

History buffer size (samples)

4 6 8 10 12 14 16 18 20 22

T
ot

al
 w

or
kl

oa
d

ba
nd

w
id

th
 (

bi
ts

 p
er

 s
ec

on
d)

1140000

1150000

1160000

1170000

1180000

1190000

TESLA

Figure 7.6. TESLA total bits per second transmitted on CAN bus (includes CAN protocol overhead)

7.4 Master-slave

For our bandwidth analysis for master-slave, we again used the same per-packet assurance levels

and history buffer sizes as other techniques. Table 7.11 shows the MAC tag sizes for each assur-

ance level and history buffer size.

Table 7.11. Master-slave history buffer size, required per-packet assurance, and MAC tag size.
History buffer size

(samples)
Desired failure rate Required per-packet

assurance
MAC tag size (bits)

5
10-9/hr 2-10 11
10-6/hr 2-8 9
10-3/hr 2-6 7

10
10-9/hr 2-5 6
10-6/hr 2-4 5
10-3/hr 2-3 4

20
10-9/hr 2-3 4
10-6/hr 2-2 3
10-3/hr 2-2 3

Evaluation - Automotive network 197

 The master-slave approach described in Section 5 requires that all receivers broadcast a mes-

sage as part of verifying the hash tree broadcast authenticator from the master node. There were

three issues with in applying the master-slave approach to this workload:

• First, the workload does not contain data regarding node control loop execution periods. Thus,

we do not know how often they must verify messages they consume. To resolve this, we as-

sume that all broadcasting nodes execute their control loops at approximately the same pe-

riod as the most frequent message type they broadcast. Thus, the message type from each

node with the shortest broadcast period contains the MAC tag for verifying the hash-tree

broadcast authenticator from the master node.

• Second, we did not allow lower assurance message types to participate in authentication of

higher assurance message types. This limitation was primarily based on the tag sizes for mes-

sages of each assurance level (similar to our application of validity voting in Section 7.2). To

resolve this, we included a message type from the master node for each assurance level (high,

medium, and low assurance message types). For each assurance group that a node consumes

at least one message type from, that node participates in verifying the hash tree broadcast au-

thenticator for that assurance group.

• Third, some nodes did not broadcast messages in the high, medium, or low assurance message

type groups. We treated these nodes as "silent receivers" for those assurance groups that they

did not transmit messages in. We added a message type to the workload for any node that did

not already broadcast a message type within that group. Again, we assume each of these

nodes executes their control loops at approximately the same period as the most frequent

message type they broadcast. Alternatively, there are a few message types in the non-

authenticated group whose data payloads did not already contain the maximum amount of

Evaluation - Automotive network 198

data for a CAN payload. These message types could be moved from the non-authenticated

group to one of the other assurance groups. For simplicity, we did not attempt to move mes-

sage types from the non-authenticated group to another assurance group.

 In addition to resolving these issues, we added a trusted master node and one message type to

carry its confirmation bit and hash-tree broadcast authenticator for each assurance level (three

total message types were added for the master node).

 Tables in Appendix A provide a detailed breakdown of bandwidth required for authentication

and the messages of the workload. Appendix A also identifies the added message types and

which message types carry MAC tags for verification of the hash tree broadcast authenticators.

7.4.1 Master-slave - summary

Table 7.11 summarizes the results of applying master-slave to the automotive network workload.

Figures 7.5 and 7.6 show the decrease in bandwidth as history buffer size increases. The band-

width required specifically for authentication data is extremely small in comparison to that for

other approaches. However, since several message types were added for each assurance level, the

overall bandwidth is about the same as OMPR or validity voting.

Table 7.12. Master-slave bandwidth summary.

 History buffer size (samples)
5 10 20

Bandwidth increase
due to authentication (bits per second)

45153 24980 16221

Total bandwidth
including CAN protocol overhead (bits per second)

707175

638491

606741

Percent increase in total bandwidth over baseline 48 % 33 % 27 %

Evaluation - Automotive network 199

History buffer size (samples)

4 6 8 10 12 14 16 18 20 22A
ut

he
nt

ic
at

io
n

ba
nd

w
id

th
 o

ve
rh

ea
d

(b
its

 p
er

 s
ec

on
d)

10000

15000

20000

25000

30000

35000

40000

45000

50000

Master-slave

Figure 7.7. Authentication bits per second (no CAN protocol overhead), varying history buffer size
from five samples to twenty samples.

History buffer size (samples)

4 6 8 10 12 14 16 18 20 22

T
ot

al
 w

or
kl

oa
d

ba
nd

w
id

th
 (

bi
ts

 p
er

 s
ec

on
d)

600000

620000

640000

660000

680000

700000

720000

Master-slave

Figure 7.8. Total bits per second transmitted on CAN bus (includes CAN protocol overhead)

Evaluation - Automotive network 200

7.5 Discussion

Table 7.13, 7.14, and 7.15 compare all four techniques in terms of the bandwidth required for

authentication, the total bandwidth for the entire workload, and the percent increase in bandwidth

over baseline workload (techniques with lowest values are highlighted). For reference, the base-

line network workload without authentication is 478782 bits per second. After applying all four

techniques, the technique that required the least bandwidth for authentication was master-slave.

However, the technique requiring the least overall total bandwidth for the workload was validity

voting. In this case study, OMPR also required less overall bandwidth than master-slave (for ten

and twenty sample history buffers). The reason that master-slave required a more significant in-

crease in bandwidth than in the elevator case study is that multiple message types had to be add-

ed for verification of the hash tree broadcast authenticators from the master. This illustrates a

fundamental practical limit of master-slave. If nodes do not already broadcast (in this case within

each assurance level), then new messages must be added to carry authenticators. Adding new

message types to carry authenticators for nodes is expensive in terms of bandwidth.

Table 7.13. Comparison of authentication bandwidth (bits per second) overhead as history buffer
size is varied.

Technique History buffer size (samples)
5 10 20

One MAC per receiver 90525 45292 25482
Validity voting 72368 38856 24039
TESLA 263537 250917 245377
Master-slave 45153 24980 16221

Evaluation - Automotive network 201

Table 7.14. Comparison of total bandwidth (bits per second) required for workload (including CAN
protocol overhead) as history buffer size is varied.

Technique History buffer size (samples)
5 10 20

One MAC per receiver 745662 629660 588735
Validity voting 702694 619584 587702
TESLA 1184004 1170289 1149747
Master-slave 707175 638491 606741

Table 7.15. Comparison of percent increase in total bandwidth required for workload (including
CAN protocol overhead) as history buffer size is varied.

Technique History buffer size (samples)
5 10 20

One MAC per receiver 56 % 32 % 23 %
Validity voting 47 % 29 % 23 %
TESLA 147 % 144 % 140 %
Master-slave 48 % 33 % 27 %

History buffer size (samples)

4 6 8 10 12 14 16 18 20 22A
ut

he
nt

ic
at

io
n

ba
nd

w
id

th
 o

ve
rh

ea
d

(b
its

 p
er

 s
ec

on
d)

0

50000

100000

150000

200000

250000

300000

One MAC per receiver
Validity voting
TESLA
Master-slave

Figure 7.7. All techniques, authentication bits per second (no CAN protocol overhead) for all au-
thentication techniques, varying history buffer size from five samples to twenty samples.

Evaluation - Automotive network 202

History buffer size (samples)

4 6 8 10 12 14 16 18 20 22

T
ot

al
 w

or
kl

oa
d

ba
nd

w
id

th
 (

bi
ts

 p
er

 s
ec

on
d)

400000

600000

800000

1000000

1200000

One MAC per receiver
Validity voting
TESLA
Master-slave
Baseline workload

Figure 7.8. All techniques, total bits per second transmitted on CAN bus for all authentication
techniques (includes CAN protocol overhead)

 While one MAC per receiver had the third highest authentication bandwidth overhead, the

total bandwidth required for the workload was similar to that validity voting. While this work-

load did not allow voting on all message types, it is reasonable to assume that votes are likely to

be limited in some industry network workloads since they are not necessarily designed to support

validity voting. However, in some cases, adding new authentication channels between nodes may

introduce more options for votes which outweigh the cost of adding a single MAC tag. In work-

loads where nodes in the network receive a majority of message types, more options will exist

for votes.

 These results show that for systems whose sampling rates allow authentication over ten to

twenty message samples, one MAC per receiver is likely the best option of the four presented

here. Validity voting might reduce bandwidth consumption, but it also carries a disadvantage of

reduced increased sensitivity to packet loss, and node compromise or failure. Master-slave also

Evaluation - Automotive network 203

has similar bandwidth consumption, but carries the disadvantage of being very sensitive to pack-

et losses (illustrated in Section 6).

 In this analysis, TESLA increases the bandwidth required for the workload to well over the

one megabit per second bandwidth limit of the CAN protocol. This indicates that it might not be

suitable for a typical embedded network workload where bandwidth is extremely limited. TES-

LA would be best applied if the application required large numbers of receivers (hundreds or

thousands) or required strong per-packet assurances for event-triggered messages instead of pe-

riodic messages. Reducing the number of keys transmitted by each sender could significantly

decrease the authentication bandwidth overhead.

 This analysis also illustrates one of the disadvantages of the master-slave approach using

hash-tree broadcast authentication: silent receivers require the addition of new messages to be

broadcast on the network. Adding new message types to the network requires significant band-

width. Thus, this approach did not perform well in terms of bandwidth. The analysis of the eleva-

tor system in Section 6 shows an example where the network has no silent receivers.

7.5.1 Limitations

The primary limitation of this analysis is that the workload included very limited information

about the system being analyzed. However, the workload provided almost all information re-

quired to apply our time-triggered authentication approach in conjunction with each of the four

multicast authentication techniques. With further information, selection of parameters for time-

triggered authentication could be improved. This limitation required assumptions about per-

packet assurance levels for all techniques. For TESLA, we did not explore possible tradeoffs for

maintaining and sending fewer key chains for each sender. In master-slave, we also had to make

Evaluation - Automotive network 204

assumptions about control loop execution periods to make reasonable estimates of how often

each node would have to participate in verifying the hash tree broadcast authenticators.

 Another limitation is that we do not analyze the resulting workload (with authenticators) in

terms of schedulability. All techniques increase the bandwidth required for the workload signifi-

cantly. Such increases in bandwidth are unavoidable if the system must be protected from mas-

querade attacks intended to maliciously induce system failures. Future work may include analy-

sis of the impacts of authentication techniques on schedulability.

Technique modifications and variations 205

8 Technique modifications and variations

This section describes some modifications and alternatives for some of the multicast authentica-

tion techniques used in this work. These ideas were not implemented. We leave implementation

of each variation along with associated analyses for future work.

8.1 OMPR - Shared keys within groups

One of limitations of using OMPR is that the processing and authentication bandwidth scales li-

nearly with the number of receivers. One way to address this limitation is to reduce the number

of MAC tags to be computed of a message type by grouping receivers. A set of receivers might

be grouped together based on criticality or function. Each group shares one symmetric key used

for communication within the group and shares a different key for each external group to be

communicated with.

 For example, if partitioning by criticality, the system designer might partition the nodes in a

network into critical and non-critical nodes. In this case, at most two MAC tags are required for

any broadcast message. Since no node in the non-critical group knows the key shared among the

critical nodes, a non-critical node cannot spoof messages (maliciously or accidentally) to a node

in the critical group.

 This may be useful if a security analysis determines that the most likely node to be compro-

mised does not directly control safety critical functionality (e.g., an Internet or wireless gateway

node), or physical access to critical nodes is limited to trusted personnel. Nodes that are more

likely to be compromised can be partitioned into another group that does not have the required

key material to authenticate messages among critical nodes.

Technique modifications and variations 206

 The benefit of this approach is that it can decrease the number of MAC tags required per

packet (in our example, at most two tags per packet are needed). This reduces processing time as

well as authentication bandwidth. Nodes can be partitioned into any number of groups. Further,

communications between groups can be limited based on key material held (as illustrated in our

example).

 The limitation of this approach is that by sharing symmetric keys among a set of nodes, it is

no longer possible to determine which node within a group actually broadcast a message. This

concern is not limited to a compromised node spoofing messages within a group. In the event

that a node suffers a non-malicious failure and accidentally masquerades as another node, it may

no longer be possible to identify that node for fault isolation purposes.

8.2 OMPR - Tuning on a per-message type and per-receiver basis

OMPR allows tuning of time-triggered authentication parameters on a per-message type and per-

receiver basis. When selecting the number of authentication bits per MAC tag and the number of

message samples to verify across, each message type and receiver can be considered individual-

ly. The per-packet assurance requirements may differ among receivers for the same message

type.

 When tuning on a per-receiver basis, a system designer can examine what functionality each

message type is used to support (e.g., is it used by a safety-critical function, system performance,

or convenience feature). For example, a message containing the vehicle speed may be used in

optimizing system performance, but is also consumed by nodes such as door locks (doors might

automatically lock once a vehicle reaches a certain speed) or the infotainment system (displaying

current vehicle performance characteristics). A system designer can devote more authentication

Technique modifications and variations 207

bits in a data payload for receivers that are optimizing performance characteristics, while other

receivers like the infotainment system might only require a single bit to be able to eventually

detect a masquerade attack. Similarly, those receivers might verify state changes and actuations

over differing numbers of message samples based on timing requirements.

 The system designer can also divide message types into different criticality levels (similar to

the partitioning in Section 7); each set may have different requirements for failure rates. Time-

triggered authentication parameters can then be selected for each message type.

 The benefit of tuning on a per-message type or per-receiver basis is that it allows more effi-

cient use of system resources (which are likely already limited in an embedded control network).

This approach can also improve system performance (e.g., creating equal state transition delays

for two message types that are broadcast at different periods).

 The limitation of such tuning is that it can significantly increase design complexity. Further,

this complexity increases again if validity voting is applied to the design, introducing new tra-

deoff parameters.

8.3 Validity voting - Tolerating asymmetric packet loss

One of the limitations of the baseline validity voting scheme described in Section 4 is that

asymmetric packet losses can cause invalid authenticators, creating a false alarm of a masque-

rade attack. Asymmetric packet losses can cause one node to receive a correctly formatted pack-

et, while another node receives a malformed packet. The first node will record the value in the

packet, while the second node will record the packet as lost. If these two nodes participate in va-

lidity voting on the observed message, they will not be able to compute a correct MAC tag (since

Technique modifications and variations 208

they are computing over a different set of values). Thus, they might misinterpret an otherwise

non-malicious fault as a malicious one.

 In baseline validity voting (described in Section 4), an invalid authenticator due to asymme-

tric packet loss can occur in two cases. Consider two receivers N1 and N2 that consume a mes-

sage m. Node N1 then broadcasts a vote mv that N2 consumes. An asymmetric omissive fault af-

fecting message m can cause N2's verification result of mv to be invalid.

• Case 1: N1 drops message m and N2 correctly receives m. N1 will record m as a predefined

error code 'lost' while N2 records the actual value. When verifying mv, N2 assumes that N1

computed its authenticators over the same set of message values that N2 observed from the

network. In baseline validity voting, N1 does not have a channel to communicate to N2 which

messages were lost. Thus, N2 will record both m and mv as invalid.

• Case 2: N1 correctly receives message m and N2 drops m. N1 records the actual value of mes-

sage m, while N2 records m as 'lost.' Again, N2 has no way of knowing that N1 did not lose

the value (even if N2 did know that N1 did not lose m, N2 still would not know the value of

m). Thus, N2 will also record m and mv as invalid in this case as well.

 To address case 1, we propose each voter include a loss vector in the payload of its transmit-

ted messages. The loss vector contains one bit for each message value being voted upon, indicat-

ing whether each message value was recorded as 'lost,' or received correctly. In our example for

case 1, this would create a channel by which N1 can communicate the set of message values that

were lost to N2.

Technique modifications and variations 209

 Loss vectors work the same way validity vectors work in Section 4. When transmitting a mes-

sage, for each message value inputted to the MAC functions that is 'lost', the sender sets the cor-

responding bit in the loss vector to a '1.' If the sender recorded the message as invalid (with a '0'

in the validity vector), then the corresponding loss vector bit should be a '0' as well. When re-

ceiving and verifying a message, for any bit that is a '1' in the loss vector, the receiver replaces

that message value input to the MAC function with the 'lost' error code. The receiver's computed

MAC tag will then match the sender's since each was computed over the same set of values.

 Loss vectors require additional bits to be placed within a data payload, but prevents one case

in which an asymmetric packet causes an invalid MAC tag.

 Addressing case 2 is more difficult, because no backwards channel (from N2 to N1) exists for

N2 to communicate to N1 the set of messages N2 did not receive. One way to handle this case is

for N2 to record mv as 'lost' (along with all other packets containing votes on m) in addition to

recording m as 'lost.' This method will cause all values that would normally be recorded as

invalid (using baseline validity voting) to be instead recorded as 'lost.' This includes all the mes-

sages being voted upon by mv, in addition to m. One exception to this however, is that if m was

lost, but mv indicates m was invalid, then N2 should still reject m as invalid.

 A disadvantage of addressing case 2 in this way is that it increases the number of packet

losses in the event of a symmetric packet loss. Baseline validity voting allows receivers to con-

tinue authenticating voting messages despite symmetric packet losses affecting the messages be-

ing voted upon. However, with this modification, a receiver drops any message carrying votes

for any message suffering any type of packet loss.

Technique modifications and variations 210

 Another option (though not recommended) to handle asymmetric packet losses might be for a

receiver to speculate on which packets have been lost asymmetrically. However, this is would

also increase the probability of successful packet forgery by an attacker. If a receiver detects an

invalid MAC tag, the receiver can sequentially replace each message value being voted upon by

the 'lost' error code. If one combination of values and 'lost' error codes results in a valid MAC

tag, this might indicate an asymmetric loss has occurred. This requires up to 2x MAC function

computations to check all possible combinations, where x is the number of message values being

voted upon. The disadvantage is that this speculation increases the probability of a successful

packet forgery by an attacker. During an actual masquerade attack, a receiver might misinterpret

a forgery attempt as an asymmetric packet loss for any of those 2x combinations. Each combina-

tion inputs to a MAC function has a 2-b probability of producing a valid authenticator, where b is

the number of MAC tag bits. Another issue is that multiple speculated combinations might result

in valid MAC tags. The receiver would then have to guess which is the correct

 In future work, these approaches should be analyzed to ensure that an attacker cannot exploit

these mechanisms to successfully inject message forgeries undetected.

8.4 Validity voting - Improving tolerance to packet loss and node failure

In this section, we propose two methods to improve tolerance to packet loss and node failures. If

a message carrying votes is dropped, then all message values being voted upon will also be

dropped by receivers. A persistent fault could permanently prevent any authentication of mul-

tiple message types.

 The techniques in this section could also be applied to our master-slave approach using hash

tree broadcast authentication to reduce the impact of packet losses and node failures.

Technique modifications and variations 211

8.4.1 Assume a fixed level of packet loss

To allow validity voting more tolerance to permanent node failures, nodes could accept a valid

packet after receiving a fraction of the confirmation packets carrying votes. However, accepting

a value with only partial confirmation from the rest of the group increases the probability of per-

packet forgery, requiring more bits in MAC tags to compensate.

 To tolerate at most y lost votes, a receiver accepts a packet as valid so long as no more than y

confirmation packets carrying votes are lost (from transient or permanent faults). If the receiver

drops more than y confirmations for a value, then the receiver drops the value being voted upon

as lost. To tolerate this fixed level of packet loss, a system designer will have to increase the

number of authentication bits per MAC tag or increase the number of messages to authenticate

over.

 We do not attempt to assign a specific probability of successful forgery for this approach,

leaving this analysis for future work.

 Using this approach also grants an attacker new options when attempting to forge a packet.

Typically, in baseline validity voting with z voting nodes, a node must receive all z votes before

a message can be recorded as valid. Thus, an attacker would have to successfully forge messages

to or from all z voting nodes. However, by expecting y of these z votes to be lost, this approach

effectively grants an attacker y free tries to forge MAC tags in a sender's initial packet containing

the value being voted upon. The attacker first attempts to forge a sufficient number of tags cor-

rect in the initial value packet. The attacker then examines the validity bits in confirmation pack-

ets containing votes to determine how many initial guesses were correct and how many more are

needed. If the attacker gets an insufficient number of tags correct in the initial value packet, it

attempts to forge a sufficient number of the confirmation packets to force the value to be ac-

Technique modifications and variations 212

cepted by the targeted receiver. The attacker can drop up to y confirmation packets that indicat-

ing the initial forgery attempt for that tag failed. Thus, a system designer will need to use more

bits per MAC tag or verify state changes and actuations over more message samples.

 The benefit of this method is that the number of authentication rounds remains constant for

time-triggered authentication. The disadvantage is that the number of lost packets tolerated is

fixed, limiting the system to suboptimal performance. The receiver gets no benefit from any ad-

ditional confirmations past those expected. Also, if more confirmation packets are lost than the

maximum tolerated number, then the packet containing the value being voted upon is still rec-

orded as lost.

8.4.2 Group membership to remove sources of failure

As an additional optional service on top of authentication, we can monitor each message type

and remove those that repeatedly interfere in the voting process using group membership tech-

niques. Typically, group membership techniques allow a group of nodes to agree on the subset of

those nodes which are present and operating correctly [Cristian88]. For validity voting, we can

use group membership to determine the set of correct and present message types in the schedule

in addition to the sending nodes themselves. A message type may interfere with voting if it is

repeatedly dropped or is repeatedly invalid (e.g., from a masquerade fault). Because the transmit-

ter of a message type might not be the source of the fault, nodes remove message types from va-

lidity voting as a form of task reconfiguration after agreeing on the set of correctly operating

nodes.

 The Multicomputer Architecture for Fault Tolerance (MAFT) provides a group membership

service that can be used to monitor and remove faulty message types in addition to faulty nodes

Technique modifications and variations 213

[Kiechafer98]. In MAFT, nodes execute the membership service at periodic intervals. To track

the faulty behaviors of other nodes, each node keeps two penalty counters for each other node

based upon their message traffic. A base penalty counter (BPC) indicates the current value of

accrued penalties for every node at the point of the last membership period. An incremental pe-

nalty counter (IPC) contains a proposed penalty assessment for each node based on detected er-

rors since the last membership period. At the beginning of each membership period, all nodes

exchange and reach Byzantine agreement on these counters using an Interactive Consistency al-

gorithm (e.g., [Pease80]). Once completed, each node compares the new BPC values to an exclu-

sion threshold and then broadcasts a new suggested membership. Nodes perform a second execu-

tion of the Interactive Consistency algorithm to agree upon the new membership of the group.

 The IPC can be incremented for any faulty behavior defined for the system. For validity vot-

ing, a receiver could increment a message type's IPC error counter for any reason which may in-

terfere with voting. For example, the IPC could be incremented for packet loss, invalid authenti-

cators, or disagreement with authentication results for messages voted upon.

 Repeatedly dropped packets of a particular message type may indicate the node that broad-

casts the message type has silently failed or persistent network interference against that message

type. Removing the affected message types from the voting scheme would prevent those mes-

sage types from repeatedly causing other message types to be lost.

 Similarly, invalid authenticators might indicate a particular message type is targeted by mas-

querade attacks or affected by persistent asymmetric packet losses. Removing message types that

are repeatedly invalid from the voting process prevents additional non-targeted message types

from being repeatedly invalidated.

Technique modifications and variations 214

 If a voting node repeatedly disagrees with other voters, it may indicate that the node has suf-

fered some failure. For example, it may always indicate samples of some message type are

invalid, when all other voters indicate they are valid. Conversely, a majority of nodes might re-

peatedly marked the values of a message type as invalid due to masquerade faults, but one of the

voting nodes repeatedly broadcasts a positive confirmation with a correct authenticator. These

two cases might also indicate a node has been compromised either to propagate message forge-

ries or create a denial of service attack.

 This list of reasons to increment error counters is not intended to be exhaustive. There may be

other types of observable faults that would warrant incrementing an error counter.

 Error counters can also be maintained for each node in addition to message types. MAFT de-

scribes how to maintain error counters on a node-by-node basis to determine which nodes are

present and operating correctly. We do not explore tracking errors on a per-node basis in this

work.

 Periodically, group members exchange error counters, to determine if message types should

be removed from the voting scheme. Once nodes exchange and agree upon error counters, each

node proposes a new node membership and list of correctly operating message types. Nodes vote

to remove any node or message type whose counter exceed some predefined exclusion threshold.

If a node is found to be faulty during the membership exchanges, the accusing nodes might also

vote to remove any message types originating from the offending node from voting. Nodes agree

on these two lists via an Interactive Consistency algorithm. Once completed, nodes remove any

node convicted as faulty from membership, and reconfigure the number of votes to remove any

message type considered to be faulty. The group will also have to agree on new time-triggered

Technique modifications and variations 215

authentication parameters (bits per MAC tag and number of message samples to authenticate

across).

 The main benefit of using group membership in conjunction with validity voting is that it al-

lows a system to recover from permanent (or persistent) faults that would prevent authentication

of messages. The approach is limited in that it cannot identify and remove faulty nodes or mes-

sage types immediately, and executing the membership service will require additional processing

and bandwidth. Further, the messages related to the Interactive Consistency algorithm must also

be authenticated using a scheme that will provide strong per-packet assurance. We leave further

analysis and implementation for further work. This section is only intended to discuss the possi-

ble benefits and limitations of applying group membership to validity voting.

8.4.3 Variable number of confirmations (not secure)

Allowing a variable number of confirmations is not secure. Instead of assuming a fixed number

of votes will be lost, it is tempting to allow a receiver to act on a variable number of votes. This

would potentially allow a receiver to act on a particular sample of a message type with more or

less assurance that it is valid, depending on the number of positive votes received.

 However, using the same attack listed above for a fixed level of packet loss, an attacker can

simply examine which forgeries on the initial packet containing a value succeeded, and drop any

confirmation packets that contain a negative vote. Thus, allowing a variable number of confirma-

tion packets grants an attacker up to z free tries to forge votes. It does not necessarily allow a re-

ceiver to detect that votes were tampered with.

Technique modifications and variations 216

8.5 TESLA - Using fewer key chains

In some systems, a system designer can perform tradeoffs for TESLA with respect to the number

of key chains that each node maintains. In both case studies, we assumed that each sender would

maintain a distinct key chain for authenticating each message type it broadcasts.

 In the elevator control network case study, no tradeoffs were possible; all nodes only broad-

cast a single message type. Thus, each node maintained a single key chain. In the automotive

case study, we did not have sufficient system information to perform a tradeoff analysis to de-

termine whether one key chain per message type, one key chain per sender, or some number in

between would be best. Thus, for simplicity, we limited our analysis to one key chain per mes-

sage type.

 However, in the automotive case study, transmitting fewer keys would reduce the added

bandwidth for authentication. In Section 5.2.4, we briefly discussed tradeoffs associated with

maintaining different numbers of key chains in each transmitting node. In the automotive exam-

ple, maintaining a key chain for each message type increased the number of packets transmitted

on the network. Using fewer key chains could eliminate many of those extra packets.

 In future work, tradeoffs related to key chains should be performed to minimize system re-

sources consumed by authentication while also minimizing the impacts to loss tolerance (e.g.,

avoiding batch authentication of too many message types) and system performance in an embed-

ded control network. Perrig et al. have already explored some aspects related to using different

numbers of key chains (e.g., using different key chains to authenticate messages to receivers

consuming messages at different rates [Perrig00]), though these analyses are not specifically fo-

cused on embedded control networks. Groza and Murvay also explore some tradeoffs of different

Technique modifications and variations 217

numbers of key chains, focusing on memory and processing overhead rather than bandwidth

overhead for authentication [Groza11].

8.6 Master-slave - Using different multicast authentication techniques

The master-slave approach described in Section 5.3 can use any multicast authentication tech-

nique to distribute the master's hash tag to all receivers. The disadvantages of hash tree broadcast

authentication limits its suitability in embedded control network applications. In particular, hash

tree broadcast authentication has high sensitivity to packet loss, node failure, and passive receiv-

ers. The master node could use other multicast authentication techniques (such as OMPR or

TESLA) to attest to the authenticity of a set of messages. System designers can explore the tra-

deoffs associated with each technique to identify a technique that best fits their system con-

straints.

8.7 Multiple techniques in one system

Lastly, it is also possible to use multiple authentication techniques within a single network. In

Section 5, we showed that each of the multicast authentication techniques performs best depend-

ing on the system configuration (e.g., TESLA requires much less bandwidth for hundreds of re-

ceivers than OMPR). Thus, it is useful to identify when one technique may be better suited to

authenticating one message type vs. another.

 For example, consider a case where all message types except one are broadcast to one or two

receivers and require weak per-packet assurance. The last message requires strong per-packet

assurance and is broadcast to fifty receivers. OMPR is best suited for most of the messages, re-

quiring only one or two MAC tags per packet of just a few bits each. However, for the last mes-

Technique modifications and variations 218

sage type, TESLA can be used to provide strong per-packet assurance to the large number of re-

ceivers.

 In our implementations in Sections 6 and 7, we already use both OMPR in addition to validity

voting; OMPR is simply validity voting with zero votes.

 The benefit to this approach is that it allows more efficient use of system resources. However,

using multiple multicast authentication schemes will also increase complexity in the design.

8.8 Alternate response to forgery attempts

Receivers can take any appropriately safe response to invalid packets. Another option is to in-

crease the number of valid packets required for state changes or to update actuators in the event

that invalid authenticators occur. For example, in the baseline time-triggered authentication ap-

proach described in Section 3, a receiver applies each reactive control message input if it is valid,

and takes a safe action for invalid packets. Alternately, if an invalid packet is received, then a

receiver can wait for two consistent valid packets before applying that input to an actuator. Simi-

larly, a state change may occur after n consistent packets that are valid. If an invalid authentica-

tor is received, then a receiver may require more than n consistent packets before committing to

subsequent state change commands.

8.9 Composability with fault tolerance techniques

In this work, we have shown several ways to compose authentication with fault tolerance tech-

niques. Assuming secure cryptographic functions, an attacker can only successfully forge a MAC

tag randomly and independently of other MAC tags. This key property enables the use of many

fault tolerance techniques in conjunction with authentication.

Technique modifications and variations 219

 For example, Section 3 introduces the idea of filtering over multiple authenticated input sam-

ples which drive state changes and actuations. Section 4 shows how to vote on verification re-

sults of a message sample among multiple receivers.

 Another approach that could be used is retransmitting a value multiple times for stronger as-

surance. A receiver could verify a repeated message sample multiple times, each with their own

authenticators to strengthen per-packet assurance.

 Error detection codes can also be used in conjunction with authentication to detect non-

malicious transmission errors. Communication protocols often already incorporate error detec-

tion codes. We use these error detection codes to differentiate between malicious and non-

malicious faults affecting packets.

 Section 8.4 shows an example application of group membership to remove nodes or message

types which interfere with authentication. However, group membership protocol exchanges like-

ly require strong assurance, so an attacker cannot force a node to agree to an incorrect member-

ship list.

8.10 Summary

This chapter discusses several possible modifications or variations of the techniques proposed in

this thesis. For OMPR, we discuss the possibility of sharing keys among groups of nodes to re-

duce authentication overhead, and tuning time-triggered authentication parameters on a per-

receiver and per-message type basis. For validity voting, we discuss methods to improve toler-

ance to packet loss and to prevent an asymmetric packet loss from producing in invalid authenti-

cators. For TESLA, we discuss using fewer key chains. For master-slave, other multicast authen-

tication techniques can be used to distribute the master's confirmation of message validity. We

Technique modifications and variations 220

also discuss the possibility of combining multiple multicast authentication techniques within an

embedded control network. Finally, we discuss alternate responses to forgery attempts and com-

posability with fault tolerance techniques.

Conclusion 221

9 Conclusion

A successful masquerade attack in an embedded control network can make a system unsafe in

nearly limitless ways; multicast authentication is needed to prevent these attacks. This thesis has

presented time-triggered authentication: a new method for efficiently authenticating periodic

messages in an embedded control network to prevent masquerade and replay attacks. We first

apply time-triggered authentication to OMPR, our baseline multicast authentication scheme. We

then improved one MAC per receiver using validity voting: a method which uses voting to make

more efficient use of authentication bandwidth or reduce application level latency. We also

showed how to adapt TESLA and hash tree broadcast authentication (using a trusted master

node) to time-triggered authentication, and compared the four multicast authentication tech-

niques. We demonstrated the applicability of time-triggered authentication in conjunction with

each of the four techniques in two representative embedded control network workloads.

9.1 Thesis contributions

To address masquerade and replay attacks in embedded control networks, this thesis has made

the following contributions:

9.1.1 Time-triggered authentication using OMPR

This thesis first proposes time-triggered authentication in Chapter 3. The main idea behind this

approach is that individual packets in an embedded control network typically do not need strong

assurances of authenticity (i.e., hundreds or thousands of authentication bits). Instead, time-

triggered authentication can provide strong system level assurance of the authenticity of state

Conclusion 222

change and actuation commands by verifying multiple message samples, each with weak per-

packet assurances of authenticity (i.e., MAC tags truncated to just a few bits).

 Time-triggered authentication takes advantage of the existing temporal redundancy in embed-

ded control networks to enable verification across multiple periodic message samples; system

state variables and sensor inputs are typically sampled faster than the time constraints of control

stability requirements. This temporal redundancy grants the system tolerance to transient faults.

An undetected fault affecting a single message sample is unlikely to cause the system to fail.

More likely, it will result in some vibration, slight delay in updating control outputs, or less

smooth control.

 We first combine time-triggered authentication with OMPR, our baseline multicast authen-

tication technique. A sender computes one truncated MAC tag for each receiver of a message. In

Chapter 3, we show that OMPR can produce authenticators just a few bytes in size for embedded

control networks requiring weak per-packet assurances and few receivers. We also verified the

probability of forgery success for state-changing and reactive control message types using simu-

lated masquerade attacks.

 One of the main benefits of time-triggered authentication is that it enables a tradeoff among

authentication bits per packet, application level latency, tolerance to invalid MAC tags, and

probability of induced system failure. Using OMPR granted this approach perfect tolerance to

packet losses, node compromise, and node failure. The main limitations are that time-triggered

authentication only provides advantage to the degree of temporal redundancy in message sam-

pling rates and the authentication overhead of OMPR scales linearly with respect to per-packet

assurance and number of receivers.

Conclusion 223

9.1.2 Validity voting

We proposed validity voting as an improvement to OMPR. The main idea behind this approach

is that forging multiple MAC tags to a group of receivers has lower probability of success than

only forging one MAC tag to a single receiver. Validity voting takes advantage of the multiple

MAC tags used in OMPR; forgery attempts on each MAC tag in OMPR succeed randomly and

independently of one another. This property allows a group of nodes to cross check the validity

of a message value that was authenticated to each of them using OMPR. In validity voting, each

node in the group broadcasts an authenticated bit to the other nodes in the group attesting to

whether a particular message value was valid or not. Once all nodes have transmitted their votes,

each node takes a unanimous vote on the authenticity of the message value. Using this attestation

process reduces the probability that an attacker will successfully forge a message value, for a

given number of MAC tag bits.

 In Chapter 4, we showed how to define votes for a set of message types in a network work-

load, how to implement validity voting, and how to modify the approach to tolerate a fixed num-

ber of compromised voters. We also model-checked this approach using the security model

checker AVISPA. Lastly, we simulated the probability of successful forgery using simulated at-

tacks on messages verified with one to four votes.

 Validity voting adds new tradeoffs to time-triggered authentication. Increasing the number of

votes allows the system designer to make more efficient use of authentication bandwidth, either

decreasing the number of bit per MAC tag or the number of message samples that must be veri-

fied over in time-triggered authentication. However, increasing the number of votes also de-

creases the loss tolerance of this approach. If a message containing a vote suffers a transmission

Conclusion 224

error, a receiver also drops any message value that was voted upon. Further, a single invalid au-

thenticator will cause a receiver to reject any messages being voted upon as invalid as well.

 This approach also has several limitations. Validity voting only handles a fixed number of

compromised nodes (set at design time). If the number of compromised nodes exceeds this num-

ber, an attacker will have a greater probability of successfully forging messages. The baseline

version of validity voting in Chapter 4 also requires modifications to address asymmetric packet

losses and node failures. These are discussed in Chapter 8.

9.1.3 Comparisons with TESLA and hash tree broadcast authentication

We compared OMPR and validity voting to two existing multicast authentication schemes that

also use symmetric authentication functions: TESLA and master-slave (hash tree broadcast au-

thentication using a trusted master). In Chapter 5, we first described how to apply TESLA and

master-slave in conjunction with time-triggered authentication. This illustrates one way to adapt

TESLA and hash tree broadcast authentication for use in an embedded control network. We then

compared these four techniques in terms of scalability with respect to per-packet assurance, sca-

lability with respect to number of receivers, sensitivity to packet loss, and tolerance to compro-

mised or failed nodes. These comparisons illustrate tradeoffs among techniques which can be

integrated with time-triggered authentication.

 In this tradeoff analysis, we showed that the most bandwidth efficient approach depends pri-

marily on the number of receivers, and is influenced to a lesser extent by per-packet assurance

levels in networks where no trusted master is available. OMPR and validity voting with few

votes are the most bandwidth efficient approaches for networks characterized with few receivers

and weak per-packet assurance. TESLA and validity voting using many votes are the most

bandwidth efficient approaches for very large numbers of receivers or strong per-packet assur-

Conclusion 225

ance levels. A master-slave approach is also very bandwidth efficient, assuming a trusted master

node is available. In this analysis we experimentally demonstrated that OMPR and TESLA were

least sensitive to packet losses. Master-slave was the most sensitive to packet loss; a single

transmission error can cause an entire message rounds worth of values to be dropped. Validity

voting's sensitivity to packet loss depended on the number of votes. A single transmission error

forced a receiver to drop more packets as the number of votes increased. We also showed that

despite some approaches being more sensitive to transient packet losses, all approaches are ro-

bust and recover automatically from transient faults. Using hash tree broadcast authentication in

our master-slave approach also resulted in sensitivity to passive nodes; new messages must be

added for any passive receiver that does not already broadcast a message of its own. Lastly we

find approaches with no inter-node dependencies for authentication, such as one MAC per re-

ceiver and TESLA, are most robust to node compromises or failures. The master node in master-

slave is a single point of failure.

9.1.4 Two case studies

We demonstrated the applicability of time-triggered authentication in conjunction with all four

techniques using two representative network workloads. First, we implemented these techniques

in a simulated distributed elevator control network and examined the impact on bandwidth and

system performance. Second, we applied these techniques to an industry automotive workload

and examined the impacts on bandwidth.

 In the elevator, we first examined each state transition in the door controllers and drive con-

troller to determine the effects of a masquerade attack to force or deny each transition. We iden-

tified attacks which could force the system to violate safety requirements and the associated mes-

sage types that would be targeted for those attacks. We identified the minimum and maximum

Conclusion 226

time-triggered authentication parameters for per-packet assurance and number of messages to

verify over (history buffer size). We used these parameters to determine the additional bandwidth

required for each authentication technique. Master-slave added the least bandwidth overhead for

authentication, followed by validity voting and OMPR. TESLA added the most, due to the re-

quirement to transmit key material for each message to verify. We also experimentally tested the

effects of each set of parameters on delays in state transitions, and delays in average passenger

delivery times. We also applied varying levels of symmetric packet losses and examined the re-

sulting effects on state transition delays and passenger delivery times. We observed that varying

the history buffer size created a similar delay in state transitions for all four techniques. Similar-

ly, passenger delivery times increased by approximately the same amount for all techniques.

However, when applying symmetric packet losses, OMPR and TESLA had the least increase in

state transition and delivery time delays. These delays increased correspondingly with the num-

ber of inter-packet dependencies for validity voting. Master-slave suffered the worst delays,

since so many packets could be lost due to a single transmission error. We also performed simu-

lated masquerade attacks to confirm the forgery success rate matches the expectations from the

equations in Chapters 3 and 4.

 In the automotive workload, message types were divided into four groups: high assurance,

medium assurance, low assurance, and no authentication applied. For the high, medium, and low

message types we assigned failure rate requirements typical to safety-critical systems. We then

examined the authentication bandwidth overhead for each technique as we varied the time-

triggered authentication parameters. We observed that validity voting had the least authentication

bandwidth overhead, followed by OMPR. Master-slave required additional message types to be

Conclusion 227

added to transmit MAC tags for verification of the master's hash value. TESLA required the

highest bandwidth overhead, again, due to the key material being transmitted.

9.2 Future work

This work is a first step in identifying multicast authentication techniques that conform to em-

bedded control network design constraints. There are several paths that future work could take

from this work.

 First, this work only discusses methods to provide message authentication and data integrity;

embedded control networks will also likely require approaches for key management, tamper re-

sistance, secrecy, privacy, access control, and prevention of denial of service.

 Second, Chapter 8 discusses numerous possibilities for modifications and variations of the

techniques we used in this work. For example, partitioning nodes into groups for sharing authen-

tication keys might be very useful in embedded networks where compromise of critical nodes

can be restricted in some fashion. This approach is similar to some existing fault tolerance me-

thods [Morris03]. Also, using TESLA with fewer key transmissions could amortize authentica-

tion bandwidth overhead over multiple message types.

 This work also could not explore all of the possible design space for embedded control net-

works. The case studies in this work were limited to embedded control networks using the CAN

protocol. Other protocols, such as FlexRay, offer greater bandwidth and may be able to tolerate

higher authentication overhead. Further, our tradeoff analyses focused primarily on authentica-

tion bandwidth overhead and loss tolerance. Future work could include analysis of processing

and memory requirements and associated impacts on system performance. Implementations and

analyses on other systems using embedded control networks may also reveal new design consid-

erations specific to those types of systems.

Conclusion 228

 In this work, all time-triggered authentication and voting parameters were selected by hand.

Many of the associated tasks could be automated using tools to significantly reduce the time it

takes to perform these analyses. This would be especially useful for updating these parameters

during system development. For example, over many design iterations message types might be

added or removed, senders and receivers of message types might change, or system characteris-

tics could change that affect the maximum number of message samples that can be authenticated

across.

 Lastly, we limited our analyses to multicast authentication approaches that use symmetric au-

thenticators that can be truncated. One option for future work would be to create MAC functions

that are optimized to produce outputs of just a few bits in size (our approach throws away a ma-

jority of the MAC output). Another research path is to explore digital signatures or one-time

digital signatures which could produce outputs a few bits in size without compromising the secu-

rity of the cryptographic functions or key material.

References 229

10 References

[AVISPA12] The AVISPA Project. Retrieved April 2012 from http://avispa-project.org/.

[Azadmanesh00] M. Azadmanesh and R. Kieckhafer. Exploiting omissive faults in
synchronous approximate agreement. IEEE Transactions on Computers,
49(10):1031–1042, 2000.

[Bergadano00] F. Bergadano, D. Cavagnino, and B. Crispo. Individual Single-Source
Authentication on the MBONE. In Proc. of the 2000 IEEE Int’l Conf. on
Multimedia and Expo, volume 1, pp. 541–544. IEEE, 2000.

[Bosch91] R. Bosch GmbH, CAN Specification, Version 2, Sept. 1991.

[Brown00] M. Brown, D. Cheung, D. Hankerson, J. L. Hernandez, M. Kirkup, and A.
Menezes. PGP in constrained wireless devices. In SSYM’00: Proc. of the 9th
Conf. on USENIX Security Symposium, p. 19, Berkeley, CA, USA, 2000.
USENIX Association.

[Canetti99] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas.
Multicast security: a taxonomy and some efficient constructions. In
INFOCOM ’99: Proc. 18th Annual Joint Conf. of the IEEE Computer and
Communications Societies, volume 2, pp. 708–716. IEEE, 1999.

[Chan08] H. Chan and A. Perrig. Efficient security primitives derived from a secure
aggregation algorithm. In Proc. ACM Conf. on Computer and
Communications Security, pp. 521–534, 2008.

[Chan10] H. Chan and A. Perrig. Round-effcient broadcast authentication protocols for
fixed topology classes. In Proc. of the IEEE Symposium on Security and
Privacy, pp. 257–272, 2010.

[Chavez05] M. L. Chavez, C. H. Rosete, and F. R. Henriquez. Achieving Confidentiality
Security Service for CAN. In CONIELECOMP ’05: Proc. of the 15th Int’l
Conf. on Electronics, Communications and Computers, pp. 166–170. IEEE,
2005.

[Cristian88] F. Cristian. Agreeing on who is present and who is absent in a synchronous
distributed system. In Proc. of the Eighteenth Int’l Symp. on Fault-Tolerant
Computing, pp. 206 –211. IEEE, 1988.

[Diffie76] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, vol. 22, 1976.

References 230

[Dolev81] D. Dolev and A. C. Yao. On the security of public key protocols. In SFCS
’81: Proc. of the 22nd Annual Symp. on Foundations of Computer Science,
pp. 350–357. IEEE, 1981.

[Even89] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. In
CRYPTO ’89: Proc. on Advances in cryptology, pp. 263–275. Springer-
Verlag, 1989.

[Ewing10] G. Ewing. Reverse Engineering a CRC Algorithm. Retrieved April 2012 from
http://www.cosc.canterbury.ac.nz/greg.ewing/essays/CRC-Reverse-
Engineering.html. March 2010.

[FIPS 180-3] Federal Information Processing Standards Publication (FIPS PUB) 180-3.
Secure Hash Standard (SHS). October 2008.

[FIPS 198-1] Federal Information Processing Standards Publication (FIPS PUB) 198-1.
The Keyed-Hash Message Authentication Code (HMAC). July 2008.

[FlexRay05] FlexRay Consortium. FlexRay Communications System Protocol
Specification, Version 2.1, Revision A, December 2005.

[Freescale12] Freescale Semiconductor. S12XD Product Summary Page. Retrieved April
2012 from http://www.freescale.com/.

[Franklin02] G. Franklin, J. Powell, and A. Emami-Naeini. Feedback Control of Dynamic
Systems. Prentice Hall, Upper Saddle River, NJ, USA, 2002.

[Führer00] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel and M.Walther.
Time Triggered Communication on CAN (Time Triggered CAN - TTCAN).
7th International CAN Conference (ICC), 2000.

[Ganeriwal05] S. Ganeriwal, S Capkun, C.-C. Han, and M. B. Srivastava. Secure time
synchronization service for sensor networks. In WiSe ’05: Proc. of the 4th
ACM workshop on Wireless security, pp. 97–106. ACM, 2005.

[Gennaro97] R. Gennaro and P. Rohatgi. How to Sign Digital Streams. In CRYPTO ’97:
Proc. of the 17th Annual Int’l Cryptology Conf. on Advances in Cryptology,
pp. 180–197. Springer-Verlag, 1997.

[Groza11] B. Groza and P. Murvay. Higher Layer Authentication for Broadcast in
Controller Area Networks. In SECRYPT '11: Proc. of the Int'l Conf. on
Security and Cryptography, pp. 188-197. 2011.

[Groza11_2] B. Groza and P. Murvay. Secure Broadcast with One-Time Signatures in
Controller Area Networks. In ARES '11: Proc. of the Int'l Conf. on
Availability, Reliability, and Security, pp. 188-197. 2011.

References 231

[Herrewege11] A. Van Herrewege, D. Singelée, and I. Verbauwhede. CANAuth - A Simple,
Backward Compatible Broadcast Authentication Protocol for CAN bus. In
ECRYPT Workshop on Lightweight Cryptography 2011, 2011.

[Hoppe07] T. Hoppe and J. Dittman. Sniffng/Replay Attacks on CAN Buses: A
simulated attack on the electric window lift classifed using an adapted CERT
taxonomy. In Proc. of the 2nd Workshop on Embedded Systems Security
(WESS), 2007.

[Hu03] Y. Hu, M. Jakobsson, and A. Perrig. Efficient constructions for one-way hash
chains. In Applied Cryptography and Network Security, pp. 423–441, 2003.

[IEEE610.12] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std
610.12-1990.

[IEC61508] International Electrotechnical Commission. Functional Safety of electrical /
electronic / programmable electronic systems. IEC 61508. 1998.

[Jakobsson02] M. Jakobsson. Fractal hash sequence representation and traversal. In Proc. of
the IEEE Int’l Symp. on Information Theory, page 437. IEEE, 2002.

[Karlof04] C. Karlof, N. Sastry, and D. Wagner. TinySec: a link layer security
architecture for wireless sensor networks. In SenSys ’04: Proc. of the 2nd
Int’l Conf. on Embedded Networked Sensor Systems, pp. 162–175. ACM,
2004.

[Kiechafer98] R. Kiechafer, C. J. Walter, A. M. Finn, P. M. Thambidurai. The MAFT
Architecture for Distributed Fault Tolerance. IEEE Trans. on Computers,
Vol. 37, No. 4, April 1988.

[Koopman12] P. Koopman. Carnegie Mellon University. 18-649 Distributed Embedded
Systems. Retrieved April 2012 from http://www.ece.cmu.edu/ ece649/.

[Koopman05] P. Koopman, J. Morris, and P. Narasimhan. Challenges in Deeply Networked
System Survivability. NATO Advanced Research Workshop on Security and
Embedded Systems, pp. 57–64, 2005.

[Kopetz97] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[Koscher10] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D.
McCoy, B. Kantor, D. Anderson, H. Sha-cham, S. Savage. Experimental
Security Analysis of a Modern Automobile, In Proc. of the IEEE Symposium
on Security and Privacy, pp.447-462, 2010.

[Krawczyk97] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed Hashing for
Message Authentication,” Feb. 1997, RFC 2104.

References 232

[Lamport82] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.
ACM Trans. on Programming Languages and Systems, 4(3):382–401, 1982.

[Lang07] A. Lang, J. Dittman, S. Kiltz, and T. Hoppe. Future Perspectives: The car and
its IP address - A potential safety and security risk assessment. In Proc. of the
26th Int’l Conf. on Computer Safety, Reliability and Security (SAFECOMP),
2007.

[Lenstra01] A. Lenstra and E. Verheul. Selecting Cryptographic Key Sizes. Journal of
Cryptology vol. 14(no. 4):pp. 255-293, 2001.

[Luk06] M. Luk, A. Perrig, and B. Whillock. Seven Cardinal Properties of Sensor
Network Broadcast Authentication. In Proc. of the 4th ACM Workshop on
Security of Ad Hoc and Sensor Networks, pp. 147-156. ACM, 2006.

[Martin10] T. Martin, N. White, and A. Jameson. 18-649 Course Project: Java Simulated
Elevator Controller Implementation and Design. Carnegie Mellon University,
May 2010.

[Menezes96] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1996.

[Miner01] S. Miner and J. Staddon. Graph-Based Authentication of Digital Streams. In
SP ’01: Proc. of the 2001 IEEE Symposium on Security and Privacy, pp.
232–246, 2001.

[Morris03] J. Morris and P. Koopman. Critical Message Integrity Over A Shared
Network. 5th IFAC Int’l Conf. on Fieldbus Systems and their Applications,
2003.

[Nace02] W. Nace. Graceful Degradation via System-wide Customization for
Distributed Embedded Systems. Ph.D. dissertation, Dept. of Electrical and
Computer Engineering, Carnegie Mellon University, May 2002.

[Neumann56] J. von Neumann. Probabilistic Logic and the Synthesis of Reliable Organisms
from Unreliable Components. In Automata Studies (Annals of Mathematics
Studies, no. 34), pp. 43-99. Princeton Univ. Press, Princeton NJ, USA, 1956.

[Nilsson08] D. Nilsson and U. Larson. Simulated Attacks on CAN Buses: Vehicle virus.
5th IASTED Asian Conf. on Communication Systems and Networks, 2008.

[Nilsson08_2] D. Nilsson, U. Larson, E. Jonsson. Efficient In-Vehicle Delayed Data
Authentication Based on Compound Message Authentication Codes. In Proc.
of the Vehicular Technology Conference, pp. 1-5. IEEE, 2008

References 233

[Park02] J. M. Park, E. K. P. Chong, and H. J. Siegel. Efficient Multicast Packet
Authentication Using Signature Amortization. In SP ’02: Proc. of the
Symposium on Security and Privacy, pp. 227–240. IEEE, 2002.

[Pease80] M. Pease, R. Shostak, L. Lamport. Reaching Agreement in the Presence of
Faults. Journal of the ACM vol. 27(no. 2), April 1980.

[Perrig00] A. Perrig, J. D. Tygar, D. Song, and R. Canetti. Efficient Authentication and
Signing of Multicast Streams over Lossy Channels. In SP ’00: Proc. of the
2000 IEEE Symposium on Security and Privacy, pp. 56–73. IEEE, 2000.

[Perrig01] A. Perrig. The BiBa one-time signature and broadcast authentication
protocol. In CCS ’01: Proc. of the 8th ACM Conf. on Computer and
Communications Security, pp. 28–37. ACM, 2001.

[Perrig02] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler. SPINS:
security protocols for sensor networks. Wireless Networks, vol. 8(no. 5):pp.
521–534, 2002.

[Ray09] J. Ray, P. Koopman. Data Management Mechanisms for Embedded Systems
Gateways. In DSN ’09: Proc. of the Int’l Conference on Dependable Systems
and Networks, pp. 175-184, 2009.

[Rivest92] R. Rivest, "The MD5 Message-Digest Algorithm," April 1992, RFC 1321.

[Schneier95] B. Schneier. Applied Cryptography (2nd ed.): Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[Shelton03] C. Shelton. Scalable Graceful Degradation for Distributed Embedded Systems. Ph.D.
dissertation, Dept. of Electrical and Computer Engineering, Carnegie Mellon
University, June 2003.

[Shirey00] R. Shirey. “Internet Security Glossary,” May 2000, RFC 2828.

[SuperCoupe12] Super Coupe Club of Iowa. 0-60 and ¼ mile times for factory stock vehicles.
Retrieved April 2012 from http://www.albeedigital.com/
supercoupe/articles/0-60times.html.

[TTTech03] TTTech. Time-Triggered Protocol Specification TTP/C, Version 1.1,
November 2003.

[Wolf04] M. Wolf, A. Weimerskirch, and C. Paar. Security in Automotive Bus
Systems. Workshop on Embedded Security in Cars, 2004.

[Wong98] C. K. Wong and S. S. Lam. Digital Signatures for Flows and Multicasts. In
ICNP ’98: Proc. of the 6th Int’l Conf. on Network Protocols, pp. 198–209.
IEEE, 1998.

References 234

10.1 Thesis Publications

[Szilagyi08] C. Szilagyi and P. Koopman. A flexible approach to embedded network

multicast authentication. In Proc. of the 2nd Workshop on Embedded Systems
Security (WESS). 2008.

[Szilagyi09] C. Szilagyi and P. Koopman. Flexible multicast authentication for time-
triggered embedded control network applications. In DSN ’09: Proc. of the
Int’l Conference on Dependable Systems and Networks, pp. 165–174, 2009.

[Szilagyi10] C. Szilagyi and P. Koopman. Low cost multicast authentication via validity
voting in time-triggered embedded control networks. In WESS '10: Proc. of
the Workshop on Embedded Systems Security, 2010.

Appendix A 235

Appendix A - Automotive network workload analysis data

A.1 One MAC per receiver

A.1.1 One MAC per receiver - history buffer size = 5 samples
Table A.1. High assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 5 samples. Tag size is 10 bits.

Message
ID

Period
(ms)

Payload
bits

Number
of

receivers

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second
(including CAN

overhead)
ID_009 10 44 8 80 16 8000 32000

ID_008 10 49 1 10 8 1000 16000

ID_047 10 49 9 90 18 9000 42000

ID_040 12 62 1 10 9 833.3333 20833.33333

ID_001 12 55 2 20 10 1666.667 21666.66667

ID_007 12 64 12 120 23 10000 39166.66667

ID_039 20 36 2 20 7 1000 7500

ID_042 20 24 1 10 5 500 6500

ID_025 25 52 1 10 8 400 6400

ID_029 25 64 1 10 10 400 10400

ID_030 25 64 4 40 13 1600 11600

ID_038 25 56 1 10 9 400 10000

ID_036 25 64 3 30 12 1200 11200

ID_074 25 16 1 10 4 400 4800

ID_046 30 52 2 20 9 666.6667 8333.333333

ID_057 30 60 2 20 10 666.6667 8666.666667

ID_076 35 52 1 10 8 285.7143 4571.428571

ID_077 35 34 1 10 6 285.7143 4000

ID_078 35 34 1 10 6 285.7143 4000

ID_058 50 33 4 40 10 800 5200

ID_081 50 45 4 40 11 800 5400

ID_061 50 46 3 30 10 600 5200

ID_098 100 37 1 10 6 100 1400

ID_060 100 12 1 10 3 100 1100

Appendix A 236

Table A.2. Medium assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 5 samples. Tag size is 8 bits.

Message
ID

Period
(ms)

Payload
bits

Number
of

receivers

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second
(including CAN

overhead)
ID_006 6 32 1 8 5 1333.333 21666.66667

ID_004 10 64 10 80 18 8000 42000

ID_005 10 64 11 88 19 8800 43000

ID_010 12 61 4 32 12 2666.667 23333.33333

ID_003 12 9 1 8 3 666.6667 9166.666667

ID_026 12 31 1 8 5 666.6667 10833.33333

ID_027 12 62 2 16 10 1333.333 21666.66667

ID_048 12 59 1 8 9 666.6667 20833.33333

ID_052 12 61 1 8 9 666.6667 20833.33333

ID_041 20 26 3 24 7 1200 7500

ID_045 20 27 1 8 5 400 6500

ID_024 20 11 5 40 7 2000 7500

ID_049 20 62 12 96 20 4800 22000

ID_028 25 16 1 8 3 320 4400

ID_033 25 45 1 8 7 320 6000

ID_106 25 17 1 8 4 320 4800

ID_031 25 54 1 8 8 320 6400

ID_034 25 62 1 8 9 320 10000

ID_035 25 57 8 64 16 2560 12800

ID_037 25 48 2 16 8 640 6400

ID_075 50 40 2 16 7 320 3000

ID_018 100 24 1 8 4 80 1200

ID_020 100 34 2 16 7 160 1500

ID_053 100 54 12 96 19 960 4300

ID_059 100 9 2 16 4 160 1200

ID_023 100 18 1 8 4 80 1200

ID_021 100 18 1 8 4 80 1200

ID_102 250 58 6 42 13 168 1160

ID_101 250 44 1 7 7 28 600

ID_083 500 16 3 21 5 42 260

ID_017 1000 17 2 18 5 18 130

ID_117 1000 45 3 21 9 21 250

Appendix A 237

Table A.3. Low assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 5 samples. Tag size is 6 bits.

Message
ID

Period
(ms)

Payload
bits

Number
of

receivers

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second
(including CAN

overhead)
ID_044 20 3 1 6 2 300 5000

ID_002 25 53 1 6 8 240 6400

ID_056 25 64 11 66 17 2640 16400

ID_082 25 60 3 18 10 720 10400

ID_032 25 1 2 12 2 480 4000

ID_054 30 16 2 12 4 400 4000

ID_088 35 16 2 12 4 342.8571 3428.571429

ID_089 35 48 3 18 3 514.2857 7142.857143

ID_084 50 36 8 48 11 960 5400

ID_085 50 36 8 48 11 960 5400

ID_087 50 28 1 6 5 120 2600

ID_043 100 6 6 36 6 360 1400

ID_013 100 57 8 48 14 480 3000

ID_016 100 9 2 12 3 120 1100

ID_022 100 47 10 60 14 600 3000

ID_080 100 40 1 6 6 60 1400

ID_113 500 56 2 10 9 20 500

ID_136 500 64 1 5 9 10 500

ID_014 1000 3 1 5 1 5 90

ID_120 1000 25 9 45 9 45 250

ID_118 1000 44 8 40 11 40 270

ID_012 5000 33 1 4 5 0.8 26

Appendix A 238

A.1.2 One MAC per receiver - history buffer size = 10 samples
Table A.4. High assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 10 samples. Tag size is 5 bits.

Message
ID

Period
(ms)

Payload
bits

Number
of

receivers

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second
(including CAN

overhead)
ID_009 10 44 8 40 11 4000 27000

ID_008 10 49 1 5 7 500 15000

ID_047 10 49 9 45 12 4500 28000

ID_040 12 62 1 5 9 416.6667 20833.33333

ID_001 12 55 2 10 9 833.3333 20833.33333

ID_007 12 64 12 60 16 5000 26666.66667

ID_039 20 36 2 10 6 500 7000

ID_042 20 24 1 5 4 250 6000

ID_025 25 52 1 5 8 200 6400

ID_029 25 64 1 5 9 200 10000

ID_030 25 64 4 20 11 800 10800

ID_038 25 56 1 5 8 200 6400

ID_036 25 64 3 15 10 600 10400

ID_074 25 16 1 5 3 200 4400

ID_046 30 52 2 10 8 333.3333 5333.333333

ID_057 30 60 2 10 9 333.3333 8333.333333

ID_076 35 52 1 5 8 142.8571 4571.428571

ID_077 35 34 1 5 5 142.8571 3714.285714

ID_078 35 34 1 5 5 142.8571 3714.285714

ID_058 50 33 4 20 7 400 3000

ID_081 50 45 4 20 9 400 5000

ID_061 50 46 3 15 8 300 3200

ID_098 100 37 1 5 6 50 1400

ID_060 100 12 1 5 3 50 1100

Appendix A 239

Table A.5. Medium assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 10 samples. Tag size is 4 bits.

Message
ID

Period
(ms)

Payload
bits

Number
of

receivers

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second
(including CAN

overhead)
ID_006 6 32 1 4 5 666.6667 21666.66667

ID_004 10 64 10 40 13 4000 29000

ID_005 10 64 11 44 14 4400 30000

ID_010 12 61 4 16 10 1333.333 21666.66667

ID_003 12 9 1 4 2 333.3333 8333.333333

ID_026 12 31 1 4 5 333.3333 10833.33333

ID_027 12 62 2 8 9 666.6667 20833.33333

ID_048 12 59 1 4 8 333.3333 13333.33333

ID_052 12 61 1 4 9 333.3333 20833.33333

ID_041 20 26 3 12 5 600 6500

ID_045 20 27 1 4 4 200 6000

ID_024 20 11 5 20 4 1000 6000

ID_049 20 62 12 48 14 2400 15000

ID_028 25 16 1 4 3 160 4400

ID_033 25 45 1 4 7 160 6000

ID_106 25 17 1 4 3 160 4400

ID_031 25 54 1 4 8 160 6400

ID_034 25 62 1 4 9 160 10000

ID_035 25 57 8 32 12 1280 11200

ID_037 25 48 2 8 7 320 6000

ID_075 50 40 2 8 6 160 2800

ID_018 100 24 1 4 4 40 1200

ID_020 100 34 2 8 6 80 1400

ID_053 100 54 12 48 13 480 2900

ID_059 100 9 2 8 3 80 1100

ID_023 100 18 1 4 3 40 1100

ID_021 100 18 1 4 3 40 1100

ID_102 250 58 6 24 11 96 1080

ID_101 250 44 1 4 6 16 560

ID_083 500 16 3 12 4 24 240

ID_017 1000 17 2 8 4 8 120

ID_117 1000 45 3 12 8 12 160

Appendix A 240

Table A.6. Low assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 10 samples. Tag size is 3 bits.

Message
ID

Period
(ms)

Payload
bits

Number
of

receivers

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second
(including CAN

overhead)
ID_044 20 3 1 3 2 1 4500

ID_002 25 53 1 3 8 7 6000

ID_056 25 64 11 33 17 13 11600

ID_082 25 60 3 9 10 9 10000

ID_032 25 1 2 6 2 1 3600

ID_054 30 16 2 6 4 3 3666.666667

ID_088 35 16 2 6 4 3 3142.857143

ID_089 35 48 3 9 3 8 4571.428571

ID_084 50 36 8 24 11 8 3200

ID_085 50 36 8 24 11 8 3200

ID_087 50 28 1 3 5 4 2400

ID_043 100 6 6 18 6 3 1100

ID_013 100 57 8 24 14 11 2700

ID_016 100 9 2 6 3 2 1000

ID_022 100 47 10 30 14 10 2600

ID_080 100 40 1 3 6 6 1400

ID_113 500 56 2 6 9 8 320

ID_136 500 64 1 3 9 9 500

ID_014 1000 3 1 3 1 1 90

ID_120 1000 25 9 27 9 7 150

ID_118 1000 44 8 24 11 9 250

ID_012 5000 33 1 3 5 5 26

Appendix A 241

A.1.3 One MAC per receiver - history buffer size = 20 samples
Table A.7. High assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 20 samples. Tag size is 3 bits.

Message
ID

Period
(ms)

Payload
bits

Number
of

receivers

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second
(including CAN

overhead)
ID_009 10 44 8 24 9 2400 25000

ID_008 10 49 1 3 7 300 15000

ID_047 10 49 9 27 10 2700 26000

ID_040 12 62 1 3 9 250 20833.33333

ID_001 12 55 2 6 8 500 13333.33333

ID_007 12 64 12 36 13 3000 24166.66667

ID_039 20 36 2 6 6 300 7000

ID_042 20 24 1 3 4 150 6000

ID_025 25 52 1 3 7 120 6000

ID_029 25 64 1 3 9 120 10000

ID_030 25 64 4 12 10 480 10400

ID_038 25 56 1 3 8 120 6400

ID_036 25 64 3 9 10 360 10400

ID_074 25 16 1 3 3 120 4400

ID_046 30 52 2 6 8 200 5333.333333

ID_057 30 60 2 6 9 200 8333.333333

ID_076 35 52 1 3 7 85.71429 4285.714286

ID_077 35 34 1 3 5 85.71429 3714.285714

ID_078 35 34 1 3 5 85.71429 3714.285714

ID_058 50 33 4 12 6 240 2800

ID_081 50 45 4 12 8 240 3200

ID_061 50 46 3 9 7 180 3000

ID_098 100 37 1 3 5 30 1300

ID_060 100 12 1 3 2 30 1000

Appendix A 242

Table A.8. Medium assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 20 samples. Tag size is 2 bits.

Message
ID

Period
(ms)

Payload
bits

Number
of

receivers

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second
(including CAN

overhead)
ID_006 6 32 1 2 5 333.3333 21666.66667

ID_004 10 64 10 20 11 2000 27000

ID_005 10 64 11 22 11 2200 27000

ID_010 12 61 4 8 9 666.6667 20833.33333

ID_003 12 9 1 2 2 166.6667 8333.333333

ID_026 12 31 1 2 5 166.6667 10833.33333

ID_027 12 62 2 4 9 333.3333 20833.33333

ID_048 12 59 1 2 8 166.6667 13333.33333

ID_052 12 61 1 2 8 166.6667 13333.33333

ID_041 20 26 3 6 4 300 6000

ID_045 20 27 1 2 4 100 6000

ID_024 20 11 5 10 3 500 5500

ID_049 20 62 12 24 11 1200 13500

ID_028 25 16 1 2 3 80 4400

ID_033 25 45 1 2 6 80 5600

ID_106 25 17 1 2 3 80 4400

ID_031 25 54 1 2 7 80 6000

ID_034 25 62 1 2 8 80 6400

ID_035 25 57 8 16 10 640 10400

ID_037 25 48 2 4 7 160 6000

ID_075 50 40 2 4 6 80 2800

ID_018 100 24 1 2 4 20 1200

ID_020 100 34 2 4 5 40 1300

ID_053 100 54 12 24 10 240 2600

ID_059 100 9 2 4 2 40 1000

ID_023 100 18 1 2 3 20 1100

ID_021 100 18 1 2 3 20 1100

ID_102 250 58 6 12 9 48 1000

ID_101 250 44 1 2 6 8 560

ID_083 500 16 3 6 3 12 220

ID_017 1000 17 2 4 3 4 110

ID_117 1000 45 3 6 7 6 150

Appendix A 243

Table A.9. Low assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 20 samples. Tag size is 2 bits.

Message
ID

Period
(ms)

Payload
bits

Number
of

receivers

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second
(including CAN

overhead)
ID_044 20 3 1 2 1 100 4500

ID_002 25 53 1 2 7 80 6000

ID_056 25 64 11 22 11 880 10800

ID_082 25 60 3 6 9 240 10000

ID_032 25 1 2 4 1 160 3600

ID_054 30 16 2 4 3 133.3333 3666.666667

ID_088 35 16 2 4 3 114.2857 3142.857143

ID_089 35 48 3 6 7 171.4286 4285.714286

ID_084 50 36 8 16 7 320 3000

ID_085 50 36 8 16 7 320 3000

ID_087 50 28 1 2 4 40 2400

ID_043 100 6 6 12 3 120 1100

ID_013 100 57 8 16 10 160 2600

ID_016 100 9 2 4 2 40 1000

ID_022 100 47 10 20 9 200 2500

ID_080 100 40 1 2 6 20 1400

ID_113 500 56 2 4 8 8 320

ID_136 500 64 1 2 9 4 500

ID_014 1000 3 1 2 1 2 90

ID_120 1000 25 9 18 6 18 140

ID_118 1000 44 8 16 8 16 160

ID_012 5000 33 1 2 5 0.4 26

Appendix A 244

A.2 Validity voting

A.2.1 Validity voting - history buffer size = 5 samples

Tables A.10-15 show the validity vector size (number of message types voted upon), a list of

message types each node votes upon, and which messages vote upon them. Similar tables are

provided for each history buffer size to show which votes were applied.

Table A.10. High assurance messages. Validity vector size (number of validity votes carried), and

message types voted upon. History buffer size of 5 samples.

Message
ID

Period
(ms)

Sender
ID

Validity
vector size

(bits)

Other message IDs voted on by this message type

ID_009 10 ECU_05 12 ID_004, ID_005, ID_007, ID_030, ID_035, ID_036, ID_047, ID_049,

ID_058, ID_061, ID_084, ID_085

ID_008 10 ECU_07 0

ID_047 10 ECU_07 4 ID_007, ID_009, ID_030, ID_036

ID_040 12 ECU_07 0

ID_001 12 ECU_09 0

ID_007 12 ECU_09 4 ID_010, ID_039, ID_049, ID_081

ID_039 20 ECU_07 1 ID_037

ID_042 20 ECU_07 0

ID_025 25 ECU_02 0

ID_029 25 ECU_02 1 ID_057

ID_030 25 ECU_02 2 ID_032, ID_081

ID_038 25 ECU_07 1 ID_030

ID_036 25 ECU_09 2 ID_030, ID_046

ID_074 25 ECU_09 1 ID_057

ID_046 30 ECU_05 0

ID_057 30 ECU_05 1 ID_081

ID_076 35 ECU_11 0

ID_077 35 ECU_11 0

ID_078 35 ECU_11 0

ID_058 50 ECU_07 2 ID_061, ID_102

ID_081 50 ECU_07 0

ID_061 50 ECU_13 2 ID_058, ID_084

ID_098 100 ECU_09 1 ID_102

ID_060 100 ECU_13 0

Appendix A 245

Table A.11. High assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes. History buffer size of 5 samples.

Message
ID

Period
(ms)

Other message
types that vote

 on this message
type

Sender
of vote

Nodes that consume vote

ID_009 10 ID_047 ECU_07 ECU_04, ECU_06, ECU_09, ECU_13

ID_008 10

ID_047 10 ID_009 ECU_07 ECU_04, ECU_06, ECU_09, ECU_13

ID_040 12

ID_001 12

ID_007 12 ID_047 ECU_07 ECU_01, ECU_04, ECU_05, ECU_06, ECU_08, ECU_13,

ECU_14

ID_009 ECU_05 ECU_02, ECU03, ECU_04, ECU_06, ECU_07, ECU_11,

ECU_13

ID_039 20 ID_007 ECU_09 ECU_11

ID_042 20

ID_025 25

ID_029 25

ID_030 25 ID_038 ECU_07 ECU_09

ID_036 ECU_09 ECU_05, ECU_07, ECU_11

ID_047 ECU_07 ECU_05

ID_009 ECU_05 ECU_07, ECU_09, ECU_11

ID_038 25

ID_036 25 ID_009 ECU_05 ECU_07, ECU_11

ID_047 ECU_07 ECU_05

ID_074 25

ID_046 30 ID_036 ECU_09 ECU_11

ID_057 30 ID_074 ECU_09 ECU_02

ID_029 ECU_02 ECU_09

ID_076 35

ID_077 35

ID_078 35

ID_058 50 ID_061 ECU_13 ECU_05, ECU_11

ID_009 ECU_05 ECU_06, ECU_11, ECU_13

ID_081 50 ID_007 ECU_09 ECU_02, ECU_04, ECU_05

ID_030 ECU_02 ECU_05, ECU_09

ID_057 ECU_05 ECU_02, ECU_09

ID_061 50 ID_058 ECU_07 ECU_05, ECU_11

 ID_009 ECU_05 ECU_07, ECU_11

ID_098 100

ID_060 100

Appendix A 246

Table A.12. Medium assurance messages. Validity vector size (number of validity votes carried),

and message types voted upon. History buffer size of 5 samples.

Message
ID

Period
(ms)

Sender
ID

Validity
vector size (bits)

Other message IDs voted on by this message type

ID_006 6 ECU_02 1 ID_027

ID_004 10 ECU_07 1

ID_005 10 ECU_07 0

ID_010 12 ECU_02 1 ID_041

ID_003 12 ECU_09 0

ID_026 12 ECU_09 0

ID_027 12 ECU_09 0

ID_048 12 ECU_09 0

ID_052 12 ECU_09 0

ID_041 20 ECU_04 0

ID_045 20 ECU_04 1 ID_075

ID_024 20 ECU_07 1 ID_088

ID_049 20 ECU_07 6 ID_032, ID_035, ID_041, ID_053, ID_056, ID_082

ID_028 25 ECU_02 0

ID_033 25 ECU_02 0

ID_106 25 ECU_05 0

ID_031 25 ECU_09 0

ID_034 25 ECU_09 0

ID_035 25 ECU_09 1 ID_053

ID_037 25 ECU_09 0

ID_075 50 ECU_09 0

ID_018 100 ECU_05 0

ID_020 100 ECU_05 1 ID_059

ID_053 100 ECU_05 1 ID_022

ID_059 100 ECU_06 1 ID_022

ID_023 100 ECU_07 0

ID_021 100 ECU_08 1 ID_059

ID_102 250 ECU_05 2 ID_083, ID_120

ID_101 250 ECU_08 0

ID_083 500 ECU_06 1 ID_120

ID_017 1000 ECU_05 1 ID_120

ID_117 1000 ECU_05 1 ID_118

Appendix A 247

Table A.13. Medium assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes. History buffer size of 5 samples.

Message
ID

Period
(ms)

Other message
types that vote

 on this message
type

Sender
of vote

Nodes that consume vote

ID_006 6

ID_004 10 ID_009 ECU_05 ECU_02, ECU_04, ECU_06, ECU_09, ECU_13

ID_005 10 ID_009 ECU_05 ECU_02, ECU_04, ECU_06, ECU_09, ECU_13

ID_010 12 ID_004 ECU_07 ECU_04, ECU_06, ECU_09

ID_007 ECU_09 ECU_04, ECU_06, ECU_07

ID_003 12

ID_026 12

ID_027 12 ID_006 ECU_02 ECU_04

ID_048 12

ID_052 12

ID_041 20 ID_049 ECU_07 ECU_02, ECU_11

ID_010 ECU_02 ECU_07

ID_045 20

ID_024 20

ID_049 20 ID_007 ECU_09 ECU_01, ECU_02, ECU_03, ECU_04, ECU_05, ECU_06, ECU_08,

ECU_11, ECU_13, ECU_14

ID_009 ECU_05 ECU_02, ECU_03, ECU_04, ECU_06, ECU_09, ECU_11, ECU_13

ID_028 25

ID_033 25

ID_106 25

ID_031 25

ID_034 25

ID_035 25 ID_049 ECU_07 ECU_04, ECU_05, ECU_06, ECU_08, ECU_11, ECU_13, ECU_14

ID_009 ECU_05 ECU_04, ECU_06, ECU_07, ECU_11, ECU_13

ID_037 25 ID_039 ECU_07 ECU_11

ID_075 50 ID_045 ECU_04 ECU_07

ID_018 100

ID_020 100

ID_053 100 ID_049 ECU_07 ECU_01, ECU_02, ECU_03, ECU_04, ECU_06, ECU_09, ECU_11,

ECU_12, ECU_13, ECU_14

ID_035 ECU_09 ECU_04, ECU_05, ECU_06, ECU_07, ECU_11, ECU_13, ECU_14

ID_059 100 ID_021 ECU_08 ECU_05

 ID_020 ECU_05 ECU_08

ID_023 100

ID_021 100

ID_102 250 ID_058 {7 to

4,6,13}

ID_098 {13 to 7}

ID_101 250

ID_083 500 ID_102 {5 to 7}

ID_017 1000

ID_117 1000

Appendix A 248

Table A.14. Low assurance messages. Validity vector size (number of validity votes carried), and

message types voted upon. History buffer size of 5 samples.

Message
ID

Period
(ms)

Sender
ID

Validity
vector size (bits)

Other message IDs voted on by this message type

ID_044 20 ECU_04 0

ID_002 25 ECU_02 1 ID_054

ID_056 25 ECU_02 2 ID_013, ID_089

ID_082 25 ECU_06 0

ID_032 25 ECU_09 1 ID_054

ID_054 30 ECU_05 1 ID_089

ID_088 35 ECU_11 0

ID_089 35 ECU_11 0

ID_084 50 ECU_07 0

ID_085 50 ECU_07 0

ID_087 50 ECU_07 0

ID_043 100 ECU_04 1 ID_022

ID_013 100 ECU_05 1 ID_043

ID_016 100 ECU_05 0

ID_022 100 ECU_07 2 ID_013, ID_043

ID_080 100 ECU_07 0

ID_113 500 ECU_09 0

ID_136 500 ECU_09 0

ID_014 1000 ECU_05 1 ID_120

ID_120 1000 ECU_07 1 ID_118

ID_118 1000 ECU_09 0

ID_012 5000 ECU_05 0

Appendix A 249

Table A.15. Low assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes. History buffer size of 5 samples.

Message
ID

Period
(ms)

Other message
types that vote

 on this message
type

Sender
of vote

Nodes that consume vote

ID_044 20

ID_002 25

ID_056 25 ID_049 ECU_07 ECU_01, ECU_04, ECU_05, ECU_06, ECU_08, ECU_09, ECU_11,

ECU_12, ECU_13, ECU_14

ID_082 25 ID_049 ECU_07 ECU_01

ID_032 25 ID_049 ECU_07 ECU_02

 ID_030 ECU_02 ECU_07

ID_054 30 ID_032 ECU_09 ECU_02

 ID_002 ECU_02 ECU_09

ID_088 35 ID_024 ECU_07 ECU_05

ID_089 35 ID_054 ECU_02 ECU_05, ECU_07

 ID_056 ECU_05 ECU_02

ID_084 50 ID_061 ECU_13 ECU_05, ECU_11

 ID_009 ECU_05 ECU_03, ECU_04, ECU_06, ECU_11, ECU_13

ID_085 50 ID_009 ECU_05 ECU_03, ECU_04, ECU_06, ECU_11, ECU_13

ID_087 50

ID_043 100 ID_013 ECU_05 ECU_02, ECU_07, ECU_09, ECU_11

 ID_022 ECU_06 ECU_07, ECU_08, ECU_11

ID_013 100 ID_022 ECU_01, ECU_06, ECU_10, ECU_11, ECU_13

 ID_056 ECU_02 ECU_01, ECU_06, ECU_07, ECU_09, ECU_11, ECU_13

ID_016 100

ID_022 100 ID_053

ECU_05 ECU_01, ECU_03, ECU_04, ECU_06, ECU_10, ECU_11, ECU_12,

ECU_13, ECU_14

 ID_059 ECU_06 ECU_05, ECU_08

 ID_043 ECU_04 ECU_05, ECU_08, ECU_11

ID_080 100

ID_113 500

ID_136 500

ID_014 1000

ID_120 1000 ID_102 ECU_05 ECU_04, ECU_06, ECU_13, ECU_14

 ID_014 ECU_05 ECU_10

 ID_017 ECU_05 ECU_11

 ID_083 ECU_06 ECU_05, ECU_08

ID_118 1000 ID_120

ECU_07 ECU_04, ECU_05, ECU_10, ECU_11, ECU_12, ECU_13

 ID_117 ECU_05 ECU_02, ECU_04

ID_012 5000

Appendix A 250

Tables A.16-18 show the bandwidth consumed by each message type for a history buffer size of five samples, using validity voting.

Votes were applied as per Tables A.10-15.

Table A.16. High assurance message bandwidth consumption for validity voting. History buffer size is 5 samples.

Message
ID

Period
(ms)

Payload
bits

Validity
vector

bits

Tag size for each receiver (bits) Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits
per second

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ID_009 10 44 12 10 10 6 6 10 6 10 6 76 15 7600 31000

ID_008 10 49 0 10 10 8 1000 16000

ID_047 10 49 4 10 6 10 6 10 6 10 6 10 78 16 7800 32000

ID_040 12 62 0 10 10 9 833.3333 20833.33333

ID_001 12 55 0 10 10 20 10 1666.667 21666.66667

ID_007 12 64 4 6 6 6 4 6 4 6 6 10 6 4 6 74 18 6166.667 35000

ID_039 20 36 1 10 6 17 7 850 7500

ID_042 20 24 0 10 10 5 500 6500

ID_025 25 52 0 10 10 8 400 6400

ID_029 25 64 1 10 11 10 440 10400

ID_030 25 64 2 4 4 4 4 18 11 720 10800

ID_038 25 56 1 10 11 9 440 10000

ID_036 25 64 2 6 6 6 20 11 800 10800

ID_074 25 16 1 10 11 4 440 4800

ID_046 30 52 0 10 6 16 9 533.3333 8333.333333

ID_057 30 60 1 6 6 13 10 433.3333 8666.666667

ID_076 35 52 0 10 10 8 285.7143 4571.428571

ID_077 35 34 0 10 10 6 285.7143 4000

ID_078 35 34 0 10 10 6 285.7143 4000

ID_058 50 33 2 6 6 4 6 24 8 480 3200

ID_081 50 45 0 4 6 4 4 18 8 360 3200

ID_061 50 46 2 6 6 4 18 8 360 3200

ID_098 100 37 1 10 11 6 110 1400

ID_060 100 12 0 10 10 3 100 1100

Appendix A 251

Table A.17. Medium assurance message bandwidth consumption for validity voting. History buffer size is 5 samples.

Message
ID

Period
(ms)

Payload
bits

Validity
vector

bits

Tag size for each receiver (bits) Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits
per second

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ID_006 6 32 1 8 9 6 1500 23333.33333

ID_004 10 64 1 5 5 8 5 8 5 8 8 5 8 66 17 6600 41000

ID_005 10 64 0 8 5 5 8 5 8 5 8 8 5 8 73 18 7300 42000

ID_010 12 61 1 4 4 5 5 19 10 1583.333 21666.66667

ID_003 12 9 0 8 8 3 666.6667 9166.666667

ID_026 12 31 0 8 8 5 666.6667 10833.33333

ID_027 12 62 0 8 5 13 10 1083.333 21666.66667

ID_048 12 59 0 8 8 9 666.6667 20833.33333

ID_052 12 61 0 8 8 9 666.6667 20833.33333

ID_041 20 26 0 5 5 5 15 6 750 7000

ID_045 20 27 1 8 9 5 450 6500

ID_024 20 11 1 8 8 8 8 8 41 7 2050 7500

ID_049 20 62 6 5 5 5 4 5 4 5 5 4 8 4 5 65 16 3250 16000

ID_028 25 16 0 8 8 3 320 4400

ID_033 25 45 0 8 8 7 320 6000

ID_106 25 17 0 8 8 4 320 4800

ID_031 25 54 0 8 8 8 320 6400

ID_034 25 62 0 8 8 9 320 10000

ID_035 25 57 1 4 5 4 5 5 4 4 5 37 12 1480 11200

ID_037 25 48 0 8 5 13 8 520 6400

ID_075 50 40 0 8 5 13 7 260 3000

ID_018 100 24 0 8 8 4 80 1200

ID_020 100 34 1 8 8 17 7 170 1500

ID_053 100 54 1 5 5 5 4 4 4 5 8 4 5 4 4 58 14 580 3000

ID_059 100 9 1 5 5 11 3 110 1100

ID_023 100 18 0 8 8 4 80 1200

ID_021 100 18 1 8 9 4 90 1200

ID_102 250 58 2 5 5 5 8 5 8 38 12 152 1120

ID_101 250 44 0 8 8 7 32 600

ID_083 500 16 1 8 5 8 22 5 44 260

ID_017 1000 17 1 8 8 17 5 17 130

ID_117 1000 45 1 8 8 8 25 9 25 250

Appendix A 252

Table A.18. Low assurance message bandwidth consumption for validity voting. History buffer size is 5 samples.

Message
ID

Period
(ms)

Payload
bits

Validity
vector

bits

Tag size for each receiver (bits) Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits
 per second

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ID_044 20 3 0 6 6 2 300 5000

ID_002 25 53 1 6 7 8 280 6400

ID_056 25 64 2 4 4 4 4 6 4 4 4 4 4 4 48 14 1920 12000

ID_082 25 60 0 4 6 10 9 400 10000

ID_032 25 1 1 4 4 9 2 360 4000

ID_054 30 16 1 4 4 9 4 300 4000

ID_088 35 16 0 4 6 10 4 285.7143 3428.571429

ID_089 35 48 0 4 4 4 12 8 342.8571 4571.428571

ID_084 50 36 0 4 4 4 4 3 6 4 6 35 9 700 5000

ID_085 50 36 0 4 4 6 4 4 6 4 6 38 10 760 5200

ID_087 50 28 0 6 6 5 120 2600

ID_043 100 6 1 4 4 4 4 4 3 24 4 240 1200

ID_013 100 57 1 3 6 3 4 4 4 3 3 31 11 310 2700

ID_016 100 9 0 6 6 12 3 120 1100

ID_022 100 47 2 4 4 4 3 4 3 4 3 4 4 39 11 390 2700

ID_080 100 40 0 6 6 6 60 1400

ID_113 500 56 0 6 6 12 9 24 500

ID_136 500 64 0 6 6 9 12 500

ID_014 1000 3 1 6 7 2 7 100

ID_120 1000 25 1 4 4 4 4 4 4 6 4 4 39 8 39 160

ID_118 1000 44 0 4 3 4 6 4 4 4 4 33 10 33 260

ID_012 5000 33 0 6 6 5 1.2 26

Appendix A 253

A.2.1 Validity voting - history buffer size = 10 samples
Table A.19. High assurance messages. Validity vector size (number of validity votes carried), and

message types voted upon. History buffer size of 10 samples.

Message
ID

Period
(ms)

Sender
ID

Validity
vector size (bits)

Other message IDs voted on by this message type

ID_009 10 ECU_05 7 ID_004, ID_005, ID_007, ID_035, ID_036, ID_047,

ID_008 10 ECU_07 0

ID_047 10 ECU_07 2 ID_007, ID_009

ID_040 12 ECU_07 0

ID_001 12 ECU_09 0

ID_007 12 ECU_09 4 ID_010, ID_039, ID_049, ID_081

ID_039 20 ECU_07 0

ID_042 20 ECU_07 0

ID_025 25 ECU_02 0

ID_029 25 ECU_02 1 ID_057

ID_030 25 ECU_02 0

ID_038 25 ECU_07 1 ID_030

ID_036 25 ECU_09 2 ID_030, ID_046

ID_074 25 ECU_09 1 ID_057

ID_046 30 ECU_05 0

ID_057 30 ECU_05 1 ID_081

ID_076 35 ECU_11 0

ID_077 35 ECU_11 0

ID_078 35 ECU_11 0

ID_058 50 ECU_07 1 ID_061

ID_081 50 ECU_07 0

ID_061 50 ECU_13 2 ID_058, ID_084

ID_098 100 ECU_09 0

ID_060 100 ECU_13 0

Appendix A 254

Table A.20. High assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes. History buffer size of 10 samples.

Message
ID

Period
(ms)

Other message
types that vote

 on this message
type

Sender
of vote

Nodes that consume vote

ID_009 10 ID_047 ECU_07 ECU_04, ECU_06, ECU_09, ECU_13

ID_008 10

ID_047 10 ID_009 ECU_07 ECU_04, ECU_06, ECU_09, ECU_13

ID_040 12

ID_001 12

ID_007 12 ID_047 ECU_07 ECU_01, ECU_04, ECU_05, ECU_06, ECU_08, ECU_13,

ECU_14

ID_009 ECU_05 ECU_02, ECU03, ECU_04, ECU_06, ECU_07, ECU_11,

ECU_13

ID_039 20 ID_007 ECU_09 ECU_11

ID_042 20

ID_025 25

ID_029 25

ID_030 25 ID_038 ECU_07 ECU_09

ID_036 ECU_09 ECU_05, ECU_07, ECU_11

ID_038 25

ID_036 25 ID_009 ECU_05 ECU_07, ECU_11

ID_074 25

ID_046 30 ID_036 ECU_09 ECU_11

ID_057 30 ID_074 ECU_09 ECU_02

ID_029 ECU_02 ECU_09

ID_076 35

ID_077 35

ID_078 35

ID_058 50 ID_061 ECU_13 ECU_05, ECU_11

ID_081 50 ID_007 ECU_09 ECU_02, ECU_04, ECU_05

ID_057 ECU_05 ECU_02, ECU_09

ID_061 50 ID_058 ECU_07 ECU_05, ECU_11

 ID_009 ECU_05 ECU_07, ECU_11

ID_098 100

ID_060 100

Appendix A 255

Table A.21. Medium assurance messages. Validity vector size (number of validity votes carried),

and message types voted upon. History buffer size of 10 samples.

Message
ID

Period
(ms)

Sender
ID

Validity
vector size (bits)

Other message IDs voted on by this message type

ID_006 6 ECU_02 0

ID_004 10 ECU_07 1 ID_010

ID_005 10 ECU_07 0

ID_010 12 ECU_02 0

ID_003 12 ECU_09 0

ID_026 12 ECU_09 0

ID_027 12 ECU_09 0

ID_048 12 ECU_09 0

ID_052 12 ECU_09 0

ID_041 20 ECU_04 0

ID_045 20 ECU_04 0

ID_024 20 ECU_07 0

ID_049 20 ECU_07 4 ID_035, ID_041, ID_053

ID_028 25 ECU_02 0

ID_033 25 ECU_02 0

ID_106 25 ECU_05 0

ID_031 25 ECU_09 0

ID_034 25 ECU_09 0

ID_035 25 ECU_09 1 ID_053

ID_037 25 ECU_09 0

ID_075 50 ECU_09 0

ID_018 100 ECU_05 0

ID_020 100 ECU_05 0

ID_053 100 ECU_05 1 ID_022

ID_059 100 ECU_06 1 ID_022

ID_023 100 ECU_07 0

ID_021 100 ECU_08 0

ID_102 250 ECU_05 0

ID_101 250 ECU_08 0

ID_083 500 ECU_06 0

ID_017 1000 ECU_05 0

ID_117 1000 ECU_05 0

Appendix A 256

Table A.22. Medium assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes. History buffer size of 10 samples.

Message
ID

Period
(ms)

Other message
types that vote

 on this message
type

Sender
of vote

Nodes that consume vote

ID_006 6

ID_004 10 ID_009 ECU_05 ECU_02, ECU_04, ECU_06, ECU_09, ECU_13

ID_005 10 ID_009 ECU_05 ECU_02, ECU_04, ECU_06, ECU_09, ECU_13

ID_010 12 ID_004 ECU_07 ECU_04, ECU_06, ECU_09

ID_007 ECU_09 ECU_04, ECU_06, ECU_07

ID_003 12

ID_026 12

ID_027 12

ID_048 12

ID_052 12

ID_041 20 ID_049 ECU_07 ECU_02, ECU_11

ID_045 20

ID_024 20

ID_049 20 ID_007 ECU_09 ECU_01, ECU_02, ECU_03, ECU_04, ECU_05, ECU_06, ECU_08,

ECU_11, ECU_13, ECU_14

ID_009 ECU_05 ECU_02, ECU_03, ECU_04, ECU_06, ECU_09, ECU_11, ECU_13

ID_028 25

ID_033 25

ID_106 25

ID_031 25

ID_034 25

ID_035 25 ID_049 ECU_07 ECU_04, ECU_05, ECU_06, ECU_08, ECU_11, ECU_13, ECU_14

ID_009 ECU_05 ECU_04, ECU_06, ECU_07, ECU_11, ECU_13

ID_037 25

ID_075 50

ID_018 100

ID_020 100

ID_053 100 ID_049 ECU_07 ECU_01, ECU_02, ECU_03, ECU_04, ECU_06, ECU_09, ECU_11,

ECU_12, ECU_13, ECU_14

ID_035 ECU_09 ECU_04, ECU_05, ECU_06, ECU_07, ECU_11, ECU_13, ECU_14

ID_059 100

ID_023 100

ID_021 100

ID_102 250

ID_101 250

ID_083 500

ID_017 1000

ID_117 1000

Appendix A 257

Table A.23. Low assurance messages. Validity vector size (number of validity votes carried), and

message types voted upon. History buffer size of 10 samples.

Message
ID

Period
(ms)

Sender
ID

Validity
vector size (bits)

Other message IDs voted on by this message type

ID_044 20 ECU_04 0

ID_002 25 ECU_02 0

ID_056 25 ECU_02 0

ID_082 25 ECU_06 0

ID_032 25 ECU_09 0

ID_054 30 ECU_05 1 ID_089

ID_088 35 ECU_11 0

ID_089 35 ECU_11 0

ID_084 50 ECU_07 0

ID_085 50 ECU_07 0

ID_087 50 ECU_07 0

ID_043 100 ECU_04 0

ID_013 100 ECU_05 1 ID_043

ID_016 100 ECU_05 0

ID_022 100 ECU_07 2 ID_013, ID_043

ID_080 100 ECU_07 0

ID_113 500 ECU_09 0

ID_136 500 ECU_09 0

ID_014 1000 ECU_05 0

ID_120 1000 ECU_07 1 ID_118

ID_118 1000 ECU_09 0

ID_012 5000 ECU_05 0

Appendix A 258

Table A.24. Low assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes. History buffer size of 10 samples.

Message
ID

Period
(ms)

Other message
types that vote

 on this message
type

Sender
of vote

Nodes that consume vote

ID_044 20

ID_002 25

ID_056 25 ID_049 ECU_07 ECU_01, ECU_04, ECU_05, ECU_06, ECU_08, ECU_09, ECU_11,

ECU_12, ECU_13, ECU_14

ID_082 25

ID_032 25

ID_054 30

ID_088 35

ID_089 35 ID_054 ECU_02 ECU_05, ECU_07

ID_084 50 ID_061 ECU_13 ECU_05, ECU_11

ID_085 50

ID_087 50

ID_043 100 ID_013 ECU_05 ECU_02, ECU_07, ECU_09, ECU_11

 ID_022 ECU_06 ECU_07, ECU_08, ECU_11

ID_013 100 ID_022 ECU_01, ECU_06, ECU_10, ECU_11, ECU_13

ID_016 100

ID_022 100 ID_053

ECU_05 ECU_01, ECU_03, ECU_04, ECU_06, ECU_10, ECU_11, ECU_12,

ECU_13, ECU_14

 ID_059 ECU_06 ECU_05, ECU_08

ID_080 100

ID_113 500

ID_136 500

ID_014 1000

ID_120 1000

ID_118 1000 ID_120

ECU_07 ECU_04, ECU_05, ECU_10, ECU_11, ECU_12, ECU_13

ID_012 5000

Appendix A 259

Tables A.25-27 show the bandwidth consumed by each message type for a history buffer size of ten samples, using validity voting.

Votes were applied as per Tables A.19-24.

Table A.25. High assurance message bandwidth consumption for validity voting. History buffer size is 10 samples.

Message
ID

Period
(ms)

Payload
bits

Validity
vector

bits

Tag size for each receiver (bits) Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits
per second

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ID_009 10 44 7 5 5 3 3 5 3 5 3 39 11 3900 27000

ID_008 10 49 0 5 5 7 500 15000

ID_047 10 49 2 5 3 5 3 5 3 5 3 5 39 11 3900 27000

ID_040 12 62 0 5 5 9 416.6667 20833.33333

ID_001 12 55 0 5 5 10 9 833.3333 20833.33333

ID_007 12 64 4 3 3 3 3 3 3 3 3 5 3 3 3 42 14 3500 25000

ID_039 20 36 0 5 3 8 6 400 7000

ID_042 20 24 0 5 5 4 250 6000

ID_025 25 52 0 5 5 8 200 6400

ID_029 25 64 1 5 6 9 240 10000

ID_030 25 64 0 3 3 3 3 12 10 480 10400

ID_038 25 56 1 5 6 8 240 6400

ID_036 25 64 2 5 3 3 13 10 520 10400

ID_074 25 16 1 5 6 3 240 4400

ID_046 30 52 0 5 3 8 8 266.6667 5333.333333

ID_057 30 60 1 3 3 7 9 233.3333 8333.333333

ID_076 35 52 0 5 5 8 142.8571 4571.428571

ID_077 35 34 0 5 5 5 142.8571 3714.285714

ID_078 35 34 0 5 5 5 142.8571 3714.285714

ID_058 50 33 1 3 5 3 5 17 7 340 3000

ID_081 50 45 0 3 3 3 3 12 8 240 3200

ID_061 50 46 2 3 5 3 13 8 260 3200

ID_098 100 37 0 5 5 6 50 1400

ID_060 100 12 0 5 5 3 50 1100

Appendix A 260

Table A.26. Medium assurance message bandwidth consumption for validity voting. History buffer size is 10 samples.

Message
ID

Period
(ms)

Payload
bits

Validity
vector
 bits

Tag size for each receiver (bits) Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits
per second

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ID_006 6 32 0 4 4 5 666.6667 21666.66667

ID_004 10 64 1 3 3 4 3 4 3 4 4 3 4 36 13 3600 29000

ID_005 10 64 0 4 3 3 4 3 4 3 4 4 3 4 39 13 3900 29000

ID_010 12 61 0 2 2 3 3 10 9 833.3333 20833.33333

ID_003 12 9 0 4 4 2 333.3333 8333.333333

ID_026 12 31 0 4 4 5 333.3333 10833.33333

ID_027 12 62 0 4 4 8 9 666.6667 20833.33333

ID_048 12 59 0 4 4 8 333.3333 13333.33333

ID_052 12 61 0 4 4 9 333.3333 20833.33333

ID_041 20 26 0 3 4 3 10 5 500 6500

ID_045 20 27 0 4 4 4 200 6000

ID_024 20 11 0 4 4 4 4 4 20 4 1000 6000

ID_049 20 62 4 3 2 2 2 3 2 3 3 2 4 2 3 34 12 1700 14000

ID_028 25 16 0 4 4 3 160 4400

ID_033 25 45 0 4 4 7 160 6000

ID_106 25 17 0 4 4 3 160 4400

ID_031 25 54 0 4 4 8 160 6400

ID_034 25 62 0 4 4 9 160 10000

ID_035 25 57 1 2 3 2 3 3 2 2 3 21 10 840 10400

ID_037 25 48 0 4 4 8 7 320 6000

ID_075 50 40 0 4 4 8 6 160 2800

ID_018 100 24 0 4 4 4 40 1200

ID_020 100 34 0 4 4 8 6 80 1400

ID_053 100 54 1 3 3 3 2 2 3 3 4 2 3 2 2 33 11 330 2700

ID_059 100 9 1 4 4 9 3 90 1100

ID_023 100 18 0 4 4 3 40 1100

ID_021 100 18 0 4 4 3 40 1100

ID_102 250 58 0 4 4 4 4 4 4 24 11 96 1080

ID_101 250 44 0 4 4 6 16 560

ID_083 500 16 0 4 4 4 12 4 24 240

ID_017 1000 17 0 4 4 8 4 8 120

ID_117 1000 45 0 4 4 4 12 8 12 160

Appendix A 261

Table A.27. Low assurance message bandwidth consumption for validity voting. History buffer size is 10 samples.

Message
ID

Period
(ms)

Payload
bits

Validity
vector

bits

Tag size for each receiver (bits) Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits
per second

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ID_044 20 3 0 3 3 1 150 4500

ID_002 25 53 0 3 3 7 120 6000

ID_056 25 64 0 2 2 2 2 3 2 2 2 2 2 2 23 11 920 10800

ID_082 25 60 0 3 3 3 9 9 360 10000

ID_032 25 1 0 3 3 6 1 240 3600

ID_054 30 16 1 3 3 7 3 233.3333 3666.666667

ID_088 35 16 0 3 3 6 3 171.4286 3142.857143

ID_089 35 48 0 3 2 2 7 7 200 4285.714286

ID_084 50 36 0 3 3 2 3 2 3 3 3 22 8 440 3200

ID_085 50 36 0 3 3 3 3 3 3 3 3 24 8 480 3200

ID_087 50 28 0 3 3 4 60 2400

ID_043 100 6 0 2 2 2 2 2 2 12 3 120 1100

ID_013 100 57 1 2 3 2 3 3 2 2 2 20 10 200 2600

ID_016 100 9 0 3 3 6 2 60 1000

ID_022 100 47 2 2 2 2 2 2 2 2 2 2 2 22 9 220 2500

ID_080 100 40 0 3 3 6 30 1400

ID_113 500 56 0 3 3 6 8 12 320

ID_136 500 64 0 3 3 9 6 500

ID_014 1000 3 0 3 3 1 3 90

ID_120 1000 25 1 3 3 3 3 3 3 3 3 3 28 7 28 150

ID_118 1000 44 0 3 2 2 3 2 2 2 2 18 8 18 160

ID_012 5000 33 0 3 3 5 0.6 26

Appendix A 262

A.2.3 Validity voting - history buffer size = 20 samples

Tables A.28-33 show the validity vector size (number of message types voted upon), a list of

message types each node votes upon, and which messages vote upon them.

Table A.28. High assurance messages. Validity vector size (number of validity votes carried), and

message types voted upon. History buffer size of 20 samples.

Message
ID

Period
(ms)

Sender
ID

Validity
vector size (bits)

Other message IDs voted on by this message type

ID_009 10 ECU_05 2 ID_007, ID_047,

ID_008 10 ECU_07

ID_047 10 ECU_07 2 ID_007, ID_009

ID_040 12 ECU_07

ID_001 12 ECU_09

ID_007 12 ECU_09

ID_039 20 ECU_07

ID_042 20 ECU_07

ID_025 25 ECU_02

ID_029 25 ECU_02

ID_030 25 ECU_02

ID_038 25 ECU_07

ID_036 25 ECU_09 1 ID_030

ID_074 25 ECU_09

ID_046 30 ECU_05

ID_057 30 ECU_05 1 ID_081

ID_076 35 ECU_11

ID_077 35 ECU_11

ID_078 35 ECU_11

ID_058 50 ECU_07 1 ID_061

ID_081 50 ECU_07

ID_061 50 ECU_13 1 ID_058

ID_098 100 ECU_09

ID_060 100 ECU_13

Appendix A 263

Table A.29. High assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes. History buffer size of 20 samples.

Message
ID

Period
(ms)

Other message
types that vote

 on this message
type

Sender
of vote

Nodes that consume vote

ID_009 10 ID_047 ECU_07 ECU_04, ECU_06, ECU_09, ECU_13

ID_008 10

ID_047 10 ID_009 ECU_07 ECU_04, ECU_06, ECU_09, ECU_13

ID_040 12

ID_001 12

ID_007 12 ID_047 ECU_07 ECU_01, ECU_04, ECU_05, ECU_06, ECU_08, ECU_13,

ECU_14

ID_009 ECU_05 ECU_02, ECU03, ECU_04, ECU_06, ECU_07, ECU_11,

ECU_13

ID_039 20

ID_042 20

ID_025 25

ID_029 25

ID_030 25 ID_036 ECU_09 ECU_05, ECU_07, ECU_11

ID_038 25

ID_036 25

ID_074 25

ID_046 30

ID_057 30

ID_076 35

ID_077 35

ID_078 35

ID_058 50 ID_061 ECU_13 ECU_05, ECU_11

ID_081 50 ID_057 ECU_05 ECU_02, ECU_09

ID_061 50 ID_058 ECU_07 ECU_05, ECU_11

ID_098 100

ID_060 100

Appendix A 264

Table A.30. Medium assurance messages. Validity vector size (number of validity votes carried),

and message types voted upon. History buffer size of 20 samples.

Message
ID

Period
(ms)

Sender
ID

Validity
vector size (bits)

Other message IDs voted on by this message type

ID_006 6 ECU_02

These messages do not vote on others.

Voting did not reduce bandwidth.

ID_004 10 ECU_07

ID_005 10 ECU_07

ID_010 12 ECU_02

ID_003 12 ECU_09

ID_026 12 ECU_09

ID_027 12 ECU_09

ID_048 12 ECU_09

ID_052 12 ECU_09

ID_041 20 ECU_04

ID_045 20 ECU_04

ID_024 20 ECU_07

ID_049 20 ECU_07

ID_028 25 ECU_02

ID_033 25 ECU_02

ID_106 25 ECU_05

ID_031 25 ECU_09

ID_034 25 ECU_09

ID_035 25 ECU_09

ID_037 25 ECU_09

ID_075 50 ECU_09

ID_018 100 ECU_05

ID_020 100 ECU_05

ID_053 100 ECU_05

ID_059 100 ECU_06

ID_023 100 ECU_07

ID_021 100 ECU_08

ID_102 250 ECU_05

ID_101 250 ECU_08

ID_083 500 ECU_06

ID_017 1000 ECU_05

ID_117 1000 ECU_05

Appendix A 265

Table A.31. Medium assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes. History buffer size of 20 samples.

Message
ID

Period
(ms)

Other message
types that vote

 on this message type

Sender
of vote

Nodes that consume vote

ID_006 6

No messages voted on this message type.

Voting did not reduce bandwidth.

ID_004 10

ID_005 10

ID_010 12

ID_003 12

ID_026 12

ID_027 12

ID_048 12

ID_052 12

ID_041 20

ID_045 20

ID_024 20

ID_049 20

ID_028 25

ID_033 25

ID_106 25

ID_031 25

ID_034 25

ID_035 25

ID_037 25

ID_075 50

ID_018 100

ID_020 100

ID_053 100

ID_059 100

ID_023 100

ID_021 100

ID_102 250

ID_101 250

ID_083 500

ID_017 1000

ID_117 1000

Appendix A 266

Table A.32. Low assurance messages. Validity vector size (number of validity votes carried), and

message types voted upon. History buffer size of 20 samples.

Message
ID

Period
(ms)

Sender
ID

Validity
vector size (bits)

Other message IDs voted on by this message type

ID_044 20 ECU_04

These messages do not vote on others.

Voting did not reduce bandwidth.

ID_002 25 ECU_02

ID_056 25 ECU_02

ID_082 25 ECU_06

ID_032 25 ECU_09

ID_054 30 ECU_05

ID_088 35 ECU_11

ID_089 35 ECU_11

ID_084 50 ECU_07

ID_085 50 ECU_07

ID_087 50 ECU_07

ID_043 100 ECU_04

ID_013 100 ECU_05

ID_016 100 ECU_05

ID_022 100 ECU_07

ID_080 100 ECU_07

ID_113 500 ECU_09

ID_136 500 ECU_09

ID_014 1000 ECU_05

ID_120 1000 ECU_07

ID_118 1000 ECU_09

ID_012 5000 ECU_05

Appendix A 267

Table A.33. Low assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes. History buffer size of 20 samples.

Message
ID

Period
(ms)

Other message
types that vote

 on this message type

Sender
of vote

Nodes that consume vote

ID_044 20

No messages voted on this message type.

Voting did not reduce bandwidth.

ID_002 25

ID_056 25

ID_082 25

ID_032 25

ID_054 30

ID_088 35

ID_089 35

ID_084 50

ID_085 50

ID_087 50

ID_043 100

ID_013 100

ID_016 100

ID_022 100

ID_080 100

ID_113 500

ID_136 500

ID_014 1000

ID_120 1000

ID_118 1000

ID_012 5000

Appendix A 268

Tables A.34-36 show the bandwidth consumed by each message type for a history buffer size of twenty samples, using validity voting.

Votes were applied as per Tables A.28-33.

Table A.34. High assurance message bandwidth consumption for validity voting. History buffer size is 20 samples.

Message
ID

Period
(ms)

Payload
bits

Validity
vector

bits

Tag size for each receiver (bits) Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits
per second

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ID_009 10 44 7 3 3 2 2 3 2 3 2 22 9 2200 25000

ID_008 10 49 0 3 3 7 300 15000

ID_047 10 49 2 3 2 3 2 3 2 3 2 3 25 10 2500 26000

ID_040 12 62 0 3 3 9 250 20833.33333

ID_001 12 55 0 3 3 6 8 500 13333.33333

ID_007 12 64 4 2 2 2 2 2 2 2 2 3 2 2 2 25 12 2083.333 23333.33333

ID_039 20 36 0 3 3 6 6 300 7000

ID_042 20 24 0 3 3 4 150 6000

ID_025 25 52 0 3 3 7 120 6000

ID_029 25 64 1 3 3 9 120 10000

ID_030 25 64 0 2 2 3 2 9 10 360 10400

ID_038 25 56 1 3 3 8 120 6400

ID_036 25 64 2 3 3 3 10 10 400 10400

ID_074 25 16 1 3 3 3 120 4400

ID_046 30 52 0 3 3 6 8 200 5333.333333

ID_057 30 60 1 3 3 7 9 233.3333 8333.333333

ID_076 35 52 0 3 3 7 85.71429 4285.714286

ID_077 35 34 0 3 3 5 85.71429 3714.285714

ID_078 35 34 0 3 3 5 85.71429 3714.285714

ID_058 50 33 1 2 3 2 3 11 6 220 2800

ID_081 50 45 0 2 3 3 2 10 7 200 3000

ID_061 50 46 2 2 3 2 8 7 160 3000

ID_098 100 37 0 3 3 5 30 1300

ID_060 100 12 0 3 3 2 30 1000

Appendix A 269

Table A.35. Medium assurance message bandwidth consumption for validity voting. History buffer size is 20 samples.

Message
ID

Period
(ms)

Payload
bits

Validity
vector

bits

Tag size for each receiver (bits) Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits
per second

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ID_006 6 32 0 2 2 5 333.3333 21666.66667

ID_004 10 64 0 2 2 2 2 2 2 2 2 2 2 20 11 2000 27000

ID_005 10 64 0 2 2 2 2 2 2 2 2 2 2 2 22 11 2200 27000

ID_010 12 61 0 2 2 2 2 8 9 666.6667 20833.33333

ID_003 12 9 0 2 2 2 166.6667 8333.333333

ID_026 12 31 0 2 2 5 166.6667 10833.33333

ID_027 12 62 0 2 2 4 9 333.3333 20833.33333

ID_048 12 59 0 2 2 8 166.6667 13333.33333

ID_052 12 61 0 2 2 8 166.6667 13333.33333

ID_041 20 26 0 2 2 2 6 4 300 6000

ID_045 20 27 0 2 2 4 100 6000

ID_024 20 11 0 2 2 2 2 2 10 3 500 5500

ID_049 20 62 0 2 2 2 2 2 2 2 2 2 2 2 2 24 11 1200 13500

ID_028 25 16 0 2 2 3 80 4400

ID_033 25 45 0 2 2 6 80 5600

ID_106 25 17 0 2 2 3 80 4400

ID_031 25 54 0 2 2 7 80 6000

ID_034 25 62 0 2 2 8 80 6400

ID_035 25 57 0 2 2 2 2 2 2 2 2 16 10 640 10400

ID_037 25 48 0 2 2 4 7 160 6000

ID_075 50 40 0 2 2 4 6 80 2800

ID_018 100 24 0 2 2 4 20 1200

ID_020 100 34 0 2 2 4 5 40 1300

ID_053 100 54 0 2 2 2 2 2 2 2 2 2 2 2 2 24 10 240 2600

ID_059 100 9 0 2 2 4 2 40 1000

ID_023 100 18 0 2 2 3 20 1100

ID_021 100 18 0 2 2 3 20 1100

ID_102 250 58 0 2 2 2 2 2 2 12 9 48 1000

ID_101 250 44 0 2 2 6 8 560

ID_083 500 16 0 2 2 2 6 3 12 220

ID_017 1000 17 0 2 2 4 3 4 110

ID_117 1000 45 0 2 2 2 6 7 6 150

Appendix A 270

Table A.36. Low assurance message bandwidth consumption for validity voting. History buffer size is 20 samples.

Message
ID

Period
(ms)

Payload
bits

Validity
vector

bits

Tag size for each receiver (bits) Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits
per second

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ID_044 20 3 0 2 2 1 100 4500

ID_002 25 53 0 2 2 7 80 6000

ID_056 25 64 0 2 2 2 2 2 2 2 2 2 2 2 22 11 880 10800

ID_082 25 60 0 2 2 2 6 9 240 10000

ID_032 25 1 0 2 2 4 1 160 3600

ID_054 30 16 0 2 2 4 3 133.3333 3666.666667

ID_088 35 16 0 2 2 4 3 114.2857 3142.857143

ID_089 35 48 0 2 2 2 6 7 171.4286 4285.714286

ID_084 50 36 0 2 2 2 2 2 2 2 2 16 7 320 3000

ID_085 50 36 0 2 2 2 2 2 2 2 2 16 7 320 3000

ID_087 50 28 0 2 2 4 40 2400

ID_043 100 6 0 2 2 2 2 2 2 12 3 120 1100

ID_013 100 57 0 2 2 2 2 2 2 2 2 16 10 160 2600

ID_016 100 9 0 2 2 4 2 40 1000

ID_022 100 47 0 2 2 2 2 2 2 2 2 2 2 20 9 200 2500

ID_080 100 40 0 2 2 6 20 1400

ID_113 500 56 0 2 2 4 8 8 320

ID_136 500 64 0 2 2 9 4 500

ID_014 1000 3 0 2 2 1 2 90

ID_120 1000 25 0 2 2 2 2 2 2 2 2 2 18 6 18 140

ID_118 1000 44 0 2 2 2 2 2 2 2 2 16 8 16 160

ID_012 5000 33 0 2 2 5 0.4 26

Appendix A 271

A.3 TESLA

A.3.1 TESLA - history buffer size = 5 samples
Table A.37. High assurance messages authenticated with TESLA. Message type, period,

authentication overhead. History buffer size is 5 samples. Tag size is 10 bits. Key size is 80 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_009 10 44 90 17 9000 41000

ID_008 10 49 90 18 9000 42000

ID_047 10 49 90 18 9000 42000

ID_040 12 62 90 19 7500 35833.33333

ID_001 12 55 90 19 7500 35833.33333

ID_007 12 64 90 20 7500 36666.66667

ID_039 20 36 90 16 4500 16000

ID_042 20 24 90 15 4500 15500

ID_025 25 52 90 18 3600 16800

ID_029 25 64 90 20 3600 17600

ID_030 25 64 90 20 3600 17600

ID_038 25 56 90 19 3600 17200

ID_036 25 64 90 20 3600 17600

ID_074 25 16 90 14 3600 12000

ID_046 30 52 90 18 3000 14000

ID_057 30 60 90 19 3000 14333.33333

ID_076 35 52 90 18 2571 12000

ID_077 35 34 90 16 2571 9142.857143

ID_078 35 34 90 16 2571 9142.857143

ID_058 50 33 90 16 1800 6400

ID_081 50 45 90 17 1800 8200

ID_061 50 46 90 17 1800 8200

ID_098 100 37 90 16 900 3200

ID_060 100 12 90 13 900 2900

Appendix A 272

Table A.38. Medium assurance messages authenticated with TESLA. Message type, period,

authentication overhead. History buffer size is 5 samples. Tag size is 8 bits. Key size is 80 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_006 6 32 88 15 14667 51666.66667

ID_004 10 64 88 19 8800 43000

ID_005 10 64 88 19 8800 43000

ID_010 12 61 88 19 7333 35833.33333

ID_003 12 9 88 13 7333 24166.66667

ID_026 12 31 88 15 7333 25833.33333

ID_027 12 62 88 19 7333 35833.33333

ID_048 12 59 88 19 7333 35833.33333

ID_052 12 61 88 19 7333 35833.33333

ID_041 20 26 88 15 4400 15500

ID_045 20 27 88 15 4400 15500

ID_024 20 11 88 13 4400 14500

ID_049 20 62 88 19 4400 21500

ID_028 25 16 88 13 3520 11600

ID_033 25 45 88 17 3520 16400

ID_106 25 17 88 14 3520 12000

ID_031 25 54 88 18 3520 16800

ID_034 25 62 88 19 3520 17200

ID_035 25 57 88 19 3520 17200

ID_037 25 48 88 17 3520 16400

ID_075 50 40 88 16 1760 6400

ID_018 100 24 88 14 880 3000

ID_020 100 34 88 16 880 3200

ID_053 100 54 88 18 880 4200

ID_059 100 9 88 13 880 2900

ID_023 100 18 88 14 880 3000

ID_021 100 18 88 14 880 3000

ID_102 250 58 88 19 352 1720

ID_101 250 44 88 17 352 1640

ID_083 500 16 88 13 176 580

ID_017 1000 17 88 14 88 300

ID_117 1000 45 88 17 88 410

Appendix A 273

Table A.39. Low assurance messages authenticated with TESLA. Message type, period,

authentication overhead. History buffer size is 5 samples. Tag size is 6 bits. Key size is 80 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_044 20 3 86 12 4300 14000

ID_002 25 53 86 18 3440 16800

ID_056 25 64 86 19 3440 17200

ID_082 25 60 86 19 3440 17200

ID_032 25 1 86 11 3440 10800

ID_054 30 16 86 13 2867 9666.666667

ID_088 35 16 86 13 2457 8285.714286

ID_089 35 48 86 17 2457 11714.28571

ID_084 50 36 86 16 1720 6400

ID_085 50 36 86 16 1720 6400

ID_087 50 28 86 15 1720 6200

ID_043 100 6 86 12 860 2800

ID_013 100 57 86 18 860 4200

ID_016 100 9 86 12 860 2800

ID_022 100 47 86 17 860 4100

ID_080 100 40 86 16 860 3200

ID_113 500 56 86 18 172 840

ID_136 500 64 86 19 172 860

ID_014 1000 3 86 12 86 280

ID_120 1000 25 86 14 86 300

ID_118 1000 44 86 17 86 410

ID_012 5000 33 86 15 17 62

Appendix A 274

A.3.2 TESLA - history buffer size = 10 samples
Table A.40. High assurance messages authenticated with TESLA. Message type, period,

authentication overhead. History buffer size is 10 samples. Tag size is 5 bits. Key size is 80 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_009 10 44 85 17 8500 41000

ID_008 10 49 85 17 8500 41000

ID_047 10 49 85 17 8500 41000

ID_040 12 62 85 19 7083 35833.33333

ID_001 12 55 85 18 7083 35000

ID_007 12 64 85 19 7083 35833.33333

ID_039 20 36 85 16 4250 16000

ID_042 20 24 85 14 4250 15000

ID_025 25 52 85 18 3400 16800

ID_029 25 64 85 19 3400 17200

ID_030 25 64 85 19 3400 17200

ID_038 25 56 85 18 3400 16800

ID_036 25 64 85 19 3400 17200

ID_074 25 16 85 13 3400 11600

ID_046 30 52 85 18 2833 14000

ID_057 30 60 85 19 2833 14333.33333

ID_076 35 52 85 18 2429 12000

ID_077 35 34 85 15 2429 8857.142857

ID_078 35 34 85 15 2429 8857.142857

ID_058 50 33 85 15 1700 6200

ID_081 50 45 85 17 1700 8200

ID_061 50 46 85 17 1700 8200

ID_098 100 37 85 16 850 3200

ID_060 100 12 85 13 850 2900

Appendix A 275

Table A.41. Medium assurance messages authenticated with TESLA. Message type, period,

authentication overhead. History buffer size is 10 samples. Tag size is 4 bits. Key size is 80 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_006 6 32 84 15 14000 51666.66667

ID_004 10 64 84 19 8400 43000

ID_005 10 64 84 19 8400 43000

ID_010 12 61 84 19 7000 35833.33333

ID_003 12 9 84 12 7000 23333.33333

ID_026 12 31 84 15 7000 25833.33333

ID_027 12 62 84 19 7000 35833.33333

ID_048 12 59 84 18 7000 35000

ID_052 12 61 84 19 7000 35833.33333

ID_041 20 26 84 14 4200 15000

ID_045 20 27 84 14 4200 15000

ID_024 20 11 84 12 4200 14000

ID_049 20 62 84 19 4200 21500

ID_028 25 16 84 13 3360 11600

ID_033 25 45 84 17 3360 16400

ID_106 25 17 84 13 3360 11600

ID_031 25 54 84 18 3360 16800

ID_034 25 62 84 19 3360 17200

ID_035 25 57 84 18 3360 16800

ID_037 25 48 84 17 3360 16400

ID_075 50 40 84 16 1680 6400

ID_018 100 24 84 14 840 3000

ID_020 100 34 84 15 840 3100

ID_053 100 54 84 18 840 4200

ID_059 100 9 84 12 840 2800

ID_023 100 18 84 13 840 2900

ID_021 100 18 84 13 840 2900

ID_102 250 58 84 18 336 1680

ID_101 250 44 84 16 336 1280

ID_083 500 16 84 13 168 580

ID_017 1000 17 84 13 84 290

ID_117 1000 45 84 17 84 410

Appendix A 276

Table A.42. Low assurance messages authenticated with TESLA. Message type, period,

authentication overhead. History buffer size is 10 samples. Tag size is 3 bits. Key size is 80 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_044 20 3 86 11 4150 13500

ID_002 25 53 86 17 3320 16400

ID_056 25 64 86 19 3320 17200

ID_082 25 60 86 18 3320 16800

ID_032 25 1 86 11 3320 10800

ID_054 30 16 86 13 2767 9666.666667

ID_088 35 16 86 13 2371 8285.714286

ID_089 35 48 86 17 2371 11714.28571

ID_084 50 36 86 15 1660 6200

ID_085 50 36 86 15 1660 6200

ID_087 50 28 86 14 1660 6000

ID_043 100 6 86 12 830 2800

ID_013 100 57 86 18 830 4200

ID_016 100 9 86 12 830 2800

ID_022 100 47 86 17 830 4100

ID_080 100 40 86 16 830 3200

ID_113 500 56 86 18 166 840

ID_136 500 64 86 19 166 860

ID_014 1000 3 86 11 83 270

ID_120 1000 25 86 14 83 300

ID_118 1000 44 86 16 83 320

ID_012 5000 33 86 15 17 62

Appendix A 277

A.3.3 TESLA - history buffer size = 20 samples
Table A.43. High assurance messages authenticated with TESLA. Message type, period,

authentication overhead. History buffer size is 20 samples. Tag size is 3 bits. Key size is 80 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_009 10 44 83 16 8300 32000

ID_008 10 49 83 17 8300 41000

ID_047 10 49 83 17 8300 41000

ID_040 12 62 83 19 6917 35833.33333

ID_001 12 55 83 18 6917 35000

ID_007 12 64 83 19 6917 35833.33333

ID_039 20 36 83 15 4150 15500

ID_042 20 24 83 14 4150 15000

ID_025 25 52 83 17 3320 16400

ID_029 25 64 83 19 3320 17200

ID_030 25 64 83 19 3320 17200

ID_038 25 56 83 18 3320 16800

ID_036 25 64 83 19 3320 17200

ID_074 25 16 83 13 3320 11600

ID_046 30 52 83 17 2767 13666.66667

ID_057 30 60 83 18 2767 14000

ID_076 35 52 83 17 2371 11714.28571

ID_077 35 34 83 15 2371 8857.142857

ID_078 35 34 83 15 2371 8857.142857

ID_058 50 33 83 15 1660 6200

ID_081 50 45 83 16 1660 6400

ID_061 50 46 83 17 1660 8200

ID_098 100 37 83 15 830 3100

ID_060 100 12 83 12 830 2800

Appendix A 278

Table A.44. Medium assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 20 samples. Tag size is 2 bits. Key size is 80

bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_006 6 32 82 15 13667 51666.66667

ID_004 10 64 82 19 8200 43000

ID_005 10 64 82 19 8200 43000

ID_010 12 61 82 18 6833 35000

ID_003 12 9 82 12 6833 23333.33333

ID_026 12 31 82 15 6833 25833.33333

ID_027 12 62 82 18 6833 35000

ID_048 12 59 82 18 6833 35000

ID_052 12 61 82 18 6833 35000

ID_041 20 26 82 14 4100 15000

ID_045 20 27 82 14 4100 15000

ID_024 20 11 82 12 4100 14000

ID_049 20 62 82 18 4100 21000

ID_028 25 16 82 13 3280 11600

ID_033 25 45 82 16 3280 12800

ID_106 25 17 82 13 3280 11600

ID_031 25 54 82 17 3280 16400

ID_034 25 62 82 18 3280 16800

ID_035 25 57 82 18 3280 16800

ID_037 25 48 82 17 3280 16400

ID_075 50 40 82 16 1640 6400

ID_018 100 24 82 14 820 3000

ID_020 100 34 82 15 820 3100

ID_053 100 54 82 17 820 4100

ID_059 100 9 82 12 820 2800

ID_023 100 18 82 13 820 2900

ID_021 100 18 82 13 820 2900

ID_102 250 58 82 18 328 1680

ID_101 250 44 82 16 328 1280

ID_083 500 16 82 13 164 580

ID_017 1000 17 82 13 82 290

ID_117 1000 45 82 16 82 320

Appendix A 279

Table A.45. Low assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 20 samples. Tag size is 2 bits. Key size is 80

bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_044 20 3 82 11 4100 13500

ID_002 25 53 82 17 3280 16400

ID_056 25 64 82 19 3280 17200

ID_082 25 60 82 18 3280 16800

ID_032 25 1 82 11 3280 10800

ID_054 30 16 82 13 2733 9666.666667

ID_088 35 16 82 13 2343 8285.714286

ID_089 35 48 82 17 2343 11714.28571

ID_084 50 36 82 15 1640 6200

ID_085 50 36 82 15 1640 6200

ID_087 50 28 82 14 1640 6000

ID_043 100 6 82 11 820 2700

ID_013 100 57 82 18 820 4200

ID_016 100 9 82 12 820 2800

ID_022 100 47 82 17 820 4100

ID_080 100 40 82 16 820 3200

ID_113 500 56 82 18 164 840

ID_136 500 64 82 19 164 860

ID_014 1000 3 82 11 82 270

ID_120 1000 25 82 14 82 300

ID_118 1000 44 82 16 82 320

ID_012 5000 33 82 15 16 62

Appendix A 280

A.4 Master-slave

Tables A.46-48 define the message types in which nodes include the MAC tags for verification

of the master node's hash tree broadcast authenticators.

Table A.46. High assurance message types that carry tags for verifying hash-tree broadcast

authenticators.

Sender
ID

Message
ID

Period
(ms)

Added message
type?

ECU_01 ID_A_01 100 Y

ECU_02 ID_025 25 N

ECU_03 ID_A_03 100 Y

ECU_04 ID_A_04 20 Y

ECU_05 ID_009 10 N

ECU_06 ID_A_06 25 Y

ECU_07 ID_008 10 N

ECU_08 ID_A_08 100 Y

ECU_09 ID_001 12 N

ECU_10 ID_A_10 12 Y

ECU_11 ID_076 35 N

ECU_12 ID_A_12 1000 Y

ECU_13 ID_061 50 N

ECU_14 ID_A_14 1000 Y

Table A.47. Medium assurance message types that carry tags for verifying hash-tree broadcast

authenticators.

Sender
ID

Message
ID

Period
(ms)

Added message
type?

ECU_01 ID_B_01 100 Y

ECU_02 ID_006 6 N

ECU_03 ID_B_03 100 Y

ECU_04 ID_041 20 N

ECU_05 ID_106 25 N

ECU_06 ID_059 100 N

ECU_07 ID_004 10 N

ECU_08 ID_021 100 N

ECU_09 ID_003 12 N

ECU_10 ID_B_10 12 Y

ECU_11 ID_B_11 35 Y

ECU_12 ID_B_12 1000 Y

ECU_13 ID_B_13 10 Y

ECU_14 ID_B_14 1000 Y

Appendix A 281

Table A.48. Low assurance message types that carry tags for verifying hash-tree broadcast

authenticators.

Sender
ID

Message
ID

Period
(ms)

Added message
type?

ECU_01 ID_C_01 100 Y

ECU_02 ID_002 25 N

ECU_03 ID_C_03 100 Y

ECU_04 ID_044 20 N

ECU_05 ID_054 30 N

ECU_06 ID_082 25 N

ECU_07 ID_084 50 N

ECU_08 ID_C_08 100 Y

ECU_09 ID_032 25 N

ECU_10 ID_C_10 12 Y

ECU_11 ID_088 35 N

ECU_12 ID_C_12 1000 Y

ECU_13 ID_C_13 50 Y

ECU_14 ID_C_14 1000 Y

Appendix A 282

A.4.1 Master-slave - history buffer size = 5 samples
Table A.49. High assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 5 samples. Tag size is 11 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_009 10 44 22 9 2200 25000

ID_008 10 49 22 9 2200 25000

ID_047 10 49 11 8 1100 16000

ID_040 12 62 11 10 917 21666.66667

ID_001 12 55 22 10 1833 21666.66667

ID_007 12 64 11 10 917 21666.66667

ID_039 20 36 11 6 550 7000

ID_042 20 24 11 5 550 6500

ID_025 25 52 22 10 880 10400

ID_029 25 64 11 10 440 10400

ID_030 25 64 11 10 440 10400

ID_038 25 56 11 9 440 10000

ID_036 25 64 11 10 440 10400

ID_074 25 16 11 4 440 4800

ID_046 30 52 11 2 367 3333.333333

ID_057 30 60 11 9 367 8333.333333

ID_076 35 52 22 10 629 7428.571429

ID_077 35 34 11 6 314 4000

ID_078 35 34 11 6 314 4000

ID_058 50 33 11 6 220 2800

ID_081 50 45 11 7 220 3000

ID_061 50 46 22 9 440 5000

ID_098 100 37 11 6 110 1400

ID_060 100 12 11 3 110 1100

ID_A_Mstr 10 1 11 2 1100 10000

ID_A_01 10 0 11 2 110 1000

ID_A_03 10 0 11 2 110 1000

ID_A_04 10 0 11 2 550 5000

ID_A_06 10 0 11 2 440 4000

ID_A_08 10 0 11 2 110 1000

ID_A_10 12 0 11 2 917 8333.333333

ID_A_12 10 0 11 2 11 100

ID_A_14 10 0 11 2 11 100

Appendix A 283

Table A.50. Medium assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 5 samples. Tag size is 9 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_006 6 32 18 7 3000 25000

ID_004 10 64 18 11 1800 27000

ID_005 10 64 9 10 900 26000

ID_010 12 61 9 9 750 20833.33333

ID_003 12 9 18 4 1500 10000

ID_026 12 31 9 5 750 10833.33333

ID_027 12 62 9 9 750 20833.33333

ID_048 12 59 9 9 750 20833.33333

ID_052 12 61 9 9 750 20833.33333

ID_041 20 26 18 6 900 7000

ID_045 20 27 9 5 450 6500

ID_024 20 11 9 3 450 5500

ID_049 20 62 9 9 450 12500

ID_028 25 16 9 4 360 4800

ID_033 25 45 9 7 360 6000

ID_106 25 17 18 5 720 5200

ID_031 25 54 9 8 360 6400

ID_034 25 62 9 9 360 10000

ID_035 25 57 9 9 360 10000

ID_037 25 48 9 8 360 6400

ID_075 50 40 9 7 180 3000

ID_018 100 24 9 5 90 1300

ID_020 100 34 9 6 90 1400

ID_053 100 54 9 8 90 1600

ID_059 100 9 18 4 180 1200

ID_023 100 18 9 4 90 1200

ID_021 100 18 18 5 180 1300

ID_102 250 58 9 9 36 1000

ID_101 250 44 9 7 36 600

ID_083 500 16 9 4 18 240

ID_017 1000 17 9 4 9 120

ID_117 1000 45 9 7 9 150

ID_B_Mstr 10 1 9 2 900 10000

ID_B_01 10 0 9 2 90 1000

ID_B_03 20 0 9 2 90 1000

ID_B_10 10 0 9 2 750 8333.333333

ID_B_11 20 0 9 2 257 2857.142857

ID_B_12 10 0 9 2 9 100

ID_B_13 10 0 9 2 180 2000

ID_B_14 10 0 9 2 9 100

Appendix A 284

Table A.51. Low assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 5 samples. Tag size is 7 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_044 20 3 14 3 700 5500

ID_002 25 53 14 9 560 10000

ID_056 25 64 7 9 280 10000

ID_082 25 60 14 10 560 10400

ID_032 25 1 14 2 560 4000

ID_054 30 16 14 4 467 4000

ID_088 35 16 14 4 400 3428.571429

ID_089 35 48 7 1 200 2571.428571

ID_084 50 36 14 7 280 3000

ID_085 50 36 7 6 140 2800

ID_087 50 28 7 5 140 2600

ID_043 100 6 7 2 70 1000

ID_013 100 57 7 1 70 900

ID_016 100 9 7 2 70 1000

ID_022 100 47 7 7 70 1500

ID_080 100 40 7 6 70 1400

ID_113 500 56 7 8 14 320

ID_136 500 64 7 9 14 500

ID_014 1000 3 7 2 7 100

ID_120 1000 25 7 4 7 120

ID_118 1000 44 7 7 7 150

ID_012 5000 33 7 5 1 26

ID_C_Mstr 20 1 7 1 350 4500

ID_C_01 25 0 7 1 70 900

ID_C_03 50 0 7 1 70 900

ID_C_08 25 0 7 1 70 900

ID_C_10 100 0 7 1 583 7500

ID_C_12 25 0 7 1 7 90

ID_C_13 25 0 7 1 140 1800

ID_C_14 25 0 7 1 7 90

Appendix A 285

A.4.2 Master-slave - history buffer size = 10 samples
Table A.52. High assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 10 samples. Tag size is 6 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_009 10 44 12 7 1200 15000

ID_008 10 49 12 8 1200 16000

ID_047 10 49 6 7 600 15000

ID_040 12 62 6 9 500 20833.33333

ID_001 12 55 12 9 1000 20833.33333

ID_007 12 64 6 9 500 20833.33333

ID_039 20 36 6 6 300 7000

ID_042 20 24 6 4 300 6000

ID_025 25 52 12 8 480 6400

ID_029 25 64 6 9 240 10000

ID_030 25 64 6 9 240 10000

ID_038 25 56 6 8 240 6400

ID_036 25 64 6 9 240 10000

ID_074 25 16 6 3 240 4400

ID_046 30 52 6 1 200 3000

ID_057 30 60 6 9 200 8333.333333

ID_076 35 52 12 8 343 4571.428571

ID_077 35 34 6 5 171 3714.285714

ID_078 35 34 6 5 171 3714.285714

ID_058 50 33 6 5 120 2600

ID_081 50 45 6 7 120 3000

ID_061 50 46 12 8 240 3200

ID_098 100 37 6 6 60 1400

ID_060 100 12 6 3 60 1100

ID_A_Mstr 10 1 6 1 600 9000

ID_A_01 10 0 6 1 60 900

ID_A_03 10 0 6 1 60 900

ID_A_04 10 0 6 1 300 4500

ID_A_06 10 0 6 1 240 3600

ID_A_08 10 0 6 1 60 900

ID_A_10 12 0 6 1 500 7500

ID_A_12 10 0 6 1 6 90

ID_A_14 10 0 6 1 6 90

Appendix A 286

Table A.53. Medium assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 10 samples. Tag size is 5 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_006 6 32 10 6 1667 23333.33333

ID_004 10 64 10 10 1000 26000

ID_005 10 64 5 9 500 25000

ID_010 12 61 5 9 417 20833.33333

ID_003 12 9 10 3 833 9166.666667

ID_026 12 31 5 5 417 10833.33333

ID_027 12 62 5 9 417 20833.33333

ID_048 12 59 5 8 417 13333.33333

ID_052 12 61 5 9 417 20833.33333

ID_041 20 26 10 5 500 6500

ID_045 20 27 5 4 250 6000

ID_024 20 11 5 2 250 5000

ID_049 20 62 5 9 250 12500

ID_028 25 16 5 3 200 4400

ID_033 25 45 5 7 200 6000

ID_106 25 17 10 4 400 4800

ID_031 25 54 5 8 200 6400

ID_034 25 62 5 9 200 10000

ID_035 25 57 5 8 200 6400

ID_037 25 48 5 7 200 6000

ID_075 50 40 5 6 100 2800

ID_018 100 24 5 4 50 1200

ID_020 100 34 5 5 50 1300

ID_053 100 54 5 8 50 1600

ID_059 100 9 10 3 100 1100

ID_023 100 18 5 3 50 1100

ID_021 100 18 10 4 100 1200

ID_102 250 58 5 8 20 640

ID_101 250 44 5 7 20 600

ID_083 500 16 5 3 10 220

ID_017 1000 17 5 3 5 110

ID_117 1000 45 5 7 5 150

ID_B_Mstr 10 1 5 1 500 9000

ID_B_01 10 0 5 1 50 900

ID_B_03 20 0 5 1 50 900

ID_B_10 10 0 5 1 417 7500

ID_B_11 20 0 5 1 143 2571.428571

ID_B_12 10 0 5 1 5 90

ID_B_13 10 0 5 1 100 1800

ID_B_14 10 0 5 1 5 90

Appendix A 287

Table A.54. Low assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 10 samples. Tag size is 4 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_044 20 3 8 2 400 5000

ID_002 25 53 8 8 320 6400

ID_056 25 64 8 2 320 4000

ID_082 25 60 4 9 160 10000

ID_032 25 1 8 9 320 10000

ID_054 30 16 8 3 267 3666.666667

ID_088 35 16 8 3 229 3142.857143

ID_089 35 48 4 1 114 2571.428571

ID_084 50 36 8 6 160 2800

ID_085 50 36 4 5 80 2600

ID_087 50 28 4 4 80 2400

ID_043 100 6 4 1 40 900

ID_013 100 57 4 2 40 1000

ID_016 100 9 4 7 40 1500

ID_022 100 47 4 2 40 1000

ID_080 100 40 4 6 40 1400

ID_113 500 56 4 8 8 320

ID_136 500 64 4 9 8 500

ID_014 1000 3 4 1 4 90

ID_120 1000 25 4 6 4 140

ID_118 1000 44 4 4 4 120

ID_012 5000 33 4 5 1 26

ID_C_Mstr 20 1 4 1 200 4500

ID_C_01 25 0 4 1 40 900

ID_C_03 50 0 4 1 40 900

ID_C_08 25 0 4 1 40 900

ID_C_10 100 0 4 1 333 7500

ID_C_12 25 0 4 1 4 90

ID_C_13 25 0 4 1 80 1800

ID_C_14 25 0 4 1 4 90

Appendix A 288

A.4.3 Master-slave - history buffer size = 20 samples
Table A.55. High assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 20 samples. Tag size is 4 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_009 10 44 8 7 800 15000

ID_008 10 49 8 8 800 16000

ID_047 10 49 4 7 400 15000

ID_040 12 62 4 9 333 20833.33333

ID_001 12 55 8 8 667 13333.33333

ID_007 12 64 4 9 333 20833.33333

ID_039 20 36 4 5 200 6500

ID_042 20 24 4 4 200 6000

ID_025 25 52 8 8 320 6400

ID_029 25 64 4 9 160 10000

ID_030 25 64 4 9 160 10000

ID_038 25 56 4 8 160 6400

ID_036 25 64 4 9 160 10000

ID_074 25 16 4 3 160 4400

ID_046 30 52 4 1 133 3000

ID_057 30 60 4 8 133 5333.333333

ID_076 35 52 8 8 229 4571.428571

ID_077 35 34 4 5 114 3714.285714

ID_078 35 34 4 5 114 3714.285714

ID_058 50 33 4 5 80 2600

ID_081 50 45 4 7 80 3000

ID_061 50 46 8 7 160 3000

ID_098 100 37 4 6 40 1400

ID_060 100 12 4 2 40 1000

ID_A_Mstr 10 1 4 1 400 9000

ID_A_01 10 0 4 1 40 900

ID_A_03 10 0 4 1 40 900

ID_A_04 10 0 4 1 200 4500

ID_A_06 10 0 4 1 160 3600

ID_A_08 10 0 4 1 40 900

ID_A_10 12 0 4 1 333 7500

ID_A_12 10 0 4 1 4 90

ID_A_14 10 0 4 1 4 90

Appendix A 289

Table A.56. Medium assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 20 samples. Tag size is 3 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_006 6 32 6 5 1000 21666.66667

ID_004 10 64 6 9 600 25000

ID_005 10 64 3 9 300 25000

ID_010 12 61 3 8 250 13333.33333

ID_003 12 9 6 2 500 8333.333333

ID_026 12 31 3 5 250 10833.33333

ID_027 12 62 3 9 250 20833.33333

ID_048 12 59 3 8 250 13333.33333

ID_052 12 61 3 8 250 13333.33333

ID_041 20 26 6 4 300 6000

ID_045 20 27 3 4 150 6000

ID_024 20 11 3 2 150 5000

ID_049 20 62 3 9 150 12500

ID_028 25 16 3 3 120 4400

ID_033 25 45 3 6 120 5600

ID_106 25 17 6 3 240 4400

ID_031 25 54 3 8 120 6400

ID_034 25 62 3 9 120 10000

ID_035 25 57 3 8 120 6400

ID_037 25 48 3 7 120 6000

ID_075 50 40 3 6 60 2800

ID_018 100 24 3 4 30 1200

ID_020 100 34 3 5 30 1300

ID_053 100 54 3 8 30 1600

ID_059 100 9 6 2 60 1000

ID_023 100 18 3 3 30 1100

ID_021 100 18 6 3 60 1100

ID_102 250 58 3 8 12 640

ID_101 250 44 3 6 12 560

ID_083 500 16 3 3 6 220

ID_017 1000 17 3 3 3 110

ID_117 1000 45 3 6 3 140

ID_B_Mstr 10 1 3 1 300 9000

ID_B_01 10 0 3 1 30 900

ID_B_03 20 0 3 1 30 900

ID_B_10 10 0 3 1 250 7500

ID_B_11 20 0 3 1 86 2571.428571

ID_B_12 10 0 3 1 3 90

ID_B_13 10 0 3 1 60 1800

ID_B_14 10 0 3 1 3 90

Appendix A 290

Table A.57. Low assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 20 samples. Tag size is 3 bits.

Message
ID

Period
(ms)

Payload
bits

Total
authentication

bits

Total
payload
(bytes)

Authentication
bits per
second

Total bits per second (including
CAN overhead)

ID_044 20 3 6 2 300 5000

ID_002 25 53 6 8 240 6400

ID_056 25 64 3 9 120 10000

ID_082 25 60 6 9 240 10000

ID_032 25 1 6 1 240 3600

ID_054 30 16 6 3 200 3666.666667

ID_088 35 16 6 3 171 3142.857143

ID_089 35 48 3 1 86 2571.428571

ID_084 50 36 6 6 120 2800

ID_085 50 36 3 5 60 2600

ID_087 50 28 3 4 60 2400

ID_043 100 6 3 2 30 1000

ID_013 100 57 3 1 30 900

ID_016 100 9 3 2 30 1000

ID_022 100 47 3 7 30 1500

ID_080 100 40 3 6 30 1400

ID_113 500 56 3 8 6 320

ID_136 500 64 3 9 6 500

ID_014 1000 3 3 1 3 90

ID_120 1000 25 3 4 3 120

ID_118 1000 44 3 6 3 140

ID_012 5000 33 3 5 1 26

ID_C_Mstr 20 1 3 1 150 4500

ID_C_01 25 0 3 1 30 900

ID_C_03 50 0 3 1 30 900

ID_C_08 25 0 3 1 30 900

ID_C_10 100 0 3 1 250 7500

ID_C_12 25 0 3 1 3 90

ID_C_13 25 0 3 1 60 1800

ID_C_14 25 0 3 1 3 90

