LOW COST MULTICAST NETWORK AUTHENTICATION
FOR
EMBEDDED CONTROL SYSTEMS

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
for the degree of
DOCTOR OF PHILOSOPHY
in the department of

ELECTRICAL AND COMPUTER ENGINEERING

Christopher Johnathan Szilagyi

B.S., Electrical and Computer Engineering, Johns Hopkins University
M.S., Electrical and Computer Engineering, Carnegie Mdllon University

Carnegie Méllon University
Pittsburgh, Pennsylvania

May, 2012

© Copyright 2012 by Christopher J. Szilagyi. Aljhnts reserved.

Abstract

Security for wired embedded control networks isdmeinng a greater concern as manufacturers
add increasing connectivity from these internaledinetworks to the outside world. In the event
that an attacker gains access to an embedded koatveork, the attacker might manipulate po-

tentially safety-critical message traffic to indugesystem failure. Protocols used in these net-
works omit support for multicast authenticatiorptevent masquerade and replay attacks. While
many approaches for multicast authentication e#i&t,unique constraints of embedded control
networks make incorporating these schemes impedctResource limited nodes must authenti-
cate short periodic messages to multiple recemtsn tight real-time deadlines while tolerat-

ing potentially high packet loss rates.

This work presents time-triggered authenticatmmew multicast authentication technique to
prevent masquerade and replay attacks in wired @daoecontrol networks. This approach takes
advantage of the existing temporal redundancy afyneembedded control networks by verifying
messages across multiple samples using one meas#gmtication code (MAC) per receiver
(OMPR), each being just a few bits in size. Thiprapch can be applied to both state transition
commands and reactive control messages, and aHdotnedeoff among authentication bits per
packet, application level latency, tolerance taalid’ MACs, and probability of induced failure,

while satisfying typical embedded system constsaint

This work also presents validity voting: a methtodimprove overall bandwidth efficiency
and reduce authentication latency of OMPR in tinggered authentication by using unanimous
voting on message values and validity amongst apyad nodes. This technique decreases the
probability of successful per-packet forgery byngsone extra bit per additional vote, regardless

of the number of total receivers.

Abstract ii

We also show how to use two existing multicashantication techniques (TESLA and a
master-slave approach using hash tree broadcaserdigation) in conjunction with time-
triggered authentication in an embedded controlvoet. We compared all four techniques in
terms of scalability with respect to per-packetuassce (probability of successful per-packet
forgery) and number of receivers. We also compd#nedtechniques in terms of sensitivity to

packet loss, node failure, and node compromise.

Finally, we demonstrated the applicability of thtniggered authentication using each of the
four techniques in two case studies. First, we @am@nted each technique in a simulated elevator
control network. Second, we examined the impactsutfientication on bandwidth for an auto-

motive network workload.

Our comparisons and case studies show that OMBRaidity voting with few votes are the
most bandwidth efficient approaches for embeddedrobnetworks characterized by few re-
ceivers and weak per-packet assurance. TESLA alidityasoting using many votes are the
most bandwidth efficient approaches for very langenbers of receivers or strong per-packet
assurance levels. A master-slave approach candefahe most bandwidth efficient of all ap-
proaches, assuming a trusted master node is aeadaldl no passive nodes (non-transmitting)
are present in the network. Also, we show OMPR @B&LA are least sensitive to networks
where packet loss, node failure, and node comprniiBus, these two approaches are better
suited to applications with requirements to tolerthiese types of faults and failures than validity

voting or master-slave.

Abstract iii

Acknowledgements

This thesis is dedicated to my family. Thank ydu@l your support and encouragement. To my
Mom and Dad: thank you for giving me all the tobieeded to succeed and teaching me how to
see the important things through to the end. TaolF@nd Emily: thank you for keeping me
humble like great siblings should. To Dave: thaok yor joining me on this long journey and

making me take the time to have fun.

| thank my academic advisor Professor Philip Koapnfor teaching me that if an idea is on-
ly obvious in hindsight, then it's probably a coegearch result. Thank you for all your guidance
over these past few years. Also, | thank my congmithembers Professor Adrian Perrig, Profes-

sor Bruno Sinopoli, and Dr. Charles Weinstock feit support and feedback.

| thank Erik Rennenkampf for championing this whehebang and always having my back,
even in my absence. | thank George Reynolds fowstgome this opportunity. | thank Kevin
Endlich for supporting me and handling so many ilgetdoth big and small. | thank George
Kalb for sparking my interest in security and shogvme how easy reverse engineering can be.

Also, | thank Pat Tooman and Chris Meawad for icamtg to support me while | finished.

| would also like to thank Justin Ray for takirgettime to answer so many of my questions
over the past few years. Thanks to Elaine Lawrdoc&eeping an eye out for me. Also, thanks

to Teddy Martin, Nik White, and Andrew Jamesondtbowing me to use their elevator design.

Finally, | thank my sponsors for funding this eader. This research was funded in part by
General Motors through the GM-Carnegie Mellon Valac Information Technology Collabora-

tive Research Lab.

Acknowl edgements v

Table of Contents

AADSEEACT ...ttt et b R e h R e b b e b n e e e i
ACKNOWIBAGEMENTS ...ttt s et eesbe e se e e e be e s eenbesseeeesbeaneennenrens iv
R I oo [Tox o o OSSR U TP PTPPPPSSTRON 1
1.1 Problem Stat@mMENT...........ueiiiiiiiieieees et 2
1.2 Time-triggered authentiCation.........ccccccuuuuiriiimiii e eeeneees 3
1.3 TheSIiS CONIDULIONS ...ttt 4
1.4 TRESIS OULIINE ..o e e e e e e e 5
2 Background and related WOIK ..o ettt ee s 6
2.1 DESIgN CONSIIAINTScceiiiiieiee aaae e s e e e s e e e e e e e e aaaaaaens 6
2.2 AttaCKer MOEl...........eiiiiiiiie e e s 11
2.3 AUNENTICALIONeeiiiiiii it eeeme e et e e e e r e e e e e e e e e e 13
2.4 Multicast aUtNeNTICALIONceemee e e 15
2.5 Authentication in resource constrained wagleetworks..............c.ooeee. 18
2.6 Embedded Network SECUIILYocoimiiiiiiiiiiiiiiiiiieiiieiib b memeee e e e e e eee e 19
2.7 FaUILLOIEIANCE.....ccieeee et e e e e e s 21
3 Time-triggered authentiCatioNoccooiiirieiiee e e 23
3.1 Per-pacCKet BSSUIANCEuuuuuiiiiiiniiuettiieiiiiieebebaebeeeetaeeestaebesesesmemnneeeeeeeeeeeeeseeees 26
3.2 Time-triggered authentication aSSUMPLIONS ca....vvvvvverrueieiiiiiiiiiiiieiieiieinmnemneeees 28
3.3 Using one MAC per receiver for time-triggesadhenticationc.cceceeeeiiennnns 29
3.3.1 One MAC per receiver asSUMPLIONS .. o vvnernnennnnennnnnnnnnnnnnnnennennen 0.3
3.3.2 INItIAlIZALIONS.....ccieeieiiiee e e a e eeeae 31
3.3.3 Producing per-packet authentiCatorveveeeeememmeiiiiiiieea32
3.3.4 Verifying @ Packet..........coo oo 34
3.3.5 Delayed or out of order MeSSagesSccueerieeieiieiiiiieeeeeee e 35
3.4 Verifying state-changing MESSAQES. . .. cacucuaeurruurummnminaaa e eee e e eeeeenenes 36
3.5 Verifying reactive CONtrol MESSAQES .. coomiee e 40
3.6 Experimental analySiSooiiiiececeeiiiiieiiieeeeieeeee et 45
3.6.1 No tolerance for invalid MAC tagsS... . eeeereeemmmmmmmmmimmmimnnnmnnnnn. 46
3.6.2 Tolerating iNvalid MAC tagSuuuuuueeereeereiiriieririieririneneenen. 49
3.7 DISCUSSION ..ttt ettt et e e e e ettt e e e e e e s bbb e e et e e e eb b e b e e e e e e e e e e s nnnnnees 51
O 1 To [VYo £ 1 o [T 53
4.1 Properties for detecting diSagreemMeNto ..o 55
4.2 Validity VOtING ASSUMPLIONSevsmummmreeeeeereeeieeereeeeereeeeeeeeereeeeereeenraaneaaaeaaeeeens 56
4.3 INILANZALION ... e e e e e e e e e 58
4.4 Functions and state Variables e 60
4.5 RUN-TIME VEIfICAtION ...t 62
4.5.1 Producing a per-packet authentiCator....cue...vevvevveveviieiiiiiiiiiiieiiiiiinnes 62
4.5.1 Verifying @ PACKEL........coevvviiiiimm ettt 65
4.6 Integrating with time-triggered authenticatia..............cccco oo 68

Table of Contents v

4.7 Potential complications and tradeoffs ... 69

A T = (o = 0 1 P 69
4.7.2 Tolerating compromised NOUESccccccereeeeiiiiieiiieeeeeeeeeee e 70
4.7.3 NOUE TAIUIEveiiiiiieiii ittt ee e e 70
4.8 Verification using model checKingo 71
298 700 M \Y (oo (=1 0 [=TSTox ¢ o £ o o 1S UUPRUR 71
4.8.2 PropertiesS and reSUILSueeeeeeeriiiiiiisis i 74
4.8.3 Model lIMItAatiONScoiiiiiiiii et 75
4.9 Probability @nalySiSoooiiii ettt 77
4.9.1 EXperimental reSUILS............vuiiieeeeeeeeeeiieieiiieiieiieiieiiereeeeeenreeesreereneeeees 78
4,10 DISCUSSION ...etieiieieeeieeiit ettt e e e e e e ettt et e e e e e e st e e et e e eeeasa e e e e e e e e e s e e nnnenees 82
5 Comparisonsto other multicast authentication techniques..........ccccoovviveiininiciinccie e 84
5.1 Metrics for COMPAriSONccooeiiiii e 85
5.2 TE S LA et a e e e e e e e e e e 87
5.2.1 Modifications t0 TESLA........uuiiiiiime e 88
5.2.2 INIHANZATIONuveiiiiie ittt e e e e e 88
5.2.3 TESLA in time-triggered authentication...............cccccvviviiiiiieiiiiiiiiiennnn. 90
5.2.4 Tradeoffs with respect to key Chains.................ueeviiiiiiiiiiiiiiiiiiiiiiiines Q2
A ST D o U 1= (o] o 93
5.3 MASTEI-SIAVE ... ettt —————— 94
5.3.1 Hash tree broadcast authenticationcccoeeeiieiiiniiniinieeee e a5
5.3.2 Modifications to hash tree broadcast autbaton..................cccccevnnnnnnnes 96
5.3.3 INItIAliZALIONooeviiiiiii e e e e e e aaaaa 97
5.3.4 VerifyiNg MESSAQGEScuuutuirtttmm e e e eeeeaeaaeaeeaaeaaeaaaaaaaaaaaaaaaaaaaaaaaaaans 97
5.3.5 Master-slave in time-triggered authent@ati....................eevveveriieinennnnnns 100
TR T ST D o U 1= [o I 102
5.4 COMPAIISONS ..ceiiiiiiiiiiieiieieeeess ot 44ttt et ettt ittt eee ittt eeeeeeeeeaetseeseaaaaeaaaaaaaaaaaaeaeaas 105
5.4.1 Scalability with respect to per-packet 8®30eccooeeeeiiiiiiriieien. 105
5.4.2 Scalability with respect to receivers.ccccci 109
5.4.3 LOSS LOIEIANCEciiiieeeiiiii s s e ettt e e e e e e e e et e e e e e e aaeeeeeeenrees 112
5.4.4 Node compromise and failureo 117
5.5 DISCUSSION ...ettiiieeei ittt et e e e e e e e e ettt et e e e e e s st e e e e e e eesnb s s e e eaeeeeeesaannens 118
6 Evaluation - Simulated elevator coNtrol NEIWOrKccocovirireiieieeienesese e 121
6.1 Network simulation framework OVEIVIEW ..ceeee.ccoviiiiiiiiiiiiiiiie e 122
6.2 Elevator SYSIeM OVEIVIEWcooo i 123
6.3 SUpPPOrtiNg SYStEM rEQUITEIMENTS ... e e e eeeeeeeeaeeaeeaeeaaeeaaaeeeaaeeeeeeasaaaaasaananns 125
6.3.1 Safety reqQUIFEMENTScvuiiiiieeeree e 126
6.3.2 High level system requirementS......ccccceeeeeeiieieiiieee e 127
6.4 ldentifying messages and state tranSitioMBAECT..............uvuumimniniie s e 128
6.4.1 DOOr CONLIOIET ... 129
6.4.2 DIivVe CONIONET ... 133
6.4.3 Safety MONITOr........cooviiiiiiiiii e 140
6.4.4 DISPALCHE ... ———————— 140
6.4.5 Car poSition INAICALON.............. cocmeeeeereereiiiiiieeeeiieerereeere e 141

Table of Contents Vi

6.4.6 Messages to authenticate and reCeIVELS. coo...uvviiieeeeeieeiiiiie e eee e 214

6.5 Implementation of time-triggered authentioati.....................coo e 144
6.5.1 Selecting time-triggered authenticatiorap@ters...............ccccceeeeeeeenennn. 144
6.5.2 ONE MAC PEI TECERIVEvvviiiiiiiiieeeeeee e e aa e 146
6.5.3 Validity VOUINGueuiiiii it a e 148
B.5.4 TESLA Lot e e 150
6.5.5 MASIEI-SIAVEoiiiiiiiiieeie e 152
8.6 ANAIYSIS...ciiiiiiiiiiiii it a e et e et e e aaaaaeaas 154
6.6.1 Bandwidth COMPAIiSONS.........uurrtmmmmmmn seeeeaeseasaesassaaseasaaseaseaaeeeeeseaas 154
6.6.2 Effects of history buffer size on systenf@enancecccceeeeeeeen. 165
6.6.3 Symmetric packet loss effects on historfydvwutput readiness............. 168
6.6.4 Symmetric packet loss effects on systeffopeancecccccceeeeeeeeee. 172
6.6.5 FOIrgery teSt ... ——————— 175
6.7 DISCUSSION ..ottt ettt e e e e et e e e e s s rnnr e e e e e e e e s e nbbnne e 176
7 Evaluation - AUOMOLIVE NEEWOT Koviiiieieiieiieiesie et 178
7.1 ONE MAGC PEI TECEIVENvevveteeeeeteetuasreseeseeeessessnssesssssssssenssssssssssssnnnnneseesesseeeees 186
7.1.1 One MAC per reCeIVer - SUMIMAIY......cccccceeeereerememmemmmmmennsnnennnnensnsnennnes 187
7.2 Validity VOUNG ...t e e e nebenennnes 189
7.2.1 Validity vOting - SUMMAIYcooiiiiiieeeee e 190
A T I =] I PR URT PP 193
7.3.1 TESLA = SUMMAIYoiiiiiiiiiii o ettt e e e eee s e e e e e e eeesnnmnnes 194
A\ = TS (=] g - AV PSR 196
7.4.1 MaSter-slave - SUMMAIYuutceeeeeeeee e 198
A T 1o 0173 o] I 200
A Y0 R I 1 = o o 1 203
8 Technique modifications and Variations...........ccoeeoeiereeiireneee e 205
8.1 One MAC per receiver - Shared keys Withinu@.............cooooeeeiiiin, 205
8.2 One MAC per receiver - Tuning on a per-mesgsgge and per-receiver basis....... 206
8.3 Validity voting - Tolerating asymmetric patk@ss............ccccccvvviiiiiiiiiiiiiiisicn 207
8.4 Validity voting - Improving tolerance to patkoss and node failure..................... 210
8.5 TESLA - Using fewer Key Chainscoouueuiiiiiiiiiiiiiisssessses s s 216
8.6 Master-slave - Using different multicast autication techniques............cccccvvvuee. 217
8.7 Multiple techniques iN ONE SYSIEM ... it 217
8.8 Alternate response to forgery attemMPLS o .eeeeueemeimiiiiiirrenseses s sneeenes 218
8.9 Composability with fault tolerance techniques..............cccccviiiiiiiieeee. 218
810 SUMMAIY ettt et e e e e e e e e bbb e e e e e e e e eeannnnns 219
O CONCIUSIONS.eoutiteiteste stttk b bbbt b s s e et et e st ebeebeeb e nbesbeneenne e enneneas 221
9.1 ThESIS CONIDULIONScceiiiiiie e 221
9.1.1 Time-triggered authentication using one M#eC receiver..................... 221
L& D2 V= [T 114V V70 1 T PSR UPPRRPR 223
9.1.3 Comparisons with TESLA and hash tree brastdguthentication........... 224
9.1.4 TWO CASE SUAIES ...coeeeiiiiiiiiieieee et 225
9.2 FULUIE WOTKtiitieiee ettt ettt e e e e e e e e e e e e e e e e nn e e e eens 227

Table of Contents vii

LO REF O BNCES. ..ottt et e e e e e e e et e e e e e e e e e e e e e e e e ea e e saeeseeeeeeeeeeeeeeaeeeaneeeaseeaaees 229

10.1 ThesSiS PUBICALIONS.uuuiiiimmcmme ettt re e e e e e e e e e e e e eaaaeas 234
Appendix A - Automotive network workload analysisdata...........cceeevvierienienennese e 235
A.L ONE MAC PEI FECEIVETevveveervetvesmmmmmnsessssnsnnnnsns s sss s s sas s e sssnssssssnsnnnes 235
A2 Validity VOUNQ ..uveeiiiiiiiiiiiimnmn bbb saamanssessesssssnssenenes 244
AL TESLA oottt e aan e e et e e rr e e e 271
A4 MASTEI-SIAVE ...cooiiiiiiiieeee ettt e e e 280

Table of Contents vili

List of Figures

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9.

Time-triggered authentiCatioN.........cccceeiii i 25
Per-packet assurance defined by forged samgdgiired to induce system failure.............. 28
OMPR - multicast authenticator generation..........c.oooooooooooeeieee e 33
Simulated successful attack rates for fomsegutive messSagesccoceeveriiriiieeeeeenn. 47
Minimum MAC bits per packet and history bufé&ze (consecutive)...............ooeeee. 48
Simulated successful attack rate for twoaddibur messagescccoeeeeeeeeeieii e, 50
Simulated successful attack rates varyingfitra of valid packets...................... cceee.... 50
Minimum MAC bits per message and history &uffize (non-consecutive) 51
Three nodes cross checking message autltgnisong validity voting..............c.ooeeeeeee. 54
Validity voting - multicast authenticator @BAIONcccoooiiiiiiiiiiii e s e 63
Pseudo-code for validity VOUINGcccaaeiiiiiiiiiiiiiiiiiiieiieiieiieieeieeeee e ee e e e e e e e e e e e eeeeeeeeeees 64
Example validity voting with non-overlappiatfestationscccccvvveviiiiiiiiiieeeeeneenn. 68
AVISPA model of three nodes authenticatingsage mwith validity voting 72
AVISPA validity voting model execution oveve time SIOtSccccoeieiiieiiieieiicee. 73
Simulated per-packet forgery rates varyirgpedary confirmationsceevvvveeenn 80
Simulated per-packet forgery rates varyirggrttmber of compromised nodes 81
Reductions in history buffer size using AGOLINGuuuumiumii e 82
TESLA used in time-triggered authenticatiQn.............ooooooiiii s 90
Master-slave used in time-triggered auth@titneeuveeiiiiiieiiiiiiiinenene e 101
Authentication bits per packet varying peckst assurance (10 receivers)............... 107
Authentication bits per packet varying numtiareceivers (Assurance Zp.................. 110
Authentication bits per packet varying numifareceivers (Assurance =9................. 110
Ratio of packets authenticated to total trdtied varying packet 0SScccee.. 114
Door controller State diagramccceeeurrrrrmrumnnnruennneneneaeeeeeeena—————eeereereeree. 130
Drive controller state diagramuuueueeiueuiiiiiiiiieiieieii e 134
Effects of buffer size on single passeng8VEisy tiMesS...............uvvvvviiiiiiiiiiiiceeneeeeeen. 166
Average delay of history buffer output readismidue to symmetric packet loss........... 70..1
Average delay of history buffer output readi;mdue to packet loss (combined)........... 1.17
Average passenger delivery times varying sgtrimpacket loss rate..............cccoeev v 174
OMPR authentication bitS Per SECON. . . vvuneriiie i nenaeaeenne 188
OMPR total bits per second transmitted on QAN ... e 188
Validity voting authentication bits per sedQn.........ccoooeeieieiiii e 191
Validity voting total bits per second traned on CAN DUSuvvviiiiiiiiiiiniiimmmeennes 192
TESLA authentication bits per SECONdcooooviiiiiiiiii 195
TESLA total bits per second transmitted ONMNJAUSeuvvviiiiiiiiiiiinnnineeeees e 196
Master-slave authentication bits per SeCOnd............ooovviiiiiiiiiiiiiiiiiiieeeee e 199
Master-slave total bits per second transthitte CAN DUS..........coooviiiiiiiiiiiiies e 199
All techniques, authentication bits per Secan..............oooviiiiiiiiiiiiiiiiiieeeee e, 201

7.10. All techniques, total bits per second traittethon CAN buscooooeiiiiiiii e .. 202

List of Figures X

List

2.1.
5.1.
5.2.
6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

6.10.
6.11.
6.12.
6.13.
6.14.
6.15.
6.16.
6.17.
6.18.
6.19.
6.20.
6.21.
6.22.
6.23.
6.24.
6.25.
6.26.
6.27.
6.28.
6.29.

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7,
7.8.
7.9.
7.10
7.11
7.12

of Tables

Hash function processing time over 8 byte @aylon S12X microcontroller 0.1
Authentication bits per packet vs. per-pa@ssiuranceccccceeeeeeiiieieie e ceeeeeennnns 106
Summary of authentication technique charatesi.................uveuviiiiiiiiiiiniei s 120
Elevator message AICHONAIYuuuuuuuriuiiiiiiiiiiiiiieeee s asasnsseeseesesssesessennnes 125
Door controller state transition guard COMBIA...............ccevvieiiiiiiiiieiieeeeeee s mmmmneeeveeennee 130
Effects of message forgeries to force or daate transitions in door controllers......... 131
Drive controller state transition guard COMMIS.............cccorrirrirririririres e e e e e 135
Effects of message forgeries to force or dimse controller state transitions............. 137
Messages to be authenticated in the elevsgaders, and receivers....................c......143
Identifying largest tag size among all mesgsgges for OMPRccccevvvvvvvvv v 145
Message types voted upon in validity VOUNG............coooviiiiiiiieeee e 149
Number of votes received for each messageltymach node.............cccccvvvvvnninnr e 149
Baseline elevator bandwidth required withanthenticationuvvvveviviiicemeens 154
OMPR history buffer size, required per-padssurance, and MAC tag size 156
OMPR required bandwidth (Per-packet assurar®e number of samples = 7) 156
OMPR required bandwidth (Per-packet assurar&®e number of samples = 10) 157
OMPR required bandwidth (Per-packet assurar&e number of samples = 20) 157
VV history buffer size, required per-packet@rance, and MAC tag size................. 158.
VV required bandwidth (Per-packet assuran2é, =number of samples = 7)................. 158
VV required bandwidth (Per-packet assuran28 aumber of samples = 10)................. 159
VV required bandwidth (Per-packet assuran2& aumber of samples = 20)................. 159
TESLA history buffer size, required per-packssurance, and MAC tag size 160
TESLA required bandwidth (Per-packet asswan2’, number of samples = 7) 160
TESLA required bandwidth (Per-packet assw@an2®, number of samples = 10) 161
TESLA required bandwidth (Per-packet assw@an2®, number of samples = 20) 161
MS history buffer size, required per-paclsstumance, and MAC tag size................. 162.
MS required bandwidth (Per-packet assurarZé -number of samples = 7) 162
MS required bandwidth (Per-packet assurarZé aumber of samples = 10)................. 163
MS required bandwidth (Per-packet assurarZé aumber of samples = 20)................. 163
Total authentication bitS per SECONM .ocooeer oo 164
Total bits per second transmitted on budydicg CAN protocol overhead) 164
Percent increase in required bandwidth withe@nticationcocooiiiiiiiiii oo 164
High assurance automOotiVe MESSAQGES . .cceeeeeerurrrmmnumnnniiiaiarsssssesssssssnsssensnsnensnnnes 180
Medium assurance autOMOtIVE MESSAJES e cvrrerrrrrrrrrrnnrnmmnnnnmnnnnnsnnsrmnnnneeseeseesees LOL
LOW assurance autOmMOtIVE MESSATES .. uuuuuuuuurerrrrrrrerrrerrerrerrnrrsrersneressrrnrenrerereeereeeee 182
Non-authenticated autOMOtIVE MESSAJES.....ccceeiiiiiiiiiiiiiieiee e 183
OMPR history buffer size, required per-padssurance, and MAC tag size 186
OMPR bandwidth SUMMATYc.ooioo s et eeeeeeeeeeeeaeeaeeeeeseeeeereesserreneeeeeeeaeaeeeeeees 187
VV history buffer size, required per-packetiaance, and MAC tag Sizes 189.
Validity voting bandwidth SUMMANY ... 191
TESLA history buffer size, per-packet assueaMtAC tag size, and key size................... 194
. TESLA bandwidth SUMMArYooiiiiiiieii e eeeeeneees 195
. Master-slave history buffer size, requiredecket assurance, and MAC tag size.......... 196
. Master-slave bandwidth SUMMArY ... 198

List of Tables X

7.13. Comparison of authentication bandwidth.................... 200
7.14. Comparison of total bandwidth.........ccoooo 201
7.15. Comparison of percent increase in total baat...................eevevviiiiiiiiiiiiiiiiiicnn, 201
List of Tables Xi

1 Introduction

While embedded control networks have traditionblyn physically isolated, manufacturers are
increasingly adding connectivity amongst internatworks, to external networks (e.g., wireless
and Internet), and to multimedia devices [KoopmadnUhis connectivity enables new features,
but also introduces new avenues for attacks orstemsy In the event that an attacker accesses
the internal embedded control network, whetherughophysical manipulation or via a com-
promised network connection, they can triviallyeicti messages to disrupt system operation and

subsequently violate safety requirements.

Such attacks have already been demonstrated omative control networks. Koscher et al.
[Koscherl0] have demonstrated that an attacker @abt@nnect to an automotive control net-
work (e.g., via a wireless connection through daciied MP3 player or laptop, or via physical
access) can inject messages to control safetgairdictuators. An attacker might access the em-
bedded control network through such a connecticenggage an emergency brake in a car while
it is traveling on a highway, unlock doors and tsthe engine, or shut off headlights while trav-

eling at night.

Embedded control networks commonly use protocolshsas Controller Area Network
(CAN) [Bosch91], FlexRay [FlexRay05], and Time-Tgeged Protocol (TTP) [TTTech03] for
multicast communication over a shared broadcast Inusulticast communication, a transmit-
ting node broadcasts a single copy of a messaguiltiple receivers in the network (as opposed
to unicast communication where a node transmitstandt copy of the same message for each
receiver). Applications include distributed autoimet aviation, robotics, and industrial control

systems. Safety, reliability, and cost have tradaily been the primary concerns in these sys-

Introduction 1

tems, with security a minor concern. Most embedd®arol networks do not have any built in
security to support authenticating nodes, encrgptiata, restricting message types a node can

send, or preventing Denial of Service (DoS) attacks

1.1 Problem statement

This thesis addresses the problem of masqueradeegiad/ attacks on embedded control net-
works. Masquerade attacks [Schneier95] occur wheoda sends a message in which it claims
to be a node other than itself. This attack campé&dormed by broadcasting during another
node's Time Division Multiple Access (TDMA) slot by changing a message identifier value.
Replay attacks [Schneier95] occur when a previossht message is recorded and retransmitted
by an attacker. Authentication allows a receivecdafirm the identity of a sender, typically via
cryptographic mechanisms such as a Message Authéati Code (MAC) or a Digital Signature
[Menezes96]. While wired embedded network protocsis error detection codes to verify mes-
sage integrity, these codes can readily be forged,are no substitute for strong cryptographic

mechanisms.

As a practical matter, a successful masqueradekaith current embedded systems typically
gives an attacker the ability to make a system fensalimitless ways. Multicast authentication

is needed to prevent such attacks in systems ingsieng a wired broadcast network.

Thesis statement: Integrating multicast authentication into embeddedtrol network protocols

(e.g., CAN, FlexRay, or TTP) is challenging duethe limitations and requirements of these
networks. Resource limited nodes must authentsladet periodic messages to multiple receiv-
ers within tight real-time deadlines while tolergfipotentially high packet loss rates. Further-

more, authentication must consume a relatively spraportion of bandwidth compared to the

Introduction 2

data being authenticated. A reasonable size ftreaticators may be up to a few bytes of a data
payload, similar in size as existing error detecttimdes. However, most existing multicast au-
thentication techniques require hundreds or thalsa bits to authenticate each message. We
propose new techniques to provide multicast auiteidin while enabling tradeoffs to meet em-

bedded network constraints.
1.2 Time-triggered authentication

One simple method of reducing authentication badtiwéosts could be to use a single multicast
authenticator to authenticate an entire batch ofpéas of the same message type, but this has
several undesirable properties. While this appraamiild reduce bandwidth consumed by au-
thentication to an arbitrarily small fraction, Isa effectively reduces the sampling for that mes-
sage type; a receiver cannot verify any of the agss in the batch until all are received. This is
a problem for real-time control. This could redwyestem performance and responsiveness to
inputs. Further, it also reduces loss tolerancanyf of the samples in the batch suffer a transmis-

sion error, a receiver cannot verify any of them.

This thesis proposes an authentication techniglledctime-triggered authentication. This
technigue allows nodes in an embedded control rr&ttoverify periodic messages which drive
state-changes and actuations over multiple messagples, using authenticators only a few bits
in size. It allows verification of data integrityjé authenticity on a per-packet basis and enables
perfect loss tolerance. Time-triggered authenticatakes advantage of the existing temporal
redundancy in the system to amortize authenticdieordwidth overhead across multiple period-
ic message samples. Transmitters truncate MACttagshumber of bits based on the degree of
temporal redundancy and criticality of each san(ipdée the effect of an individual message sam-

ple on actuator outputs).

Introduction 3

Time-triggered authentication can be combined ity multicast authentication technique
based on symmetric authentication functions whagputs can be truncated (e.g., hash based
MAC functions). This work evaluates the use of fowlticast authentication techniques in con-
junction with time-triggered authentication: one KAver receiver, validity voting, TESLA [Per-

rig00], and a master-slave approach based on hasiboadcast authentication [Chan08].

Our approach enables design tradeoffs among péepauthentication cost, application level
latency, tolerance to invalid MACs, and probabilifyinduced failure, while satisfying typical
embedded system constrairfsirther tradeoffs can be performed based on th&aasi authen-

tication technique used with time-triggered autitaion.

1.3 Thesis contributions

This thesis makes four main contributions:

» Time-triggered authentication: an efficient techudador authentication of periodic messages
in a wired embedded network that enables a trad@eibngst authentication bandwidth
overhead, application level latency, probabilitynedliciously induced failure, and tolerance
to occasional invalid authenticators. Time-trigge®ruthentication is first applied to one
MAC per receiver.

» Validity voting: a technique that uses voting ttmai a group of nodes to cross-check the va-
lidity of messages amongst themselves to improgéd#dndwidth efficiency of one MAC per
receiver. This technique expands the trade spaiceltale number of votes and sensitivity to
packet loss.

» A comparison of one MAC per receiver and validigtiag to two existing multicast authen-

tication techniques: TESLA and hash tree broadaasientication using a trusted master.

Introduction 4

These comparisons illustrate tradeoffs amongstnigqoles which can be integrated with
time-triggered authentication.

» Two case studies in which we applied time-triggeaathentication in conjunction with each
of the four techniques to representative embeddatta@ network applications and observed

impacts on system resources and performance. Bplications use the CAN protocol.

Our techniques are intended to enable authenticaiccommon embedded network protocols
(e.g., CAN, FlexRay, or TTP), without the need &ory modifications of the protocol. However

all implementations in this work use the CAN pratc
1.4 Thesisoutline

This document is organized as follows: Chapter Zer® background material such as design
constraints and work related to embedded netwotkeatication. Chapter 3 introduces time-
triggered authentication using one MAC per receagr baseline multicast authentication tech-
nique. Chapter 4 builds on time-triggered authatibn with validity voting to improve band-
width efficiency of one MAC per receiver using vaji Chapter 5 compares one MAC per re-
ceiver and validity voting with two existing muléist authentication techniques: TESLA and
hash tree broadcast authentication using a trustester. Chapter 6 describes a case study in
which we implement all four techniques using timggered authentication in a distributed em-
bedded elevator simulation. Chapter 7 describeapgtication of these same techniques to an
industry automotive network workload. Chapter &dsses some variations on techniques. Fi-

nally, Chapter 9 discusses conclusions and futum.w

Introduction 5

2 Background and related work

This chapter discusses background material desgritesign characteristics of embedded con-

trol networks, our attacker model, and related workecuring embedded networks.
2.1 Design constraints

This section describes the typical embedded congtwork constraints and characteristics that

impact the design of multicast authentication mag@mas in those networks.

Distributed embedded networks connect a numbehastlware Electronic Control Units
(ECUs). These ECUs broadcast periodic samplesstésystate variables and sensor inputs via
a network using a protocol such as CAN, FlexRayl BP. These protocols are among the most
capable of those currently in use in wired embedsyastem networks. Many other protocols are
even more resource constrained, but have genesiafiyar requirements. We assume that em-

bedded networks exhibit the following charactetisti

Time-triggered (periodic) communication - This work focuses on authenticating periodic mes-
sages that drive state changes and actuationstiReaémbedded control systems are often de-
signed to be time-triggered [Kopetz97]. A real-tisystem is time-triggered if all communica-
tions and processing activities are initiated &determined points in time from an a priori des-
ignated clock tick [Kopetz97]. Each node periodicdiroadcasts current values of state va-
riables and sensor inputs to the rest of the né&tw®afety-critical messages are often broadcast
with periods on the order of milliseconds to terismolliseconds. Non-critical messages are
broadcast less often. ECUs running control loogsoacthe most recent input data and update

their outputs accordingly, requiring per-messagaentication.

Background and related work 6

We assume each node periodically broadcasts ¢wadues for a set of predefined message
types according to a predefined static schedule aindodes know this schedule. Our time-

triggered authentication approach relies on a fegcsic characteristics of such static schedules:

» Each sample of a message type is broadcast atfipeigooints in time, or within a short
time span around that point in time (e.g., withimreonessage period). Receivers know when
a message sample should be received by nodes netwerk.

* Message types have a well defined broadcast peBeaders broadcast only one sample of a
message type during each period. For our appreackivers must be able to easily identify
which period a particular message sample belongseto a message sample should not ar-
rive on the "edge" between two broadcast peridéisra samples of a message type within a
period indicate an error has occurred.

* Receivers can identify that a transmission errar decurred, either because a message has
not been received within the predefined time orgaeket was malformed (e.g., error detec-

tion code is incorrect).

Protocols such as TTCAN [Fuhrer00], FlexRay and Prévide these properties using a static
TDMA schedule. However, TDMA is not absolutely nesay. The CAN protocol can also be
used as long as the application supports the #ibege properties. Our analyses on two repre-

sentative network workloads in Chapters 6 and iraptlemented using the CAN protocol.

Our time-triggered authentication technique masp dle applied to periodic systems which
are not strictly time-triggered. System-wide tinymchronization is not required either. Howev-

er, the system must support the three above prepeat use time-triggered authentication.

Embedded control networks might also include sewvent-triggered message traffic. These

communications are initiated as consequences aitgeysignificant state changes in the system).
Background and related work 7

Event-triggered messages are typically sent onggs(ply with a small number of retries), often
relying on acknowledgements to ensure messageedglifime-triggered authentication is not
intended to provide message authenticity for eweggered messages. Authentication of both
message types in one control network may requineri@n one technique. Chapter 5 discusses

technigues which are better suited to authentigatirent-triggered messages.

Multicast communications over broadcast bus - Most distributed embedded networks are in-
herently multicast. This work assumes a single-hepvork in which a set of ECUs communi-
cate over a shared communications bus. All nodesexded to the bus can receive every packet.
(In CAN, hardware performs message filtering at tbeeiver based on content.) Each packet
includes the sender's identity, often implicitlydagh a message identifier (CAN; FlexRay) or
time slot (TTP), but usually no explicit destinatimformation. Multi-hop networks (e.g., net-

works with multiple routers or gateways) are owgdite scope of this work.

Static networ k configuration - We assume the network configuration is fixedesdign time,

with no runtime reconfiguration. While embeddedwaks typically have few nodes attached
(commonly 32 or fewer), there may be cases where @@ attached. In our two case studies for
the elevator and automotive networks, the maximumtbrer of receivers is 7 and 12. Some mes-
sages are consumed by a single receiver. We exdmmdour multicast authentication tech-

niques scale to larger numbers of receivers in @&n&p

Limited authentication bandwidth - Packet sizes are small in embedded network potgo
when compared to those in enterprise networks. &adkave maximum data payload sizes as
small as eight bytes in the case of CAN, with trgeér payloads for FlexRay and TTP being 254
bytes and 236 bytes respectively. Cost, signabiitie and network node synchronization con-
cerns limit data rates to 1 Mbit/sec for CAN andMbit/sec for TTP and FlexRay. Low-cost

Background and related work 8

embedded networks can be orders of magnitude skthaarthat. Networks are often run at near-
ly 100% bandwidth to minimize cost. Authenticatisimould incur minimal bandwidth overhead

regardless of the protocol used.

Our goal is to produce very small authenticatbi tonsume just a few bytes of the data
payload of each packet. This size is similar taenir error detection codes used in embedded
network protocols. Even though more advanced potdéosuch as TTP and FlexRay can send
larger packets, message workloads will likely beeobupon or integrated with legacy implemen-
tations on more constrained protocols. For exangole,of the target applications of the FlexRay
protocol is automotive control networks. These meks have historically been implemented
using one or more CAN busses, which use packetsdata payloads of eight bytes or less. All
time slots for time-triggered messages in FlexRagtrbe the same length [FlexRay05], so time-
triggered message slots in FlexRay will likely liged for eight byte data payloads (or slightly

more) for bandwidth efficiency.

In Chapter 5, we show how authentication bandwalterhead scales for each of four tech-

niques based desired per-packet forgery probalaititynumber of receivers.

Resour ce limited nodes - Processing and storage capabilities of nodesfaea limited due to
cost considerations. For example, the S12XD sepexjuced by Freescale [Freescalel?], is a
family of 16-bit microcontrollers designed for use general automotive body applications.
These microcontrollers provide up to 32 kilobyté®RRaM, 512 kilobytes of flash memory, and
four kilobytes of EEPROM, with a core operatingguency of 80 MHz. Flash memory is gener-
ally not written except for software updates, siPREM holds non-volatile application data.
Buffering and storage for authentication consumacsepgn RAM, which is far more expensive
and scarce than flash memory in such systems. Atitiadon mechanisms which require large

Background and related work 9

amounts of processing power or storage in RAM nmatybe feasible. More powerful ECUs are
impractical for most nodes in the system, and maoges are 8-bit ECUs with significantly

smaller memories due to cost and power considesatio

In this work, we do not perform a detailed anaysi processing and memory requirements
for techniques we use (this work instead focusebasdwidth consumption and impacts to loss
tolerance). We limit techniques to those using stnim cryptography (which execute an order
of magnitude faster than those using asymmetriptography). We assume that nodes have suf-
ficient processing and memory available to compdeC functions for each packet received or
transmitted. Groza and Murvay [Grozall] provideaaalysis of processing time required for an
S12X derivative microcontroller (with XGATE coprasor) to perform MD5, SHA-1, and
SHA-256 hash functions. Table 2.1 shows the prangdsne required for these three functions
for the microcontroller operating frequency of 8H& In this work, we use the HMAC algo-

rithm which requires two executions of a hash figrct

Table 2.1. Hash function processing time over 8 byte payload on S12X microcontroller [Grozall].

MD5 SHA-1 SHA-256

Execution time 373us 1.146 ms 2.755 ms

Tolerance to packet loss - Distributed embedded systems are subject toagedslackouts from
environmental disturbances such as interferenaa fewge electric motors. High quality cable
shielding is often impractical due to cost, sizad aveight limits. As such, authentication

schemes must tolerate packet losses as part obheystem operation.

Real-time deadlines - In real-time systems, processes must compldtémspecified deadlines.

Authentication of nodes must occur within a knownet bound, with that bound being fast

Background and related work 10

enough to match the physical time constants ofsglstem being controlled (as fast as tens of

milliseconds).
2.2 Attacker mode

This thesis focuses on masquerade and replay attb&squerade attacks occur when a node
sends a message in which it claims to be a nod® tthn itself. This attack can be performed by

broadcasting during another node's Time Divisiortidie Access (TDMA) slot or by changing

a message identifier value. Replay attacks occamvehpreviously sent message is recorded and

retransmitted by an attacker.

This work uses a Dolev Yao attacker model [DolguBat controls the network (i.e. an at-
tacker may modify, inject, drop, or eavesdrop upetwork traffic). This model assumes authen-
ticators are unforgeable unless an attacker hassado the appropriate key. However, because
we use small MAC tags in this work, there is a nmegligible probability of a single forged
packet being accepted as valid. Thus, we slightidifg this model by assuming an attacker can
also "guess" an authenticator; any message and M4@air has a chance of randomly verify-

ing as correct based on the number of MAC bits used

We do not address how an attacker gains accessetwork, but rather how to prevent mas-
guerade and replay attacks from succeeding in\teateéhat they do gain access. For example,
an attacker may gain access to the internal netttmdugh a compromised gateway connection
to an external network, malicious insider code,gutglly attaching a new node to the network,
or tampering with nodes. Attackers accessing thwork through compromised nodes will have
access to the key material in those nodes anderah messages from those nodes. An attacker

must not be able to masquerade as any critical tieedo not already control to perform a suc-

Background and related work 11

cessful attack, except with some acceptably lovbabdity.

Embedded networks may include a mixture of critanad non-critical nodes. Critical nodes
contain software "whose failure could have an impacsafety, or could cause large financial or
social loss." [IEEE610.12] This work assumes limittompromise of critical nodes. Once an
attacker has compromised more than one or twaaritiodes, they can likely cause a successful
attack without having to resort to spoofed messagas to the potential for an attacker access-
ing the network through compromised nodes regasdb<riticality, authentication approaches
which tolerate some level of node compromise fahlmitical and non-critical nodes are desira-

ble.

Successful masquerade and replay attacks on ematbexehtrol networks can be viewed as
induced system failures, because they may causeendied release of energy or violation of
safety or operational requirements of the systeie t€chniques proposed in this work will pre-
vent malicious failures due to masquerade and yegitacks from occurring no more often than
non-malicious failures. We use failure rates bame®afety Integrity Levels (SILs) [IEC61508]

to define acceptable rates of successful masqueratieeplay attacks.

This work assumes an attacker is aware of exiginy detection mechanisms along with the
message schedule, and is capable of injectingfaetied packets at valid times. The message
schedule constrains an attacker to one forgeryati@er message period. For example, an at-
tacker is limited to injecting a message duringdzéime slot in a TDMA network such as TTP
or FlexRay, since transmitters are only permittetransmit a single packet per time slot in such
protocols. Using CAN, receivers can identify if atacker is "spamming” many samples of the

same message type based on the message schedule.

Background and related work 12

2.3 Authentication

Preventing masquerade attacks requires some m#tabdrovides data integrity and data origin
authenticity. All methods described in this worledsash based message authentication codes to
provide these properties. Further, to prevent septéacks, all methods include the current time

or message round (agreed upon by both parties) .

Data integrity is the property by which data has not been chgndgstroyed, or lost in an un-
authorized or accidental manner [Shirey00]. Embdduework protocols often support data in-
tegrity using error detection codes, such as cyelittindancy checks (CRCs) computed over the
header and data payload of a message. Howeverindeggity alone cannot prevent a masque-
rade attack. We assume an attacker is well awatkeotvidely known functions used in pub-
lished protocol standards and is capable of comgudi correct error detection code for any

packet they modify or inject in the network.

Data origin authenticity is the corroboration that the source of receivathds as claimed
[Shirey00]. With this property, a receiver is abdeidentify the source of a message. Receivers
can confirm that messages have been transmittgdbgrithe node assigned to send that message
type in the message schedule. Data origin authgndilso implicitly provides data integrity (if a

message is modified, the source has changed) [Mef6k

To provide these two properties, we use the kdwyesih based message authentication code
algorithm (HMAC): a message authentication code tisas a cryptographic key in conjunction
with a hash function [Krawczyk97]. Aash function is a computationally efficient function
mapping binary strings of arbitrary length to binatrings of some fixed length, called hash-

values [Menezes96]. A cryptographic hash funchdras the following properties:

Background and related work 13

* Preimage resistance - Given the output hash-\gk)eit is computationally infeasible to
find inputx.

« 2".preimage resistance - Given inpuit is computationally infeasible to find a secanput
X' (X #X), such thah(x) = h(x).

» Collision resistance - It is computationally infdds to find two inputx andx’, such that

h(x) = h(x). The attacker may freely choose brtfndx, so long ax # X.

A message authentication code algorithm is a family of functionls, parameterized by secret key

k, with the following properties [Menezes96]:

» Ease of computation - For a known functlgngiven a valu& and an inpuk, outputhy (X)
is easy to compute.
» Compression ke maps an input of arbitrary finite bitlength to an outpbit (x) of fixed bit-

lengthb.

Furthermore, given a description of the functiomifs h, for every fixed allowable value &f

(unknown to an adversary), the following propertyds:

» Computation-resistance - Given zero or more texteVairs &, h(x)), it is computational-
ly infeasible to compute any text-MAC pax; fk(x)) for any new inpuk # x; (including the

possibility forh(x) = h(x) for some).

Without knowledge of the secret kleyshared only between sender and receiver), atrampi
MAC tag of b bits on an arbitrary plaintext message may beesstally verified with an ex-
pected probability 2 [FIPS 198-1]. This property remains true everhé putput of the MAC

function is truncated to an arbitrarily small numloé bits. Truncating the output of a MAC

Background and related work 14

function does not reduce the security of the keyraterlying cryptographic functions. In gener-
al, if a MAC is truncated, then its output lengstishould be as large as practical (e.g., 32 bits or
more). Fewer bits can be used so long as repeadds! tb are not allowed for an attacker to
present a non-authentic message for verificatidR$F198-1]. In our approach, we use MAC
tags of just a few bits in length. However, ouruiegd properties for static message schedules

(Section 2.1) do not allow for multiple attemptdaoge a message sample.

As a final note on authentication functions: a péng option might be to use a secret key,
initialization vector, or final XOR as part of a CRor other error detection code computation.
This approach has been proposed for safety-crgigstems, which assume faults are random and
independent [Morris03]. Thus, it would be difficdidtr a fault to accidentally produce a correct
error detection code. Unfortunately, this appro&cmot cryptographically secure for a fault
model which includes a malicious attacker. Everragppetary protocol can be fully reverse en-

gineered from its inputs and outputs [Ewing10].
2.4 Multicast authentication

To provide data origin authenticity and data inifiyggn a broadcast bus, multicast authentication
is needed. Many methods for multicast authentioatioeady exist. However, none of these ap-

proaches is ideally suited for the constraintsrobedded networks.

The multicast nature of embedded network protonw&es authentication particularly chal-
lenging. Cryptographic mechanisms for point-to-p@ommunications, such as appending a sin-
gle MAC to a message using a shared secret keyebatwodes, do not provide adequate securi-
ty in a multicast setting. If more than two nodkare the same key, a receiver cannot determine

which of the other nodes created the MAC. MultiGasthentication requires some form of key

Background and related work 15

asymmetry, so that no receiver can masqueradesasder. Sending one full-size MAC per re-
ceiver can provide multicast authentication, uging unique symmetric key per pair of commu-
nicating nodes. Unfortunately, bandwidth and precgsoverhead scales linearly with the num-
ber of receivers. This can require authenticatoas are tens to hundreds of times larger than da-
ta payloads. For this reason, one MAC per recewasften avoided for enterprise networks
broadcasting to hundreds or thousands of receittowiever, by taking advantage of the tem-
poral redundancy and small numbers of receiversast embedded control networks, we modi-

fy this technique to produce authenticators justvabits in size.

Another asymmetric approach is to use digital &igres. This approach provides strong
source authentication using public and private kéys the processing overhead makes it im-
practical for a resource constrained device to agmpligital signatures for each message for
real time control. For example, pagers and Palot$dan take several seconds to compute a 512
bit RSA signature in resource constrained nodesyiB00]. Some approaches suggest amortiz-
ing the cost of the digital signature over a sgpadkets [MinerO1][Park02][Perrig00][Wong98].
But, a node would have to amortize the cost oveers¢ hundred messages for this to be effec-

tive, making it unsuitable for real-time controlesptions.

Schemes using one-time digital signatures [Evd@@dinero97][Perrig01] allow senders to
sigh messages much faster than with traditionataligignatures by using one-way hash func-
tions, at the expense of increased message sinésrtthately, one-time digital signatures can
incur several kilobytes of authentication data pessage. This makes them impractical for em-
bedded networks with small packet sizes and tingge¢red communication, even if amortized

over many packets.

Background and related work 16

Canetti et al. [Canetti99] suggest a multi-MAC ecte which appends one-bit MACs to
each message, computed ugidjfferent keys. The keys are distributed amongseivers such
that at leastv receivers must conspire to forge a message. Whigas more efficient than using
one MAC per receiver, it is vulnerable to collusimy multiple nodes that together can masque-
rade as some other node. Mitigating collusion @uire hundreds or thousands of authentica-

tion bits per message.

TESLA [Perrig00] uses time-delayed release of keysrovide asymmetry. By releasing keys
at a pre-specified interval after a MAC is releggedeivers can confirm the authenticity of the
data from a sender. The released keys are compsieg one-way hash chains. The cost of stor-
ing the entire chain of keys is prohibitive, sohieiques are used to reduce memory overhead at
the expense of a small recomputation cost [JakoldjoWhile TESLA sends a single MAC per
interval, it also requires the sender to includeeya for each interval of messages to be authenti-
cated. In Chapter 5, we describe a slight modificadf TESLA in which the sender truncates
the MAC tag to just a few bits, but we do not pre@do truncate the key. Truncating the key ex-
ponentially reduces the security of this appro&tinet. al. propose a variation on one-way hash
chains, called sandwich chains, which allows sm#ks's to be released per message by regular-
ly initializing new key chains [HuO3]. However, shtechnique assumes the attacker does not
have the computational resources to break the riukesy before the next is released. Chapter 5
discusses further details and tradeoffs relatagstng TESLA within an embedded control net-
work. Bergadano also proposes a similar protocwlgusme-delayed release of keys [Bergada-

no00].

Chan and Perrig [Chan08] propose a multi-MAC tephe called hash tree broadcast authen-

tication in their work on secure aggregation. Tieishnique requires the transmitter to send only

Background and related work 17

a single hash value to receivers (computed ove A& Nbr each receiver). Subsequently, all re-
ceivers exchange MAC tags to for verification o ttender's hash value. Chan and Perrig ex-
amine tree [Chan08], linear, and connected topek{Chan10]. We examine the use of this

technigue in a broadcast bus topology using addustaster node.

Luk et al. identify a set of seven cardinal projesrof broadcast authentication in sensor net-
works [LukO06]. In their work, they show that vialldeoadcast authentication protocols exist that
satisfy any six of the seven properties, but nias@len simultaneously. In this work, most of our
design constraints (Section 2.1) are a subseteofd#lven desired properties. However, we also
consider embedded network applications which afowweak per-packet assurance (Section

3.1).

2.5 Authentication in resource constrained wir eless networ ks

Other approaches such as SPINS [Perrig02] and €my&arlof04] apply security to resource

constrained wireless sensor networks. However etlapproaches are specifically designed for
use in wireless networks, where energy (battegy ig typically the scarcest resource. Methods
for reducing overhead related to security ofterugss on reducing energy consumption. These

network typically do not have real-time deadlinesdafety-critical applications.

For examplepTESLA [Perrig02], a version of TESLA and part o€tBPINS security suite,
limits the number of authenticated senders andzesila base station for communications to re-
duce overhead. A base station is often cost-privébfor distributed embedded real-time con-
trol systems, which use peer-to-peer wired netwokksexisting node, such as an embedded ga-
teway, might act as a base station, but would baraesirable single point of failure and ob-

vious attack target for the entire network. A fudlistributed approach is best for the types of

Background and related work 18

systems we are concerned with, though we do cantlideuse of master node in this work and

illustrate some of the benefits and issues witth @ucapproach.
2.6 Embedded control network security

Morris and Koopman [Morris03] identify the poterntiar masquerade failures to cause acciden-
tal or malicious failures, via non-critical nodessqguerading as higher criticality nodes. They
propose the use of counter-measures of varyinggitie to prevent masquerading failures be-
tween nodes of varying criticality. Their approagsumes non-malicious software faults or at-
tacks from a cryptologically unsophisticated attackault tolerance mechanisms are not neces-
sarily secure against malicious masquerade oryegitacks. Masquerade prevention for safety-
based systems typically uses bus guardians or ansymc key shared among all trusted nodes.

Compromise of a single node would permit an attattkenasquerade as any system node.

Wolf et al. [Wolf04] provide an overview of thecseity vulnerabilities of various in-vehicle
network protocols including Local Interconnect Netw (LIN), Media Oriented System Trans-
port (MOST), CAN, and FlexRay. These vulnerabititigrimarily focus upon DoS attacks in-
tended to disable networks. Additionally, they ettite need for confidentiality and authentica-
tion. Wolf et al. suggest the use of digital sigmas or the asymmetric MAC scheme proposed in
[Cannetti99] for authenticating sent packets alamty gateways between individual in-vehicle
networks. These authentication schemes may notuibebke for some distributed embedded

networks, as discussed in Section 2.4.

There have been several publications demonstratiagks on the integrity and authenticity
of messages and nodes in embedded networks. Ni#ggbharson [Nilsson08] detail the actions

which an attacker might take, and demonstrate nemadge attacks on CAN using simulation.

Background and related work 19

Hoppe et al. [HoppeO7] and Lang et al. [Lang07] destrate a combination of eavesdropping
and replay attacks on CAN. Koscher et. al. [KostOpdemonstrated the ease with which
spoofed messages allow an attacker to controlysefitical actuators in a live automobile. With

access to the on board diagnostics port, they dstrated that they could disable the braking

system in an automobile while driving.

Nilsson and Larson [Nilsson08 2] propose a unieaghentication scheme using a 64-bit
MAC computed over four consecutive message samplésansmitter divides the tag into four
parts, and places each part in the CRC field ofetheh of the four packets. This introduces a
four message period delay before the samples caarifeed as a batch. It also requires a change
in the CAN protocol to support this approach (replg the CRC). This approach uses a similar
idea to our approach, amortizing authenticatiortscoser multiple samples, but batch authenti-
cates multiple samples to only a single receivars Effectively reduces the sampling rate of the
system if receivers must act on the most recenesystate variable and sensor data. This ap-
proach also reduces loss tolerance; if any ofdlne $amples suffers a transmission error, all four
are lost. This approach also does not provide aifspeneans to prevent replay attacks, though

the work does discuss the need for ensuring frestsages.

Herrewege et al. [Herrewegell] propose an autteditn approach called CANAuth, which
provides unicast authentication of individual mgesasamples by taking advantage of extra
bandwidth of an out-of-band channel provided byG@#eN+ protocol. CANAuth transmits a 32-
bit nonce and 80 bit MAC tag for each message samapbe verified. Only a single MAC tag is
computed using HMAC, providing only unicast autheastion and requiring an out-of-band
channel. Our analysis in Chapters 6 and 7 showalh&bur techniques we examine (including

TESLA) can provide multicast authentication to tgdinumbers of receivers in an embedded

Background and related work 20

network using fewer bits per packet for most lew#Iper-packet assurance.

Two works by Groza and Murvay each propose theofti§&ESLA [Grozall] and BiBa [Gro-
zall 2] respectively and examine tradeoffs asstiaith each in a embedded control network
using CAN. For TESLA, they examine a trade spacduding number of key chains, key
lengths, memory requirements, and processing reap@nts. They also examine processing
overhead on a Freescale S12 microcontroller (corhmased in automotive applications). Our
work differs in that we focus bandwidth requirensenthile varying MAC tag size. For the one-
time digital signature scheme BiBa, they examireeltndwidth consumed using this scheme for
authenticating critical message traffic. With a lspged of 128 KBps, this scheme allowed for
authenticating 286 bits per second at a cost afsal|ad of 16%. To authenticate 1000 bits per
second required a bus load of 100%. This analifsstrates that one-time signatures can require

extremely high overhead for verifying even a fewssages.

Lastly, Chavez et al. [Chavez05] propose using R@eryption to provide confidentiality on
CAN buses. They dismiss authentication and noneigpion as unnecessary in these networks,
under the assumption that message identifiers aod detection provide sufficient confirmation
of the sender's identity. Our work relaxes thisuagstion by assuming that sender identity can

be forged, for example as illustrated in publicasichat demonstrate such attacks.

2.7 Fault tolerance

Our proposed method for validity voting in Chaptealso shares some similarity with approach-

es for voting and detecting disagreement amongsiode

Voting techniques and redundancy are a classimapp to improve system reliability [Neu-

man56]. These techniques enable fault detectiorhandling to prevent fault propagation in a

Background and related work 21

system. Typically system designers assume each io@uvoter or comparator mechanism fails
randomly and independently of others. In our apgnpaodes detect differing views of message
authenticity by voting on the validity of MAC tai®@m other nodes. We assume the outputs of
each MAC function can only be successfully forgagdomly and independently of other MAC

functions.

Our voting approach also has similarities to ti® Qroup membership service [TTTech03].
This service provides agreement on current operatiode and set of nodes believed to be cor-
rect and alive. In TTP, nodes encode membershgorrdtion into packet error detection codes.
Disagreeing error codes indicate either the seodegceiver failed, and nodes take appropriate
action to segregate out the failed node. We ugmitas technique, computing a MAC function
over a previous set of values seen from the netandka bit vector indicating each value's valid-
ity. In our approach, disagreeing authenticatodscette that an attacker may have fooled one or

more receivers. Nodes then reject potential foegeri

Background and related work 22

3 TimeTriggered Authentication

This section introducesme-triggered authentication, a new method for authenticating periodic

messages in wired embedded control networks.

Time-triggered authentication uses the tempordumdancy present in most time-triggered
system designs to amortize authentication bandwad#rhead across multiple time-triggered

packets, while verifying each packet individualbing truncated MAC tags.

In time-triggered applications, nodes periodicdllpadcast current values of state variables
and sensor inputs to the rest of the network. Recgithen update outputs and actuators based
on the most current system state. This informaiaypically sampled faster than the time con-
straints of control stability requirements. As &raf thumb, ten or more samples are sent within
the rise time of a control system or prior to atesysdeadline [Kopetz97][Franklin02]. Choosing
such a sample rate reduces the delay between a aminamd the system response, smoothes

outputs to steps in control input, and toleratss toessages.

System inertia often limits the effects of an indual message sample on the output of an ac-
tuator in the system. Typically, an actuator doesinstantly reach a new output position com-
manded by an input to its controller. For exampjpical passenger cars often have a maximum
acceleration of 3 to 4 nf/§SuperCoupe12], whereas throttle inputs are sammtethe order of
milliseconds. Suppose a passenger car has a maxaoesteration of 3 mfsand a throttle input
sampling period of 10 milliseconds. In the timeaites for such a car to increase its speed by 3
m/s (about 6.7 miles per hour), the throttle wdlve been sampled 100 times (all sustaining max-

imum acceleration). Greater changes in speed ®eguign more samples sustaining a maximum

Time-triggered authentication 23

acceleration. Thus, a single message sample commganximum acceleration will produce a

very small observable increase in vehicle speed.

This existing periodic sampling already grantsliessce to transient faults. An undetected
fault affecting a single message sample is unlikelgause a system failure (in the example ve-
hicle, a single fault affecting a sample of theottie input cannot cause the vehicle to drastically
change speed). It may cause some vibration, stiglgy in updating control outputs, or less

smooth control.

From a fault tolerance point of view, if many in@amples suffer undetected errors within a
short period of time, then an unsafe event mightincThus, a system design must ensure that so
many undetected errors have an very low probahlitgccurring together. Embedded network
protocols include an error detection code in eadket to prevent this. Similarly, from a securi-
ty point of view, if an attacker might cause a systo enter an unsafe state by forging a number
of message samples within a short period of tilmen the design must ensure that enough forge-
ries cannot occur without very high probability ding detected. Our approach includes MAC

tags in each packet to detect such masqueradésattac

Because of this over-sampling, senders can authsmtstate changes and actuations over
multiple packets using truncat®AC tags. All multicast authentication techniquaghis work
use hash based MACs. The sender computes MAC dadisef packet as defined by the selected
multicast authentication mechanism. Then, the seindecates each MAC tag to just a few bits

before appending tags to the data payload.

Time-triggered authentication 24

Time-triggered authentication requires that thigoots of the MAC functions can be truncated
down to an arbitrarily few number of bits withowinspromising the security of the function or
the key. Only MAC functions that meet this requiggth(e.g., hash based MAC functions) can
be used for time-triggered authentication. MAC fiimts that do not meet this criteria should

not be used.

To reduce the rate at which masquerade attackscéendystem failures, nodes verify state
changes and actuations over multiple time-trigg@aatkets, each containing a truncated authen-
ticator (Figure 3.1). Nodes execute state-chanfies r@ceiving a sufficient number of packets
containing consistent values, each of which wotilgher the same state change. Reactive con-
trol inputs are applied to actuators as they aceived, relying on system inertia to force an at-
tacker to forge multiple packets within a shortipeérof time to place the system in an unsafe

state.

Each packet contains a truncated authenticator

|m1 Dy Doy DD g ey

Time

Figure 3.1. Time-triggered authentication. This approach verifies state changes and actuations

across multiple truncated authenticators.

The primary advantage of time-triggered authatitn is that the system designer can per-
form a tradeoff among authentication bits per pgdeplication level latency for state changes
and physical actuations, and the acceptable prityadi induced system failure for each mes-
sage type. Typical requirements for acceptableraitates in systems containing wired embed-

ded networks might be defined at™lr, 10%hr, or 10°hr of undetected message errors de-

Time-triggered authentication 25

pending on the severity of the resulting failuree®ystem designer can determine the number of
authentication bits required per packet such ttratcaessful masquerade attack can induce a ma-
licious system failure no more often than the faluequirements for sources of other non-

malicious failures.

A secondary advantage of time-triggered authetmicas that it can be combined with many
multicast authentication techniques that use MA€gadlidate packets during run-time. The
MAC tags in such approaches can be truncated tarlgitrarily small number of bits without
compromising the security of the underlying funoicor keys. Further, being able to combine
time-triggered authentication with other multicasithentication techniques enables additional
tradeoffs amongst multicast authentication techesqurhis work discusses tradeoffs amongst

different techniques in Section 5.
3.1 Per-packet assurance

This work shows that by verifying state changes jgimgsical actuations over multiple truncated
authenticators, time-triggered authentication esmldtrong system-level assurance (very low
probability of maliciously induced failures) théolse state changes and actuation commands are
correct and from a valid sender despite only haviegk assurance that an individual packet

contains a valid message sample value.

In time-triggered authentication, the degree tactvlan individual authenticator can be trun-
cated depends on the required level of per-packmirance. We definper-packet assurance
level as the acceptable probability of successful forgenypacket. Aveak per-packet assurance

level gives an attacker a high probability of swsfelly forging each packet. Usingsiaong per-

Time-triggered authentication 26

packet assurance level creates a low probabilitysurfcessful packet forgery. Achieving a

stronger assurance level requires more authermtichtts.

A system with sampling rates faster than the mlaysiynamics of the system (e.g., a typical
time-triggered embedded control network) genettallgrates weaker per-packet assurance levels
than a system that sends infrequent periodic sanla single sample for some change in sys-
tem state (e.g., an event-triggered system). Itesys with high sampling rates, each packet has
less net effect on the overall system state, reguimany successful packet forgeries to induce a
system failure. However, in systems with low samgpliates or event-triggered systems, an at-
tacker might induce a system failure with a sin@glevery few) packets. A more severe failure
induced by a successful masquerade attack agapestiaular message type requires a receiver

to authenticate across more samples or have strasgarance of each sample.

Figure 3.2 shows the required per-packet assunamtmbility as we vary the number of sam-
ples an attacker must successfully forge consealytte induce a system failure with probability

no higher than I®per message round.

Time-triggered authentication 27

10°

101
102
10-3 1
10-4 -
10-5 -
10-6 -
10-7 -

Per-packet assurance probability

10-8 4

10_9 ' T T T T T
0 5 10 15 20 25 30

Consecutively forged samples required to induce system failure

Figure 3.2. Per-packet assurance defined by forged samples required to induce system failure.

Per-packet assurance probability required to prevent system failure with probability no higher

than 10° per message round, varying the number of successfully forged samples required to
induce the system failure.

We emphasize that the failure probability in Feg8t2 isper message round. To achieve fail-
ure rates on a per-hour basis, a system designgrdatermine how many authentication bits are
needed to achieve a sufficiently low expected failate per message round, taking into consid-

eration the period of a particular message type.
3.2 Time-trigger ed authentication assumptions
Time-triggered authentication relies on multiplswaaptions. This work assumes the following:

* The sampling rates of message types are suffigiéadter than the physical dynamics of the
system, such that an individual message samplereglyires a weak level of per-packet as-
surance. Packets are transmitted at a rate fasigarfor a receiver to authenticate multiple

consistent values for a message type within a systeadline or rise time of a system. In

Time-triggered authentication 28

Section 5, we examine which multicast authenticatexhniques scale best when individual
packets require stronger per-packet assurance.

» A certification authority exists to assign key miatkto components when they are manufac-
tured.

* Nodes use existing cryptographic one-way hash fomst(e.g., SHA-1 [FIPS 180-3], MD5
[Rivest92], or SHA-256 [FIPS 180-3]) and MAC furants to implement authentication (e.g.,
HMAC [Krawczyk97]). We assume the underlying crygtaphic primitives are secure. We
do not rely on specific MAC or one-way hash funefido implement our scheme.

* The outputs of selected MAC functions can be trtegtdo an arbitrarily small number of
bits without compromising the security of the MAGnEtion, underlying hash function, or
any key material.

» The output lengths of MAC functions and sizes ofkare fixed at design time and cannot
change at run-time.

» The network configuration is fixed at design tinmedes are not installed or uninstalled on
the fly. A message schedule exists so all nodes\aege of the set of message types broad-
cast by each node. The set of receivers for easlsage type is also known by all nodes.

* Nodes remain synchronized to the nearest messagd.ro

We list other assumptions necessary for individgoalticast authentication techniques in their

respective sections below.
3.3 Usingone MAC per receiver (OMPR) for time-triggered authentication
This section describes how to combine One MAC peseRrer (OMPR) into time-triggered au-

thentication. OMPR is one of the most straightfadvaethods for multicast authentication; the

Time-triggered authentication 29

transmitter simply computes and sends one full-M2&C tag for each receiver along with the
message. Time-triggered authentication allows scéte the tag size based on the required per-
packet assurance on a per-receiver and per-mesgagbasis. First, this section states our as-
sumptions. Then it discusses key initialization agplay protection. It shows how to sign and
verify individual message values at run-time. Hinat describes how to verify a series of indi-
vidual message values, each with weak per-pacletraasce, to provide strong assurance for

state changes and actuations.

When using OMPR, a sender computes one MAC tagdohn receiver and truncates each to a
few bits. By using tags only a few bits in sizeg #ender can place one tag per receiver in the
data payload of a packet. This approach allowsesitation on a per-packet basis (batch au-
thenticating multiple payloads is not required)s parfect loss tolerance, and perfect tolerance to
compromised nodes. However, bandwidth requiremscdde linearly as per-packet assurance

and number of receivers increase.

3.3.1 OMPR Assumptions

When using OMPR, this work uses two assumptioredutition to those for time-triggered au-

thentication in Section 3.2:

* Each sender has sufficient computational resout@esompute one MAC per receiver per
message value that is sent. The required compuogtiesources depend on the cryptographic

function used.

» The number of available bits in a packet's datdgaalyis greater than the number of receivers
of a packet. This allows authenticators for eadeiker in the packet, leaving room for the

message value.

Time-triggered authentication 30

3.3.2 Initialization

Key establishment - To prevent one node from masquerading as andiferset of nodes at-
tached to the network must first established pasevehared secret keys. Keys are set up at ini-
tial installation or node replacement for maintesenMny secure method of key establishment
can be used. Maintenance or factory personnelpcagram each node with the respective
shared keys when the node is installed into theesysThis method might not be ideal since it
requires additional work by personnel to estabiishkeys, and places a large amount of trust in
these personnel. Alternately, another approacb wdvide each node with a public and private
Diffie-Hellman [Diffie76] key pair, which has beefgitally signed by the manufacturer's secret
key. Each node also has the manufacturer's publc At time of installation, the nodes ex-
change their Diffie-Hellman public keys and cectifies. Each pair of nodes then authenticates
the certificates and uses the Diffie-Hellman keglenge protocol to compute a shared secret
key for authentication. In a typical embeddedeystall nodes wired to the network are known
at design time. It is reasonable to assume a ndd&new the standard configuration and what
nodes comprise the group it is communicating withis is in contrast to enterprise networks,

where network nodes are expected to change coftfinua

For a system witm nodes, this scheme might require establishing?)OKeys. While this
overhead is high, it is incurred only once at tiofeinstallation, while the system is inactive.
Embedded networks have very stable hardware caoatigns, which often last for months or
years. Thus, a one-time key distribution cost miaor concern in most situations. Keys are
stored as part of configuration data and do nohglaat run time. We assume system designs

use an appropriately secure key length (e.g., &) fhienstra01].

Time-triggered authentication 31

Time synchronization - Time-triggered authentication uses time synchrdiurao prevent rep-
lay attacks. At system startup, each pair of comoatimg nodes securely synchronizes to a
common time base. Nodes agree upon the currentaimi®MA round number using a protocol
such as Secure Pair-wise Synchronization [GanddByallhis can provide synchronization on
the order of microseconds to ensure freshness sgages for each message round, which can be
tens to hundreds of milliseconds. Global synchration is not needed, since only pairs of nodes
share each secret key. For each packet to be lastadice sender includes the current time or
TDMA round number as an input to any cryptographycsecure MAC function used (depend-
ing on the multicast authentication technique beisgd). Synchronized time values must not
roll over for some acceptably long period of tiri&is prevents the attacker from predicting the
MACs over this period of time even for identicatalaalues via playing back previously record-
ed messages. Because the MAC function compressastdare is no limit on the size of the

time value.

3.3.3 Producing a per-packet authenticator

When transmitting a message, the sender genenmae8lAC tag for each distinct receiver of the
packet. The sender computes each MAC function thempacket header, message value, and
synchronized time, using the appropriate pair-vesared key for the corresponding receiver.
The outputs of these MAC tags are then truncatgdstoa few bits each, and the sender appends
the truncated MACs to the message value (Figurg B&pending on the required per-packet
assurance for the message type, the size of eactated MAC tag can be as little as a single
bit. By truncating tags to just a few bits, one MAEr receiver can be placed into each packet.

All authentication data can be self-contained iohepacket, given that at least one bit is availa-

Time-triggered authentication 32

ble per receiver. This allows each packet to bédigdrindependently and ensures that lost pack-

ets do not affect the verification of any other lgc

Since the network configuration is fixed at designe, the location of each receiver's MAC
tag within a data payload can be assigned at déisign Receivers are preprogrammed with the

size and location of their respective MAC tags.

| | '
Header and Data vv vvevw ¥ l

MAC MAC MAC MAC
Function| |Function | |Function| |Function

|Truncate| |Truncate| |Truncate| |Truncate|

|IM” Data || MAC1 ” MAC?2 ” MAC3 ” MAC4 || CRC |

Y Y Y Y \ {
32 Bits 8 Bits 8 Bits 8 Bits 8 Bits

Figure 3.3. OMPR multicast authenticator generation. Example packet containing 32 bits of data
and four 8-bit MACs, for four receivers. Each receiver n shares a secret key K,, and synchronized
time t,, with the sender. These values are included as inputs to the MAC function along with the
header and data. The outputs of the MAC function are truncated and appended to the data payl-

oad.

System designers select the number of MAC tagtbitsse for each receiver at design time.

The size of these outputs do not change duringim@- MAC tags do not necessarily need to be

Time-triggered authentication 33

truncated to the same number of bits in lengthfeldeht receivers may also have higher or lower
priority for message assurances. For example, sesmvers might need stronger assurances
within shorter deadlines than other receivers. Adse can devote more MAC tag bits in the

payload for those receivers with more strenuousirements for security.

In the case that a message type's required p&ejpassurance does not allow one truncated
MAC tag per receiver to be placed in a single pgskmayload (i.e., the size of the data value and
truncated MAC tags exceed the size of a packeyoad), these MAC tags can be placed in a
subsequent packet. However, this increases the fmlaeceivers to verify a message sample

and decreases the loss tolerance of this approach.

3.3.4 Verifying a packet

Upon receiving any packet (or packets) containingessage value, a receiver first checks that
the transmitted packet is well formed accordingeh#edded network protocol and checks the
error detection code. Then, if the packet is nalfonmed and the error detection code is correct,
the receiver verifies its designated MAC tag. Theeiver recomputes a MAC function over the
same values the sender: packet header, message paltwise and synchronized time, using
the appropriate pair-wise shared key. The recdiven compares the output tag of the MAC

function to the receiver's designated tag withenplacket's payload.
Receiving a packet and verifying its message vaaseone of three results:

Lost - A message value is considered to be "lost" ifehrer detection code of the packet is
incorrect, the packet is malformed according toaghdedded network protocol, or if no packet
is transmitted during a particular message pefitis indicates that some error occurred during

transmission. This result encompasses most norcimadi transmission errors. Dropping packets

Time-triggered authentication 34

does not grant an attacker any extra benefit wdttempting to forge messages. This work does
not address how to deal with malicious denial o¥ise attacks, and assumes receivers take ap-

propriate action in the event of observing a sigaift number of dropped messages.

Valid - If a message value is not lost and the reconoptatg matches the receiver's designated
tag in the packet's payload, the receiver accéptsntessage value in that packet as "valid." The
receiver trusts that the message value is indemd the correct sender and the value has not

been tampered with during transmission.

Invalid - If a message value is not lost, and the tag doewerify as valid, then a message
value is designated as "invalid." This indicateat tthe message value might be a forgery at-
tempt, or might have a transmission error undebdetay the error detection mechanisms in

place.

By tampering with network traffic to inject or mibgda message value, the attacker might oc-
casionally succeed in forging a MAC tag. If the lgatccontaindd MAC tag bits for a receiver
using OMPR, the probability that any single MAC tzm be successfully forged i8.2f an at-
tacker correctly guesses the tag for the correspgnuessage value, then the receiver will ob-

serve a valid MAC tag.

3.3.5 Delayed or out of order messages

Timing delays may cause a message to be desigastedalid if a receiver uses a different time
input when verifying a MAC tag than the sender usecomputing the MAC tag in the payload.

We assume nodes remain time synchronized to theesteamessage round. However, in some
cases, a message broadcast may be delayed (€C@\Ni low priority message may be delayed

by a higher priority message).

Time-triggered authentication 35

If there are well-defined time boundaries for naggsrounds, two techniques can prevent a
message from being accidentally designated asithv@he possibility is for a receiver to try
multiple synchronized time values (e.g., currerd previous message round numbers). Howev-
er, this increases the probability that an attadardd correctly guess a MAC tag (requiring
more MAC tag bits). Instead, a sender can inclhgeleéast significant bit of the message round
number in the data payload. Thus, a receiver cantiiy a delayed message from a previous

message round.
3.4 Verifying state changing messages

Time-triggered authentication provides strong amste for state-changes by authenticating over
a set of message values, each of which have wegkapket assurance. A receiving node keeps
an explicit history buffer for the authentication results of each message txged in its internal
state machines. A history buffer acts like a AnsEirst Out (FIFO) buffer in which receivers
store then most recent message values and the verificatismltsefor each sample (“valid” or
“‘invalid”). At startup, nodes initialize history Hers so that all elements are set to a default val

ue and stored as invalid.

Receivers verify each message value individuaipgithe process described in Section 3.3.4.
Lost message values are discarded and are notéettlinm the buffer. Once verified as valid or
invalid, a receiver discards the oldest value m listory buffer, shifts all values by one index

position, and stores the newest value and its itAalid

Upon checking and storing the verification resuitsa newly received message value, a re-
ceiving node checks if the contents of the histanjfer satisfy the conditions to commit to a

state change, as defined by its internal state machA node commits to a state change if a his-

Time-triggered authentication 36

tory buffer contains a sufficient number of valig@ssage value samples that are all consistent. A
set of values for a message typedssistent if all valid values would trigger the same statnt
sition (the values do not necessarily need to halggin the case that a transition depends on
multiple message types, the receiver would waill afithistory buffers for those message types

satisfy the condition for the state transition.

All values within the history buffer must be costent for a state transition to be taken. If one

of the values is not consistent, a state transdarmot occur.

Once a node commits a state change, the nodes dednistory buffers and resets them to de-

fault values stored as invalid.

For example, a node that controls a door locknraatomotive network might monitor the
wheel speed message type, and automatically lackldlor if the car is moving sufficiently fast.
If the speed threshold is set at fifteen miles lpzur, the door lock node would record each re-
ceived message sample value and its validity inhietory buffer. Once a sufficient number of
wheel speed message values in the history bufeevaid and are all at least fifteen miles per

hour, the node would commit to the transition asck$ the door.

No tolerance for invalid MAC tags - Depending on the application, the system desigeer
cides how many samples in the history buffer mesvaélid before committing to a state transi-
tion. In most applications, a receiver waits fioout of n consecutive values in the history buffer
to be consistent and then commits to this transitidCommitting to state changes afterof n
consecutive valid message values assumes the appiicdoes not require any tolerance to
invalid message values or that any single invalessage value indicates a malicious masque-
rade attack. If any of the values were invalid, the state transition doesawcur. Thus, in the

event of a single invalid message sample, a stabsition cannot occur until anothersubse-

Time-triggered authentication 37

guent valid samples have arrived.

While it is likely that an attacker will be able torge a single packet since we use just a few
authentication bits per MAC, it is unlikely thaethwill be able to forge so many within the his-
tory of the buffer as to cause a successful maageeattack, subsequently maliciously inducing
a state change. Thus, this approach allows receteererify many message samples using weak
per-packet assurance to achieve strong systemdssalance. If each message value is transmit-
ted along withb authentication bits per receiver, the probabitifyper-packet forgery, is 2",

The probability of forgingn consecutive message values in a history buffer is:
Py=Pp)"

Tolerating invalid MAC tags - Optionally, it may also be useful for some apglaas to have
some level of tolerance to invalid message valA#swing state changes to occur after validat-
ing a subset of MAC tags in the history buffer gsatinis approach a degree of tolerance to in-
terspersed invalid MAC tags. Without this tolergrese attacker might increase message latency
or prevent authentication altogether while remanindetected by occasionally injecting invalid
packets. Packets with a correct CRC but invalid MA&@ht also be caused by non-malicious
faults. For example, if the sender's and receivetons of time differ due to a temporary inter-
nal fault, the receiver would see an invalid MAGIdiionally, some message corruptions might
be missed by error detection mechanisms, so ocgesiovalid MAC tags might result from

transmission errors.

When tolerating interspersed invalid MAC tagstateschange occurs when at lelstut of
the pastn time-triggered message values in the history budfe consistent and valid. This al-

lows a receiver to tolerate- k invalid MAC tags interspersed within a seriemohessage val-

Time-triggered authentication 38

ues. State changes occur as sookrasssage values out of the monsnhost recent have consis-
tent values and are valid. An attacker can sucalig$brge at leask of a sein values in a histo-

ry buffer with a binomial probability of:

Py

l

> (BYa-R" e

We emphasize that all message values in the hibstafifer (including the invalid ones to be

tolerated) are all consistent.

Tradeoffs for state changing message verification - This approach for authenticating state-
changing messages enables the system designerfaonpa tradeoff among authentication bits
per packet, application level latency, tolerancent@lid MACs and probability of an induced
failure. Based upon the criticality of the message, designer trades increased authentication
bandwidth and latency for lower probability of iredal failure, and trades increased tolerance to

invalid MACs for increased probability of inducedlltire.

Additionally, system characteristics and requiretaenight constrain these tradeoffs. For ex-
ample, in a system with hard real-time deadlines,mhaximum number of samples to authenti-
cate over might be limited to the minimum numbersamples of a message type expected to
contain consistent message values within the maxirtulerated delay for a state change. The
number of samples might be further constrainedifaeslack is needed to tolerate unexpected
operating conditions such as lost packets. Addiagksfor unexpected operating conditions
means that there would be fewer message samphasghenticate over, decreasing the possible
size of the history buffer. To authenticate ovevde samples, a system designer could increase
the number of bits per MAC tag, reduce the numibenvalid MAC tags to tolerate, or even ad-

Time-triggered authentication 39

just the permissible overall probability of maliagly induced failure.

Effects of lost packets and message blackouts - Each individual lost packet will cause a single
message round delay before a state change can ¢rc¢be event that the contents of a history
buffer becomes stale and no longer accuratelyateftee current state of the system due to a
large number of consecutive packet losses (e.gnga network blackout), a receiver can reset
the contents of the history buffer and declarecdstents as invalid. This work assumes that a
receiver takes an appropriately safe action ifetedts a network failure due to a significant

number of lost packets.
3.5 Verifying reactive control messages

The verification process for reactive control mgesatakes advantage of the characteristic that
the sampling rates of messages are much fastethbgrhysical dynamics of the system, enabl-
ing the use of weak per-packet assurance to pratidag system level assurance against unde-
sired actuations. Unlike state-changing messaggication, nodes running feedback control
loops verify and act upon each message packet asives. Each correctly formed and valid
message causes a controller to update its outuptoysical actuator. This output in turn causes
some physical change in an actuator output. Howdesrause messages are sampled much fast-

er than the step response time there is a dampaicphresponse to any single message value.

For reactive control messages, the receiver doesxplicitly retain an authentication history
buffer in memory, but relies instead upon a damesgonse to messages. The system state may
be forced to an unsafe value in some situatiomef ¢ontroller accepts too many successfully
forged packets commanding the actuator to somei@osir action within a period of time. But,

the damped response to messages requires an agversaiccessfully forge multiple packets

Time-triggered authentication 40

within that period of time to compromise systemragien. This creates amplicit history buf-
fer, using the physical inertia in a system. The ptajlsposition or motion of actuators reflects
the cumulative effects of the most recent valid sage values that have been applied to the sys-

tem.

Receivers verify each message value individuaipgithe process described in Section 3.3.4.
If a message value is valid, the receiver appliesian input to the reactive control loop. If a
message value is invalid or lost, the receiveriapsafe input to its internal control loop. What
constitutes a safe input depends on the applicatiohwhen applied to a controller should not
violate safety requirements (i.e., harming usegsipnent, or property). Examples of safe ac-

tions might be:

Completely cease actuator movement.

* Return actuator to a safe position.

» Use a default value that partially moves an actuatoards a safe position.

» Use a default value that does not cause the systearert additional energy into environ-
ment.

» Ignore the lost or invalid value, and use the mrasivalid value, assuming correct messages

will resume shortly.

Further, a safe action upon observing a lost pgasKeely to be different than the safe action
for invalid message values. Lost packets may bsidered the results of a non-malicious fault,
allowing a receiver to ignore the lost value and thee previous valid message value. However,
invalid MAC tags might be considered specificallglioious. Thus, a receiver might instead ac-
tively counter the observed forgery attempt, mowvangactuator to a safe position or stopping the

system.

Time-triggered authentication 41

For example, consider a door controller for avater. When a passenger enters the elevator
car and pushes a button for another floor, thesisbould close. However, if the door reversal
sensors detect anything in the way of the doorglhysa passenger), then the doors should reo-
pen. Similarly, if a transmission error occurs dgrthe message carrying the door reversal sen-
sor values, one safe thing to do is to reopen tdwesd During each execution of the door con-
troller's control loop, the door controller updaitssoutput to the door motors, indicating whether
the doors should continue closing, stop movingopmen. After each execution of the door con-
troller's control loop, the door motors can onlgsd a fraction of the way if the door reversal
sensors indicate the doorway is clear. An unsaf@atsbon might occur if an attacker continually
spoofs the door sensor message on the networkliwate the doorway is clear, despite a person
being in the way. If the attacker can successfigige a sufficient number of door reversal sen-
sor messages to contain a value indicating "Dooy iwalear,” the door might not reopen and
crush a passenger. For this particular exampkedibor controller observes a single packet with
an invalid MAC tag, a safe input to the door coltéras to reopen all the way. However, for lost
messages, the door controller might ignore the faw lost message values before deciding to
reopen the doors. Reopening the doors does nat exergy into the environment that could in-
jure passengers. Resetting the door to a knownpssition also effectively forces an attacker to

start over with their forgery attempts.

No tolerance for invalid MAC tags - First, this section considers applications inahhnvalid
MAC tags should never occur except in the evemat wialicious attack (i.e., non-malicious faults
cannot cause an invalid MAC tag to be produced} fdceiving controller assumes a single
invalid MAC tag indicates a malicious attack antkmipts to place the system into a safer state.

Upon observing even a single invalid MAC tag, theeiving controller aborts any updates to a

Time-triggered authentication 42

physical actuator based on incoming message vanesinstead uses a default action to cause a
physical actuator to cease all movement or retara safe position. When the controller takes
this safe action, the physical effects of any sssftdly forged message samples do not persist in

the integrated system state and any attemptsa@nfpan undesired actuation must start over.

The system designer defines the maximum duraliaha receiving controller can tolerate ar-
bitrary input values for a single message type fieetbe system enters an unsafe state. For a
maximum duration consisting of message periods, an attacker must successfulig focon-
secutive message values for that message typecteeul in an undetected masquerade attack.
The system designer then selects the appropriatdeuof authentication bits per receiver such
that the probability of an induced failure is sciintly low. The probability of a successful for-
gery for any individual message sample contaibndAC tag bits to a particular receiver is
equal to 2. Again, this approach only uses a few bits peeiks. While this only provides
weak per-packet assurance, each successfully fongsdage will only cause some increment of
physical change produced by the receiving node. dticcessful masquerade attack requires an
attacker to forge n consecutive MAC tags, eachainimig b bit MAC tags per receiver, the
probability of an attacker succeeding per messaged is bounded by equation (1) in Section

3.4.

Tolerating invalid MAC tags - In some applications, continuing operation despiaeasional
invalid authenticators might be preferable to stogpghe system and resetting it to a known safe
state. As with state-changing messages, occasiovalid authenticators might occur due to
non-malicious errors, such as transient time syorahation issues or network errors missed by
error detection codes. A receiving controller migbhtinue operation despite seeing one or more

message values with an invalid authenticator. THehe receiver detects too many invalid tags

Time-triggered authentication 43

within a period of time, the receiver decides thahalicious attack is underway and acts accor-

dingly.

For each invalid MAC tag to be ignored, the reeeistill takes some safe default action tem-
porarily. This might be to just reuse the most itealid message value or output a default safe

value to the actuator.

During an actual masquerade attack, this toleramight effectively grant an attacker a few
extra "free" tries to induce a system failure. Whaerating invalid tags in our approach, at least
k of then most recent message samples must have valid digtters. A receiver will tolerate
up ton - k invalid MAC tags, before declaring an attack iswcing and taking an appropriately
safe action to deny further attack opportunitieglisas ceasing actuator motion or moving to a
safe position). An attacker can successfully foageéeastk of a setn values with a binomial

probability given by equation (2) in Section 3.4.

Tradeoffsfor reactive control message verification - Like verification for state-changing mes-
sages, this approach enables multiple tradeoffsystem designer can tradeoff among authenti-
cation bits per packet, duration before an attdwdukl be detected, tolerance to invalid MAC
tags, and probability of an induced failure. Bagpdn the criticality of the message, the design-
er trades increased authentication bandwidth feretgorobability of failure. Selecting a longer
duration before an attack should be detected alserk the probability of induced failure. The
system designer can also trade increased toletaniogalid MACs for increased probability of

induced failure.

Time-triggered authentication 44

3.6 Experimental analysis

In this section we discuss characteristics of qapreach and experimental results of simulated
attacks. The results of this section are intended ‘&anity check” to confirm the probability eq-

uations used in Sections 3.4 and 3.5.

Per our attacker model, an attacker may insemautify packets in valid time intervals for a
particular message type. Computing the MAC overpaie-wise synchronized time or TDMA
round number ensures freshness of messages. Atbesttacker may only inject a packet once
per message round. To be conservative in our dealye attacker performs masquerade at-
tempts against a single isolated receiver, so tackar only needs to guess one truncated MAC

per packet.

We have experimentally confirmed the probabilifysaccessful forgery attacks against our
approach using a software simulation written inrCour simulation, an attacker node continual-
ly sends packets containing a known message valdigaandomly generated MAC values to the
receiver. The receiver node verifies the packetglBIMAC-SHA-256 and retains a history buf-
fer of then most recent authentication results. Once the veceiounts a sufficient number of
valid MACs in its history buffer, the simulator m@ds an attack event and the number of at-
tempted forgeries before the successful attackroeduAfter a successful attack, the simulator
reset to its initial state and began again. We kited attacks on state-changing and reactive
control messages for both authentication of cortsexpackets and authentication of a fraction

of packets in a history buffer.

For state-changing messages, we created a sitapdensachine with two states. The receiver

begins in the first state. When a sufficient numifevalues in the history buffer have a consis-

Time-triggered authentication 45

tent value, it triggers a transition to the secstate. The second state automatically transitions
back to the first state and clears the historydsufAttacks on state-changing messages were con-
sidered to be successful once the attacker foratdt@ change, and further packet forgeries were

applied to the next state change after clearindnistery buffer.

For reactive control messages, we modeled a simpé® loop system (no feedback). If a
packet contained a valid MAC tag, the receiver wWaatrement its output by a constant amount
towards the input value. For a packet with an ilvVBIAC tag, the receiver would decrement its
output by the same constant amount (i.e., movirggdafe position by a predefined amount). The
system only accepts two inputs (zero and onehigdimple system, the attacker must success-
fully forge a sufficient number of samples to fotbe output to an "unsafe state." A successful
attack was recorded for each message round thekattevas able to force the output to be an

unsafe value. The physical state was not reset Wieeautput reached an unsafe state.

We measured the number of successful attack ewsetsa period of time long enough to
record at least one hundred successful attack ®ypemtdata point. We computed tuecessful
attack rate as average successful attack events per messayg aod compared this rate to the
probability of successful attack defined in equadigl) and (2) in Section 3.4. From our results
we confirmed that equations (1) and (2) can be @asedpper bounds on the probability of suc-
cessful attacks on our approach. These equationbeaised to define the required number of
packets and authentication bits per packet to a@ehé desired failure rate and tolerance to

invalid MACs for the system.

3.6.1 No tolerance for invalid MAC tags

Figure 3.4 shows the simulated successful attaekara both state-changing and reactive control

Time-triggered authentication 46

message types, using a fixed history buffer sizeaif packets containing one to six authentica-
tion bits per packet. In this experiment, a sudcésdtack was recorded if the four most recent
message samples were successfully forged. As naorévdth is devoted to authentication, the

successful attack rate decreases exponentially@diogao equation (1).

100

101 § —e— Reactive Control;
A Simulation and Equ. 1
102 - A —-o— State-changing

1031
104 1
105 1
106
107
108

Average attack events
per message round

1 2 3 4 5 6
Authentication bits per packet

Figure 3.4. OMPR - Simulated successful attack rates for four consecutive messages.

The successful attack rates in Figure 3.4 shoalddgreater than the probability of success-
ful attack defined by equation (1). As expectea shiccessful attack rate for reactive control
messages matches equation (1) since simulateksttaare counted for any message round the
attacker successfully forced the output to itsréelsposition, and the physical state was not reset
if this position was reached (the implicit histdwyffer was not cleared). (Equation (1) is indis-

tinguishable from the simulated reactive contralcassful attack rate if plotted on Figure 3.4.)

The successful attack rate for state-changing agessis less than the rate for reactive control
messages because successful attacks on reactivel coassages containing few authentication
bits are likely to come in bursts in consecutivesgagie rounds. A forgery attempt on the packet

after an initial attack event has a better proligbdf prolonging the attack in comparison to

Time-triggered authentication 47

forging a full set oh packets to initiate a successful attack. The stadl successful attack rate

for state-changing messages is less because theyhisiffer is cleared after each state change.

With more bits per packet, the likelihood of swssfal attacks occurring on successive reac-
tive control messages decreases, as indicatecelmotiverging rates in Figure 3.4. We use equa-
tion (1) as a conservative upper bound on the ssbaeattack rate for both reactive control and

state-changing messages.

Typical requirements for acceptable failure ratesystems containing wired embedded net-
works might be defined at Ethr, 10%hr, or 10°hr of undetected message errors depending on
the severity of the failure. An induced failure frea masquerade attack should occur no more
often than the required rate of failure. Figure $hws the minimum number of messages in the
history buffer for a given number of authenticatlmts per message to achieve an expected suc-
cessful attack rate of Fthr, 10%hr, or 10%hr. The number of packets and bits were obtained
using the three successful attack rates as expeateds for one forgery attempt per millisecond

over the course of an hour, each succeeding withatility given by equation (1).

.30 H

£ | = 103hr

§25 o 106mr [

320 A 109hr

-]

N A

0 [

:Q—_J15 o,

5

210 +———5—

S o

'(I£5 "a 8 8 0 5 & a2 a 4

 } } L} O Q

0

2 4 6 8 10 12 14 16
Authentication bits per packet
Figure 3.5. Minimum MAC bits per packet and history buffer size (consecutive messages) required

to authenticate to failure rates at 1000 packets per second.

Time-triggered authentication 48

3.6.2 Tolerating invalid MAC tags

If we permit interspersed invalid MACs in the auttieation history buffer, we gain tolerance to
some non-malicious faults and malicious attemptslispupt authentication of state-changing
messages. But increasing this tolerance also isesethe probability of an induced failure. At-
tacks may succeed against some control systerhe Httacker forges some fraction of the most
recent reactive control messages. As this fraatiecreases, the probability of induced failure

increases.

Figure 3.6 shows the simulated successful attatk on state-changing and reactive control
message types requiring two successful forgerigsobuour packets, each containing one
through six authentication bits. As the number it per packet for authentication increases, the

probability of a successful attack decreases expaiky.

The successful attack rate on reactive controkages in Figure 3.6 matches equation (2) be-
cause attack events were counted so long as twleedbur most recent message samples were
successfully forged, and the output was not reseg ohis threshold was reached. (Equation (2)
is indistinguishable from the simulated reactivateol successful attack rate if plotted on Fig-
ures 3.6 and 3.7.) The successful attack rateefstive control messages is greater than that for
state-changing messages because successful attackactive control messages can persist as
long as the most recentpackets contaik valid MACs. The difference between lines in Figure
3.6 is greater than the difference between lindsgare 3.4 because there are multiple combina-
tions of successful forgeries in the most recemkes which can cause successful attacks to
persist. We do not attempt to provide an equatisntd the complexity of the combinations. Ra-

ther, we use equation (2) as conservative uppeandtar both message types.

Time-triggered authentication 49

100
10+
10721
1073+
101
1075 1

106 4| —e— Reactive Control;
. Simulation and Equ. 2
1071 —o— State-changing

108

Average attack events
per message round

1 2 3 4 5 6
Authentication bits per packet

Figure 3.6. Simulated successful attack rate for two out of four messages.

Figure 3.7 illustrates how the difference betwsenulated successful attack rates for reactive
control and state-changing messages changes amthiger of required successful forgeries is
varied for a buffer of eight packets each contarimo authentication bits. With a lower fraction
of required valid packets, there are more possibfabinations which can cause a successful at-

tack to persist for reactive control message typassing a greater successful attack rate.

100
2 10t
c
oo
> C
=
% 2102
£2
o ¢ 103
g8 N
o E —e— Reactive Control;
Z 810 - Simulation and Equ. 2 N
—-o— State-changing
10°

2 4 6 8
Valid packets (out of eight)

Figure 3.7. Simulated successful attack rates varying fraction of valid packets. History buffer of

eight packets with two authentication bits each.

Figure 3.8 illustrates tradeoffs between histonffdr size and authentication bits per packet

Time-triggered authentication 50

needed for expected successful attack rates ©hi,010%hr, or 10%hr, requiring all but two

valid MACs. The number of packets and bits wereamigd using the three successful attack
rates as expected values for one forgery attempipsecond over the course of an hour, each
succeeding with probability of equation (2). Foaewle, with four authentication bits per mes-
sage, if all packets in a history buffer must bédvahe history buffer must include at least the
last eleven packets to authenticate t&/bO(Figure 3.5). If all but two packets must begfed in

the history buffer, then the history buffer mustlide the past fifteen packets, in which thirteen

must be valid (Figure 3.8).

_30 H
2 = 1073
$ 25 o 106mr []
=P A 109hr ||
2 o
N a
:q—_J 15 - y
5 = O 4o
Qlo =) A
P O A
o QO 8 8 4 a
z 5 = = = C=) O @& @ A
T

0

2 4 6 8 10 12 14 16
Authentication bits per packet

Figure 3.8. Minimum MAC bits per message and history buffer size required to authenticate to

failure rates at 1000 messages per second given two invalid packets in the buffer.

3.7 Discussion

This chapter introduces time-triggered authenticatThis approach takes advantage of existing
temporal redundancy present in most time-triggesgstem designs to amortize authentication
bandwidth overhead across multiple time-triggeragkpts. We illustrate how time-triggered

authentication can provide strong assurance fae staanges and actuations by verifying mul-

tiple packets, each with weak per-packet assurance.

Time-triggered authentication 51

This new approach has several advantages. Tiggeted authentication enables a fine-
grained engineering tradeoff among authenticatits ger packet, application level latency, to-
lerance to invalid MAC tags, and probability of madusly induced failure. It also allows re-
ceivers to perform authentication on a per-paclkesid(amortizing does not require batch au-
thentication of many samples). This allows receaverimmediately resume authentication after
packet losses cease. Time-triggered authenticatnmnalso be combined with many multicast

authentication approaches that use MACs.

Time-triggered authentication also has severatdiions. This approach relies on the periodic
broadcasts of message types. Time-triggered auth&ah only provides advantage to the de-
gree that messages are oversampled. This apprtsachegquires careful handling of packet loss
in conjunction with history buffers. For state-cgamg messages, receivers must monitor for
long message blackouts and reset history buffettseifdata values and verification results con-
tained within those history buffers become stalether, for reactive control messages, receivers

must take appropriately safe actions for both peldsses and invalid messages.

In this section, we use OMPR in conjunction withd-triggered authentication. This multi-
cast authentication approach is uncomplicated,iregua sender to compute one MAC tag for
each receiver of a message sample. It also allowgefrfect loss tolerance and tolerance to com-
promised nodes. However, the scalability of OMPRingted. The processing requirements
scale linearly as the number of receivers increBsgher, the bandwidth requirements scale li-

nearly as both the per-packet assurance and nwhbsgeivers increase.

Time-triggered authentication 52

4 Validity Voting

This section introduceglidity voting to build on the approach for time-triggered autloation
using OMPR. This method integrates voting techrsqaemprove the bandwidth efficiency and
subsequently reduce the application level laterfcynee-triggered authentication. While using
OMPR is efficient in terms of bandwidth for a vesyall number of receivers or very weak per-
packet assurance, the linear scaling gives podonpesince for many receivers or stronger per-
packet assurances. Validity voting still uses or&Q\vper receiver, but using voting allows it to
provide stronger per-packet assurances to a lang@ber of receivers, for a given number of

authentication bits per packet.

The main limitation of using one MAC per receivsrthat each sender must redundantly
transmit one MAC tag for each distinct receivemaahessage value. Using one MAC tag per re-
ceiver introduces unused redundancy because eeelvee only benefits from a single MAC
tag. If limited to a few bytes per packet to autieate to a large number of receivers, a sender

may have to amortize authentication over too mackets to meet real-time deadlines.

Validity voting uses this redundancy to forceatacker to forge many MAC tags to fool
an entire group of receivers, rather than justifiy@ single MAC tag to fool the targeted receiv-
er. To force an attacker to do this, a group oérgng nodes takes a unanimous vote on whether
message values were valid or not. Once a senddradresnitted a message value and MAC tag
to each receiver in the group, the receivers engage attestation process. During this attesta-
tion process, each node in the group exchangesaiioins of the received value and its validity

with other members of the group.

Validity voting 53

Figure 4.1 illustrates validity voting among thmeeeivers in a network with four nodes;(N
N2, N3, and N). In step 1, Nfirst broadcasts message, muthenticating it to nodes, NNz, and
N4. In steps 2-4 receivers then include an indicatibwhether message;was valid or invalid
when they broadcast their respective messagest #titp 4 completes, nodes,, NN3, and N

havereceived the authenticator from nodedwd two votes on the authenticity of message m

@ N | TN, @ N, N,
=\ N\ N,

N, N, N,

/ |
/o NN ED
N: N, Mo N

Current authenticity ¢
indication for my

Previous authenticity
indication for m,

Figure 4.1. Three nodes cross checking message auth enticity using validity voting.
To attest to the validity of a particular messagkie, each member computes its MACs (one
for each receiver) over that sender's value intextdio its own transmitted value and an indica-
tor bit to denote the attested value's validityethler the MAC tag for that message value was

valid or invalid. By using this process, votersyonked to transmit a single additional bit for

Validity voting 54

each value they vote upon, "piggy-backing" voteanessages already scheduled for transmis-

sion. They do not need to explicitly retransmit Yiadues being voted upon.

To vote on multiple values at once, a group membBes the same process. Each message can
carry multiple validity bits (one for each valueirige attested to) in a bit-array calledvaidity
vector. A validity vector contains one bit for each megsaalue being voted upon (those bits
and the corresponding message values are all edlag inputs to the MAC functions). The
members of the group append this validity vecttw the packets they transmit during their des-

ignated time periods in the message schedule.

Once all members of a receiving group have trattsd)ieach member takes a unanimous
vote on the validity of the message value from a@hginating sender, rejecting any value the
group disagrees upon or indicates as invalid. Gragmbers accept the originating sender's val-
ue if the sender's packet contained a valid MAG #digoackets attesting to that value also had
valid MAC tags, and all attesting packets indicatieel previous sender's value was valid. Any
disagreement on validity or invalid MAC tags ind&a masquerade attempt, whereas unanim-
ous agreement of validity and no invalid MAC tagdicate no such attempt. Thus, a successful
forgery of a single message value requires ankatao spoof many authenticators and fool an

entire group or receivers, rather than just onlenticator when using one MAC per receiver.
4.1 Propertiesfor detecting disagreement

Validity voting uses secure hash based MAC fundtittnenable voting on message validity and
subsequently detect disagreement on message villitesut knowledge of the key, an attacker
can at best guess the MAC tags for any message Vainjects or modifies. Further, because

nodes compute each tag with different keys, subdéss$orging one MAC tag does not assist

Validity voting 55

the attacker in forging another tag. Assuming ause®IAC function, each attempt to forge a
MAC tag by an attacker succeedsmdomly andindependently of any other attempt on another

MAC tag.

Since each MAC tag can only be successfully forgediomly and independently of another
MAC tag, a receiver can vote on the results offigation of multiple MAC functions computed
over the same value. The attestation process iditya¥oting creates a series of indirect second-
ary confirmation channels from the sender to eackiver, and from each receiver to all other
receivers. Upon completing the attestation proceash node in a receiving group gets one au-
thenticator from the originator of a message valnd several subsequent secondary confirma-
tion authenticators from other receivers in theugtdBy taking a unanimous vote on the validity

of these authenticators, this approach signifigamttiuces the probability of successful forgery.

We also take advantage of the collision resistafctie underlying hash functions so that
nodes do not have to explicitly retransmit values compared using these secondary indirect
channels. By computing the MAC function over therent value, any values being attested to,
and the validity of those attestations, the MAGstagould only be valid if the sender and receiv-

er agree on the values and validity of all packets.
4.2 Validity voting assumptions

Validity voting makes several assumptions neceskatriy to be used. First, all assumptions for
time-triggered authentication must hold. Furtlarassumptions for using one MAC per receiv-
er must also hold. Validity voting still requireaah sender to compute one MAC for each dis-

tinct receiver of a message value.

Validity voting 56

In addition to the previous assumptions, this appihomakes the following assumptions:

 If no transmission error or interference occursriythe broadcast of a message, then all re-
ceivers observe the exact same bit values traresihrott a broadcast bus by a legitimate sender
during that message period. All receivers of a mgssype should see the same value in an
error free transmission. Thus, receivers in a goamot need to explicitly retransmit a mes-

sage value they are voting upon.

» The number of available bits in a packet's datdgaalyis greater than the number of receivers
of a packet plus the number of message valuegttket attests to. This allows authentica-
tors for each receiver in the packet and indicatbrthe validity of observed message values,

leaving room for the message value in the packet.

* Any node participating in a vote is already schedub transmit its own message type. Validi-
ty voting does not require modification of the naggs schedule to add additional messages to
pass along votes. Voting only requires adding a lbé® to packets which are already sche-

duled to be transmitted.

* Only critical nodes engage in voting with each otla@d we assume an attacker compromises
very few, if any, critical nodes. If an attackershaready compromised one or more critical
nodes, then they can likely already trigger a sydta@lure without resorting to spoofing mes-
sages. Non-critical nodes may also engage in votitgyvever, non-critical nodes are less
likely to be rigorously secured against compromiaed failures that might allow falsified
votes. Section 4.9 discusses how to tolerate al smalber of compromised voters when im-

plementing validity voting.

Validity voting 57

4.3 Initialization

Key establishment - Nodes establish key material for validity votiimgthe same fashion as one
MAC per receiver. Each node must establish a paewhared secret key with any node they

communicate with.

Replay protection- Similarly, time synchronization is the same fatidity voting and one MAC
per receiver. Each pair of communicating nodes rbessynchronized to the nearest message

round to ensure freshness of messages.

Voting schedule - Validity voting also requires eoting schedule to be defined at design time.
This fixed schedule gives each node a priori kndg#eof which message types contain votes
for samples of another message type. Thus, nod®s lwhich nodes are voting on a message

value and when those votes should arrive accotditige network message schedule.

A voting schedule can be created so long as afseides is expected to broadcast at regular

intervals as described in Section 2.1.

The system designer defines voters for each mesyagM, to be voted upon. Each node
that consumes a message type can potentially traaswote on that message type. Part of a
message schedule often includes the list of nodeshwconsume each message type. If not im-
mediately available, this list can be reverse ezgied from the design. For a nddehat rece-

ives message typdy to be selected as a voter, it must meet sevegalreaments:

* NodeN must already be scheduled to transmit a messpgdvty that is consumed by other
receivers oMy. Creating a new message type to broadcast a singhe bit requires signif-
icant bandwidth. If a potential voter already conmicates with other consumers of a mes-

sage type, then a new message type does not ndesl dreated; only a single voting bit

Validity voting 58

needs to be added to an existing message typecdfssary, votes can also be placed in mul-
tiple message types broadcast\bio reach more of the receivershgy.

» Message typeMy must have equal or higher criticality than messgge M. In safety-
critical systems, non-critical system componentsuihnot be able to induce faults in critical
components.

* Message typ&ly must be broadcast at a rate equal to or fastarrttessage typely. If node
N broadcast$/y slower tharMy, then there are samplesiy, that will not be voted upon by
My (e.g., ifMy is broadcast every ten milliseconds aglis broadcast every hundred milli-
seconds, then there are nine sampleMpthat cannot be voted upon). Because there are
samples that cannot be trusted, this effectivatiuces the sampling rate BF,. Conversely,
if the voting message typdy is broadcast more frequently thisly, then there will be more
than one sample d¥ly that vote on the same sampleMy§. This adds unnecessary voting
bits. The greater the disparity in sampling rathe, less bandwidth efficient validity voting
becomes. Ideally, using message types that areltasbat the same rate provides the most

efficient use of bandwidth for voting.

Assigning the best placement for votes in the daleeis somewhat subjective. There might
be multiple options for assigning votes into vasanessage types. The "best fit" depends on the
application and the tradeoffs associated with ugligoting. This work uses three heuristics

when selecting votes to help maximize the bandwadfibiency of validity voting:

* Minimize the number of message types transmitted biygle node carrying votes figk;.
* Maximize the number of receivers i, that receive votes.

» Use message types with periods as similar as pegsithat of\Vy..

Validity voting 59

Chapters 6 and 7 illustrates the use of thesdresgants and heuristics when applying votes

to a elevator network workload and industry autaweohetwork workload.

When completed, the voting schedule contains dlewing information for each message

type My being voted upon:

* Alookup table entry that lists the message typeEhvcarry votes foMy,.

* Which bit of a validity vector in a packet of a i@ message type is assignedi@

* Any time offsets for a receiver to locate votes doparticular sample (e.g., the votes for a
sample ofVly might be assigned to be broadcast within the sae®sage round or a subse-
guent message round).

» The ordering of message values a receiver is mmpate MACs over for verification.

When concluded, each node in the system is prageinwith this voting schedule. Using
this schedule, when a node receives a message malie network, that node knows which fu-
ture messages carry votes on that message vablielgywand when they are scheduled to arrive.
Thus, there is a fixed delay before each messdge ean be completely verified. Conversely, if
the messages carrying the votes do not arrivedreipected time periods, a receiver can take

appropriate action based on the lost packets.

4.4 Functionsand state variables

To check for discrepancies in packet value or wgliddach node maintains three state vectors:
a value vector R,, validity vector V,, andconfirmation vector C,. We use a subscript to denote
the identity of the node that produces a variablg.(R, is the value vector produced by nage

Nodes initialize all vectors to default values (ezgroes).

Validity voting 60

The value vectoR, stores the most recently received value (valisha) for each message
type defined in the message schedule that naznsumes or participates in voting on. Receiv-
ers record lost packets as a predefined error tosteif they detect a transmission error (indi-

cated by an incorrect error checking code or nd>aaroadcast in a message period).

The validity vectoV, contains the authentication results of each entthe value vector. A
node stores a '1' value if the most recent valu¢hi® corresponding message type was valid and

a '0' value if invalid.

Finally, the confirmation vectdt, contains an array of counters for positive secondan-

firmations of validity.C,, contains one counter for each message typa.in

We first define a function to look up which messagpes are voted on by a received message
type M in the voting schedule. The functigetMessageTypesVotedOn(M) looks up message
type M in the voting schedule and produces a veidgrwhich contains the indices &%, V,,

andC, that correspond to the message type ID numbeesivat byM.

We define a functiometMostRecent(ids, R,, Vi, C,) to obtain a subset of received values,
their validity, and confirmations. The indicesigs indicate which message types to look up in
R, Vi, andC,,. This function produces a triple vy, x> of vectors; where, is an ordered sub-
set ofR, containingifds| values recently received by nodgev, is a subset o/, containing the
validity bits for each element in, andc, is a subset of, containing confirmation counters for
each element in,. The order of values in,, v, andc, is the same as the indicesid$. Two
nodes executingetMostRecent during the same message round should obtain thef seessage
types, because they share the same message schrdidbould have received the same set of

message samples on the broadcast bus.

Validity voting 61

The functionsetNewest(M, msg, validity, R, V,, C,) replaces the element Bf, for the mes-
sage typeM broadcast in the current message period with vage The corresponding element
in V, is set to '1' ifvalidity is 'valid’, and '0' ifvalidity is 'invalid'. The corresponding element in

C, is set to zero.

The functionsupdateValidity(ids, v, Vn) andupdateConfirmations(ids, c,, C,) overwrite the

lids| elements iV, or C, with the elements of, or ¢, respectively, using the indicesidsk.

45 Run-timeverification

4.5.1 Producing a per-packet authenticator

Validity voting modifies the sending process fané+triggered packets (Section 3.3) to allow
senders to attest to the validity of the most rdgaeceived message value samples of a set of
message types (as defined by the voting scheduladdition to authenticating the current mes-

sage value (Figure 4.2).

Validity voting 62

Header; Data; Validity; * ¥ * L 4 * l

Recent values

Function| |Function| |Function

vy v 3

ITruncatel ITruncateI ITruncatel

||Header Data |[Validity|[MAC1]|[MAC2][MAC3][CRC ||

LN J
L LJ LJ v L

32 Bits 3 Bits 8 Bits 8 Bits 8 Bits

Figure 4.2. Validity voting - multicast authenticat or generation. Message generation process for 32
bits of data and three 8-bit MACs, using unique sha red keys and synchronized times for three re-

ceivers. This packet includes three validity bits, attesting to three prior message values.

When transmitting message tybk, the sender obtains the message types the patkat-w
test to usingyetMessageTypesVotedOn(Ms) to producdds. For each receiver a sende com-
putes the MAC function over the current header rredsage value, shared secret kgysyn-
chronized time, and vectorss andvs produced bygetMostRecent(ids, Rs, Vs, Cs). Before com-
puting the MAC functions, the sender replaces desnent ofrs with an ‘invalid' value if the va-
lidity vector vs indicates the that value's packet contained aaliohauthenticator. We use
MMAC as a short hand notation for a function thatnputes an array of MAC tags (one per re-

ceiver) and truncates each MAC tag to just a few bi

The sender includes the array of truncated MAG faghe data payload as before, but also

includes the validity vectovs. This allows receivers to recompute the MAC fumctover the

Validity voting 63

same values as the sender, replacing values witalidl' for those indicated bys. After broad-
casting their packet, the sender optimisticallys get own validity vector assuming its packet
containing the current sample Mk is received correctly and contains a valid auticatdr. Fig-

ure 4.3 provides pseudo-code for the send process.

Send process, performed by node S:
» Ready to send message vahueof typeMs to all nodes
* ids < getMessageTypesVotedOhd)
* <rg Vg, Cs> < getMostRecenids, Rs, Vs, Cs)
» For any element ofs that is '0', replace the corresponding elemen with ‘invalid'
» tag_array«— MMAC(mg |t |rs]|Vs)
» Broadcast fns | vs | tag_array}
» setNewestfl, 'valid',Rs, Vs, Co)

Receive process, performed by nodei:
» Receive fns|vs | tag_array}
* ids < getMessageTypesVotedOhd)
* If transmission error occurs
» setNewest(lost, 'validR, Vi, Ci)
* Return from receive process
* <1y, V, G >« getMostRecenids, R, V; C)
» For any element of sendevsthat is '0', replace the corresponding elemen¢odiver's; with 'invalid'
* tag < MACus(ms |t [ri | Vs)
« If (tag = tag_arrayfi])
Accept new value as valid
» setNewestfs, 'valid',R, V;, C)
* Vv, « bitwiseAnd§;, vs)
e updateValidity{ds, v;, V)
* For each element w that is '1', incremerg, counters
» updateConfirmationggs, ¢, C)
* Else,
Reject previous values the current MAC tag included
» setNewestfys, 'invalid', R, V;, C)
* Set all elements i to 'O’
e updateValidity{ds, v;, V)

Final Verification process, performed by receiver i:

After Receive process is completed, perform finaiification step for each message type that nogteould have
received alk secondary confirmations:

» Reject value as masquerade attempt if bit;iis 'O’

» Accept value as lost if bit iW; is "1' and (value frorR, is "lost" or confirmations iIC; < 2)

» Accept value (valid and not lost) if the correspaigcbit fromV; is '1' and number of confirmations@equalsz.

Figure 4.3. Pseudo-code for validity voting. Messag e generation and verification processes during

time t.

Validity voting 64

Attesting to message values in this way has sebersfits:

A sender does not need to explicitly retransmit aalpes it is attesting to. By including
them as inputs to the MAC function, two nodes oliserdifferent values from the network,
each will get a different resulting MAC tag aftengputing the same MAC function. With
multiple attestations, there is an increased pntibathat a group of receivers will detect any
differences in observed message values.

A single invalid message value (detected and recbly a voting receiver) cannot cause fu-
ture messages to be marked as invalid. By replaanygnvalid message value with the pre-
defined 'invalid' error code and explicitly incladi a validity bit prevents further message
values from being falsely marked as invalid. Bdth sender and receiver will compute the
MAC function over the same error code, insteadatéptially different values.

A symmetric packet loss does not cause any messdges to be marked as invalid. Similar
to the way invalid message values are handledgusipredefined error code for any 'lost'
values allows all nodes to compute their MAC fumies over the same set of values, rather

than whatever erroneous value might have beenwdxsémom the network.

4.5.2 Verifying a packet

We break down the message verification into twacesses. Each time a receiving node gets

new messages from the network, the receiver exethee Receive process for each new mes-

sage value it has received. Once the Receive ggsoseompleted for all new values, it executes

the Final Verification process on each value forahtall of itsz secondary confirmations should

have been received (Figure 4.3).

Validity voting 65

Receive process - First, for the received message tyjdlg, the receiving nodeexecutegetMes-
sageTypesVotedOn(Mg) to produceds, which contains the message types voted oMy If a
transmission error occurs, receiveecords a 'lost' value for the received message, tyarks it

as valid, commits this information using the setMsivfunction, and exits the receive process
without incrementing any confirmation counters. @thise, the receiver executgstMostRe-
cent to obtain the most recent set of message valueseived from the network that are voted
on by this sample d¥ls, corresponding validity vectat, and confirmation vectas. The receiv-

er replaces any element @fwith an ‘invalid' value if the sender's transnaittealidity vectorvs
indicates the sender believes that value's padktmed an invalid authenticator. The receiver

recomputes the MAC function, and compares the Mag3t

The MAC tags should only be equal if the sender r@teiver agree on the current and prior
values (with the infrequent exception of MAC cabiiss). If they match, the receiver accepts the
current value as valid. If the tags do not mathb,receiver rejects the current value and all prior
values that the sender is attesting to. Becausatthsted values are sent implicitly as inputs to
the MAC function, the receiver cannot determinealihialue caused the disagreement and con-

servatively rejects all attested values.

For a valid packet, receivers update their validiéctors for each attested value. Receivers
record an attested value as invalid if either teder's valid packet indicated it was invalid or
the receiver originally saw that value as invaReceivers perform a bitwise logical And opera-
tion on thev; andvs vectors. For any value in that is still considered valid i after the vote,
the receiver increments the corresponding countére confirmation vectas;. This process on-

ly allows a value to remain valid if all voters wmim@ously agree the message value is valid.

Validity voting 66

Once this process is complete, the results arerdtted to the complete vectoRs Vi, andC;.

Final Verification process - Once the Receive process is completed for any nessage val-
ues, the receiver checks any message values fehwhiof itsz secondary confirmations should
have been received. A receiver checks for thresiplesoutcomes for a value in the following

order:

Invalid - First, if the bit in the validity vectoy; is '0', then the receiver rejects the value as
invalid. Either the original packet containing ttinaessage value had an invalid authenticator, at
least one of the attesting packets had an invalithesticator, or at least one voting node

claimed that the packet was a masquerade attempt.

Lost - Second, if the bit ilv; is '1', and the value is 'lost', then the receamsepts that the
packet suffered a transmission error and no otbegivers claimed it to be a masquerade at-
tempt. Similarly, receivers accept a value asifasis valid, but an insufficient number of posi-

tive confirmations were received (i.e., confirmasanC; < 2).

Valid - Finally, if V; indicates the value is valid, the value is nadt'Jeand the counter in the
confirmation vectolC; indicates a sufficient number of positive confitraas from other voting

nodes, then the value is accepted as valid.

For a received value to be accepted as valide theerst be a unanimous vote on the authentic-
ity of the value. The packet originally containitigat value must have a valid MAC tag, all
attesting packets must also have valid MAC tagd,the validity vectors of each attesting mes-
sage must indicate each voter observed a valid N&&dn the original packet. To fool a single

receiver into accepting an injected value, an k#iamust successfully forge not only the MAC

Validity voting 67

tag for that receiver, but must also successfulgd thez other tags to or from the rest of the

voting nodes.

We emphasize that successfully forging one or packets, then provoking receivers to drop
further attestation packets does not increasetankat's chance of forging a message. Verifica-
tion of a message value requires a node to reediyEmckets containing votes for that value. By

dropping any attesting packets, the packets taddgeteorgery will also be dropped by receivers.
4.6 Integrating with time-triggered authentication

Validity voting can be added to OMPR to verify imdiual packets in time-triggered authentica-
tion. Once a value is transmitted and received gyoap of receivers, at subsequent times in the
same message round (or subsequent message roactll)vaer in the group transmits with its
vote. This process then repeats according to thesage schedule for the network. Figure 4.4
shows an example where message tyyeandM; vote on message typé;. Each round, re-
ceivers obtain the current samplelMf then must wait for the next sampleM$ andM; before

executing the Final Verification process on a sanghM;.

N N =

|m1|m2|m3|m1|m2|m3‘m1|m2|m3‘...k
— 1 1 [T [

Figure 4.4. Example validity voting with non-overla pping attestations. Receivers complete verifica-

tion of m ; values using votes contained in m , and m 3 by the time the next value of type m ; is sent.

Nodes verify state changes and actuations ovefirtak verification results of several mes-
sage samples, as described in Section 3 (eachvinification result is a single entry of the his-

tory buffer). There are no changes to the protasserifying state changing and reactive con-

Validity voting 68

trol messages. However, when using validity votithg, verification results of each individual

message sample are delayed slightly, since a ecsiust wait for votes to arrive.

The message generation and verification procdeseslidity voting described in Section 4.5
enable quick recovery from transient network errorsmasquerade attacks. As soon as the
source of transmission interference or attack czaseeivers simply resume authenticating over
new values. Final verification can then be perfairagain after a short delay once all votes on
the new value are received. Old corrupted valuesagainterfere with authentication of future
values. This approach limits the effects of a ®ngcket loss or masquerade attempt to only the
few previous packets that are voted upon. The &ffe@nnot extend to any values for which re-

ceivers have already accepted or rejected bas#dtedmal verification process.

4.7 Potential complications and tradeoffs

4.7.1 Packetloss

This approach introduces a design tradeoff betvessntolerance and probability of successful
packet forgery. By requiring more secondary corditions, this approach reduces the probabili-
ty that an attacker successfully forges individoatkets. However, this also increases the num-
ber of packets lost by a single transmission etf@ packet is lost by all nodes due to a symme-
tric fault, the number of positive confirmationg fhe values attested to by the lost packet will
not be high enough for those values to be accepltedes will drop all packets attested to by the
lost packet. Section 8 shows several ways to ingtbis approach'’s tolerance to transient packet

losses.

Another limitation of our approach is that an asyetric packet loss (some receivers see a

well-formed packet, while others drop the packet) be interpreted as invalid. MAC tags will

Validity voting 69

disagree because two nodes observed and recorftie@ ol sets of values. Section 8 shows me-
thods to resolve this, including the use of an @mitkl bit vector (similar to the validity vector).
This vector allows voting nodes to indicate whiatkets were lost, reducing the impact of an

asymmetric packet loss to that of a symmetric paloles.

4.7.2 Tolerating compromised nodes

Relying on secondary confirmations from other nadéeduces a tradeoff between tolerance to
compromised nodes and probability of successfulppeket forgery. Compromised nodes could
assist in forgery attempts, attesting that a fonggcket from an attacker is valid. The probability
that this secondary confirmation is successfullgéal is equal to one. To tolerate a fixed num-
ber of compromised nodeg a node must receiwe additional positive confirmations before fi-
nally accepting a value (in addition to theonfirmations already expected). System designers
may trade tolerance to node compromise for inceepsebability of successful forgery. Howev-
er, it is important to avoid adding vulnerable (edikely to be targeted for node compromise

attacks) nodes to the vote simply to increase timeber of votes.

This work assumes the number of compromised nsdisited to one or two nodes. If an
attacker controls multiple critical nodes in thetgyn, then the attacker can likely cause the sys-

tem to fail in other ways without resorting to mascpde attacks.

4.7.3 Node failure

While this approach automatically recovers oncedient faults cease, this approach (as de-
scribed in this chapter) cannot continue to operathe event of a permanent node failure. Such
a permanent failure could cause all samples of ssage type carrying votes to be repeatedly

lost. Section 8 shows several ways to handle aa®ent voter failure.

Validity voting 70

4.8 Verification using model checking

To confirm that this voting technique for autheation is secure, we implemented and model-
checked this technique using the Automated Valiadif Internet Security Protocols and Appli-
cations (AVISPA) framework [AVISPA12]. Model-checlg is a formal method based tech-
nique for verifying properties of concurrent fingtate systems. Model-checking security proto-
cols allows designers to identify flaws which allew attacker to circumvent the protocol. Our
goal is to use model-checking to ensure an attackenot successfully forge a packet despite
full control over the network, and control over sonodes. This requires verification that validi-
ty voting provides data origin authenticity andadattegrity. When AVISPA tests for data origin

authenticity, it tests for data integrity impligiths well.

AVISPA uses a Dolev Yao attacker model [Dolev&fiying the attacker full control over the
network. This is similar to our attacker model iacBon 2. However, the Dolev Yao model as-
sumes that all cryptographic primitives are unfalge unless the attacker obtains the correct
key material. This work addresses the probabitigydttacker successfully guesses authenticators

in Section 4.9.

4.8.1 Model description

The model is a simple network configuration (FigdrB) consisting of three nodes,N,, and
N3, broadcasting message types mp, and m respectively. Each node is modeled as an inde-
pendent process, broadcasting and receiving acaptdia fixed schedule. We model the broad-

cast bus using point-to-point channels, sendingpy of every message simultaneously on each

Validity voting 71

channel. However, all messages in AVISPA are pagsedgh the attacker [AVISPA12] regard-

less of channel definitions, resulting in a buglikpology.

N4 EEE— N2
7 Direct authentication of
AW ¥/ message type m;
N . Subsequent indirect
3 authentication of m4

Figure 4.5. AVISPA model of three nodes authenticat ing message m ; with validity voting. Node N
directly authenticates m ; to N, and N3. In subsequent time slots, N , and N3 exchange indirect con-

firmations of m ;'s validity and vote on the results.

Nodes communicate according to a round-robin TD8¢Aedule, in which each node takes a
turn broadcasting, then the cycle repeats (as igeré-4.6). The schedule is hard-coded into the
model for simplicity. The three nodes execute dixgr time slots, allowing each node to com-
plete the final verification process on one valieach message type (Figure 4.6). In each slot,
one node sends while the other two receive andteptair vote based on the received message.
In this model, nodes transmit the current valughefr message type, and attest to the validity of
the most recent value of the other two. Nodes caenplAC functions over the current value of
their message type, the two previous values trateinby the other nodes, and the validity of
those two other message types. Each node receigigech authenticator and one indirect sec-

ondary confirmation of validity for each messageety

When transmitting message values, the state magliar all nodes are hard-coded to accept
messages in two specific formats. First, the farafaeceived data in the model can be that of a
well-formed transmission (free of errors) specifiedection 4.5. Second, a message can be lost.

To model a transmission error, the second allowechdt for received data in the model is a sin-

Validity voting 72

gle constant value "lost." When a node receives tbinstant, it records the message value as
"lost" and records its validity as true. Because ittodel only specifies these two message for-
mats, the attacker model can inject a well-formadket or drop a packet. Message losses can be
asymmetric, as there is no limitation on the attackodel to inject symmetric message traffic to

all receivers.

MNode M, . MNode N, . Mode Ny
i i
Time | serdm, | | [Recewem, | . Receive m,
Slot 1 ! !
| |
b 4 : - :
Time (Recewe m, | | Send m; : Receive m,
Slot 2 : |
| .
- 1 1
Time i Receive m, i
Slot 3 ' i
l :
i i
Time | i Receive m,
Slot 4 : :
: |
1 1
Time | [Recewverm, | | l
Slot 5 . \
1 1
i |
1 |

“Yote on my

Figure 4.6. AVISPA validity voting model execution over five time slots. This allows each node to

cross-check each of three message types.

The model assumes valid,rand m values have been previously transmitted at the sfa
the model without attacker interference (for simipyi, nodes in our model do not vote on these
previous values). During time slot one, $&nds mwith authenticators for Nand N, attesting
to the validity of prior values of srand m. Nodes N and N, receive m and check its authentici-
ty. If my is valid, N> updates its value and validity vectors for amd m, while Ns updates its
own vectors for mand m. If m is invalid, N and N reject m and the previous values ofbm

Validity voting 73

and m as invalid. In time slot two, Nbroadcasts pand attests to whether;rand m were va-
lid. N; and N update their vectors accordingly. At the conclasid time slot two, N has re-
ceived both its direct authenticator fof and the secondary confirmation from. N3 performs
a unanimous vote on its validity vector entry foy amd the validity included in ¢ transmis-
sion. Ny accepts the value of nif the direct authenticator was valid, the paak@taining the
secondary confirmation was valid and indicategdwas valid, and the value of;rwvas not re-
ceived as 'lost." This process continues over the three time slots, each node voting once it

has received the direct authenticator and secoraarfirmation for each message type.

4.8.2 Properties and results

AVISPA verified the data origin authenticity propefor each message type for all receivers us-
ing OFMC and Cl-Atse, backend components of AVISRé&t check this property [AVISPA12].
To provide data origin authenticity, MAC functiooan be modeled as keyed hash functions. To
test a transmitted variable for data origin autivéiyt AVISPA uses a pair of functiongitness
andrequest. These functions also implicitly test for dateeigity. For each transmitted message,
the sender executes thwtness function. This indicates to the model-checker aenaith a spe-
cific identity transmitted that value. Upon votiagd accepting a message as valid, a receiver
executes theequest function. This function tests that the identitytbé supposed sender and the
value itself are the same as the ones specifidigeitorrespondingitness function. If not, then

the attacker has managed to successfully forgelkepa

AVISPA detected one trivial attack using parakessions starting in the same message
round. This attack requires nodes the executeaime grotocol twice simultaneously, accepting
two values in each time slot. This occurred becddk instances of the network configuration

used the same set of keys (e.g., the same kew&s shared between nodes dhd N of the
Validity voting 74

first instance and between, lnd N of the second instance, allowing nodes of oneants to
forge messages on a second instance). This attaskletected because of an error in the design
of the model. In an implementation on a real systewo networks would use different sets of
keys to prevent such an attack from occurring.Hearrtsuch an attack could not be performed on
a single network. Existing embedded network prdcm not allow transmission of multiple

packets over a bus within a time slot.

After modifying the model to disallow multiple @dlel sessions, AVISPA reported that the
protocol was safe. AVISPA was not able to find amgsquerade attacks, including tests where
the attacker controlled one of the three nodes. &ttecker was not able to successfully forge
either the explicitly transmitted value or the dél vector in each packet. Further, adding an
indirect secondary confirmation from another reeeigoes not permit an attacker successfully
"over ride" the validity of an explicitly transmetti message value (even when that secondary
confirmation comes from a node under the completgrol of the attacker in AVISPA). Simi-
larly, allowing an attacker to drop packets doet erable an attacker to successfully forge a
value. This confirms our expectations, as a recemgy accepts a value if all direct and indirect

authenticators agree on the value of a valid packet

4.8.3 Model limitations

The model has several limitations.
First, the network configuration in the modelimited to three nodes. The number of nodes
was limited to keep the model simple and allowrtiael checker to verify the model in a rea-

sonable amount of time. Using three nodes allow$S®\A to check if adding a secondary con-

firmation of an explicitly transmitted value intraces any vulnerabilities that allow an adversary

Validity voting 75

to successfully forge values. Adding additional @®do enable more votes beyond the first
should not produce different results, since valigiiting requires a unanimous vote on the valid-

ity of a message.

Second, the model only executes a round robin TDddAedule over five time slots. This al-
lows each node to verify a single copy of eachhefthree message types (one from each node).
Extending the duration of the model to include mionge slots and verify multiple samples of
each message type should not change the verificagisults. Values transmitted in time slots
subsequent to the first five cannot interfere wité authentication of the first sample of each of
the three message types. All voting completes afbele N transmits in time slot five. Further
values cannot alter the results of a completed. Vid&®, values which are already voted upon are
not used in further validity voting. A more complegting schedule should not change the re-
sults either, since nodes share a message andj\satiedule. Thus, they know which message

samples a message type carries votes for.

Also, transmissions are instantaneous in the maael nodes can act upon messages without
any delay. In real hardware, often the networkrfate controller on a node executes indepen-
dently of the processor running the main contraploThe network interface reads messages
from the network and stores the most current cdpy message type in mailboxes. Then once
the microcontroller starts the next iteration b tain control loop, it accesses those mailboxes
to get the most up to date sample of each mesgpgdlte node consumes. This simplification in
the model should not change the results. This asja@ccause an offset in time before a message
can be voted upon by a receiver. However, suctma tielay is finite in a real-world time-
triggered network application where nodes are tayrechronized. We perform this modification

in the elevator example in Chapter 6.

Validity voting 76

The model also limits an attacker to inject onlyell-formed packet or a "lost" constant val-
ue. The model assumes nodes in a real-world apiplicdetect transmission errors using error
checking codes within the packet, nodes can detkeh no messages have been transmitted on
the network during a time slot, and nodes can detadformed packets that do not conform to
the network protocol standards. All transmissiommsr in the model are represented by a node

receiving a "lost" constant value.

Lastly, because AVISPA assumes MAC tags are usflig unless an attacker holds the key,
AVISPA cannot analyze the probability that an dttacsuccessfully guesses truncated authenti-

cators. Section 4.9 shows a probability analystsrasults of simulated attack.
4.9 Probability analyss

To spoof an individual packet to a single receiar,attacker must successfully forge the au-
thenticator designated for that receiver in thekpiand all subsequent confirmations of validity.
The probability of successfully forging a singlese MAC tag ob bits in length is 2. When
attempting to forge a subsequent confirmation, attacker has two opportunities to succeed.
First, the attacker may succeed in forging a MA@ itathe initial packet intended for a receiver
that votes on that message. For each initial attehgi fails (indicated by validity vectors in
packets), the attacker must attempt to forge eabbkegjuent confirmation and alter the appropri-
ate bit in the validity vector when the voter tmamis. Thus, a secondary confirmation can be
forged with probability 2 + 2° (1-2°). If a voter updates its validity vector with ahet voter's
validity before transmitting its own, the probatyiliof successfully forging each confirmation
beyond the first decreases slightly with each cordtion. We do not attempt to assign an exact
probability based on these tertiary interactionssubsequent confirmations; instead we use

2° + 2° (1-2°) as a conservative upper bound for each confionaffhis probability is also the
Validity voting 77

same for a receiver that does not constantly uptitelidity vectors as soon as votes arrived,
and instead simply waits till all votes were reeeivbefore performing the unanimous vote (in

some cases this is easier to implement).

The probabilityP,.,v of successfully forging an individual packet waBubsequent confirma-

tions and at most compromised nodes is bounded by:

b b b) "
P < 270(270427°(1-27") @

Using time-triggered authentication, receiversidatk state-changing and reactive control
messages over multiple packets for each messagetltygy consume. Since each sample of a
message type is verified independently, addingsvetidl decrease the probability of per-packet
forgery (strengthen per-packet assurance). Equafibnand (2) in Section 3 show that the upper
bound on the probabiliti?a of successful masquerade attack requinimgut of n or k out ofn

valid time-triggered packets.

4.9.1 Experimental results

We experimentally confirmed the probability of sessful forgery attacks against our approach
using an embedded CAN network simulator writtedawa [Koopmanl2] (Section 6 describes
the simulator in detail). We modified the simulatorallow masquerade attacks. As per our at-
tacker model, the simulated attacker may examirmalifiyy or replace any transmitted packet, so

long as they obey the network schedule. The imphteakeattacker model does not drop packets.

The simulated network consists of a set of sixasopdhroadcasting according to a round-robin
schedule. Each node takes a turn sending, theayttle repeats. The attacker targets one mes-

sage type to forge, and attempts to fool a singteiver. After attempting to forge the initial

Validity voting 78

packet, the attacker examines subsequent packéth aftest to their forged packet. The attack-
er modifies any packets that indicate the initiagery failed (visible to the attacker in the valid

ty vector in packets). If the targeted receiver ptates the Final Verification process and ac-
cepts the forged packet as valid and not loststhmulator increments a counter for successful

packet forgeries.

We measured the number of successful packet fesyever a period of time long enough to
record at least one hundred successful attack gypemtdata point. We computed tuecessful
forgery rate as average successful packet forgeries per messaige and compared this rate to

the probability of successful attack defined inaoun (3).

Figure 4.7 shows the successful attack rate am@tpected rate given by equation (3), vary-
ing the number of indirect secondary confirmatifnesn zero to four and using two bits per re-
ceiver in each packet. Using four confirmationsrdases the probability of per-packet forgery
by almost three orders of magnitude, requiring fextra bits (one in the validity vector of each
packet carrying a vote). To achieve a similar pbaitg using only one MAC per receiver with
zero confirmations, each MAC tag would need totdeast eleven bits. By using our voting me-
chanism, we only need three bits per receiver and lbits for the validity vector if we use four

secondary confirmations, reducing authenticatiardibadth costs by eight bits per receiver.

Validity voting 79

10°

@ —e— Upper bound (Equ. 3)
5 10 § —-o— Experimental
S
=
— 3
o °
Y4 -2
% % 10
o ©
o 4
S £ 107 -
X
< a
104 T . . |
0 1 2 3 4

Total secondary confirmations

Figure 4.7. Simulated per-packet forgery rates vary ing secondary confirmations. MAC tags are

three bits per receiver.

Figure 4.7 also shows the experimental resultglly match the upper bound, then diverge
from the upper bound as the number of confirmationseases. This is due to each node updat-
ing its validity vector with each received confiriiea (taking a unanimous vote between the
two) before transmitting its own confirmation, ratlthan simply sending whether the initial au-
thenticator as valid or not. We also carried oytegknents using one to four bits per receiver,
varying confirmations from zero to four, with resuthat similarly support equation (3). These

experiments assumed zero compromised nodes.

We also tested the effect of compromised nodehemprobability of successful forgery. Fig-
ure 4.8 shows the effect of increasing the numliecoonpromised nodes on average attack
events per message round. These experiments ussdits per receiver with a total of four
secondary confirmations. The resulting successdicket forgery rates correspond to the same
rates as those shown in Figure 4.7. Increasingtimeber of compromised nodes has the same
effect on the probability of successful packet @&ggas removing the same number of confirma-

tions.

Validity voting 80

10°

@ —e— Upper bound (Equ. 3)
= —-o— Experimental
() 101 4
2Rl
o c
- 3
T 2
Xx -2
S o 10
o ©
2 4
S g 103 4
£ 4
< o P
104 ?/ T T T
0 1 2 3 4

Compromised nodes (out of
four secondary confirmations)

Figure 4.8. Simulated per-packet forgery rates vary ing the number of compromised nodes. MAC

tags are three bits per receiver with four total se ~ condary confirmations.

Figure 4.9 illustrates the effect of integratmgr voting technique with our time-triggered
authentication approach. Typical required failuates for safety-critical systems might be de-
fined at 10%hr, 10%hr, or 10%hr. Figure 4.9 shows the number of authenticabios per packet
and number of valid time-triggered packets to achia failure rate of I8hr using our time-
triggered authentication approach alone (zero omiafions) and when combined with our vot-
ing technique (one, four, and eight confirmatioff$)e number of packets and bits were obtained
using the 16/hr as an expected value for one forgery attemptipisecond over the course of
an hour, each succeeding with probability givenelgyations (1) and (3). For example, given
four secondary confirmations, we can achieve andad failure rate of IUhr using 3 bits per

receiver over five time-triggered packets.

Validity voting 81

w
o

= Zero confirmations
(No voting)

One confirmation
A Four confirmations

N
(€]
o

@
o
X
Q
o
e
o 20 ® FEight confirmations]
N -
(2]
5 15
"'% -
o o b
>1O]
B 4 o - n
Ed " O
2 s :
o A
° o ° s
0 T T T T
2 3 4 5 6 7

Authentication bits per packet

Figure 4.9. Reductions in history buffer size using validity voting. Authentication bits per packet
and total packets to authenticate over required to achieve induced failure rate of 10 °/hr on one

message type broadcast once per millisecond.

4.10 Discussion

This chapter introduces validity voting, a techrgbat integrates voting techniquesimprove
the bandwidth efficiency of OMPR, or reduce thelgagion level latency of time-triggered au-

thentication.

The main benefit of validity voting is that it dilas several tradeoffs. By increasing the num-
ber of votes on a message, the system designedezarase the number of authentication bits
per receiver, increase the number of receiverdeorease the number of time-triggered samples
to authenticate over. Increasing the number ofsvateo decreases the loss tolerance of this ap-

proach.
Validity voting also has several limitations:

» First, like OMPR, the per-packet bandwidth overhseales nearly linearly with the number

of receivers, limiting the maximum number of re@es/in practice. It's main virtue is that

Validity voting 82

votes can be used to produce a smaller scalingatritan OMPR. With limited bandwidth
for authentication, this approach cannot scaleutadreds or thousands of receivers. Howev-
er, embedded networks typically have only tensoéivers.

* Increasing the number of votes also increases tsatysio packet losses. If one message
sample suffers a symmetric transmission error, Hrgnmessages it carries votes for will al-
so be declared lost. In the event of an asymmpaaket loss, a message may be declared
invalid, since nodes will disagree on the messajeev Chapter 8 describes methods to im-
prove tolerance to asymmetric packet loss.

* This approach also assumes a fixed number of canmiped nodes to tolerate when deter-
mining the number of authentication bits, histouffér size, and secondary confirmations. If
the number of compromised nodes exceeds this aslsaumber, no guarantees can be made
about induced failure rates. However, in an embeduwork containing critical nodes, if
the attacker compromises more than one or twacatitiodes they can likely cause the sys-
tem to fail without resorting to masquerade attacks

» Lastly, this section does not address permanettisféie., node failure) that permanently
disrupt authentication of multiple message typdwgier 8 discusses methods to improve to-

lerance to node failure.

Validity voting 83

5 Comparisons to other multicast authentication techiques

This section compares four multicast authenticatemhniques that can be used in conjunction

with time-triggered authentication.

One of the advantages of time-triggered autheiticas that it can be combined with many
multicast authentication techniques. Any multicasthentication technique using MACs can be
used so long as the MAC outputs can be truncatétbut compromising the security of the un-
derlying functions or key (e.g., hash-based MACctions). This allows the system designer to
perform tradeoffs among different authenticatiochteques to find which best satisfies the re-

qguirements of the system.

This work identifies four low overhead mechanismsauthenticate time-triggered messages
on a per-packet basis. Each technique spans a canigaleoffs, which might influence whether
it is suitable for authenticating time-triggered gs&ges in a particular system. The first tech-
nique we examine is OMPR (Section 3), which we ase baseline multicast authentication
technique in our initial work on time-triggered henmtication. The second approach is validity
voting (Section 4). Voting adds complexity, bubalk a group of nodes to cross-check the valid-
ity of messages amongst themselves to reduce diddtgmn overhead. Third, we apply TESLA
[Perrig00], which uses time-delayed release of kegstly, we introduce a master-slave authen-
tication approach, based on Chan and Perrig's thestbroadcast authentication using a trusted

base station node [Chan08].

To determine which of these approaches are masbeifor embedded control networks, we
compare them in terms of scalability with respechtimber of receivers and per-packet assur-

ance, and the effects of packet loss, node failmmd, node compromise on each. We also note

Comparisons to other multicast authentication teghas 84

any tradeoffs unique to each approach which mayentakore or less desirable for certain sys-

tem applications.

One of our overall goals is to minimize the numbkauthentication bits required per packet.
This overhead is primarily affected by two systetérs: number of receivers and required per-
packet assurance. Authenticating to more receivieght require more symmetric authenticators
per packet, depending on the approach. The assum@obability required for a packet deter-
mines how many authentication bits are needed doh symmetric authenticator. This section

shows how bandwidth overhead scales for each agiprwith respect to these two factors.

System requirements regarding permanent and émtnfeults may also make one approach
more desirable over another. This section showsfieets of transient packet loss on authenti-
cation and how long each approach takes to redowar such faults. Also, tolerance to node
compromise and failure can be affected by reliavfceeceivers on other nodes to authenticate
messages (e.g., using a trusted master to autaenttt messages). We discuss each approach's
tolerance to node compromise and failure. We dodmxtuss full denial of service attacks in-

tended to prevent all transmissions on the network.
5.1 Metrics for comparisons

This section defines our metrics for comparing ma#it authentication approaches for use in
time-triggered authentication. Our primary goalydred preventing malicious faults, is to mi-
nimize bandwidth consumed by authentication. Depgndipon the multicast authentication
technigue used, authentication overhead can bétigert® the number of receivers and the re-
quired level of per-packet assurance. Second,dafety-critical application, authentication ap-

proaches should be able to recover quickly fromsient faults and resume authentication. Last-

Comparisons to other multicast authentication teghas 85

ly, some tolerance to permanent faults and nodegpommise is desirable. We identify potential

single points of failure for these approaches.

Other metrics for comparison are also possibledas our design criteria in Section 2 (e.g.,
processing and memory overhead). We assume semalsssufficient computational resources
to compute one MAC function per receiver and haffécsent memory capacity to store symme-
tric keys for nodes they communicate with. We aseume a node is able to store temporary
values as well as all key material. Key chainsTTRISLA can be stored using an efficient con-
struction, such as the one described by Jakobskkolsson02]. Systems that have severely
constrained nodes (in terms of processing and m@rmaod do not conform to these assumptions

require further tradeoff analyses at design time.

Scalability with per-packet assurance level For each approach, we examine how the number
of per-packet authentication bits increases wipeet to the per-packet assurance level. Per-
packet assurance is defined in Section 3 as theptadde probability of successful forgery per
packet. A weakeper-packet assurance level gives an attacker &hplobability of successful-

ly forging each packet, but requires fewer auttvatiton bits per packet. Conversely, using a
strongerper-packet assurance level creates a lower pratyatilsuccessful packet forgery, but

requires more authentication bits per packet.

Scalability with receivers -We also examine how per-packet authentication @agthincreases

as the number of receivers increases. Many multenathentication approaches are designed to
scale well to hundreds or thousands of receivesedan certain assumptions. Some techniques
we discuss scale poorly to large numbers of recgivand are only suited to networks with few
nodes. Other techniques scale well to thousandsceivers, but have a high baseline overhead
that makes them scale poorly to very few receivers.

Comparisons to other multicast authentication teghas 86

Loss tolerance -We show how overall network throughput decreasgsaaket loss increases to
illustrate the impact of inter-node and inter-pdciependencies for authentication. Schemes
such as validity voting and master-slave authetidicarequire a sender to rely on one or more
other nodes to confirm the authenticity of packéfs. definefragility as the number packets lost

due to a single transmission error affecting oreketa

We also examine th@bustnes®of each approach, showing how much time must bekse

an approach recovers from a transient network amdrreceivers can resume authentication.

Tolerance to node compromise and failure Lastly, we discuss the impact of node failures and
compromises on each approach. Schemes that rexjinigher level of inter-node dependency
for authentication are more sensitive to node comse and failure. Node failures can prevent
the authentication of more message types than thesieby the failed node. Further, for these
schemes with dependencies, attackers can forgenasgage if they control a sufficient number

of nodes in the network.
5.2 TESLA

TESLA [Perrig00] uses time-delayed release of ki®ysmulticast communications. This ap-
proach requires loose time-synchronization betweesender and receivers that consume that
sender's message types. During each time inteheaender uses a different key to authenticate
broadcast messages within that interval of timeSIA generates a chain of MAC keys using a
one-way hash function. Each key is kept secretbysender until after all receivers should have

obtained the messages authenticated with thattkeg,the sender releases the key during a pre-

Comparisons to other multicast authentication teghas 87

defined subsequent time interval. Receivers thenths disclosed key to verify messages release

during its corresponding time interval.

By releasing keys at a pre-specified delay aftenessage and MAC tag are released (in a
time-synchronized network), receivers can confinm authenticity of the data from a sender. An
attacker cannot obtain a secret key before otlueivers to use it to forge messages on behalf of
a valid sender. An attacker also cannot use a #&ey ités designated release interval. Receivers
discard late messages that arrive after the tinvghath the corresponding key should have been
released, since receivers cannot trust an attatilenot attempt to forge those messages on the

sender's behalf.

This key release approach requires a single MAQdauthenticate each value regardless of
the number of receivers, so long as they are tiynetsonized with the sender. As a security re-
quirement, TESLA requires that a sender and aBivecs be loosely time-synchronized, so re-
ceivers can detect keys and messages that arriveegilar times (indicating an attacker may
have tampered with the message). Our assumptibmaol@s synchronize to the current message

round fulfills this security requirement.

5.2.1 Modifications to TESLA

This approach does not modify the TESLA protocdleotthan to truncate the size of the MAC

tags released based on the needed assuranceflewgiymlual samples of a message type.

5.2.2 Initialization

Key chains - During initialization, each sender generates a &®gin of some predetermined
lengthN [Perrig00]. The sender first selects a random saadkeKy as the last key of the chain.

The sender then iterates a public one-way (pre-emagistant) hash function F. The sender

Comparisons to other multicast authentication teghas 88

computes the chain by recursively usig= F(Ki+1) fori = N-1, N-2, ..., 0. To avoid crypto-
graphic weaknesses, TESLA avoids using the same fkeyderiving the next key in the chain
and for computing MACs. A sender computes keysM&Cs using another one-way function

F': K'i = F'(K;). During runtime, the sender will release keythimordeK'y, K'y, ..., K'n1, K'n

This work assumes nodes are able to store kengli@at are sufficiently long for regular op-
erations. Jakobsson [Jakobsson02] describes astefficient mechanism for one-way chains of

lengthN only requiring log) storage at a cost of Iddg) computations to access an element.

Time synchronization- To maintain security, TESLA requires receiverde loosely time syn-
chronized with each sender. At minimum, receiveustnknow the upper bound on each sender's
clock. This upper bound defines how quickly a semad@ release a key for a previous MAC tag.

The strict time synchronization used in OMPR anlétlitst voting satisfies this requirement.

When using TESLA in time-triggered authenticatiove assume the time synchronization
error between a sender and receivers is muchhessthe broadcast period for a message type.
A sender and receivers synchronize time to a seffity fine clock-tick granularity, such that
the sender can release the key on the next sarhfile same message type. The time synchroni-

zation approaches discussed in Section 3 alreanydas this level of synchronization.
See TESLA [Perrig00] for further details on timireguirements.

Key establishment- At initialization, receivers must be loosely &nsynchronized with each

sender, know the disclosure schedule of keys, aoéive an authenticated key of the one-way
key chain. The sender transmits all key disclosateedule information and the first key to be
released from the one-way key chain using an atitta@ed channel (e.qg., digitally signed broad-

cast or unicast to individual receivers).

Comparisons to other multicast authentication teghas 89

5.2.3 TESLA in time-triggered authentication

During runtime, a sender computes a MAC tag forvidlee transmitted during the current time
interval using the key corresponding to that indér¥When transmitting messageduring the
interval corresponding to kdy';, the sender computes tag- MACxi(m). The sender does not
need to include the current time or message ronrtié MAC computation since keys are al-
ready assigned to specific time intervals. Becauwsere authenticating periodic messages, the
sender truncates the MAC tag based upon the rehpéeepacket assurance needed for that mes-
sage type. The sender transmits the value andspamding tag during the current intervalin a
subsequent interval, the sender releases the keyddor intervalk; (Figure 5.1). Once the key

is received in that subsequent interval, all remevcan comput&'; and verify the tag in the

prior interval and accept or reject those values.

Key released in message round / authenticates
value in prior message round j-1

| my |t | Kiq || my [tier | Ki || My | tio | Kisg |

w

| Round i-1 Round i ! ! Round i+1 ITime

Figure 5.1. TESLA used in time-triggered authentica tion. TESLA uses time-delayed release of keys
to provide asymmetry. The key released in the curre nt message round for a message type authen-

ticates the data value for that message type in the previous round.
As in time-triggered authentication for periodiessages, we truncate each MAC tag based
on assurance required for the sample it autheesc&towever, we cannot truncate the released
keys. Truncating the key exponentially reducessbeurity of this approach. We assume each

time-triggered sample requires the release of gptetmkey; senders do not "batch authenticate”

Comparisons to other multicast authentication teghas 90

multiple samples of the same message type at &ocehis work, we assume a secure symme-
tric key size is eighty bits [Lenstra0l1]. Other eggrhes exist that allow release of smaller keys
by regularly initializing new key chains [HuO3], towe do not address those in this work. The
approach described by Hu et al. enables a tradedfifeen key size and the frequency of estab-
lishing new key chains (establishment of a key hiaquires the sender to broadcast messages

as described in Section 5.2.2).

A message is recorded as valid if the receiverpzded MAC tag matches the tag received
for from the sender. If the receiver computed MA@ toes not match the sender's tag, the re-
ceiver records the message value as invalid. Avecenay drop the message value if either the
packet containing the message value and tag auib&equent packet containing the key suffer a

transmission error.

If a key is lost due to a transmission error, TESkquires recomputation of those lost keys
once a subsequent key is received to verify thatebeived keys are indeed part of the key chain

committed to by the sender during key initializatio

Recovery of lost keys also allows receivers tafyanessage samples for which the corres-
ponding key material was lost. Once a receiveriobta later key, the receiver can iterate the
one-way function to recover any previously lost «keVhis allows a receiver to authenticate a
previously lost message value if that message vahgeits tag are correctly received but the
packet containing the corresponding key is lostis Thcovery mechanism is useful for state-
changing message types, since a receiver waitefaral consistent values before committing to
the state change. Conversely, key recovery isusshul for reactive control message types. Re-
ceiving controllers use the most recent value watg controller outputs; old values are typically
discarded.

Comparisons to other multicast authentication teghas 91

5.2.4 Tradeoffs with respect to key chains

For nodes which broadcast multiple message typeSLA enables a tradeoff among the num-
ber of key chains maintained by a transmitting nguecessing and memory overhead for key
chains, bandwidth for authentication, and lossréslee (and associated recovery of lost keys). A
transmitting node might maintain one key chaindtbrmessage types that it broadcasts to mi-
nimize authentication bandwidth overhead. It alsduces processing and memory overhead for
keys. Each message round, a sender computes onetdpfor each message sample it trans-
mits using one key. In the subsequent message raurgdeases that single key. This approach
has the advantage of amortizing the bandwidth @bstansmitting key material over samples of
many message types. One disadvantage of maintarsnggle key chain is that if a single key is
lost, a receiver cannot verify any of the messagepdes until a subsequent key is correctly re-
ceived and the lost key is recovered. For stategihg messages, this creates a delay in verify-
ing multiple message samples. For reactive contiedsages, loss of a key may cause a receiver

to also lose a sample of multiple message typesg@sing the fragility).

Alternatively, a sender can maintain one distikey chain for each message type it broad-
casts. This approach requires more authenticaaowlwidth overhead, processing, and memory
overhead for keys. Each message round, a sendgutesnMAC tags using the respective key
chains for each message type. In the subsequemt rthe sender releases multiple keys, one for
each message type. The advantage of maintaining kegnchains over maintaining a single key
chain is decreased fragility. Loss of a key onffigets one message type instead of all message

types broadcast by the sender.

Comparisons to other multicast authentication teghas 92

Lastly, a system designer can group message &pemaintain a key chain for each group of
message types. For example, message types coglolgged by required assurance, safety criti-

cality, message period, or system function.

5.2.5 Discussion

TESLA performs well in terms of bandwidth requirertsefor large numbers of receivers, requir-
ing only one MAC tag and key per transmitted packée required per-packet assurance of the
authenticated message value determines the sittee gingle MAC tag. The disadvantage with
respect to embedded networks is that a key musebefor each interval. This creates a high
minimum bandwidth requirement per packet even fessage types with few receivers or re-
quiring low per-packet assurance. However, thisdbadth can be amortized if a sender trans-

mits multiple message types.

TESLA also has excellent tolerance to packet (&s8 fragility) and node failures. If a re-
ceiver drops a packet, that packet does not affiegtother packet. This approach is also robust
to transient faults, recovering as soon as the mestsage value and subsequent key are received.
Once correct transmissions resume, the receivérhaile to perform extra hash computations
during that message round to recover dropped kegsvarify the current key is part of the key

chain. Additionally, node failure or compromise domt affect messages from any other node.

The time synchronization requirement for TESLAnst a disadvantage when comparing
TESLA to other approaches in conjunction with titnggered authentication. The time syn-
chronization requirement of TESLA might be consédkia limitation in enterprise systems.
However, time-triggered authentication already tigbter time synchronization requirements

than the loose time synchronization requiremenfBESLA.

Comparisons to other multicast authentication teghas 93

5.3 Master-slave

In a master-slave authentication approach, a tustester” node attests to the authenticity of
all messages transmitted by other nodes on a baetlas. This approach is similar to using a
base station node to perform the same functionviireless sensor network. Transmitter and re-
ceiver nodes on the broadcast bus are "slavediersénse that they rely completely upon the
master node for trust in messages. Each slave estdblishes a symmetric key with the master
node. Slave nodes authenticate each value thesntrato the master node using a single MAC
tag. The master node is responsible for regulangputing a broadcast authenticator over values
observed on the bus and transmitting this broadmatbienticator to all slave nodes. This diffe-
rentiates this approach from a master-slave comeation protocol where the master explicitly

controls which node transmits next.

The master node could use any method for broadedbkentication, depending on the re-
guirements of the system. For example, the masidd simply compute one MAC tag per re-
ceiver, compute a digital signature, or use TESTAe cost of the broadcast authentication is
amortized by authenticating a batch of messagagesdlof different message types) at once to

the receivers.

In this work, for master-slave authentication, wge hash tree broadcast authentication, pro-
posed by Chan and Perrig [Chan08]. All nodes agarozed into a tree topology, with the base
station as the root of the tree. When the bas@statinsmits, the base station first computes a
MAC tag for each receiver, using a symmetric kegretl with that receiver. However, the base
station does not transmit all the MAC tags. Insteadomputes a hash tree where all MAC tags
are placed at the leaf nodes of the tree. The &iasen then transmits the single resulting root

hash value. Each receiver then releases its MAQQage all the tags have been released and all

Comparisons to other multicast authentication teghas 94

receivers can recompute the base station's hashnthgonfirm the authenticity of the entire
batch of messages. Since only the base stationskatwhe keys used to compute the leaves of

the hash tree, an attacker cannot derive the @sit thalue.

We modify and apply this idea to a broadcast bpslbgy, whereas Chan and Perrig applied
hash tree broadcast authentication for linear,, teew fully-connected network topologies

[Chan08][Chan10].

5.3.1 Hash tree broadcast authentication

In Chan and Perrig's work [Chan08], a spanningisdist constructed over the network topol-
ogy. All communication occurs over the links ofsthiee. The tree is anchored with its root at the
base station. Sensor nodes are placed as thedéea$.nintermediate nodes between the root and

leaf nodes act as aggregators and disseminatarfomhation.

When the base station at the root transmits a agesssgto the leaf nodes, it computes a
MAC tag for each receivearusing the key shared between the base statiorthetdeceiver:
tag = MACx;(N|| msg, whereN is a nonce or timestamp algis a symmetric key established
between node and the base station. To avoid congesting thes linkkhe tree, the base station
does not broadcast all tags. Instead it computessh tree over the set of MAC tags computed
using each of the keys shared with nodes in thearkt For example, for nodes 1 througtthe
base station would compute a hash tree over theegdMAC«1(N|| msg, MACk2(N|| ms9, ... ,
MACkn(N|| msg@}. The base station then distributes the noof this hash tree, messagsg and

nonceN to its intermediate child nodes, which subseqgyetiiseminate it to the leaf nodes.

Once the leaf nodes have received the root dhdisé tree, each leaf disseminates its own tag.

As the tags from the leaf nodes pass up througlnteemediate nodes, the intermediate nodes

Comparisons to other multicast authentication teghas 95

exchange any "off path" vertices of the tree ambtigsmselves and then to their child nodes.
Leaf nodes do not need every MAC tag used to coenthwe root of the hash tree, each merely
needs to confirm that its MAC tag was includedhie hash tree [Chan08]. By using intermediate
nodes to exchange off path vertices of the hash thes approach reduces message traffic con-

gestion across any single link in the network.

Eventually, each leaf node will be able to recotagghe root hash value using its own MAC
tag along with the other off path vertices of tresin tree. Each node can then verify that its

MAC tag was included in the base station's roohhas

5.3.2 Modifications to hash tree broadcast authentication

This work uses a variation on hash tree broadedkeatication to allow a trusted master node to
perform a batch authentication of a set of messafyees. First, each slave node authenticates its
message value to the master node. The other stalesrattached to the broadcast bus are able to
observe the values transmitted by other slaves;dnutot immediately authenticate those values.
The master node then broadcasts a message indivdtiether the set of message values from

the slave nodes were all valid or not using a viameof hash tree broadcast authentication.

Since a broadcast bus uses only a single comntigmchnk, intermediate nodes are not
needed to exchange off-path vertices of the hashttr minimize message traffic congestion on
any single link for two reasons. First, all messagéfic is already exchanged over the single
link of the network. Second, all nodes connecteth&ébroadcast bus are able to observe every
message transmitted on the bus. Instead of creatligary spanning tree over the network, we
use a spanning tree with only two levels: a mastete at the root and all slave nodes as leaf

nodes on the level below the master node.

Comparisons to other multicast authentication teghas 96

When broadcasting a message, the root node cosnpuAC for each receiver. However,
instead of computing a binary hash tree over theOMé#gs, it simply computes a single hash of

all the MAC tags.

5.3.3 Initialization

Key establishment— Each transmitting slave noden the network establishes a keywth the

master node. This key is used to compute MAC tagathenticate messages to the master node.

Each slave nodgthat consumes any message types establishes jkeittKthe master node.
The master node computes a MAC tag for recgivesing this key. The master includes this tag

in the hash tree.
Any node that both transmits and receives messgiablishes both keys with the master.

Time synchronization— As in Section 3, each slave node performs paewme synchroniza-

tion with the master node.

5.3.4 Verifying messages

This master-slave approach using the modified @ghbroadcast authentication executes over
three phases to authenticate message valuesurtsamsmitters tov receivers. This approach

does not require that the setudransmitters be the same as the setreteivers.

Phase 1 - Slaves authenticate messages to master this phase, each transmitting slave node
i computes a MAC over the messageit will broadcast during timé (synchronized with the
master node) using ke it shares with the master noddave_tag= MAC;(t || m). During the
time t, nodei broadcasts i, tag>. The master node and all slave nodes record gessa

However, only the master node is able to verifydhthenticity oim. The slave nodes must wait

Comparisons to other multicast authentication teghas 97

for the master node to attest to the validity obsagles. If a message from a slave node suffers a
transmission error, a receiver (both master ancestades) records a predefined error code 'lost’

for that message.

Phase 2 - Master broadcasts hash tree broadcast &enticator - In the second phase, the
master node computes a hash tree broadcast agtienijas described in Section 5.3.2) to attest
to the validity of the all messages broadcast hyeshodes. If all messages from the slave nodes
were valid, the master broadcasts a single-biidviadessage along with the hash valu&o at-

test to messages fromtransmitting slaves nodes at titne 1, the master node computes a MAC
tag for slave nodeusing the shared kd¢;: master_tag= MACy(t + 1| 'valid" || my || m || ... ||

my). The master does not need to retransmit the messais attesting to, since all slave nodes
attached to the bus should observe the same messagiege master. For any message the master
did not receive due to a transmission error, thetemaeplaces that message value with the ‘lost’
error code. The master then computes masrer these tags for slave nodes that consumefany o
the messages from the u senders.\Hexcceiversthe master computes hasbver {master_tag
master_tag, ..., master_tag. The master node then broadcasts <'valie'pnto the bus at time

t+1.

If any of the messages from transmitting slaveesoldad invalid authenticators, the master
instead broadcasts a single-bit 'invalid' messagetlhe MAC tags are computed over only the
single-bit 'invalid' message and the synchronim®e tith each receiver. The master then hash-

es the tags together and broadcasts the messapastnds per normal.

Phase 3 - Slaves exchange MAC tags to verify mastgehash- In the last phase, each receiv-

ing slave nodes releases its MAC tag so that edlivers can verify the master's hash and subse-

Comparisons to other multicast authentication teghas 98

guently validate messages from théransmitters. Phase three results in one of thuéeomes

for all u messages: valid, invalid, or lost.

Valid - If the master node broadcast the 'val@ifoemation message in phase two, each re-
ceiving slave node computesnaster_tag= MACki(t + 1 [|'OK" || my || Mz || ... || mu), using its
key K'; and timet + 1. If a transmission error prevented a slave rfoa® receiving one of the
messages (from phase one) that the tag is compuwerd the node replaces that value with the
'lost' error code when computing the MAC tag. Eatdve node then releases this MAC tag.
Once allv slave nodes transmit their MAC tags, those nodespate the hash over that set of
tags and compares to the master's hafithe hashes match, the receiver accepts méssages
attested to as valid (with the exception of thosssages that were lost in phase one, which are

recorded as such).

Invalid - If the master's message contained adviit and the received hash does not match
the computed hash, it indicates that an attackghifiave attempted to tamper with the master's
message in phase two. Since the receiving slavesnodnnot determine the validity of those

messages broadcast in phase one, they rejectradssage values as invalid.

If the master's message contained the ‘invalid'sage, indicating some of the messages from
transmitters were not valid, the receivers can thgact allu messages from phase one as

invalid.

The received hash and computed hash may also atwhnn the event of an asymmetric
packet loss; some nodes recorded one or more thessage values as lost, while other nodes

received the value correctly.

Comparisons to other multicast authentication teghas 99

Lost - Theu messages from phase 1 are recorded as 'lostoircases. First, if the master
node's attestation message from phase two sufféranamission error, the receivers simply
record allu messages as being 'lost." Second, if any tag &woynof thev nodes broadcasting in
phase 3 suffers a transmission error and the nmstessage contained a 'valid' message bit,
then no receiver can verify the master's hashhig d¢ase, receivers also record all u message
values as 'lost." If the master's message containéidvalid' bit, receivers always conservatively

reject theu message values as invalid.

5.3.5 Master-slave in time-triggered authentication

When using this master-slave approach in a syspgtication where messages are broadcast at
regular intervals, each execution of the three ghasn be overlapped. Each slave node that is
broadcasting a message value during a message fauth@lso receives messages from the pre-
vious round) can also include the MAC tag for tlieviious round in their transmission. This
halves the number of transmissions by any slavesoéeded for verifying a round of message
values (Figure 5.2). Thus, a slave node transmitgtao truncated MAC tags in a data payload.
The first MAC tag authenticates its current valaeghe master node. The second MAC tag is

computed over the values observed on the netwadheiprevious round.

Comparisons to other multicast authentication teghas 100

Second MAC tag is used to
recompute master's hash and
verify previous round

SN e

| L 1) e 1

5

First MAC tag authenticates
current value to master node

| hash | my | m; | ms

Time

Figure 5.2. Master-slave used in time-triggered aut hentication. Each packet contains two MAC
tags. The first authenticates the current broadcast value to the master node. The second tag is

used to verify the master's hash from the previous message round.

Slave nodes truncate the MAC tags to a few bisethaon required per-packet assurance. The
master truncates each of the MAC tags and resultagl it computes based on the same re-
quired per-packet assurance. The approach is srdgeure as the MAC or hash with the fewest
bits; all MACs and the hash for each executiorhefthree phases of this approach should be the
same number of bits. If the MAC tag produced by dbader in phase one is smaller than the
master's hash, the attacker could potentially gtlessMAC tag more easily than the master's
hash to inject a forged message value from thalese®imilarly, if the master's hash in phase
two has fewer bits than the sender's MAC tag irsplamne, then an attacker could inject a forged

value from a sender and attempt to spoof the niastash instead.

When creating a message schedule (or definingdbasa periods for message types), the
master node should be scheduled to broadcastéstation message sufficiently quickly to al-
low verification of individual samples for each rmage type. Thus, the master node broadcast
period should be less than or equal to that ofnlessage type with the shortest period being
broadcast on the network. Further, the master shdeld be scheduled to authenticate messages

to slave node receivers that are able to prompthadicast their tag so that other receivers can

Comparisons to other multicast authentication teghas 101

confirm the master's hash. Receivers cannot véngyhash until all receivers of the master's

hash have released their tags.

5.3.6 Discussion

This approach has two primary advantages. Firglheaticating via a master or base station node
is very efficient in terms of bandwidth on a broaslcbus in comparison to all nodes broadcast-
ing multicast authenticators. Having one node aitbate messages from all nodes requires a
single broadcast authenticator. In this approactedbaon hash tree broadcast authentication,

slave nodes only transmit two MAC tags, each ofclman be truncated.

Using hash tree broadcast authentication alséheaadvantage of distributing the authentica-
tion bits of the master's attestation amongst ldxesnode transmissions instead of only placing
them in a transmission from the master node. Ifntlaster node used another multicast authenti-
cation mechanism (e.g., OMPR or TESLA to send thster's attestation), it might have to in-
troduce extra packets to broadcast the authenticBioce the master's authenticator should be
broadcast at same frequency as the fastest mesgaege adding additional packets from the
master would significantly increase bandwidth cdstseh packet in CAN uses a minimum over-
head of 90 bits per packet). Using hash tree bastdauthentication, the master only needs to

send a single hash.

Using a trusted master node also introduces Sesdiseadvantages, regardless of the broadcast
authentication mechanism used. First, the mastée ©a single point of failure. If the master
suffers a permanent failure, no authentication lmaperformed. Second, this approach has high

fragility, being very sensitive to packet losses.

Comparisons to other multicast authentication teghas 102

Using a trusted master also allows an attackettempt two guesses to forge an authentica-
tor. First, the attacker can attempt to forge #ug for the master in phase one. Second, if the
master's message indicates that one of the tagiwalgl, the attacker can attempt to forge the
master's broadcast authenticator. If the probglolitsuccessful forgery on either authenticator is
2® where each authenticator is truncatedh tiits, then the probability of successful per-packe
forgery is given by equation (4). This is the sgmnebability as forgery attempts on secondary

confirmations in validity voting (Section 4.9).
Pyoms = 272 4+27°(1-27%) @

Using an approach based on hash tree broadcasindication exacerbates the impact of node
failure. If a single receiving node suffers a fegluthat node might not transmit the MAC tag that
would allow the rest of the network to verify thester's hash value. A single failed node might
prevent all authentication. Chapter 8 describesagmhes to improve tolerance to node failures.

Similar approaches could be used in conjunctioh wiaster-slave.

This multicast authentication approach may nosuogable for networks with a large number
of silent receivers that would otherwise never $rait; each of those receivers must now trans-
mit a message on the network to participate infyied the master's hash. This would signifi-
cantly increase bandwidth requirements for autleatiin. For those types of networks, this mas-
ter-slave approach using hash tree broadcast digéon should not be used. The master node
can authenticate the messages from the previousl rosing another mechanism such as TES-

LA.

Comparisons to other multicast authentication teghas 103

Node compromise is only a concern for this apgnafcthe attacker gains control over the
master node. If the master node is compromisedatfaeker can forge any message desired.

Compromised slave nodes can only forge messaggsliteady are expected to send.

Lastly, there is a potential security vulneraiiithen authenticating all messages through a
trusted master in conjunction with time-triggeradhentication. In time-triggered authentica-
tion, packet losses are considered non-maliciouslid packets are considered malicious. As
described in section 5.3.4, the master explicitigsts to the validity of the messages transmitted

in phase one of this approach. The attack is erdcas follows:

1. During phase one, the attacker selects a messpgéadyattempt to spoof and attempts to
guess the authenticator attached on a sample. B=cae use few authentication bits,
there is a moderate probability of successful forger packet.

2. In phase two, the attacker intercepts and obseéhgeemaster's message. If it indicates no
forgery attempts, the attacker knows they guessedVtAC tag correctly during phase
one. If otherwise, the attacker drops the magteket.

3. The attacker then repeats steps one and two ustiffecient number of forgeries have

been successful to induce a system failure.

While this attack might technically allow an attac to successfully forge many message
samples over time, the attacker is forced to drapyrmessages from the master. Even with sin-
gle bit tags, the attacker will drop about everyent(50 percent) messages from the master on
average. If tags are four bits, the attacker isddrto drop about fifteen out of sixteen (93.75
percent) messages from the master. With more hépercentage of dropped packets is even
higher. Since at most two tags per packet are mgagstem designers are likely to use relatively
large tags for a high per-packet assurance. Witmaoy dropped packets, a receiver is likely to

Comparisons to other multicast authentication teghas 104

assume the network has suffered a blackout andaalkappropriate safe action, precluding an
attack from achieving the desired effect. If thimek is a concern, the validity bit in the master’
attestation message can be omitted. The receieer dlways computes the MAC tag in phase
three over the messages observed during phaseassining none have been tampered with.
Thus, an attacker cannot watch a master's mestages if they successfully guessed the MAC
tag, and the verification in phase three will obk successful if the master and slave nodes ob-

served the same messages during phase one.
5.4 Comparisons

In this section, we compare each of the four temes in terms of scalability with per-packet

assurance, scalability with receivers, loss toleeaand node failure/compromise.

5.4.1 Scalability with per-packet assurance

We first show how the required authentication oearhof each approach scales as we vary the
per-packet assurance. We calculate the per-packbergication overhead assuming a fixed
number of receivers. For OMPR and TESLA, we asstirateach has a probability of success-
ful per-packet forgeryP, of 2° requiresb bits per MAC tag. For validity voting, equation) (3
gives an upper bound on the probability of per-padtrgery success after receivingonfirma-
tions from other voting receivers, whaxeof the voters are compromised. We use this equatio
to determine the number of MAC tag bits requireédbieve a probability of per packet forgery
equal to or less than those for the other scherRes. master-slave, the probability is

2° + 2°(1-2"), as discussed in Section 5.3.6.

Table 5.1 provides the per-packet authenticatiandividth cost for each of the four tech-

niques when applied to various per-packet assurpratgabilities giverR receivers. This table

Comparisons to other multicast authentication teghas 105

shows the number of authentication bits per MAC tagltiplied by the number of required tags,
plus any added overhead. For validity voting, erahsmitter includey validity bits in their
packet (one for each message type it carries afeoteTable 5.1 also assumes zero compro-
mised nodesw = 0). TESLA requires a key of si2& Master slave always uses at most two
MAC tags in each packet. These calculations omytacket fragmentation that may occur if a

value and authenticator cannot fit within a singhgsical packet for a given network protocol.

Table 5.1. Authentication bits per packet vs. per-p acket assurance

Per-packet authentication overhead (bits)

Per-packet| OMPR Validity Voting TESLA |Master/
assurance 1 Vote | 2 Votes | 4 Votes Save
27 2xR |2xR+vV |[2xR+vV |[1xR+Vv [2 +K |3x2
24 4xR [3xR+V [2xR+V [2xR+V |4 +K [5x2
28 8xR |5xR+V [4xR+vVv |[3xR+V |8 +K |9x2
216 16xR |[9xR+V |6xR+V |[4xR+Vv [16 +K |17%2
23 32xR |17xR+V|12xR+ Vv|8xR+Vv |32 +K [33x2
2% 64xR |33xR+V|22xR+Vv|14xR+Vv|64 +K |66%2
A 1283R [65XR + v|44xR + v|27xR + v| 128 +K | 130x2

In Figures 5.3 through 5.5, we assume all trarisiginodes broadcast to &lreceivers and
transmit their messages according to a round-rebiredule. Key sizK is eighty bits for TES-
LA. For simplicity in validity voting, we assume des transmit a vote for themessage values
most recently received from the bus. For all reees\to obtain one vote on each sample of each
message type, each node votes on the two mosttremssage values € 2). For two votes,
each node votes on the three most recent messhgs ¥e= 3). For four votes, each node votes
on the five most recent message valwes §). Chapters 6 and 7 detail application of tegphes

to more complex message schedules.

Comparisons to other multicast authentication teghas 106

Figure 5.3 shows an example of the per-packeteatittation overhead required as we vary
the per-packet assurance, using ten receiers10). This example omits any added bandwidth

due to packet fragmentation.

200
@ 180 -
2
© 160 -
X
(8]
S 140 -
o
2 120 A
©
o
_E 100 .
(]
3 80 - —e— OMPR
IS 50 - —O0— 1 Vote
8 —w— 2 Votes
'% 40 —v— 4 Votes
£ —=— TESLA
g 20 - —O— Master-Slave
O T T T T T T
2-2 2-8 2—16 2-32 2-64 2-80

Per-packet assurance (acceptable probability of forgery)
Figure 5.3. Authentication bits per packet varying per-packet assurance. Ten total receivers.

With no trusted master, Figure 5.3 shows thatMA€ per receiver and validity voting have
lower bandwidth consumption than TESLA in networkguiring weak per-packet assurance.
This characteristic makes one MAC per receiver aadlity voting most applicable to time-
triggered embedded control networks with samplieitgs faster than time constants in the sys-
tem. Eventually, stronger per-packet assurancdddueces the size of the MAC tags to require
more bits than the key that TESLA releases. Fomr¢éerivers, one MAC per receiver requires
less bandwidth than TESLA for per-packet assurant€® or higher. Figure 5.3 also illustrates
how voting can be used to lower the required aditation bandwidth at the cost of some added

complexity and lower loss tolerance. By using onéwm votes, we can achieve #°Jor even

Comparisons to other multicast authentication teghas 107

22 if using four votes) probability of per packetdery success while using less authentication

bandwidth than required by TESLA.

Figure 5.3 shows that for an embedded control okdwrith ten receivers, using typical sam-
pling rates, one MAC per receiver and validity ngtican be used to achieve strong system level
assurances using our time-triggered authenticafppmoach. Typical embedded control networks
often follow the rule of thumb of sampling messagees at least ten times within a system
deadline or the rise time of a control output [fktar®2][Kopetz97]. Using an assurance proba-
bility of 2® per packet, we achieve a probability of inducestay failure of 18 per message
round if receivers authenticate over at least foessage samples. For a message type sampled
once per millisecond, an expected failure ratetour can be achieved if the receiver authen-
ticates over at least seven samples using pe2 packet assurance probability. For systems re-
quiring stronger per-packet assurance, such'sah induced system failure probability of*10
per message round can be achieved by authenticatergust two samples. For a message type
sampled once per millisecond, a receiver would neeauthenticate over at least four samples
using this level of per-packet assurance to achévexpected failure rate of #our. Embed-
ded control networks following the rule of thumbs#mpling message types at least ten times
within a system deadline or the rise time of a camutput should be able to authenticate state
changes and actuations over four to seven samplelg still maintaining a margin of error for
unanticipated operating conditions (e.g., transpemket losses). We us& and 2'° as examples
in our analysis in following sections. Systems wigiss stringent system level assurance re-

quirements could use weaker levels of per-pacletrasce (e.g., 2or 2%).

Figure 5.3 also shows that TESLA has the lowesppeket authentication cost for networks

with ten receivers requiring per-packet assuratromger than 2°. This makes TESLA the most

Comparisons to other multicast authentication teghas 108

efficient approach of the four for systems wheighange in system state must be authenticated

over a single or very few packets with iron-cladiséy guarantees.

For systems in which a trusted master node idablaj using a master-slave approach can
achieve extremely low authentication overhead @aket as compared to the three other ap-
proaches. While a master-slave approach scaleswitbllrespect to per-packet assurance, the
size of the authenticators eventually becomes tattggn the bandwidth required by TESLA.
Note that Table 5.1 and Figure 5.3 show the pekgtalsandwidth overhead incurred by each
slave node. The master's transmitted hash reqaireslditional message type to be broadcast on

the network.

5.4.2 Scalability with respect to receivers

Next, we examine how each approach scales wittecesp the number of receivers while fixing
the per-packet assurance level. While a typicaleztdbd network only has tens of nodes, ap-
proaches that scale linearly with the number oéinars eventually become inefficient in com-
parison to schemes like TESLA. Again, we calcutaeetotal number of authentication bits per
packet in the same way as the previous sectionléTah). In the example in Figure 5.4, we fix
the per-packet assurance at a probability®a8d vary the number of receivers. In Figure 5.5,
we fix the per-packet assurance at a probabilitg§f For this example, we also ignore added

bandwidth overhead due to packet fragmentation.

Comparisons to other multicast authentication teghas 109

Figure 5.4.

Figure 5.5.

200

™ —e— OMPR

5 —O0— 1 Vote

2 —wv— 2 Votes

% 150 - —v— 4 Votes

g —=— TESLA

5 —— Master-Slave

o y

E

S

= 100 -

2 = ' = - - - — %

8

c

ie)

8 50 -

IS

)

S

> - - - - /!

< 3 3 3 3 Tl

O T T T T T 1
0 5 10 15 20 25 30
Receivers

Authentication bits per packet varying number of receivers. Probability of per-packet

forgery success fixed at 2 %

200

—&— OMPR
—O— 1 Vote
—w— 2 Votes
—v— 4 Votes
150 1| —m— TESLA
—{1— Master-Slave

100 1 g l/ = = n

50 A

<

\

[m]
&

Authentication bandwidth per packet (bits)

Receivers

Authentication bits per packet varying number of receivers. Probability of per-packet

forgery success fixed at 2 ™°.

Comparisons to other multicast authentication teghas

110

For networks with no trusted master, Figures fid 8.5 shows that one MAC per receiver
and validity voting require low authentication bamdth per packet in networks with moderate
numbers of receivers. These approaches can bedpplembedded control networks with mod-
erately few receivers, commonly eight to sixtedre (€xample automotive network workload in

Section 7 has a maximum of twelve receivers formegsage type).

Similarly to Figure 5.3, Figures 5.4 and 5.5 dlksstrates how validity voting enables better
scaling with respect to receivers. This allows adge to authenticate a value to more receivers

for a given bandwidth than when using one MAC geeiver alone.

These figures also illustrate that validity votiregluces MAC tag sizes by a greater number of
bits for stronger per-packet assurances. For @@eket assurance off2adding a single vote
decreases the number of authentication bits peiverchy three bits. Whereas, fof®adding a

single vote decreases the authentication bitsqueiver by seven bits.

This figure shows that TESLA is the most bandwiefficient non-master approach for high
numbers of receivers. In the example with a fixed-gacket assurance of% using OMPR be-
comes less efficient than TESLA after there areartban six receivers. However, using four
votes remains more efficient than TESLA until thare more than 23 receivers in this example.
For a per-packet assurance &f DMPR becomes less efficient than TESLA after nthem 11
receivers, and validity voting with four votes bews less efficient than TESLA after more than

28 receivers.

For networks with the option of using a trustedstag a low per-packet authentication over-
head can be maintained regardless of the numbescefvers. However, this also assumes that
each of these receivers also transmits meaningtal ubon which it can "piggy-back” the neces-

sary authenticators. Receivers which would othexwist transmit are required to send authenti-
Comparisons to other multicast authentication teghas 111

cation data. Figures 5.4 and 5.5 show only theeaniitation bits required for each slave node's
transmissions (where each packet contains two M#S)t A master's message would use fewer

authentication bits, only containing a hash the siza single MAC tag.

5.4.3 Loss tolerance

We experimentally tested the loss tolerance of eggroach using an embedded CAN network
simulator written in Java [Koopman12]. For this wowe use a network of six nodes broadcast-
ing according to a round-robin schedule. Each rtaées turns broadcasting a single message
type consisting of a sixteen bit data value, asdediauthentication data and CAN packet over-
head. We selected a per-packet assuranc& as2an example of a per-packet assurance proba-

bility one might assign to message types in an elae control.

We implemented all four authentication schemethensimulator. Every node authenticates
each of its packets to all five other nodes inrteevork. For one MAC per receiver and validity
voting, each sender includes one MAC tag for eackiver. With a per-packet assurance &f 2
at most eight authentication bits are requiredtagr Thus, all value and authentication data for
these two approaches fit within a single data payldVe tested validity voting using one vote,
two votes, and four votes. Master-slave authemticatequired an additional master node to be
added to the simulation, for a total of seven naaes message types. With two tags per packet
in the master-slave approach, no packet fragmentaiccurred. TESLA required two CAN
packets to transmit the value, MAC tag, and keyefith message type in each round. We simu-

lated TESLA with recovering previously lost keyadawithout recovering previously lost keys.

We simulated the effects of a symmetric omissadtfmodel [Azadmanesh00] on network

packets to observe each approach's sensitivitgtkgh losses and how long each takes to recov-

Comparisons to other multicast authentication teghas 112

er after transient faults cease. In a symmetricseve fault model, either all nodes receive a
packet broadcast on the network or none receivihis type of fault may occur due to network
blackouts or if a node simply fails to transmitidgra message period. We apply this fault mod-
el by having the network drop a percentage of paatering execution. We use the built-in fault
injection capabilities of the simulator to injeanissive faults during execution. The simulator
applies this drop percentage uniformly across aésage types. All injected faults affect only a

single packet; prolonged effects require multiglelts.

Fragility - Sensitivity to packet losses During execution, nodes recorded the overaibrat
authenticated data values to the total number lolegatransmitted (i.e., network goodput norma-
lized over total execution time) to identify sensty to packet loss. Increasing authentication
dependencies among nodes and packets make apmaache sensitive to each packet loss,
causing the loss of multiple data values when glsipacket is lost. Figure 5.6 shows the ratio of
authenticated data values to the total transmagede vary the percentage of dropped packets.
For each data point, we ran the simulator for icgaht number of message rounds to observe at

least one hundred drop events.

Comparisons to other multicast authentication teghas 113

\D\\“

3o
o=
52
Sg
g 0.6 - A2
oS \
>3
c > -
>3 o4l | —®— OMPRTESLA \:
8z VY with key recovery \ x \
_‘g E Qveeee 1 Vote g \
5 8 ——-%—— 2Votes \ \\
o= ——v-—- 4Votes \.”\
22 029 | — _m— TESLAwithout key A
o recovery W

— —O—— Master-Slave 0o\

NS
0.0 T T T
0.0001 0.001 0.01 0.1 1

Packet loss ratio

Figure 5.6. Ratio of packets authenticated to tota | transmitted varying packet loss.

One MAC per receiver has the highest ratio of ptamk data values to transmitted values as
packet loss increases, because it has no inter-oodeter-packet dependencies. Thus, this
scheme represents an ideal bound on the maximuonofaprocessed data values to transmitted

data values.

TESLA (with key recovery) had the same loss taleeaas OMPR. Since keys are initially
computed by iterating a hash function, a receiaer imply recompute lost keys if a subsequent
key is eventually received. Thus, a message vaaseonly lost if the packet containing the value
suffered a transmission error. Loss of only the tagporarily prevented verification of a value

until another key was successfully received.

TESLA (without key recovery) is more sensitivepacket loss than one MAC per receiver

due to the use of time-delayed key release foreamtitation. A data value will be lost if the

Comparisons to other multicast authentication teghas 114

packet containing that data value, or either oftthe fragment-bearing packets containing the

subsequent key material are lost.

When using validity voting, increasing the numbéwrotes increases sensitivity to network
faults. If any vote that confirms a value is ldeen the packet containing the value voted upon is
also lost. If one of these confirmation packetdost, then all values attested to will also be

marked as lost.

Master-slave authentication suffers the greategtatiation in processed data values as packet
losses increases, because all packets from onel nowist be received to verify the previous
round. If the master node's hash value or any suies¢ MAC tag used to verify the hash are

lost, then all values in the prior message rouedsiso lost.

Figure 5.6 illustrates that schemes which havedewo dependencies among nodes or pack-
ets for authentication, such as one MAC per receiVESLA, and validity voting with one or
two votes, are best suited for lossy networks.dystems deployed in environments where little
network interference is anticipated, approachesihequire more interaction among nodes and
message types for authentication can be used. itjalidting where most nodes participate in
voting on a majority of each others' messages @tenaslave authentication could be used in

systems where transmission errors are sufficieatly.

Robustness - Recovery time from transient faults While most approaches have some sensi-
tivity to packet losses, all approaches recoveclduifrom transient faults. When used in safety-
critical applications, an authentication approaalstrbe able to resume authentication quickly
after a transient fault ceases. An example of sufault is a temporary network blackout due to
an electric motor starting. We experimentally tddtee length of time from the point at which a

transient packet losses ceased to the point atwthe first message value transmitted after the

Comparisons to other multicast authentication teghas 115

fault was successfully authenticated. To simulbagsé types of faults, we deterministically in-

jected a single lost packet for a message typaraasured the time until authentication resumed
for that message type. Additionally, we droppedkpés for all message types long enough to
stop all authentication, then ceased all interfeeesimultaneously to simulate the end of a net-

work blackout. We observed similar recovery timebaoth cases and recorded the worst case.

We do not consider recovery of packets lost dutivggfault, as nodes in embedded control
networks act on the freshest data values concethmgurrent system state to update outputs
and actuator positions. Nodes discard stale ddteyafter short period of time. Also, this work

does not address malicious denial of service attankhese networks.

One MAC per receiver resumes authentication imatetyi upon the receipt of the next mes-
sage value after a transient network fault ceadas.recovery time is ideal due to no dependen-

cies.

While validity voting is more sensitive to packesses because of inter-node dependencies,
it automatically resumes authentication after asags value and all subsequent votes are re-
ceived. In this simulation, validity voting recoeerwithin one message round. Verification of a
value never depends on prior packets. Only subsglgueceived packets are used to authenti-
cate a value. Votes are scheduled to be receivibunwine message round of the value they are

associated with.

TESLA recovers from transient network faults asrsas a data value and the subsequent key
are received. In our simulation this occurs in glgihtly over one message round. However, this
delay could be reduced by scheduling a messagéstigpgs to be released later in the message
round after its value is released. Upon receividgia value for any message type, a receiver can

authenticate that value once the associated kefaased in the subsequent message round. Re-
Comparisons to other multicast authentication teghas 116

ceivers must also recompute any lost keys in aieerify the authenticity of keys and values
transmitted after the fault ceases. Thus, suffttyelong network blackouts might increase re-

covery time.

Master-slave takes at most three message roundsdweer from a transient fault in our simu-
lation. Once the fault ceases, receivers must wit the beginning of a new message round.
Receivers can begin verifying message values agace all values in that round, the master

node's hash, and the tags in all packets in thewilg round have been received.

5.4.4 Node compromise and failure

Reliance on other nodes for authentication alsoicesl an approach’'s tolerance to node com-
promise or failure. TESLA and one MAC per receitave perfect tolerance to node compro-

mises or failures. An attacker controlling a compisged node can only spoof message values
that would be sent from that node. A node failu@uld not prevent any other messages from

being authenticated other than ones transmittetidyailed node.

Validity voting (Section 4) can only tolerate add number of compromised nodes, specified
at design time. An attacker might use a comprommsxte to assist in a message forgery attempt
by casting a positive vote for that message. Bgr&tingw votes are compromised out of ¢o-
tal votes, the per-packet assurance is defined-hy useable votes (see equation (3) in Section
4). If an attacker is able to compromise more tWaroting nodes in the system, they might be
able to cause message forgeries to succeed mere tbtin defined failure requirements for the

system.

Comparisons to other multicast authentication teghas 117

Baseline validity voting as described in Sectiodogs not account for permanent node fail-
ures. Tolerance to failed nodes needs to be addiection 8 describes how to tolerate failed

nodes, using methods like group membership.

Master-slave authentication's tolerance to nodapcomise relies primarily on the master
node remaining uncompromised. The master nodssiisgde point of failure. If an attacker com-
promises the master node, the attacker has compeateol over the network and can transmit
any value it wishes. However, if the master nodeaias uncompromised, the approach retains
perfect tolerance to compromise of any slave nédeompromised slave node can only spoof

messages that would be sent from that node.

Permanent node failures have a more severe ingrachaster-slave authentication. In the
event the master node fails, no authenticatiorossible. If a slave node fails, it will not release
the MAC tags necessary for other nodes in the mitteovalidate previous message rounds. To
resolve this, a master node might periodically Hoast the current set of nodes it believes to be
operating correctly. Thus, receivers can recomghgemaster's hash value over the tags released

by correctly operating nodes.

5.5 Discussion

Table 5.2 summarizes the results of this chaptecudsing characteristics of each technique and

types of embedded networks they best apply to.

Our analysis shows that the most bandwidth efiici@pproach depends primarily on the
number of receivers, and is influenced to a lesgéent by per-packet assurance levels in net-
works where no trusted master is available. Fomgse, one MAC per receiver and validity vot-

ing are the most bandwidth efficient approacheshé&works characterized by few receivers and

Comparisons to other multicast authentication teghas 118

weak per-packet assurance levels. TESLA and vgliditing using many votes are the most
bandwidth efficient approaches for very large nurel® receivers or strong per-packet assur-
ance levels. A master-slave approach is also vangwidth efficient, assuming a trusted master
node is available. We also show that despite squpeoaches being more sensitive to transient
packet losses, all approaches recover automatiedihin one to three message rounds. Lastly
we find approaches with no inter-node dependerfoieauthentication, such as one MAC per

receiver and TESLA, are most robust to node commesror failures.

Comparisons to other multicast authentication teghas 119

Table 5.2. Summary of authentication technique char acteristics

Summary

One MAC
per receiver

- Best applied to embedded control networks chaiaetérby very fev
receivers and weak per-packet assurance levels.

- Perfect tolerance to transient packet losses.

- Nodes resume authentication immediately after iemb:etwork failure
cease.

- Perfect tolerance to node compromise or failure.

Validity voting

- Best for systems with few receivers; can providersg per-packet asst
ance by increasing votes. Enables authenticatiomdece receivers
stronger per-packet assurances than one MAC peivescusng the
same number of bits. If using many votes, validitying is competitiv
with TESLA for scalability even to strong per-packssurance levels.

- Increasing voting also makes this approach moreithem to packe
losses.

- Authentication resumes withione message round after transient net
faults cease.

- Only tolerates a fixed number compromised nodesleNailures migh
require network reconfiguration.

TESLA

- Best for systems characterized by many receivedsvany strong pe
packet assurance levels.

- Has higher per-packet authentication overhead ehanMAC per receiv
er and validity voting when applied to few recetvand weak pepacke
assurance levels.

- Time-delayed key release slightly decreases Idssattce due to inte
packet dependencies.

- Authentication can resume within one message round.
- Perfect tolerance to node compromise or failure.

[

Master-slave

- Requires a trusted master node.

- Scales well to any number of receivers (so longaee are silent recei
ers). Also scales well with respect to per packstience levels.

- Very sensitive to packet losses, because all npddgipate in verifyin
each message round.

- Recovers from transient packet losses within thressage rounds.

- Master node is a single point of failure. Perfedérance to node cor
promise so long as only slave nodes are compronfiseleéd slave nod¢
require reconfiguration out of the system by thetaanode.

Comparisons to other multicast authentication teghas 120

6 Evaluation - Simulated elevator control network

We implemented time-triggered authentication inmutated embedded control network of an
elevator system. The embedded network simulatarbg-level accurate CAN protocol simula-
tor, allowing controllers to communicate using pdit messages [Koopmanl12]. In this proof of
concept, we first identify safety requirements e system and possible attacks in which mes-
sage forgeries could induce system failures thaldceiolate those safety requirements or cease
elevator operations. We then apply time-triggerathentication in conjunction with all four
techniques described in previous sections (one NdACreceiver, validity voting, TESLA, and

master-slave) to prevent such attacks and examepédrformance impacts of each.

The embedded network simulator has been usedvieraeresearch projects as well as the
project component of graduate level course workhm Electrical Engineering Department of
Carnegie Mellon University. Examples of researcbjguts that have used the embedded net-
work simulator (or variations thereof) include grad degradation of distributed embedded sys-
tems [Nace02][Shelton03] and embedded network gatesurvivability [Ray09]. The simulator
is also used in the project component of the Caenkigllon University graduate course 18-649
Distributed Embedded Systems. Students use thedslebenetwork simulator to design an ele-
vator system. Associated project tasks include ldpweent of system requirements, design and
implementation of state machines for controllersalgsis of bandwidth consumption, and ro-
bustness testing of system designs to injectedsfafill code and design documentation for the

elevator and the underlying network simulation feavork are available [Koopman12].

While not the most obvious example for a secuaitglysis, we selected the elevator system

as an implementation platform because it is reptesige of safety-critical embedded networks

Evaluation - Smulated el evator control network 121

in industry. This system contains nodes runningrobtoops that consume both reactive control
messages and state-changing messages. The simulags a CAN bus to broadcast periodic
messages to receivers. Any node (malicious or wbith spoofs an input to a safety-critical
node could cause the system to violate safety rexpaints. Such a violation could potentially
result in injury or death of users in a real syst&ime elevator design also has performance and
passenger comfort requirements that a system dasigay also protect from malicious attacks

to a lesser degree.

6.1 Network simulator framework overview

The elevator system executes on top of a CAN nétwionulation framework, written in the Ja-

va programming language.

The network simulation is built around an evenewgi that acts as the physical layer of the
network and controls all time-related actions (gp@ssenger behaviors, control loop executions
and message broadcasts) in the simulation. Theeguaintains an ordered set of events and as-
sociated times to execute them. During executlomelvent queue increments an internal counter
that represent clock ticks (each clock tick repnés@ne nanosecond) that have passed. At each

clock tick, the event queue executes the eventthétrtime.

At initialization, the simulation builds a set wbdes (sensors, actuators, and controllers) and
registers them with the central event queue. Eade connected to the network is an instance of
a Java class that exchanges data through the gwené. To simulate periodic control loop ex-
ecution, each node registers a function callbacksamulation time with the event queue. When
the event queue reaches that time, it executelitioion callback. The node then reads new in-

puts, updates internal state variables, and updatgsits. Once the control loop function com-

Evaluation - Smulated el evator control network 122

pletes, the node re-registers with the event gé@uigs next control loop execution. One limita-
tion of the simulator is that control loop execagooccur "instantly.” The simulator does not at-

tempt to model execution time.

To minimize processing requirements, the simutatitodels all physical signals and CAN
network packets as semi-public state variablesdbfatupdated at discrete intervals. All network
messages and physical signals are propagateddivees at predefined periods. Typically, these
periods match the control loop period of the mes'sagpurce. While this might be considered a
limitation of the simulator, in real embedded cohtretworks most inputs (including continuous
analog inputs) are sampled periodically. Nodesstegimessage types they output and their pe-
riods with the event queue. Nodes also subscril@edet of messages through the event queue.
At the predefined frequency, the event queue pldta from the source node and propagates the
messages to mailbox variables. Each node accdssasetvest copy of each network message
type and physical signal through these mailboxes. dvent queue can also model the CAN pro-
tocol at the bit-level of the physical layer. It de&ds bus arbitration when multiple nodes attempt
to broadcast on the bus at the same time. It &0 anodels other aspects of the CAN protocol,
such as bit stuffing. This allows for detailed baidth analysis for projects using the network

simulation framework.
6.2 Elevator system overview

The simulated elevator system services a buildiitg eight floors. Passengers "arrive" in the
simulation at predefined floors and times, and theass the hall call button (up or down) at that
floor. A centralized control system, called thepditther, monitors hall and car call button mes-
sages on the network and determines which flo@etwice next for optimum performance to

minimize overall passenger delivery time. The dispar updates the desired floor, which is

Evaluation - Smulated el evator control network 123

broadcast at regular intervals over the networkhw other controllers. Based on the desired
floor, the drive controller commands the drive nidtoraise or lower the car within the hoistway
to that floor. Once the elevator arrives at theirddsfloor, the door controllers command the
door motors to open and close the doors for ealitvdyaappropriately. The car has front and
back doorways (each with left and right doors t@n simultaneously), allowing the elevator to
service a front hallway, a back hallway, or botleath floor. Once inside the elevator car, a pas-
senger waits for the doors to close, and then pseg<car call button to be delivered to the cor-
responding floor. Again, the dispatcher determittes next floor to be visited and the drive
moves the car to that floor. The car position iathe displays the current floor to the passengers

so they can exit the car at the correct floor.

The elevator simulation consists of a set of nddeasors and controllers) that communicate
over a simulated CAN bus using periodic messagableT6.1 lists the source nodes, message
types they broadcast, message period, replicati@owce nodes, and a brief description of the
contents of the message. Some nodes (and theeatespmessages) are replicated. The replica-
tion column indicates how many copies of that mgssare broadcast. "Floor" indicates that a
copy of that node is present at every floor. "Hatllicates that a copy of that node exists for
both front and back halls. "Side" indicates thatopy of the node is present for both left and
right sides, referring to the two doors of eachrante to the elevator car. "Direction” indicates

that a copy of the node exists for both up and ddingctions.

Evaluation - Smulated el evator control network 124

Table 6.1. Elevator message dictionary. Contains message types, source nodes, periods, replica-
tion, and descriptions. [Koopman12]

ency

Sensors
Source Node Message | Period I Description
Replication
Name Name (ms)
At Floor Sen- 10 Boolean value indicating if the car is currently that
AtFloor 50
sor (floor, hall) | floor and hallway.
Car Level Car Level 1 Integer value that provides the vertical positidrthe car
Position Sen- - 50 . within the hoistway in millimeters.
sor Position (single)
Door Closed Door Closed 50 4 _ Boolean value indicating if a particular car dosrcom-
Sensor (hall, side) | pletely closed.
Door reversal| Door Rever- 10 4 Boolean value indicating whether an object is biogla
Sensor sal (hall, side) | door, preventing it from closing.
Weight Sen- Car Weight 50 _ 1 Integer value that provides the current weighthef ¢ton-
sor (single) tents of the elevator car.
Door Opened Door Opened 50 4 _ Boolean value indicating if a particular car dosrcom-
Sensor (hall, side) | pletely open.
Hoistway Hoistway 50 2 Boolean value indicating if the car has exceededttip
Limit Sensor Limit (direction) | or bottom of the hoistway.
Controllers
Source Node Message | Period A Description
Replication
Name Name (ms)
. Boolean value indicating if the safety monitor hies
Safety Moni- | Emergency 1 L
50 . tected a safety violation and engaged the emerg
tor Brake (single) brake
. Drive Com- 1 Contains integer values providing the current speed
Drive Control mand 10 (single) direction of the drive (i.e., how fast the car ievimg).
Door Control Door Motor 10 4 Integer value indicating the current command frdra
Command (hall, side) | door controller to door motor (stop, close, or gpen
Car I?osmon Car Position 50 _ 1 Integer value prqwdmg the current floor beingplitsed
Indicator (single) to passengers within the elevator car.
Dispatcher DesiredEloor 50 _ 1 Integer values providing the next floor and directihe
(single) car should be commanded to travel to.
17 Boolean value indicating if the call button in tberres-
Hall Button Hall Call 100 | (floor, hall, | ponding floor/hallway/direction has been pressedab
direction) | passenger waiting in a hall.
10 Boolean value indicating if the call button for tberres-
Car Button Car Call 100 ponding floor/hallway has been pressed by a passe
(floor, hall) | =~
inside the car.

6.3 Supporting system requirements

The elevator system design we built our authentinanechanisms into fulfills a series of high

level system requirements and safety requiremditits. creators of the simulated elevator de-

Evaluation - Smulated el evator control network

125

signed it to deliver passengers efficiently whiié being robust to non-malicious failures. How-

ever, the design does not prevent maliciously ieduailures due to message forgeries.

6.3.1 Safety requirements

Our highest priority for message authenticatiotoiprevent induced failures that violate safety
requirements. At no point should an attacker be &dbkuccessfully forge a sufficient number of
message values to induce such a failure. We usmliibeiing requirements from original set of

safety requirements for the elevator [Koopman12]:

R-S1All doors shall remain closed while the elevatdpétween floors.
R-S2Doors shall remain closed if there is no landingtf@at hallway at a floor.
R-S3Door motors shall not be commanded to any valuerdtian open for any longer than 200
milliseconds if a door reversal is detected.
R-S4If the elevator car is overweight, the drive spshkdll be set to zero, and the direction to
stop.

R-S5.The elevator car shall not exceed hoistway limits.

To support requirements R-S1 through R-S5, weesddattacks where the attacker creates or
modifies messages with values that do not refleetréal state of the elevator system, controllers
subsequently act upon those falsified messagegpland the system in a state which violates one
or more of these safety requirements. We identdiyestransitions in controllers that might be
targeted to violate these requirements and applyeatication to the associated message types
those transitions are based upon. We also idetitify bounds in terms of the number of mes-
sage samples if an attack must be detected witb@rtain amount of time (e.g., a door controller

can expect to receive twenty samples of the DomeRal message type within the 200 millise-

Evaluation - Smulated el evator control network 126

cond time limit defined by R-S3). This gives us maxm sizes for history buffers when using

time-triggered authentication.

We omit one safety requirement from the originstl bf elevator safety requirements [REF
18-649]. The omitted requirement defines an acté¥ptdrive acceleration profile and is not af-
fected by network message traffic. It is addressmdpletely within the design of the drive con-

troller.

6.3.2 High level system requirements

Our second priority for message authenticatioro iprevent induced failures which prevent the
elevator system from accomplishing its missionivéeing passengers. We use the following

system level requirements from the initial creatufrthe elevator [Koopman12]:

R-T1.The elevator shall deliver all passengers eventuall
R-T2.Any unsafe condition shall cause an emergency stop.

R-T3.An emergency stop should never occur.

To support requirement R-T1, we use authenticabaensure that an attacker cannot stealthi-
ly perform a denial of service attack using mesdaggeries. Without authentication, a falsified
value for a message type could cause the elevatstop delivering passengers without trigger-
ing an observable failure. Further, an attackelcdcoaase falsifying messages to allow the sys-
tem to return to normal operation without beingedetd. As with safety requirements we identi-
fy state transitions and associated message ty@#sshould be protected to support this re-
quirement. There is no bounds on time limits faredeng these types of forgeries. Authenticat-

ing many samples will eventually allow receivergitdect such attacks. However, we do not de-

Evaluation - Smulated el evator control network 127

fine explicit or implicit history buffer sizes fanessage types that could be used for such denial

of service attacks.

To support requirements R-T2 and R-T3, we authatgimessages to the safety monitor. The
safety monitor node watches physical signals andor& messages to detect when the system
state violates these requirements. The safety wothien triggers the emergency brake. If the
safety monitor detects too many invalid authentiaton falsified inputs, it can trigger the
emergency brake. While this could be a denial ofise attack on the elevator, triggering the

emergency brake is considered a safe action.

We omit high level requirements related to passesgtisfaction and optimization, as we are

primarily concerned with safely delivering passesge
6.4 lIdentifying messages and state transitions to prots

Next, we identify transitions within internal statechines of controllers which could violate our
requirements due to spoofed messages. Thus, weefiale which messages need to be authenti-

cated.

There are six safety critical nodes in the sydfeah require authentication of their inputs. The
controllers responsible for actuations relatedai®@ty requirements are the door controllers and
the drive controller. The safety monitor is respblesfor engaging the emergency brake if ne-
cessary. Spoofed inputs to these nodes could amgesired state transitions which could vi-

olate safety requirements.

There are also two mission critical nodes in th&tesn that require authentication of inputs:
the dispatcher and car position indicator. If arcder spoofs messages to these nodes, they

might cause the elevator to cease operation oredgliassengers to incorrect floors.

Evaluation - Smulated el evator control network 128

In the following sections, we perform a brief aisé$ to show the possible effects of message
forgeries against each of these eight nodes. Trepravide the list of messages and the nodes

to which they should be authenticated.

6.4.1 Door Controller

The general behavior of the door controllers ifodlews:

* Monitor the Desired Floor message from the disgatth determine which floor and hallway
the doors are expected to open at next.

* Once at the desired floor and hallway, open domrghiat hallway completely.

* Wait until the dwell count down completes.

» Close the doors, unless the door reversal occufgearar is overweight.

Figure 6.1 shows the state diagram for a doorrotbet. Table 6.2 provides the guard condi-
tions for each state transition. Door controllexsaite their control loops and update their out-

puts every ten milliseconds.

Evaluation - Smulated el evator control network 129

State 4: Reset Dwell

Signal DoorMotor = Stop

CAN message DoorMotor = Stop
Countdown = 2000 ms

DOC.-I—.7 DOC.T.6
S_tate 0: Open State 2: Closed
Signal DoorMotor = Stop Signal DoorMotor = Stop
CAN message DoorMotor = Stop CAN message DoorMotor = Stop
Countdown = Countdown — 10 ms
7 A
DoC.T.1 DoC.T.3
DOC.T.4 DOC.T.Z
State 1. Opening State 3: Closing
Signal DoorMotor = Open Signal DoorMotor = Close
CAN message DoorMotor = Open CAN message DoorMotor = Close
Countdown = 2000 ms
Figure 6.1. Door controller state diagram [Martin10].
Table 6.2. Door controller state transition guard conditions [Martin10].
Transition Guard Condition
DoC.T.1 Door Open message for is true.
DoC.T.2 Dwell count down reaches zero AND

All Door Reversal messages are false AND
Car Weight message is less than max elevator dgpaci

DoC.T.3 All Door Closed messages are true AND
All Door Reversal messages are false AND
Car Weight message is less than max elevator dgpaci

DoC.T.4 At Floor message corresponding to Desired Floorsages's floor and hallway is true AND
All Door Motor Command messages indicate doors lstepped AND
Drive Command message speed is zero.

DoC.T.5 Any Door Reversal message is true OR

Car Weight message is greater than or equal toatexator capacity.
DoC.T.6 No condition. Always take this transition.
DoC.T.7 Any Door Reversal message is true OR

Car Weight message is greater than or equal toatexator capacity.

Evaluation - Smulated el evator control network 130

To determine the effects of using message forgeodorce undesired state changes or deny
normal state changes, we examined the effectsobf. dable 6.3 summarizes the effects of forc-
ing or denying each state transition and relatedsanges. For each, we determine whether an

attack could cause a possible denial of servicediatted by the system), violate a safety re-

quirement, or have no effect.

Table 6.3. Effects of message forgeries to force or deny state transitions in door controllers.

State Effects of forced transition Effects of denied trasition Associated message types

transition

DoC.T.1 | Possible denial of service. Possible denial of service. Door Opened
Door only opens patrtially, if at Door could remain closed inde-
all. finitely.

DoC.T.2 | No effect. Possible denial of service. Door Reversal
Door starts the closing processDoor could remain open indefj-Car Weight
However, closing occurs in nextnitely.
state.

DoC.T.3 | Possible denial of service orPossible denial of service. Door Closed
safety violation (RequirementDoor controllers continue tpDoor Reversal
R-S3). command door motors to closeCar Weight
Doors could remain locked inwhich prevents the drive from
position while door reversal ismoving the car.
true.

DoC.T.4 | Possible safety violation (Re-Possible denial of service. At Floor
quirements R-S1, R-S2). Car arrives at desired floor, butDesired Floor
Doors could open betwegndoors never open. Door Motor Command
floors or while car is in motion. Drive Command

DoC.T.5 | Possible denial of service. Possible safety violation (Re-Door Reversal
Doors could be forced to re-quirement R-S3). Car Weight
peatedly open. Doors could close on a passen-

ger or object when a door rever-
sal should occur.

DoC.T.6 | No effect. No effect. None
Transition always taken. Transition always taken.

DoC.T.7 | Possible denial of service. No effect. Door Reversal
Doors could be forced to remajrDoor could start closing soonef.Car Weight
open.

State transitions DoC.T.3 and DoC.T.4 could beddror denied to create a system state
which violates safety requirements. For transitidesC.T.3 and DoC.T.4, forcing the transition
causes a discrete state change could be a sabédyiam. Triggering DoC.T.3 could violate safe-

ty requirement R-S1 and R-S2, while DoC.T.4 coutate R-S3. Using time-triggered authen-

Evaluation - Smulated el evator control network 131

tication, we designate the associated messagdataschanging message types for these transi-
tions. For these transitions to complete, the domtroller must be sure that the values of each
message type have not been tampered with prioortorstting the transitions. Door controllers
will retain an explicit history buffer for the assated message types in memory for use with
these two transitions. There is no maximum numlbesamples for explicit history buffers; in-

creasing the size of these buffers simply delagsctirresponding state transitions.

For transition DoC.T.5, during each control loogeeution that an attacker successfully de-
nies the transition will cause the controller tanteand the door motor to continue to close the
door on a passenger obstructing the doorway. Adtsufficient amount of time (200 millise-
conds), an attacker will have successfully caubedsystem to violate safety requirement R-S3.
Using time-triggered authentication, we designhtedssociated message types as reactive con-
trol message types for DoC.T.5. Door controllersndb keep an explicit history buffer for the
associated message types for this transition.ddstee rely on the implicit history buffer that
exists for each door. An attacker must successfalige at least 20 consecutive samples of the
Door Reversal message type to deny this stateiticantong enough to violate a safety require-

ment. There is no maximum time limit before the da@open if the car is overweight.

Transitions DoC.T.1, DoC.T.2, DoC.T.3, DoC.T.4,®.5, DoC.T.7 could be forced or de-
nied to perform a stealthy denial of service attesthpping the doors from performing their
normal function. Any of these could be exploitedviolate requirement R-T1, however there is

no time bounds for detecting denial of serviceckia

Implementation notes for time-triggered authenticaton in door controllers - For the door
controllers, we implemented explicit history buffdor the At Floor, Door Closed, Door Motor
Command, Door Reversal, Desired Floor, and Driven@and message types for use with tran-

Evaluation - Smulated el evator control network 132

sitions DoC.T.3 and DoC.T.4. The dynamics of thevalor system create an implicit history
buffer for the Door Reversal message type for ugle BoC.T.5. Lastly, we also authenticate the
Door Open message type to monitor for forgery gitsndesigned to perform denial of service.

All of these message types are authenticated tdabecontroller.

If a door controller detects forgery attempts @iy authenticators) on messages attempting
to force state transitions DoC.T.3 or DoC.T.4, doer controller resets their history buffer and
aborts the state change. For DoC.T.5, if it detémtgery attempts on its associated message
types, it reopens the doors to avoid a safety timialn an implementation in a real system, the
system designer can take whatever action is apptepand safe if such a malicious fault is de-

tected.

6.4.2 Drive Controller

The general behavior of the door controllers ifodlews:

* Monitor Desired Floor message from the dispatcbeddtermine which floor to travel to
next.

» If not currently at the desired floor, acceleratesbow speed (0.25 m/s) towards the desired
floor.

* Once at slow speed, accelerate to fast speed (5)dowards the desired floor.

* Once the car has reached the commit point, begeleiating to slow speed.

» Continue at slow speed until the desired floor been reached, then stop the car.

Evaluation - Smulated el evator control network 133

Figure 6.2 shows the state diagram for the drowgroller. Table 6.4 provides the guard con-
ditions for each state transition. The drive cdigroexecutes its control loop and updates its

output every ten milliseconds.

-
State 2: Up/Fast) DC.T. 1; State 1: Up/Slow
Signal to Drive = Fast, Up Signal to Drive = Slow, Up
CAN message € CAN message
- DriveCmd = DriveSpeed, Up) DC.T5 - DriveCmd = DriveSpeed, Up

\.

DC.T.2
DC.T.6

State 0: Stopped
Signal to Drive = Stop, Stop
CAN message

- DriveCmd = 0, Stop

DC.T.3
DC.T.7
™\ 4
State 3: Down/Slow DC'T'4> State 4: Down/Fast
Signal to Drive = Slow,Down Signal to Drive = Fast, Down
CAN message < CAN message
- DriveCmd = DriveSpeed,Downj DC.T.8 _ - DriveCmd = DriveSpeed, Down

Figure 6.2. Drive controller state diagram [Martin10]

Evaluation - Smulated el evator control network 134

Table 6.4. Drive controller state transition guard conditions [Martin10].

Transition Guard Condition

DC.T.1 Car Level Position message indicates cormoiitt reached OR
Any Door Closed message is false OR

Any Door Motor Command message is not stop OR
Emergency Brake message is true OR

Hoistway Limit message is true OR

Car Weight message is greater than max car capacity

DC.T.2 At Floor message for desired floor is true O

Any Door Closed message is false OR

Any Door Motor Command message is not stop OR
Emergency Brake message is true OR

Hoistway Limit message is true OR

Car Weight message is greater than max car capacity

DC.T.3 At Floor message for desired floor is fatd¢D

Desired floor is below current position AND

All Door Closed messages are true AND

All Door Motor Command messages are stop AND
Emergency Brake message is false AND

Hoistway Limit message is false AND

Car Weight message is less than or equal to masageacity

DC.T.4 Car Level Position message indicates corpoiitt not reached AND

Drive Command message indicates slow speed hasrbaetmed AND

All Door Closed messages are true AND

All Door Motor Command messages are stop AND

Emergency Brake message is false AND Hoistway Limassage is false AND
Car Weight message is less than or equal to mazageacity

DC.T.5 Car Level Position message indicates comuiitt not reached AND
Drive Command message indicates slow speed hasrbaetmed AND
All Door Closed messages are true AND

All Door Motor Command messages are stop AND

Emergency Brake message is false AND

Hoistway Limit message is false AND

Car Weight message is less than or equal to mazagecity

DC.T.6 At Floor message for desired floor is faté¢D

Desired floor is above current position AND

All Door Closed messages are true AND

All Door Motor Command messages are stop AND
Emergency Brake message is false AND

Hoistway Limit message is false AND

Car Weight message is less than or equal to mazageacity

DC.T.7 At Floor message for desired floor is true O

Any Door Closed message is false OR

Any Door Motor Command message is not stop OR
Emergency Brake message is true OR

Hoistway Limit message is true OR

Car Weight message is greater than max car capacity

DC.T.8 Car Level Position message indicates comuiitt reached OR
Any Door Closed message is false OR

Any Door Motor Command message is not stop OR
Emergency Brake message is true OR

Hoistway Limit message is true OR

Car Weight message is greater than max car capacity

Evaluation - Smulated el evator control network 135

Again, we examined the effect of message forgantsnded to force or deny state transi-
tions. Table 6.5 summarizes the effects of foranglenying each state transition and related
messages. For each, we determine whether an aitadtt cause a possible denial of service

(undetected by the system), violate a safety requent, or have no effect. Undetected denial of

service attacks violate requirement R-T1.

Evaluation - Smulated el evator control network 136

Table 6.5. Effects of message forgeries to force or deny drive controller state transitions.

Transition Effects of forced transition Effects ofdenied transition Associated message types
DC.T.1 No effect. Potential safety violation (R-S1,Car Level Position
Drive decelerates to slow spegedR-S4, R-S5, R-T2) Door Closed
early before reaching commitCar might exceed hoistway limjtDoor Motor
point. This is safe, but slows peror move while doors opening,Emergency Brake
formance. emergency brake being engagedioistway Limit
or weight exceeding capaci Car Weigh
DC.T.2 Potential denial of service. Potential safety violation At Floor
Drive could stop between floors.| Same as denying DC.T.1. Desired Floor
Door Closed
Door Motor
Emergency Brake
Hoistway Limit
Car Weigh
DC.T.3 Potential safety violation (R-S1,Potential denial of service. At Floor
R-S4, R-S5, R-T2) Drive could never move to nextDesired Floor
Car might begin moving while desired floor. Door Closed
doors are open, emergency brgke Door Motor
engaged, hoistway limit tripped, Emergency Brake
or weight exceeded. Hoistway Limit
Car Weight
DC.T.4 No effect. No effect. Car Level Position
Drive will always attempt to go tp Drive will never reach fast speef Door Closed
fast speed between floors duringhis is safe, but slows perfof-Door Motor
normal operation. Drive does nptmance. Emergency Brake
instantly change speed. Next state Hoistway Limit
tests whether drive should bedin Car Weight
slowing down.
DC.T.5 No effect. No effect. Car Level Position
Same as forcing DC.T 4. Same as denying DC.T.4. Door Closed
Door Motor
Emergency Brake
Hoistway Limit
Car Weigh
DC.T.6 Potential safety violation. Potential denial of service. At Floor
Same as forcing DC.T.3. Same as denying DC.T.3. Desired Floor
Door Closed
Door Motor
Emergency Brake
Hoistway Limit
Car Weigh
DC.T.7 Potential denial of service. Potential safety violation At Floor
Same as forcing DC.T.2. Same as denying DC.T.2. Desired Floor
Door Closed
Door Motor
Emergency Brake
Hoistway Limit
Car Weight
DC.T.8 No effect. Potential safety violation. Car Level Position
Same as forcing DC.T.1. Same as denying DC.T.1. Door Closed
Door Motor

Emergency Brake
Hoistway Limit

Car Weigh

Evaluation - Smulated el evator control network

137

Forcing transitions DC.T.3 and DC.T.6 could triggetential safety violations. Both of these
initiate drive motor acceleration, causing a digehange in elevator behavior (stopped to mov-
ing). Both of these could violate requirements R854, R-S5, and R-T2. Using time-triggered
authentication, we designate the associated messageate-changing messages. The drive con-
troller will retain an explicit history buffer fothe associated message types for use with these
two transitions. There is no maximum number of dasfor explicit history buffers; increasing

the size of these buffers simply delays the coordmg state transitions.

Denying transitions DC.T.1, DC.T.2, DC.T.7, and.D@ could also cause the system to vi-
olate requirements R-S1, R-S4, R-S5, and R-T2.dJsme-triggered authentication, we authen-
ticate the message types associated with thegetsdasitions as reactive control messages. The
drive controller will not keep an explicity histobuffer. Instead, we rely on the implicit history
buffer that exists for these messages. An attackest successfully forge multiple samples of a
message to actually violate one of the requiremédtus example, if attempting to cause the car
to exceed the hoistway limits of the elevator sheft attacker could forge messages to force the
car to travel an extra meter beyond the top omboftoor. An attacker could either forge the Car
Level Position message to force the car to travéhst speed for an extra second (due to extra
slack time built into the design for stopping). &hately, they could forge the At Floor message
to force it to travel an extra four seconds at skpeed. The sensors broadcasts the Car Level
Position and At Floor messages every fifty milliseds. This creates a maximum implicit histo-
ry buffer size of twenty samples for the Car LeRekition message and eighty samples for At
Floor for their respective transitions. The othe¥ssages associated with these state transitions
do not have defined maximum delays before slowingtaopping the elevator car. For example,

while the emergency brake is engaged, there isegairement defined for the simulation for

Evaluation - Smulated el evator control network 138

maximum time before the drive shuts off. For simip}i we use the same maximum history buf-

fer size as for Car Level Position.

Transitions DoC.T.2, DoC.T.3, DoC.T.6, or DoC.Tauld be forced or denied to perform a
stealthy denial of service attack, stopping thergdmm performing their normal function. Any
of these could be exploited to violate requirenfeftl, however there is no time bounds for de-

tecting denial of service attacks.

Implementation notes for time-triggered authenticaton in door controllers - For the drive
controller, we implemented explicit history bufféos verifying the authenticity of the At Floor,
Desired Floor, Door Closed, Door Motor Command, Eyaecy Brake, Hoistway Limit, and Car
Weight message types for use as with transitionsTE33Cand DC.T.6. The elevator dynamics
provide implicit history buffers for the At FlooGar Level Position, Desired Floor Door Closed
Door Motor Command, Emergency Brake, Hoistway Liraitd Car Weight message types for
use with transitions DC.T.1, DC.T.2, DC.T.7, and.D@. Lastly, we also authenticate these
message types for the purpose of monitoring fagdoy attempts intended to deny elevator oper-

ations.

If the drive controller detects forgery attempis/élid authenticators) on messages attempting
to force state transitions DC.T.3 or DC.T.6, thev@lrcontroller resets their history buffers and
aborts the state change. For DC.T.1, DC.T.2, DC.dnd DC.T.8, if it detects forgery attempts
on its associated message types, it slows or stepdrive accordingly to avoid a safety viola-
tion. In an implementation in a real system, thetesy designer can take whatever action is ap-

propriate and safe if such a malicious fault isdtd.

Evaluation - Smulated el evator control network 139

6.4.3 Safety monitor

In the simulation, the safety monitor is an omngmtnode that is able to access all system state
variables. It does not have an internal state nm&chi only monitors signals and messages and

outputs a signal to inform the network if the ensgrgy brake has been engaged.

The safety monitor in the simulation was origigalteated as a debugging mechanism to as-
sist students in identifying safety violations. Téefety monitor engages the emergency brake
instantly if it detects a violation based on syst&ate variables. The simulation represents the
engagement of the emergency brake by throwing aeption which causes the simulation to
halt with a description of the violation outputterthe screen. There is no maximum delay de-

fined for engaging the emergency brake.

Implementation notes for time-triggered authenticaton in the safety monitor - In our im-

plementation, the safety monitor verifies the antiogty of all message types it monitors: At
Floor, Car Weight, Door Closed, Door Motor Commabdor Reversal, Drive Control, and
Hoistway Limit. We do not implement any explicitstory buffers. If the safety monitor detects
an invalid authenticator, the simulation currerdhly logs the invalid authenticator and prints it
to standard output. In a real system, such a safetyitor might trigger the emergency brake if
too many invalid authenticators are observed. Hawnew the simulation, we do not trigger the

emergency brake since it would cause the simulaticghrow an exception and halt.

6.4.4 Dispatcher

The dispatcher is responsible for deciding whabrflim go to and informing the rest of the net-
work. Forging messages to this node can only cawsmial of service. The dispatcher consumes

At Floor, Car Weight, Door Closed, Door Open, analr @osition messages. For brevity, we

Evaluation - Smulated el evator control network 140

omit a detailed analysis. However, forgery of ahyhese messages could prevent elevator op-

eration; forgeries cannot induce a failure to \®lsafety requirements.

Implementation notes for time-triggered authenticaton in the dispatcher -In our implemen-
tation, the dispatcher verifies the authenticitytiod At Floor, Car Weight, Door Closed, Door
Open, and Car Position message types to monitdiofgeries intended to stop elevator opera-
tions. If the dispatcher detects invalid authenticg the simulation currently logs the invalid
authenticator and prints the detection to standatdut. The dispatcher does not use any explicit

history buffers.

The dispatcher also consumes the Hall Call andCGadr message types. However, the dis-
patcher does not authenticate these messagesisfiatctier design tolerates failed hall call and
car call buttons. After a predefined time limitetispatcher will travel to a floor that it has not
received a call for to ensure that no passengess l@en waiting at that floor. Forging Hall Call
and Car Call messages could reduce elevator pexfarenby forcing the elevator to visit all
floors in an operating scenario where there aregassengers. However, the performance is no
different than the worst case operating scenarierazhigh volumes of passengers are constantly

arriving at and traveling to all floors.

6.4.5 Car position indicator

The car position indicator displays the floor tHevator car is currently at to the passengers.
This indicator must display the correct floor sattipassengers will exit the car at the correct
floor. Forging messages to this node can only causenial of service. The car position indica-

tor consumes Drive Command, At Floor, Desired Fl@md Car Level Position messages. For

Evaluation - Smulated el evator control network 141

brevity, we omit a detailed analysis. However, ggof any of these messages could prevent

elevator operation.

Implementation notes for time-triggered authenticaton in the car position indicator -In our

implementation, the car position indicator veriftae authenticity of the At Floor, Car Level Po-
sition, Drive Command, and Desired Floor messagedyto monitor for forgeries intended to
stop elevator operations. The car position indicdtes not implement any explicit history buf-

fers.

6.4.6 Messages to authenticate and receivers

Table 6.6 defines the set of messages to be authtu from the source node to receiver nodes
within the elevator network. Based on our analysiSections 6.4.1 through 6.4.5, we authenti-

cate any message which could be forged to violayeodour safety or high level requirements.

Evaluation - Smulated el evator control network 142

Table 6.6. Messages to be authenticated in the elevator, senders, and receivers.

Message Sender Receivers
Door Door Door Door | Drive Safety | Dispatcher | Car Po-
Contr. | Contr. | Contr. | Contr. | Contr. | Monitor sition
(FIL) (FIR) (B/L) (B/R) Indicator
Door Door Con- X X X X X X
Motor trollers
Command
Door Door Re- X X X X X
Reversal versal
Sensors
Drive Drive X X X X X X
Command | Controller
At Floor At Floor X X X X X X X X
Sensors
Car Car X X X X X X X
Weight Weight
Sensor
Desired Dispatcher X X X X X X
Floor
Door Door X X X X X X X
Closed Closed
Sensors
Door Door Open X X X X X
Open Sensors
E-Brake Safety X
Monitor
Hoistway Hoistway X X
Limit Sen-
sors
Car Level Car Level X X
Position Position
Sensor
Car Car Posi- X X
Position tion Indi-
cator

We implemented time-triggered authentication factkemessage in Table 6.6 for each receiv-
er within the elevator simulation as describedhia implementation notes for each controller in
Sections 6.4.1 through 6.4.5. No receivers vehfy authenticity of the Hall Call and Car Call

message types from the button controllers. Forgeagainst these message types can be ad-

dressed as described in Section 6.4.4.

Evaluation - Smulated el evator control network

143

6.5 Implementation of time-triggered authentication

This section briefly discusses pertinent implemeoadetails related to each multicast authenti-
cation technique (one MAC per receiver, validitying, TESLA, and master-slave) for use with

time-triggered authentication.

6.5.1 Selecting time-triggered authentication parameters

We chose parameters for time-triggered authenticaguch that attacks should successfully in-
duce failures no more often than a rate of fdllures per hour. Equation (1) in Chapter 3 gives
an upper bound on the probability during each ngessaund of having successfully forged the
n most recent consecutive message samples in ayhisttfer, each with probability™ We use
this equation to define the number of samples aadired per-packet assurance. First, we use
this probability of successful attack per messagmd as an expected rate of attack success per
message round. For message types broadcast aillieeaond periods, our desired failure rate
becomes approximately 2.777%f(ailures per message period. We then use Equétjand
select for appropriate values mfsamples in the history buffer abdits per MAC tag for each
technique, such that the result is less than osiretk failure rate. For simplicity, we use the
same failure rate for messages with fifty millisedgeriods as well. Achieving the same failure

rate for fifty millisecond messages requires appraely the same values forandb.

From our analysis in sections 6.4.1 through 6.dus,maximum history buffer size is twenty
samples for Car Level Position and Door Reversasage types. Other message types with less
stringent timing requirements can be verified awere samples if desired, though we use twen-
ty as the largest history buffer size we implemérite all message types. This conforms to our

assumption that message types are sampled suffycmgunckly to allow us to verify messages

Evaluation - Smulated el evator control network 144

over multiple message samples. For discrete sttgitions, such as opening doors or engaging
the drive motor, this will create a delay of no mdihan one second. When authenticating over
twenty message samples in a history buffer, thaired per-packet assurance i3t achieve

our desired failure raten & 20,b = 3).

To define the minimum number of samples to venifgssages over, we used OMPR to de-
termine the largest authenticators that could beqal within one packet along with the data val-
ues using the CAN communication protocol. Table $hdws the number of data bits already
used and the number of remaining bits if the paskat were increased to the full eight bytes.
For simplicity, we treat each message and recewtbrequal criticality. However, a system de-
signer has the option of devoting more of the add payload bits to authenticating messages
related to safety critical functionality over thabat are only related to performance characteris-
tics of the system. For our maximum per-packetrasse, we use the maximum tag size defined
by the At Floor message type. With a per-packatrasse of Z, we must verify messages over

at least seven message samples in a history lfoffe,b = 7).

Table 6.7. Identifying largest tag size among all message types for OMPR. Highlighted table cells
show largest tag size we use in the system.

Message Type Receivers to be Data bits Available bits Maximum Number of
authenticated to in payload in payload bits per tag samples to
verify over
Door Motor 6 2 62 10 5
Command
Door Reversal 5 1 63 12 5
Drive Command 5 16 48 8 7
At Floor 6 1 63 7 7
Car Weight 6 8 56 8 7
Desired Floor 5 16 48 8 7
Door Closed 6 1 63 9 6
Door Open 4 1 63 12 5
E-Brake 1 1 63 63 1
Hoistway 2 1 63 31 2
Car Level 1 32 32 32 2
Position
Car Position 1 8 56 28 2

Evaluation - Smulated el evator control network 145

We implemented each of the four multicast autlwation techniques using three sets of pa-
rameters for time-triggered authentication=(7,b = 7), (h = 10,b = 5), and it = 20,b = 3). For
simplicity, we used the same per-packet assurasrcallfmessage types. Thus, we also used the

same history buffer size for all message types.

While this section will primarily focus on the tl&off among per-packet assurance and num-
ber of samples to verify over, time-triggered aanti@tion also allows significant customization
of these parameters on a per-receiver, per-mesgpgeand per-state transition basis. Using the
same per-packet assurance for each message typkfissnimplementation significantly, but
may not provide optimal performance for a systear.dxample, suppose two nodes broadcast at
different sampling rates; one transmits every tédhseconds, and the other at every twenty mil-
liseconds. If a receiver consumes both of thosesagestypes for a state transition, the system
designer can verify the faster message over manplea (e.g., ten samples of the ten millise-
cond message would arrive in the same time it tikesceive five samples of the twenty milli-
second message type). This would allow them tosusa&ler authenticators for the ten millise-
cond period message to save bandwidth. An in-dapdfysis of these customizations within the

elevator system is beyond the scope of this work.

6.5.2 One MAC per receiver

For OMPR, each sender computers a MAC tag for eao¥iver using a corresponding symme-
tric secret key. We used the Java Cryptographyrisite library to define key material and
MAC functions within the simulation. We used the dvielass to use the HMAC algorithm for
computing all MAC tags. Specifically, we used HMACconjunction with the MD5 algorithm.

At startup, the underlying network simulation framoek creates and assigns symmetric keys to

Evaluation - Smulated el evator control network 146

nodes and MAC functions defined by each key. Oynl@mentation does not perform key estab-

lishment or time synchronization. We assume thesalaeady in place at simulation start time.

At the beginning of each control loop executi@taiving nodes verify message authenticity
and record message values and their validity withs&tory buffers. Since all authenticators are
placed within the same packet as the message valesyers immediately verify and store the
verification results. Nodes also record whethenthlele suffered a transmission error. If a mes-

sage is lost, the receiver does not update theent:of their history buffer for that message
type.

Once new output values have been determined, ramiepute MAC tags at the end of their
control loop execution. A transmitting node calie tMAC function defined by the key corres-
ponding to each receiver of a message. The semaeu's to the function include the data values
within the payload and current simulation time. &lgs fit within a single data payload for all
message types. The simulation then inserts the k&€ into the predefined locations within the
payload. Execution of these functions within thenwdation is "instantaneous" because

processing time for nodes is not modeled withinsingulation.

For a message type with a periodTahilliseconds, the network simulation propagatesea
sample of that message type on the network aftery@vmilliseconds pass. Since we assume a
fixed transmission schedule for messages, each slooleld always have the most up to date
message value eveflymilliseconds, unless a controller executes atstrae time the new sam-
ple is broadcast. Without coordinating control loexecutions and message broadcasts, for a
controller executing every milliseconds, the worst case delivery time to nemes in the simula-
tion is 2T after that node executes its control loop (e.gntol loops execute and just miss
transmissions occurring at the same time). Howesiece we assume a static message schedule,

Evaluation - Smulated el evator control network 147

we scheduled message broadcasts to occur betwaaoldoop executions (this also assumes
control loop executions and message periods ddnifoout of synch). Thus, receivers have the
latest message value affemilliseconds. A receiving node is able to verifjdaact om message

samples and the corresponding votes affemilliseconds from the time the transmitter sends

the first.

6.5.3 Validity voting

For validity voting, we first examined what mess&gges could carry votes on others. The main
limitation in validity voting is that only receivethat share authentication channels with a sender
(i.e., the sender computes MAC tags to those recg)ican vote on messages from that sender to
one another. Further, for one of those receiversttest to the validity of a message from that

sender, it must also share an authentication chavitiethe other receiver it attests to.

We only use existing authentication channels &idity voting, as listed in Table 6.6. We do
not add new authenticators to any message typethéw receivers that are not already listed in
Table 6.6. For several message types, adding new N&ys to a packet would exceed the

payload size for the parameters we selected.

While we were limited in the number of votes thatild be added in this network, we were
able to implement validity voting using one, twodahree votes. Nodes only attest to messages
consumed by the door controllers and drive cordgrolNodes vote on the message types as de-
scribed in Table 6.8 and Table 6.9. Table 6.8 kstsh transmitting node, that node's message
type, the number of voting bits added (one for eaelssage type it votes on), and the message
types it votes upon. Table 6.9 shows how many vedef node receives for each message type.

Numbers in brackets indicate messages from multiptees that broadcast the same time.

Evaluation - Smulated el evator control network 148

Table 6.8. Message types voted upon in validity voting

Sender Sender's message tyge Voting bifs Messagpédyg voted upon

Door Controllers Door Motor Commandg 5 Drive Spdedor Reversal [4]

Drive Controller Drive Command 0 None

Car Position Indicator Car Position 1 Car Levelitfas

Safety Monitor Emergency Brake 7 Door Closed [4r @/eight, Hoistway Limit [2]
Dispatcher Desired Floor 5 Door Closed [4], Car gtiei

Table 6.9. Number of votes received for each message type by each node

Receiver Message type Votes received| Nodes votes are received from

for message type

Door Controllers| Door Reversal [4] 3 Three othelobGontrollers
Drive Speed 3 Three other Door Controllers
Car Weight 1 Dispatcher
Door Closed [4] 1 Dispatcher

Drive Car Level Position 1 Car Position Indicator
Hoistway Limit [2] 1 Safety Monitor
Car Weight 2 Safety Monitor, Dispatcher
Door Closed [4] 2 Safety Monitor, Dispatcher

Message broadcast periods also limited the nuwmibestes we could implement in the eleva-
tor. Messages only carry votes for other messagestyith the same broadcast period. For ex-
ample, the Door Motor Command message type onlgsvoin other message types that are
broadcast at ten millisecond periods. Similarlg @ar Position, Emergency Brake, and Desired

Floor messages carry votes for other message witle ifty millisecond periods.

In our implementation, we again have nodes comMA€ tags at the end of their control
loops using the same key material and MAC functidened for one MAC per receiver. We

modified the inputs to the functions to include thest current message value for the message

Evaluation - Smulated el evator control network 149

types being voted upon, along with a bit vectolidating which message values were valid or
invalid. For invalid and lost message values, taagmitter uses predefined error codes as inputs

for message values, as described in Chapter 4.

For messages that are voted upon, receivers cdp thee validity of a value in a packet, but
must wait for the confirmations carried in otherssege types before using the value being
voted upon. This creates an extra message periag defore a receiver can use the message
value being voted upon. As with one MAC per rece{w®t coordinating message transmissions
and control loop executions), for a controller akety everyT milliseconds, the worst case de-
livery time to receivers (including voters) in thienulation is 2 after that node executes its con-
trol loop. Voting nodes (which also execute eveéryilliseconds) then include their votes in
their own messages after their next control loogcexon, which the network simulation propa-
gates to receivers evefymilliseconds. Again, the worst case delay to neeeotes is Z milli-
seconds. Nodes receive a message sample andedlimathe simulation after no more thah 4
milliseconds, regardless of the number of votesodm implementation, we scheduled node
transmissions to occur just after control loop exens completed. Thus the delay for receiving
each transmission was onlymilliseconds. A node in our implementation is atdeverify and
act onn message samples and the corresponding voteqrmaftet)T milliseconds from the time

the transmitter sends the first.

6.5.4 TESLA

For TESLA, nodes must also transmit a key in addito a message value and its MAC tag. In
our implementation, we transmit an eighty bit key éach sample of a message type. We trans-
mit the key corresponding to each message samgleeisubsequent message round. Since we

are limited to sixty-four bit data payloads in CANe used two data payloads to transmit the

Evaluation - Smulated el evator control network 150

message value, MAC tag, and key for the previougpa In our implementation, the first payl-
oad includes the value, MAC tag, and the firstiparbf the key for the previous message round.
The second data payload contains the remainddrapfkey. Our implementation omits the key

establishment and time synchronization procedwegsired for TESLA.

We used a simplified abstraction of key chain®uim implementation. We assume that key
generation and storage algorithms of TESLA areembrand secure. A full implementation of
TESLA would require each transmitting node to itera hash function to generate a sequence of
keys along with an appropriate storage algorithasdgl on time constraints for development and
debugging, we did not implement the key chain gatnmm and storage. Instead, our "key chain”
in the simulation is a series of incrementing ejgit integers whose values correspond to the
message round number (i.e., 0, 1, 2, 3, ...). 84ukch a simplified implementation would not be
secure in a real system, our attacker model doeattark key material for any schemes. Imple-
mentations of TESLA in a real-world safety-criticistem should implement the correct algo-

rithm for key chain generation, as published [R©0.

At the beginning of control loop executions, nodgge new message values and tags that are
received. If the node receives the key for therpmessage round, it will verify the authenticity
of that message value. The node then stores tle eald its validity in corresponding history
buffers. Receivers also store the most recentlgived key. If a receiver stores an explicit histo-
ry buffer for state-changing message types, it attlmpt to recover values for which it received
the message value and tag, but not the subsegengninkTESLA, once a node receives a key, it
can always compute prior keys that might have bestrto transmission errors. Thus, a node can
verify any prior message value for which the cquoegling key was initially lost. The receiver

records these recovered values in history buffersthte-changing messages as per normal. For

Evaluation - Smulated el evator control network 151

reactive control message types, receivers do neinat to recover old values, since only the

most recent value is used to update controllerudstp

Similarly to validity voting, TESLA creates a ongssage round delay before receivers ob-
tain both a value and its key. After coordinatirmgicoller executions and message transmission
schedules in our implementation, a node is ableetdy and act om message samples after{

1)T milliseconds from the time the transmitter serdsfirst.

6.5.5 Master-slave

For master-slave, we added a trusted master ndtie teetwork. Each transmitting node authen-
ticates its message to the master node. This mastier verifies the authenticity of each message
broadcast on the network. It then transmits a sibgl message along with a hash tree broadcast
authenticator (as described in Chapter 5) indigatinall messages observed in the previous
round were valid or any were invalid. In our impksmation, the master node executes and
transmits this broadcast authenticator every tdissegonds to allow receivers to verify all mes-

sages.

The most challenging aspect of implementing mastare in the elevator network was coor-
dinating verification of messages that were broatlaatwo different rates (ten and fifty millise-
cond periods) using a single master node. Slavesttht execute control loops at ten millise-
cond intervals (fast slave nodes) can easily ppetie and verify messages. However, nodes ex-

ecuting at fifty millisecond intervals (slow slamedes) posed several challenges:

» During four of five ten-millisecond periods, the star node only attested to messages being
broadcast every ten milliseconds. However, evdtly fen-millisecond period, the master at-

tested to message types broadcast at both theilieseoond and fifty-millisecond.

Evaluation - Smulated el evator control network 152

» Slave nodes could only exchange messages to \keflgroadcast authenticator at the rate at
which they executed their control loops. Thus, flarr of five ten-millisecond periods, the
master node would only compute MAC tags for reasivaxecuting every ten-milliseconds
and hashed those together. On the fifth ten-mdbse period, the master computed MAC
tags for both fast and slow receivers.

» Slower receivers do not necessarily obtain evenypéa of message types broadcast faster
than their control loop periods. The network siniola framework creates a mailbox for
each CAN message type each node receives. Thiborahly records the most recent sam-
ple of each message type. Thus, slower receiveghtraitempt to verify a master's hash tree

broadcast authenticator using out-of-date messalgey.

We resolved the first two challenges by storimyedefined table indicating when samples of
a message type was expected to be transmittedeametivork. This allowed each node to verify
the master's hash tree broadcast authenticator tbeecorrect set of values. Every fifth ten-

millisecond period, faster slave nodes would vevejues from the slower slave nodes as well.

For the third challenge, we altered the sloweeirgs control loop periods. Every ten milli-
seconds, the slower slave nodes would executetarel & copy of the message types broadcast
at this faster interval. Then, every fifty milliseads, these nodes would execute their full control

loop.

Another option to address these concerns woulé baen to use multiple messages from the
master node to authenticate messages to groupsceivers executing at different rates. One
message type could have been transmitted evemitéseconds for the ten millisecond nodes,
and the second message type could have been tteetsevery fifty milliseconds for the fifty

millisecond nodes.

Evaluation - Smulated el evator control network 153

Using master-slave creates a one message rouay loefore receivers obtain both a value
and its subsequent confirmation. After coordinatiogtroller executions and message transmis-
sion schedules in our implementation, a node ie &bl/erify and act on message samples after

(n +)T milliseconds from the time the transmitter sermsfirst.

6.6 Analysis

6.6.1 Bandwidth comparison

We first compared bandwidth consumption for eachrnejue. Table 6.10 shows the bandwidth
consumption of the messages transmitted withiriferelevator network without authentication.
We computed all packet sizes using the worst cadd @essage size equation provided in the

analysis of worst case CAN message delays perfobmédlims et al. [Ellims02].

Table 6.10. Baseline elevator bandwidth required with no authentication

Message Type Period Payload Packet size Per-packet Replication Message type
(msec) (bytes) (bits) bandwidth bandwidth
(bits/sec) (bits/sec)
Door Motor 10 1 90 9000 4 36000
Door Reversal 10 1 90 9000 4 36000
Drive Speed 10 2 100 10000 1 10000
AtFloor 50 1 90 1800 10 18000
Car Weight 50 1 90 1800 1 1800
Desired Floor 50 2 100 2000 1 2000
Door Closed 50 1 90 1800 4 7200
Door Open 50 1 90 1800 4 7200
EBrake 50 1 90 1800 1 1800
Hoistway 50 1 90 1800 2 3600
Car Level Position 50 4 120 2400 1 2400
Car Position 50 1 90 1800 1 1800
Hall Call 100 1 90 900 17 15300
Car Call 100 1 90 900 10 9000
Total Bandwidth (bits/sec) 152100

We then computed the additional bandwidth consuwigeh applying each of the four multicast
authentication techniques. We computed the requiaadwidth for the three sets of time-
triggered authentication parameters we definecertién 6.5.1:

Evaluation - Smulated el evator control network 154

1. Per-packet assurance Z,2number of samples = 7.
2. Per-packet assurance Z,humber of samples = 10.

3. Per-packet assurance =, humber of samples = 20.

Evaluation - Smulated el evator control network 155

One MAC per Receiver -We assigned MAC tags of equal size to each recéorezach mes-
sage type. Tables 6.11, 6.12, and 6.13 shows tingreel bandwidth for each parameter set.

Payload bytes include both the data values anceatigation.

Table 6.11. OMPR history buffer size, required per-packet assurance, and MAC tag size.

History buffer size | Required per-packet | MAC tag size (bits)
(samples) assurance
7 2’ 7
10 2 5
20 2z 3

Table 6.12. OMPR required bandwidth (Per-packet assurance = 2”7, number of samples =7)

Message | Period | Total authen- | Payload | Packet Per-packet | Replication | Message type
Type (msec)| tication bits (bytes) size bandwidth bandwidth
(bits) (bits/sec) (bits/sec)
Door Motor 10 42 6 140 14000 4 56000
Door
Reversal 10 35 5 130 13000 4 52000
Drive Speed 10 42 8 160 16000 1 16000
AtFloor 50 56 8 160 3200 10 32000
Car Weight 50 49 8 160 3200 1 3200
Desired Floor 50 42 8 160 3200 1 3200
Door Closed 50 49 7 150 3000 4 12000
Door Open 50 35 5 130 2600 4 10400
EBrake 50 7 1 90 1800 1 1800
Hoistway 50 14 2 100 2000 2 4000
Car Level
Position 50 14 6 140 2800 1 2800
Car Position 50 14 3 110 2200 1 2200
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000
Total Bandwidth (bits/sec) 219900
Authentication Bandwidth (bits/sec) 20800

Evaluation - Smulated el evator control network 156

Table 6.13. OMPR required bandwidth (Per-packet assurance = 2°, number of samples = 10)

Message | Period | Total authen- | Payload | Packet Per-packet | Replication | Message type
Type (msec)| tication bits (bytes) size bandwidth bandwidth
(bits) (bits/sec) (bits/sec)
Door Motor 10 30 4 120 12000 4 48000
Door Rever-
sal 10 25 4 120 12000 4 48000
Drive Speed 10 30 6 140 14000 1 14000
AtFloor 50 40 6 140 2800 10 28000
Car Weight 50 35 6 140 2800 1 2800
Desired Floor 50 30 6 140 2800 1 2800
Door Closed 50 35 5 130 2600 4 10400
Door Open 50 25 4 120 2400 4 9600
EBrake 50 5 1 90 1800 1 1800
Hoistway 50 10 2 100 2000 2 4000
Car Level
Position 50 10 6 140 2800 1 2800
Car Position 50 10 3 110 2200 1 2200
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000
Total Bandwidth (bits/sec) 198700
Authentication Bandwidth (bits/sec) 15800

Table 6.14. OMPR required bandwidth (Per-packet assurance = 2°°, number of samples = 20)

Message | Period | Total authen- | Payload | Packet Per-packet | Replication | Message type
Type (msec)| tication bits (bytes) size bandwidth bandwidth
(bits) (bits/sec) (bits/sec)
Door Motor 10 18 3 110 11000 4 44000
Door Rever-
sal 10 15 2 100 10000 4 40000
Drive Speed 10 18 5 130 13000 1 13000
AtFloor 50 24 4 120 2400 10 24000
Car Weight 50 21 4 120 2400 1 2400
Desired Floor 50 18 5 130 2600 1 2600
Door Closed 50 21 3 110 2200 4 8800
Door Open 50 15 2 100 2000 4 8000
EBrake 50 3 1 90 1800 1 1800
Hoistway 50 6 1 90 1800 2 3600
Car Level
Position 50 6 5 130 2600 1 2600
Car Position 50 6 2 100 2000 1 2000
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000
Total Bandwidth (bits/sec) 177100
Authentication Bandwidth (bits/sec) 10800
Evaluation - Smulated elevator control network 157

Validity voting (VV)- For this technique, we reduced the size of autbetais based on the

number of votes for each message type. Votingviee added as discussed in Section 6.5.3.
Table 6.15 shows tag sizes for each history budites for each level of voting. In some cases,
adding extra votes did not reduce MAC tag size.il¢kided these votes in our implementation
to examine the effects of additional votes in thkpezimental analysis (Section 6.6.2-4). Tables

6.16, 6.17, and 6.18 shows the required bandwaltledch parameter set. Payload bytes include

both the data values and authentication.

Table 6.15. VV history buffer size, required per-packet assurance, and MAC tag size.

History buffer size | Required per- | MAC tag size | MAC tag size | MAC tag size | MAC tag size
(samples) packet w/ zero votes| w/ one vote | w/two votes | w/ three votes
assurance (bits) (bits) (bits) (bits)
7 2’ 7 4 3 3
10 z 5 3 3 2
20 2° 3 2 2 2

Table 6.16. VV required bandwidth (Per-packet assurance = 2”7, number of samples = 7)

Message | Period | Total authen- | Payload | Packet Per-packet | Replication | Message type
Type (msec)| tication bits (bytes) size bandwidth bandwidth
(bits) (bits/sec) (bits/sec)
Door Motor 10 47 7 150 15000 4 60000
Door Rever-
sal 10 19 3 110 11000 4 44000
Drive Speed 10 26 6 140 14000 1 14000
AtFloor 50 56 8 160 3200 10 32000
Car Weight 50 33 6 140 2800 1 2800
Desired Floor 50 47 8 160 3200 1 3200
Door Closed 50 33 5 130 2600 4 10400
Door Open 50 35 5 130 2600 4 10400
EBrake 50 14 2 100 2000 1 2000
Hoistway 50 11 2 100 2000 2 4000
Car Level
Position 50 11 6 140 2800 1 2800
Car Position 50 15 3 110 2200 1 2200
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000
Total Bandwidth (bits/sec) 212100
Authentication Bandwidth (bits/sec) 14300
158

Evaluation - Smulated el evator control network

Table 6.17. VV required bandwidth (Per-packet assurance = 2°, number of samples = 10)

Message | Period | Total authen- | Payload | Packet Per-packet | Replication | Message type
Type (msec)| tication bits (bytes) size bandwidth bandwidth
(bits) (bits/sec) (bits/sec)
Door Motor 10 35 5 130 13000 4 52000
Door Rever-
sal 10 13 2 100 10000 4 40000
Drive Speed 10 18 5 130 13000 1 13000
AtFloor 50 40 6 140 2800 10 28000
Car Weight 50 25 5 130 2600 1 2600
Desired Floor 50 35 7 150 3000 1 3000
Door Closed 50 25 4 120 2400 4 9600
Door Open 50 25 4 120 2400 4 9600
EBrake 50 12 2 100 2000 1 2000
Hoistway 50 8 2 100 2000 2 4000
Car Level
Position 50 8 5 130 2600 1 2600
Car Position 50 11 3 110 2200 1 2200
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000
Total Bandwidth (bits/sec) 192900
Authentication Bandwidth (bits/sec) 10380

Table 6.18. VV required bandwidth (Per-packet assurance = 2°°, number of samples = 20)

Message | Period | Total authen- | Payload | Packet Per-packet | Replication | Message type
Type (msec)| tication bits (bytes) size bandwidth bandwidth
(bits) (bits/sec) (bits/sec)
Door Motor 10 18 3 110 11000 4 44000
Door Rever-
sal 10 11 2 100 10000 4 40000
Drive Speed 10 14 4 120 12000 1 12000
AtFloor 50 24 4 120 2400 10 24000
Car Weight 50 16 3 110 2200 1 2200
Desired Floor 50 18 5 130 2600 1 2600
Door Closed 50 16 3 110 2200 4 8800
Door Open 50 15 2 100 2000 4 8000
EBrake 50 3 1 90 1800 1 1800
Hoistway 50 5 1 90 1800 2 3600
Car Level
Position 50 5 5 130 2600 1 2600
Car Position 50 6 2 100 2000 1 2000
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000
Total Bandwidth (bits/sec) 175900
Authentication Bandwidth (bits/sec) 6460
159

Evaluation - Smulated el evator control network

TESLA - This scheme required us to add an additional messgg to transmit keys for the

message types being authenticated. All keys wegtgyebits in size. Each sample required only
a single MAC tag (Table 6.19 shows tag and keys3iz&ll messages except Hall Call and Car
Call message types require two packets. Tables 6.2@, and 6.22 shows the required band-

width for each parameter set. Payload bytes indhadle the data values, key, and authentication.

Table 6.19. TESLA history buffer size, required per-packet assurance, and MAC tag size.

History buffer size | Required per-packet | MAC tag size (bits) | Key size (bits)
(samples) assurance
7 2’ 7 80
10 2 5 80
20 2° 3 80

Table 6.20. TESLA required bandwidth (Per-packet assurance = 2”7, number of samples = 7)

Message | Period | Total authen- | Payload | Sample | Per-sample | Replication | Message type
Type (msec)| tication bits (bytes) size bandwidth bandwidth
(bits) (bits/sec) (bits/sec)
Door Motor 10 87 12 280 28000 4 112000
Door Rever-
sal 10 87 11 270 27000 4 108000
Drive Speed 10 87 13 290 29000 1 29000
AtFloor 50 87 11 270 5400 10 54000
Car Weight 50 87 12 280 5600 1 5600
Desired Floor 50 87 13 290 5800 1 5800
Door Closed 50 87 11 270 5400 4 21600
Door Open 50 87 11 270 5400 4 21600
EBrake 50 87 11 270 5400 1 5400
Hoistway 50 87 11 270 5400 2 10800
Car Level
Position 50 87 15 310 6200 1 6200
Car Position 50 87 12 280 5600 1 5600
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000
Total Bandwidth (bits/sec) 409900
Authentication Bandwidth (bits/sec) 41760

Evaluation - Smulated el evator control network 160

Table 6.21. TESLA required bandwidth (Per-packet assurance = 2°, number of samples = 10)

Message | Period | Total authen- | Payload | Sample | Per-sample | Replication | Message type
Type (msec)| tication bits (bytes) size bandwidth bandwidth
(bits) (bits/sec) (bits/sec)
Door Motor 10 85 11 270 27000 4 108000
Door Rever-
sal 10 85 11 270 27000 4 108000
Drive Speed 10 85 13 290 29000 1 29000
AtFloor 50 85 11 270 5400 10 54000
Car Weight 50 85 12 280 5600 1 5600
Desired Floor 50 85 13 290 5800 1 5800
Door Closed 50 85 11 270 5400 4 21600
Door Open 50 85 11 270 5400 4 21600
EBrake 50 85 11 270 5400 1 5400
Hoistway 50 85 11 270 5400 2 10800
Car Level
Position 50 85 15 310 6200 1 6200
Car Position 50 85 12 280 5600 1 5600
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000
Total Bandwidth (bits/sec) 405900
Authentication Bandwidth (bits/sec) 40800

Table 6.22. TESLA required bandwidth (Per-packet assurance = 2%, number of samples = 20)

Message | Period | Total authen- | Payload | Sample | Per-sample | Replication | Message type
Type (msec)| tication bits (bytes) size bandwidth bandwidth
(bits) (bits/sec) (bits/sec)
Door Motor 10 83 11 270 27000 4 108000
Door Rever-
sal 10 83 11 270 27000 4 108000
Drive Speed 10 83 13 290 29000 1 29000
AtFloor 50 83 11 270 5400 10 54000
Car Weight 50 83 12 280 5600 1 5600
Desired Floor 50 83 13 290 5800 1 5800
Door Closed 50 83 11 270 5400 4 21600
Door Open 50 83 11 270 5400 4 21600
EBrake 50 83 11 270 5400 1 5400
Hoistway 50 83 11 270 5400 2 10800
Car Level
Position 50 83 15 310 6200 1 6200
Car Position 50 83 12 280 5600 1 5600
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000
Total Bandwidth (bits/sec) 405900
Authentication Bandwidth (bits/sec) 39840
161

Evaluation - Smulated el evator control network

Master-Slave (MS)- Master-slave required a single additional messgge to be added for
transmissions from the master node. Each messpgedyguired one or two MAC tags. Message
types transmitted by the master or sensors reqoingda single tag. Tag size is one bit higher
than used for OMPR (Table 6.23). Messages fromrobats that must verify the master's
broadcast authenticator must transmit two. Tabl24,6.25, and 6.26 shows the required band-

width for each parameter set. Payload bytes indhadle the data values and authentication.

Table 6.23. MS history buffer size, required per-packet assurance, and MAC tag size.

History buffer size | Required per-packet | MAC tag size (bits)
(samples) assurance
2’ 8
10 2 6
20 2° 4

Table 6.24. MS required bandwidth (Per-packet assurance = 2, number of samples = 7)

Message | Period | Total authen- | Payload | Packet Per-sample | Replication | Message type
Type (msec)| tication bits (bytes) size bandwidth bandwidth
(bits) (bits/sec) (bits/sec)
Master 10 8 2 100 10000 1 10000
Door Motor 10 16 3 110 11000 4 44000
Door Rever-
sal 10 8 2 100 10000 4 40000
Drive Speed 10 16 4 120 12000 1 12000
AtFloor 50 8 2 100 2000 10 20000
Car Weight 50 8 2 100 2000 1 2000
Desired Floor 50 16 4 120 2400 1 2400
Door Closed 50 8 2 100 2000 4 8000
Door Open 50 8 2 100 2000 4 8000
EBrake 50 16 3 110 2200 1 2200
Hoistway 50 8 2 100 2000 2 4000
Car Level
Position 50 8 5 130 2600 1 2600
Car Position 50 16 3 110 2200 1 2200
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000
Total Bandwidth (bits/sec) 181700
Authentication Bandwidth (bits/sec) 6720

Evaluation - Smulated el evator control network 162

Table 6.25. MS required bandwidth (Per-packet assurance = 2°, number of samples = 10)

Message | Period | Total authen- | Payload | Packet Per-sample | Replication | Message type
Type (msec)| tication bits (bytes) size bandwidth bandwidth
(bits) (bits/sec) (bits/sec)
Master 10 6 1 90 9000 1 9000
Door Motor 10 12 2 100 10000 4 40000
Door Rever-
sal 10 6 1 90 9000 4 36000
Drive Speed 10 12 4 120 12000 1 12000
AtFloor 50 6 1 90 1800 10 18000
Car Weight 50 6 2 100 2000 1 2000
Desired Floor 50 12 4 120 2400 1 2400
Door Closed 50 6 1 90 1800 4 7200
Door Open 50 6 1 90 1800 4 7200
EBrake 50 12 2 100 2000 1 2000
Hoistway 50 6 1 90 1800 2 3600
Car Level
Position 50 6 5 130 2600 1 2600
Car Position 50 12 3 110 2200 1 2200
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000
Total Bandwidth (bits/sec) 168500
Authentication Bandwidth (bits/sec) 5040

Table 6.26. MS required bandwidth (Per-packet assurance = 2°, number of samples = 20)

Message | Period | Total authen- | Payload | Packet Per-sample | Replication | Message type
Type (msec)| tication bits (bytes) size bandwidth bandwidth
(bits) (bits/sec) (bits/sec)
Master 10 4 1 90 9000 1 9000
Door Motor 10 8 2 100 10000 4 40000
Door Rever-
sal 10 4 1 90 9000 4 36000
Drive Speed 10 8 3 110 11000 1 11000
AtFloor 50 4 1 90 1800 10 18000
Car Weight 50 4 2 100 2000 1 2000
Desired Floor 50 8 3 110 2200 1 2200
Door Closed 50 4 1 90 1800 4 7200
Door Open 50 4 1 90 1800 4 7200
EBrake 50 8 2 100 2000 1 2000
Hoistway 50 4 1 90 1800 2 3600
Car Level
Position 50 4 5 130 2600 1 2600
Car Position 50 8 2 100 2000 1 2000
Hall Call 100 0 1 90 900 17 15300
Car Call 100 0 1 90 900 10 9000
Total Bandwidth with CAN protocol overhead (bits/se) 167100
Authentication Bandwidth (bits/sec) 3360
Evaluation - Smulated elevator control network 163

Comparisons -In Table 6.27, we show the total authenticationdwadth and total message

bandwidth (including CAN protocol overhead) for eadf the four techniques for our three sets

of time-triggered authentication parameters.

Table 6.27. Total authentication bits per second

Technique Time-triggered authentication parameters
PPA = Per-packet assurance, n = history buffer sizgsamples)
PPA=2"n=7 PPA=2,n=10 PPA=2,n=20
One MAC per receiver 20800 15800 10800
Validity voting 14300 10380 6460
TESLA 41760 40800 39840
Master-slave 6720 5040 3360

Table 6.28. Total bits per second transmitted on bus (including CAN protocol overhead)

Technique Time-triggered authentication parameters
PPA = Per-packet assurance, n = history buffer sizgsamples)
PPA=2"n=7 PPA=2°n=10 PPA=2°n=20
One MAC per receiver 219900 198700 177100
Validity voting 212100 192900 175900
TESLA 409900 405900 405900
Master-slave 181700 168500 167100

*Total bits per second without authentication 1%2100 bits per sec (same for all valueg)of

Table 6.29. Percent increase in required bandwidth with authentication (including CAN protocol

overhead)

Technique Time-triggered authentication parameters

PPA = Per-packet assurance, n = history buffer sizgsamples)

PPA=2"n=7 PPA=2,n=10 PPA=2,n=20
One MAC per receiver 44 % 31 % 16 %
Validity voting 39 % 27 % 16 %
TESLA 170 % 167 % 167 %
Master-slave 20 % 11 % 10 %

Table 6.27 shows a reduction in authenticationdiagdth overhead as we use weaker per-
packet assurance and amortize authentication oeee samples. Master-slave has the lowest
authentication overhead, requiring only one MAC fiaigeach message type authenticated to the
master and another MAC tag for each message tgpe & receiver that verifies the hash tree

broadcast authenticator. Master-slave also has legryimpact on overall network bandwidth,

Evaluation - Smulated el evator control network 164

since only one message type was added for the rsasteadcast authenticator, and there are no
silent receivers in the system. Validity votinguegs the second lowest bandwidth for authenti-
cation. Voting on message authenticity (despitelithgations in the number of possible votes)
saved between four to six kilobits per second ithentication data over one MAC per receiver.
Validity voting provides a greater reduction in larttication bandwidth when MAC tag sizes
are larger. TESLA adds approximately forty kilohsesr second of authentication data for all pa-

rameters, primarily due to the key material thastie transmitted.

Table 6.28 shows similar decreases in overall wait for one MAC per receiver and va-
lidity voting. However, for TESLA, two sets of panaters require the same bandwidth. This is
due to the quantization of payload sizes in CANe photocol defines payload size by the num-
ber of bytes, rather than the number of bits ingagoad. Since there are only one or two MAC
tags in messages for these techniques, reducind@ tdg by a few bits may not reduce the
overall payload size by more than one byte. Tali?® 8hows the percent increase in required

bandwidth after incorporating each authenticatemhhique.

6.6.2 Effects of history buffer size on system performance

After implementing each technique in the elevatar,examined the effect of each technique on
elevator performance. Specifically, we measured/egl times for passengers for our three his-
tory buffer sizesr{= 7, 10, and 20). Figure 6.3 shows the averageepaer delivery times as we
vary the history buffer size for each technique. this experiment, the elevator car begins at the
first floor, a passenger makes a hall call at theesth floor and wants to travel to the first floor
For each data point, we executed this single-passemorkload one hundred times. While the
transition delays and elevator dynamics remainedtemt for each run of the simulator, the pas-

senger behaviors can affect delivery times. Pagsengdate their internal variables at discrete

Evaluation - Smulated el evator control network 165

intervals (e.g., they check doors every 100 mitisels and check/press call buttons every 200
milliseconds). The simulation also adds a randenhiaffset for passenger actions of up to a few
hundred milliseconds. Thus, we averaged the dglitietes over many executions of the pas-

senger workload. Delivery times varied no more ttvem seconds from one another for each da-

ta point.

w w
© ©
c c
3 3
o 40 g 40
L L
Q Q
E 391 £ 391
> >
L 38 g 38
[o
© ©
o 371 @ 371
(o] (o]
c c
? ?
o 36 —e— OMPR o 36 —e— Validity voting
o o
% 35 : : : % 35 ‘ ‘ ‘
§ 5 10 15 20 25 § 5 10 15 20 25
< <
History buffer size (number of samples) History buffer size (number of samples)
(a) (b)
w w
e ©
c c
3 3
g 40 g 40
D) D)
Q Q
£ 391 £ 39
> >
2 38 g 331
o o
© ©
o 371 o 374
(o] (o]
c c
3 3
g 36 1 —— TESLA g 36 1 —e— Master-slave
o o
> 35 ‘ ‘ ‘ > 35 ‘ ‘ :
§ 5 10 15 20 25 § 5 10 15 20 25
< <
History buffer size (number of samples) History buffer size (number of samples)
() (d)

Figure 6.3. Effects of buffer size on single passenger delivery times. (a) One MAC per receiver, (b)
validity voting, (c) TESLA, and (d) master-slave. History buffer size varied from seven samples to

twenty samples.

Evaluation - Smulated el evator control network 166

One interesting side-effect of the using differaathentication schemes is that each technique
affects elevator dynamics slightly differently dteedelays in verification of various message
types. In particular, passenger delivery timesséightly less for the techniques that have a per-
packet verification delay. We emphasize that addipgr-packet delay does not increase the ve-
rification speed of individual samples or histomyffiers. The decrease in delivery time is due to
the effects of per-packet verification delays oivalrcontroller transitions to slow the car as it

approaches a floor. Thus, we do not compare dgliveies between techniques.

Instead of comparing overall delivery times betwéschniques, we instead focus on the in-
crease in delivery times for individual techniquése effects of elevator dynamics do not
change by varying time-triggered authenticatiorapseters. Drive transitions for slowing the car
are treated as reactive control and require oné/sample to trigger the transition. We observed
that the delivery times showed a linear increasev@sncreased history buffer size. This is as
expected, since increasing history buffer sizesfate-changing messages creates a delay before
each associated state transition can occur. Ineseasdelays should be similar for each tech-
nique. For each technique, the average deliverg tmareased by approximately 1.5 seconds as
we increase delays in transitions from seven sasriplénventy samples. This increase is primari-
ly due to delays in verifying message types brosidaa fifty millisecond intervals for starting
drive motion to and from the passenger's flooiif asust verify the desired floor before moving.
Delays in the door controller state transitionsenbass effect on overall delivery delays. These
delays in opening doors are mostly due to waitmgskeveral samples of the Drive Command
message (ten millisecond period) to indicate theedis stopped. The values fifty millisecond
period messages the door controllers rely on f@enop doors actually satisfy the door control-

ler's state transition conditions before the dagtually comes to a complete stop.

Evaluation - Smulated el evator control network 167

6.6.3 Symmetric packet loss effects on history buffer output readiness

Our second set of experiments examined the effegacket loss on state transition delays. In a
symmetric omissive fault model, either all nodesdted to the network receive the message or
none receive it [Azadmanesh00]. To do this, weciigie¢ symmetric omissive faults into the net-
work simulation framework as it propagated messagesceivers. Thus, all nodes drop the af-

fected packet.

We varied the packet loss rate between zero aadtympercent for all message types broad-
cast on the network. For each technique, we meadsine® number of message periods that
passed before a node received and verified a mrffiaumber of messages for a history buffer
of size twenty to allow a node to commit to a sttange. Once the history buffer output was
ready, we recorded the number of message rountledbgassed, reset the buffer, and restarted
the experiment. We repeated this experiment féeasgt one thousand history buffers, and com-
puted the average results. For validity voting, examined the packet loss effects on message

types that received one vote, two votes, and thoges.

We can calculate how many message periods avezceain expect to wait to receive
samples of data, arld is the fraction of packets lost. Xfdifferent message types must be re-
ceived to verify our desired message, then thegiitity that a node will receive and be able to
verify a sample is (1)*. The number of message periods until we receiggor-free samples is
n/(1-L)*. Figure 6.4 shows the expected number of sampleshe experimental results for each
technique. For one MAC per receiver, we observedwvanage time till the state-changing histo-
ry buffer output was ready increased by a factoi/¢f1l) times the number of samples in the
history buffer. For validity voting with one voté, increased by a factor of 1/(1)%; for two
votes, it increased by a factor of 1U(f; and for three votes, it increased by a factat/(f-L)".

Evaluation - Smulated el evator control network 168

The delay for TESLA was less than a factor of 1/{ddespite requiring two packets to verify
each sample. The delay was only slightly highen ttieat for one MAC per receiver, since pre-
viously lost keys can be recovered correspondingeteived, but unverified message values
could not be until the next key arrived. The deleygsobserved for messages verified using the
master-slave scheme do not conform to this equdtioall message types. We experimentally
tested the delay for a ten millisecond period mgssgpe. During most message rounds, verifi-
cation depends only on the ten millisecond messgges broadcast in the network. Every fifth
message period, verification of that message &guoires receipt of messages from nodes trans-
mitting every fifty milliseconds. In the worst caserifying messages using master-slave require

broadcasts from eight other nodes. Thus, the detigr should be no greater thanL(f:

Evaluation - Smulated el evator control network 169

26
g‘ 25 {| —®— OMPR - Experimental
8 > —o— OMPR - Expected
TR 24
= 0
c S
3 ‘g_ 23 1
O +
2322
O —
oo
25214
[ele]
£ 20
n
19 : : ‘
0.00 0.05 0.10 0.15 0.20
Symmetric packet loss ratio
(a)
45
g‘ —e— VV 2 votes - Experimental
® > 40 1| —o— VV 2 votes - Expected \
£ T
— @©
E0
Sg 35 -
0 a
T +
23
5 = 30
aQ
Q5
[elie]]
e 25
©
n
20 + : : ‘
0.00 0.05 0.10 0.15 0.20
Symmetric packet loss ratio
(c)
32
g‘ 30 TESLA - Experimental
D > —o— TESLA - Expected
=528
E=
> >
3 226
.g O
Q —
Q924
25
[eRte]
E 22
IS
()]
20 -

0.00 0.05 0.10 0.15 0.20

Symmetric packet loss ratio

(€)

w
N

g‘ 30 —e— VV 1 vote - Experimental
D > —o— VV 1 vote - Expected
=
g g 28 A
>
3 226
23
88 24
25
[Sits]
E 22
<
n
20 + : ; ‘
0.00 0.05 0.10 0.15 0.20
Symmetric packet loss ratio
(b)
55
g‘ 50 1| —*— VV 3 votes - Experimental
g _§45 || —°— VV 3 votes - Expected
= 0
S-4
3 E3
23
253
832
IS
©
(9]
15 : ; ‘
0.00 0.05 0.10 0.15 0.20
Symmetric packet loss ratio
(d)
140
?, 120 {| —*— Master-slave - Experimental
3 > —o— Master-slave- Expected
< 100
=0
=
3 ‘g_ 80
T =
23 60
25
%5 40
[elie]
E 2
n
0
0.00 0.05 0.10 0.15 0.20

Symmetric packet loss ratio

()

Figure 6.4. Average delay of history buffer output readiness due to symmetric packet loss. Sym-
metric packet loss rate was varied from zero to twenty percent. History buffer size was fixed at
twenty samples. Techniques are (a) one MAC per receiver, (b) validity voting - one vote, (c) validity
voting - two votes, (d) validity voting - three votes, (e) TESLA, (f) master-slave.

Evaluation - Smulated el evator control network

170

Figures 6.5 shows the average number of messagelpehat pass before a history buffer
output is ready as we vary the symmetric packet tate for all techniques together for compari-

son.

120

—e— OMPR

100 —O0— VV -1 Vote
—v— VV -2 Votes
—v— VV - 3 Votes
80 A —&— TESLA
—O— Master-slave

60 -

40 -

20 §

Sample periods till history buffer output ready

0 T T T 1
0.00 0.05 0.10 0.15 0.20

Symmetric packet loss ratio

Figure 6.5. Average delay of history buffer output readiness due to symmetric packet loss (com-
bined figures 6.4.a through 6.4.f). Symmetric packet loss rate was varied from zero to twenty per-
cent. History buffer size was fixed at twenty samples.

We observed an exponential increase in the tinti€aihistory buffer output was ready as we
increased the symmetric packet loss rate, as eeghécdm the equations. One MAC per receiver
suffered the least delays since all data and atitdagion is stored within the same packet. TES-
LA had only slightly longer delays than one MAC peceiver. In TESLA, despite requiring a
key to be transmitted for each message value,avexcwill be always eventually be able to re-
cover message values with lost keys. Once thewecebtains another key, the receiver can
compute all previous keys to recover any unverifisessage values for which a corresponding

key was not received. However, if there are sewéngpped keys in a row, when a receiver re-

Evaluation - Smulated el evator control network 171

covers unverified message values, it might recovare samples than are required for the buffer
output to be ready. Thus, a few samples go unusea $tate change. For validity voting, as we
increase the number of votes, the average timé thitihistory buffer output increased with re-
spect to the number of votes being used. Lastlstenaslave suffered the highest delays. If ei-
ther the master's message or any slave's messagmga MAC tag necessary to verify the

master's hash is lost, then all values in the ptessround are also lost.

We only performed these experiments on messages typing used as state-changing mes-
sages. Losses of reactive control message valllesigger a system to perform a safe action. If
a receiver observes too many packet losses foacive control transition (e.g., too many Door
Reversal message values are lost when closingabes)dthe system should perform a safe ac-

tion. The number of lost samples to tolerate isauthe system designer.

6.6.4 Symmetric packet loss effects on system performance

Next, we experimentally examined the effects ofkpadoss on system performance for each
multicast authentication technique we implementethe elevator. We use a modified symme-
tric omissive fault model for this set of experirtgenf our fault model were to drop packets at
any time during execution, there are points in timiere dropping packets will actually speed up
passenger delivery times. This occurs when theckepdoss delays drive controller state transi-
tions to slow or stop the drive speed; droppin@ekpt at this instant delays the transition to re-
duce speed and the car continues longer at a hegleexd. Triggering this elevator-specific beha-
vior can speed up elevator performance signifigamtiasking the delays these experiments are
intended to observe. For example, a single pacdsstwhile at a speed of 5 m/s allows the drive

to travel up to an additional 0.25 meters, redudelivery time by 0.25 seconds.

Evaluation - Smulated el evator control network 172

If the elevator is designed to stop at the absatuinimum distance, then a single packet loss
could cause the elevator to miss the desired #oorexceed hoistway limits. Thus, the original
developers of the elevator system added slack tintaake the system more robust to packet
losses or other delays that might propagate thraobglsystem and trigger this failure. In a real
elevator system, slack time is likely to be prognmaed into the system. Further, the system is
likely to begin slowing down and/or stopping if tomany packet losses occur before the slack

time is used up during normal operation.

Instead of attempting to account for these elevspecific effects, we modify the fault model
so it does not drop packets if the elevator shbeldlowing down to avoid triggering this acci-

dental speed up in performance.

We varied the rate of packet loss from zero tantywgercent, and measured the average pas-
senger delivery time over one hundred executiontheffirst passenger workload in Section
6.6.2. We fixed the history buffer size at twengymples. Figure 6.6 shows the average delivery

times for each technique.

Evaluation - Smulated el evator control network 173

w w
e] ©
5 S
o 41 o 41
(O] (O]
2 L
g g —e— Validity voting
= 40 = 40 A
P P i
(0] ¢ (]
2 2
L 39 L 394
@ @
2 =4
g 38 g 38
< —— OMPR <
(0] (0]
o 37 ‘ ‘ ‘ o 37 ; ‘ ;
§ 0.00 0.05 0.10 0.15 0.20 § 0.00 0.05 0.10 0.15 0.20
< <
Symmetric packet loss ratio Symmetric packet loss ratio
(a) (b)
w w
o o
5 5
Q9 41 9 60
(0] (]
N2 N2 »
Q —e— TESLA Q —e— Master-slave
IS € 55 |
= 40 =
Py Py
2 2 50
S 391 g
S S 45
c c
g 38 4 g
g g 40
(4] (4] L
2 37 w w ; 2 ; ; ;
§ 0.00 0.05 0.10 0.15 0.20 § 0.00 0.05 0.10 0.15 0.20
< <
Symmetric packet loss ratio Symmetric packet loss ratio
(c) (d)

Figure 6.6. Average passenger delivery times varying symmetric packet loss rate. Symmetric
packet loss rate was varied from zero to twenty percent. History buffer size was fixed at twenty
samples. Techniques are (a) one MAC per receiver, (b) validity voting, (c) TESLA, and (d) master-
slave.

As we increase the packet loss rate up to tweatgegmt, the average delivery time for one
MAC per receiver increases by 0.83 seconds. TE3IcPernses by slightly more (1.15 seconds at
twenty percent packet loss), though this was likdilg to the recovery behavior discussed in

Section 6.6.3 where a few extra message periodslgdere unverified messages can be recov-

Evaluation - Smulated el evator control network 174

ered and a state transition executed. The vahditiyng implementation delivery times increased
by 2.08 seconds at twenty percent packet loss. Wasslikely due to the implementation being a
mixture of one MAC per receiver and validity votinging one, two, and three votes. Lastly, as
expected, the master-slave implementation suffeeswiorst delivery delays of an additional
20.37 seconds at twenty percent packet loss (nhawe & fifty percent increase in delivery time
due to few state transition delays). This is duthéohigh degree of inter-packet dependencies for

this technique.

6.6.5 Forgery test

Our final set of experiments consisted of simplatdrforce guessing attacks against a state-
changing message type for each technique. Oncecassful state transition was forced, we re-
set the history buffer and the state machine alodvatl the attacker to begin again with no de-
lay. We recorded the number of successful attatkggéring a state transition) per message
round. The purpose of these experiments was sitoplgrify the probability of successful attack
and successful per-packet forgery is less thamoalgo the expected success rates described in
the equations of Chapters 3, 4, and 5. For brewiypmit a detailed review of the results. The
resulting success rate for brute force guessirarlatwere slightly less than the equations in
Chapters 3, 4, and 5. This is due to the histoffebbeing reset and an attack requiring all sam-
ples in the history buffer to be successfully fatgéhus, there are message rounds where an at-
tack cannot yet have occurred after the historyebbus reset. This same result is demonstrated in
Chapter 3 for attacks against state-changing message experimental attacks on reactive con-

trol message types produced similar results.

The attacker model used against OMPR and TESLAtheasame as the one used in Chapter

3. The attacker model used against validity votivags the same as the one in Chapter 4. For

Evaluation - Smulated el evator control network 175

master-slave, we used a slightly different attackedel. The attacker would first attempt to alter
the message value from a slave node that is aithtsd to the master node. The attacker then
intercepts the master's message in the next message, and examines the validity bit. If the
bit is a '1,’ then the attacker knows it succefsfokged the tag on the initial attempt. If ndiget
attacker attempts to alter the master's validitybbiore passing the message along to the slave
nodes. The results were slightly less than equdddin Chapter 5, due to the attack being per-

formed on a state-changing message type.

6.7 Discussion

In this chapter, we showed our analysis of theatt@vsystem to identify which message types to
authenticate along with time triggered parameté&ctien. We compared bandwidth consump-
tion for each technique, varying time-triggeredhautication parameters. Finally, our experi-
mental results showed effects of varying time-teigggl authentication parameters on system per-
formance (passenger delivery time in the elevdtareach technique, and effects of symmetric
packet loss on history buffer output readinesssstem performance. We also performed brute

force forgery attacks to confirm equations in CeeapB, 4, and 5.

By varying time-triggered authentication parametgrer-packet assurance and history buffer
size) we illustrate several tradeoffs for all teigiues. Increasing per-packet assurance (decreas-
ing history buffer size) increases bandwidth cdetsauthentication but decreases application
level latency. Conversely, reducing per-packet i@ssie (increasing history buffer size) reduces

bandwidth costs but increases application levehiay.

Evaluation - Smulated el evator control network 176

Adjusting time-triggered authentication parameteasl a similar effect on elevator system
performance for all techniques. Varying the histoujfer size from seven samples up to twenty

increased passenger delivery times by approximatélgeconds for all techniques.

In the presence of packet losses, we showed yistgra performance and history buffer out-
put readiness for one MAC per receiver and TESLAeweast affected. The implementation of
validity voting (which built upon one MAC per reger to introduce one, two and three votes on
messages) was more sensitive to packet losseshvieed that increasing the number of inter-
dependencies amongst packets for verification Bogmitly increased the amount of time before
a history buffer output was useable. The masteteskseheme was extremely sensitive to packet

losses and suffered long delays in both historyebufutput readiness and system performance.

Our analysis also illustrates some of the tradgeafhiong techniques. While the bandwidth
analysis shows that master-slave has very low atitaion bandwidth overhead, the experi-
mental analysis shows it has very high sensititotyacket losses. Validity voting allows us to
reduce the authentication bandwidth overhead ofMAE per receiver at the cost of increased
sensitivity to packet losses. One MAC per receingguired higher authentication bandwidth
overhead than master-slave and validity voting,ibthe least sensitive to packet losses. TESLA
required the highest authentication bandwidth ozadh(which remained relatively constant re-
gardless for our three sets of time-triggered anttbation parameters), but was can also recover
unverified state-changing message values for wkéghmaterial has been lost. Recovering reac-
tive control message values is possible, but maybaauseful if the system acts only upon the

most recent message values.

Evaluation - Smulated el evator control network 177

7 Evaluation - Automotive networ k

Our second proof of concept analyzes the impacts on bandwidth consumption when applying
time-triggered authentication (for each of the four techniques) to an automotive network work-

load. The workload is from a high-speed CAN bus in an industry production automotive system.

The workload contains almost al of the information required for our analysis: node identifier
numbers (both senders and receivers), message identifier numbers, message periods, and payload
sizes. However, the workload has been sanitized of system data; it does not include any node or
message names. Also, the identifier numbers have been randomized, such that 1D numbers of the
workload provided in this work do not reveal CAN bus identifier numbers for messages, remov-
ing priority information. The workload also does not include information related to what any of
the messages are used for. We did not have access to the system or a model of the system these

messages are used within. We also do not have requirements associated with the system.

Our bandwidth consumption anaysis in this section requires a few pieces of information not
included in the workload provided by industry: requirements for system failure rates and per-
packet assurance (i.e.,, we need to know how many samples that can be authenticated over).
Since we do not have access to the system and design information related to the workload, we

used typical values commonly found in embedded control networks.

For system failure rates, we selected three common rates used in industry: 10 failures per
hour, 10° failures per hour, and 10™ failures per hour. These failure rates were not part of the
provided workload. Asin earlier sections, we assume successful forgery of a single message type
could induce a system failure. These failure rates were selected based on common standards,

such as |EC 61508 [IEC61508]. We elected to assign different failure rates to illustrate the flex-

Evaluation - Automotive network 178

ibility of our time-triggered authentication approach and effects of using different failure rates on

parameter selection. The workload is divided into four levels of assurance:

» High - For messages in this group we selected parameters such that forgery success rates
should be no higher than 10%/hr. There are twenty-four message types in this group. These

messages have periods between ten and one hundred milliseconds.

Medium - For messages in this group we selected parameters such that forgery success rates
should be no higher than 10°%hr. This group contains thirty-two message types. Most mes-
sage periods in this group are similar to those in the high assurance group, with some longer
periods up to one second.

 Low - We selected parameters such that forgery success rates should be no higher than

10°%/hr. There are twenty-two message types in this group. Message periods for this group
range from twenty milliseconds up to five seconds.

* None - We did not apply authentication to these message types, nor do these message types

participate in authentication. This group consists of messages with periods mostly slower

message periods and messages broadcast in response to non-periodic events. There are eigh-

ty-seven message types in this group.

We emphasize that for this analysis, these ratings do not represent security risksin the au-
tomotive system this workload is from. We do not speculate on the failure modes of the system
this workload is from, since we have limited information about the workload. The failure rates
were selected arbitrarily. Appropriately assigning requirements for system-level and per-packet

assurance levels requires analysis of the system design (which we did not have accessto).

Evaluation - Automotive network 179

Tables 7.1 shows the list of message types in the high assurance level aong with broadcast
period, sender number, receivers, and payload size. Table 7.2 shows the medium assurance level
group of messages. Table 7.3 shows the low assurance level group. Finally, Table 7.4 shows the

list of message types that we did not apply authentication to.

Table 7.1. High assurance automotive messages.

Message | Period | Sender | Payload Number of Receivers
ID (ms) ID (bits) Receivers

ID_009 10 | ECU_05 44 8 ECU_02, ECU_03, ECU_04, ECU_06, ECU_07, ECU_09,
ECU_11,ECU_13

ID_008 10 ECU_07 49 1 ECU_09

ID_047 10 | ECU_07 49 9 ECU_01, ECU_04, ECU_05, ECU_06, ECU_08, ECU_09,
ECU_12, ECU_13, ECU_14

ID_040 12 ECU_07 62 1 ECU_09

ID_001 12 ECU_09 55 2 ECU_02, ECU_07

ID_007 12 ECU_09 64 12 ECU_01, ECU_02, ECU_03, ECU_04, ECU_05, ECU_06,
ECU_07, ECU_08, ECU_10, ECU_11, ECU_13, ECU_14

ID_039 20 | ECU_07 36 2 ECU_09, ECU_11

ID_042 20 ECU_07 24 1 ECU_04

ID_025 25 ECU_02 52 1 ECU_09

ID_029 25 ECU_02 64 1 ECU_09

ID_030 25 ECU_02 64 4 ECU_05, ECU_07, ECU_09, ECU_11

ID_038 25 ECU_07 56 1 ECU_09

ID_036 25 ECU_09 64 3 ECU_05, ECU_07, ECU_11

ID_074 25 ECU_09 16 1 ECU_02

ID_046 30 | ECU_05 52 2 ECU_09, ECU_11

ID_057 30 | ECU_05 60 2 ECU_02, ECU_09

ID_076 35 ECU_11 52 1 ECU_09

ID_077 35 ECU_11 34 1 ECU_09

ID_078 35 ECU_11 34 1 ECU_09

ID_058 50 | ECU_07 33 4 ECU_05, ECU_06, ECU_11, ECU_13

ID_081 50 | ECU_07 45 4 ECU_02, ECU_04, ECU_05, ECU_09

ID_061 50 | ECU_13 46 3 ECU_05, ECU_07, ECU_11

ID_098 100 ECU_09 37 1 ECU_07

ID_060 100 ECU_13 12 1 ECU_07

Evaluation - Automotive network 180

Table 7.2. Medium assurance automotive messages.

Message | Period | Sender | Payload Number of Receivers
ID (ms) ID (bits) Receivers
ID_006 6 ECU_02 32 1 ECU_04
ID_004 10 | ECU_07 64 10 ECU_02, ECU_04, ECU_05, ECU_06, ECU_08, ECU_09,
ECU_10, ECU_12, ECU_13, ECU_14
ID_005 10 | ECU_07 64 11 ECU_01, ECU_02, ECU_04, ECU_05, ECU_06, ECU_08,
ECU_09, ECU_10, ECU_12, ECU_13, ECU_14
ID_010 12 ECU_02 61 4 ECU_04, ECU_06, ECU_07, ECU_09
ID_003 12 ECU_09 9 1 ECU_02
ID_026 12 ECU_09 31 1 ECU_02
ID_027 12 ECU_09 62 2 ECU_02, ECU_04
ID_048 12 ECU_09 59 1 ECU_10
ID_052 12 ECU_09 61 1 ECU_10
ID_041 20 | ECU_ 04 26 3 ECU_02, ECU_07, ECU_11
ID_045 20 ECU_04 27 1 ECU_07
ID_024 20 | ECU 07 11 5 ECU_02, ECU_05, ECU_06, ECU_13, ECU_14
ID_049 20 | ECU_07 62 12 ECU_01, ECU_02, ECU_03, ECU_04, ECU_05, ECU_06,
ECU_08, ECU_09, ECU_11, ECU_12, ECU_13, ECU_14
ID_028 25 ECU_02 16 1 ECU_09
ID_033 25 ECU_02 45 1 ECU_09
ID_106 25 ECU_05 17 1 ECU_09
ID_031 25 ECU_09 54 1 ECU_02
ID_034 25 ECU_09 62 1 ECU_02
ID_035 25 ECU_09 57 8 ECU_04, ECU_05, ECU_06, ECU_07, ECU_08, ECU_11,
ECU_13,ECU_14
ID_037 25 ECU_09 48 2 ECU_07, ECU_11
ID_075 50 | ECU_09 40 2 ECU_04, ECU_07
ID_018 100 ECU_05 24 1 ECU_O1
ID_020 100 ECU_05 34 2 ECU_07, ECU_08
ID_053 100 | ECU_05 54 12 ECU_01, ECU_02, ECU_03, ECU_04, ECU_06, ECU_07,
ECU_09, ECU_10, ECU_11, ECU_12, ECU_13, ECU_14
ID_059 100 | ECU_06 9 2 ECU_05, ECU_08
ID_023 100 ECU_07 18 1 ECU_05
ID_021 100 ECU_08 18 1 ECU_05
ID_102 250 | ECU_05 58 6 ECU_04, ECU_06, ECU_07, ECU_09, ECU_13, ECU_14
ID_101 250 ECU_08 44 1 ECU_09
ID_083 500 | ECU 06 16 3 ECU_05, ECU_07, ECU_08
ID_017 1000 | ECU_05 17 2 ECU_01, ECU_11
ID_117 1000 | ECU_05 45 3 ECU_02, ECU_04, ECU_09

Evaluation - Automotive network

181

Table 7.3. Low assurance automotive messages.

Message | Period | Sender | Payload Number of Receivers
ID (ms) ID (bits) Receivers
ID_044 20 ECU_04 3 1 ECU_07
ID_002 25 ECU_02 53 1 ECU_09
ID_056 25 ECU_02 64 11 ECU_01, ECU_04, ECU_05, ECU_06, ECU_07, ECU_08,
ECU_09, ECU_11, ECU_12, ECU_13, ECU_14
ID_082 25 ECU_06 60 3 ECU_01, ECU_06, ECU_07
ID_032 25 ECU_09 1 2 ECU_02, ECU_07
ID_054 30 | ECU_05 16 2 ECU_02, ECU_09
ID_088 35 ECU_11 16 2 ECU_05, ECU_07
ID_089 35 ECU_11 3 ECU_02, ECU_05, ECU_07
ID_084 50 | ECU_07 36 8 ECU_03, ECU_04, ECU_05, ECU_06, ECU_11, ECU_12,
ECU_13,ECU_14
ID_085 50 | ECU_07 36 8 ECU_03, ECU_04, ECU_05, ECU_06, ECU_11, ECU_12,
ECU_13,ECU_14
ID_087 50 ECU_07 28 1 ECU_05
ID_043 100 | ECU_04 6 6 ECU_02, ECU_05, ECU_07, ECU_08, ECU_09, ECU_11
ID_013 100 | ECU_05 57 8 ECU_01, ECU_02, ECU_06, ECU_07, ECU_09, ECU_10,
ECU_11,ECU_13
ID_016 100 | ECU_05 9 2 ECU_07, ECU_11
ID_022 100 | ECU_07 47 10 ECU_01, ECU_03, ECU_04, ECU_05, ECU_06, ECU_08,
ECU_10, ECU_11, ECU_12, ECU_13
ID_080 100 ECU_07 40 1 ECU_09
ID_113 500 ECU_09 56 2 ECU_05, ECU_08
ID_136 500 ECU_09 64 1 ECU_02
ID_014 1000 | ECU_05 3 1 ECU_10
ID_120 | 1000 | ECU_07 25 9 ECU_04, ECU_05, ECU_06, ECU_08, ECU_10, ECU_11,
ECU_12, ECU_13, ECU_14
ID_118 | 1000 | ECU_09 44 8 ECU_02, ECU_04, ECU_05, ECU_07, ECU_10, ECU_11,
ECU_12, ECU_13
ID_012 5000 | ECU_05 33 1 ECU_04

Evaluation - Automotive network

182

Table 7.4. Non-authenticated automotive messages.

Message | Period | Sender | Payload Number of Receivers
ID (ms) ID (bits) Receivers

ID_ 011 | Event | ECU 08 64 14 ECU_01, ECU_02, ECU_03, ECU_04, ECU_05, ECU_06,
ECU_07, ECU_08, ECU_09, ECU_10, ECU_11, ECU_12,
ECU_13,ECU_14

ID_015 100 | ECU_05 56 5 ECU_01, ECU_06, ECU_07, ECU_11, ECU_12

ID_019 1000 | ECU_14 1 2 ECU_O5, ECU_13

ID_050 12 ECU_09 28 1 ECU_05

ID_051 12 ECU_10 13 1 ECU_09

ID_055 25 ECU_09 33 2 ECU_05, ECU_07

ID_062 20 | ECU 07 47 6 ECU_04, ECU_05, ECU_06, ECU_08, ECU_10, ECU_14

ID_063 Event | ECU_08 64 1 ECU_05

ID_064 Event | ECU_08 64 1 ECU_14

ID_065 Event | ECU_08 64 1 ECU_07

ID_066 Event | ECU_08 64 1 ECU_03

ID_067 Event | ECU_08 64 1 ECU_O1

ID_068 Event | ECU_08 64 1 ECU_11

ID_069 Event | ECU_08 64 1 ECU_06

ID_070 Event | ECU_08 64 1 ECU_12

ID_071 Event | ECU_08 64 1 ECU_13

ID_072 Event | ECU_08 64 1 ECU_04

ID_073 Event | ECU_08 64 1 ECU_10

ID_079 50 ECU_09 10 1 ECU_07

ID_086 100 ECU_03 3 1 ECU_05

ID_090 100 ECU_O1 8 1 ECU_05

ID_091 100 ECU_O1 16 1 ECU_O5

ID_092 100 ECU_O1 8 1 ECU_05

ID_093 1500 | ECU_01 6 2 ECU_O5, ECU_11

ID_094 100 ECU_09 64 2 ECU_O05, ECU_08

ID_095 100 ECU_05 64 1 ECU_09

ID_096 100 ECU_05 33 1 ECU_09

ID_097 100 | ECU_09 60 6 ECU_02, ECU_05, ECU_06, ECU_08, ECU_10, ECU_11

ID_099 100 ECU_02 11 1 ECU_05

ID_100 100 | ECU_09 64 12 ECU_01, ECU_02, ECU_03, ECU_04, ECU_05, ECU_06,
ECU_07, ECU_08, ECU_10, ECU_12, ECU_13,ECU_14

ID_103 250 | ECU_09 63 3 ECU_05, ECU_08, ECU_10

ID_104 250 | ECU_09 14 3 ECU_05, ECU_08, ECU_10

ID_105 250 ECU_09 29 2 ECU_O05, ECU_07

ID_107 500 | ECU_09 61 8 ECU_01, ECU_02, ECU_04, ECU_05, ECU_06, ECU_07,
ECU_08, ECU_10

ID_108 1000 | ECU_09 49 2 ECU_O5, ECU_08

ID_109 500 ECU_05 16 1 ECU_09

ID_110 500 ECU_09 23 1 ECU_02

ID_111 500 | ECU_02 30 4 ECU_04, ECU_05, ECU_08, ECU_09

ID_112 1000 | ECU_09 24 1 ECU_05

ID_114 500 ECU_05 34 1 ECU_09

ID_115 500 ECU_10 17 1 ECU_09

ID_116 | 1000 | ECU_05 64 6 ECU_02, ECU_04, ECU_07, ECU_09, ECU_13, ECU_14

ID_119 1000 | ECU_09 8 1 ECU_11

ID_121 500 ECU_10 27 1 ECU_05

Evaluation - Automotive network

183

Message | Period | Sender | Payload Number of Receivers
ID (ms) ID (bits) Receivers

ID_122 | 1000 | ECU_05 64 4 ECU_04, ECU_07, ECU_13, ECU_14
ID_123 1000 | ECU_05 48 1 ECU_07
ID_124 1000 | ECU_05 32 1 ECU_10
ID_125 Event | ECU_05 64 1 ECU_08
ID_126 Event | ECU_14 64 1 ECU_08
ID_127 Event | ECU_07 64 1 ECU_08
ID_128 Event | ECU_03 64 1 ECU_08
ID_129 Event | ECU_O1 64 1 ECU_08
ID_130 Event | ECU_11 64 1 ECU_08
ID_131 Event | ECU_06 64 1 ECU_08
ID_132 Event | ECU_12 64 1 ECU_08
ID_133 Event | ECU_13 64 1 ECU_08
ID_134 Event | ECU_04 64 1 ECU_08
ID_135 Event | ECU_10 64 1 ECU_08
ID_137 Event | ECU_09 64 1 ECU_08
ID_138 Event | ECU_02 64 1 ECU_08
ID_139 Event | ECU_05 64 1 ECU_08
ID_140 Event | ECU_14 64 1 ECU_08
ID_141 Event | ECU_07 64 1 ECU_08
ID_142 Event | ECU_03 64 1 ECU_08
ID_143 Event | ECU_O01 64 1 ECU_08
ID_144 Event | ECU_11 64 1 ECU_08
ID_145 Event | ECU_06 64 1 ECU_08
ID_146 Event | ECU_12 64 1 ECU_08
ID_147 Event | ECU_13 64 1 ECU_08
ID_148 Event | ECU_04 64 1 ECU_08
ID_149 Event | ECU_10 64 1 ECU_08
ID_150 1000 | ECU_09 56 1 ECU_08
ID_151 1000 | ECU_07 56 1 ECU_08
ID_152 1000 | ECU_14 56 1 ECU_08
ID_153 1000 | ECU_04 56 1 ECU_08
ID_154 1000 | ECU_01 56 1 ECU_08
ID_155 1000 | ECU_13 56 1 ECU_08
ID_156 1000 | ECU_O6 56 1 ECU_08
ID_157 1000 | ECU_02 56 1 ECU_08
ID_158 1000 | ECU_07 56 1 ECU_08
ID_159 1000 | ECU_10 56 1 ECU_08
ID_160 1000 | ECU_12 56 1 ECU_08
ID_161 | Event | ECU_08 64 2 ECU_02, ECU_09
ID_162 Event | ECU_08 64 1 ECU_09
ID_163 Event | ECU_08 64 1 ECU_02
ID_164 Event | ECU_09 64 1 ECU_08
ID_165 Event | ECU_02 64 1 ECU_08

Our analysis also requires us to assign per-packet assurance levels to message types. Since we
did not have access to the characteristics of the physical dynamics of the system, we performed a
sensitivity analysis based on common sampling rates. Sensor inputs are typically sampled faster

Evaluation - Automotive network 184

than the time constraints of control stability requirements. As a rule of thumb, ten or more sam-
ples are sent within the rise time of a control system or prior to a system deadline [REF Ko-
petz][REF Controls book]. This number of samples gives us our history buffer size (the number
of messages we can verify state changes and actuations over). For our sensitivity analysis, we
used history buffer sizes of five, ten, and twenty. We assume all messages use the same history

buffer size. Thus, all message types within a group use the same per-packet assurance level.

The number of nodes and numbers of receivers for each message type in this network con-
forms to our assumptions in Section 2. In an embedded network, there are typically at most tens
for receivers for a message. In this network, there are fourteen total nodes. The number of re-
ceivers for each message type ranges from one to twelve. Only nine nodes broadcast messages
that require authentication (ECU_2, ECU 4, ECU_5, ECU_6, ECU 7, ECU_8, ECU_9,
ECU_11, and ECU_13). There are five nodes which only consume messages and do not broad-
cast authenticated messages (ECU_1, ECU_3, ECU_10, ECU_12, and ECU_14). These five
nodes do, however, broadcast non-authenticated messages. In this analysis, non-authenticated
messages transmitted by these nodes do not participate in voting or master-slave authentication

schemes.

Another note of interest is that many message types already have full data payloads, which
will require a second (or third) CAN packet to transmit authenticators. In Section 3 and 4, we
assumed that data payloads were small enough such that at least one MAC tag bit could be
placed within a packet for each receiver. The message types for the elevator network also had
room for one MAC tag per receiver in the data payloads (at least seven bits could be placed in a
payload for each receiver without exceeding the sixty-four bit payload size of CAN); TESLA

was the only technique that required an additional packet (due to the key). The bandwidth im-

Evaluation - Automotive network 185

pacts of authentication in this workload will be greater than those in the elevator since nodes

must transmit additional packets for authentication for all techniques.

The basdline automotive network workload (with no authentication applied) consumes
478782 bits per second. This value only includes periodic message types; it omits the impacts of
the non-periodic message types, since we do not have information on mean inter-arrival timesfor
those message types. In the following sections, we apply each authentication technigue while
varying the history buffer size. We then summarize the impacts of each authentication technique

on network bandwidth.
7.1 OneMAC per receiver

For OMPR, we first determined the MAC tag size for each receiver based on the falure rate as-
sociated with each message type along with the number of samples for the history buffer. Tables
7.5. lists the history buffer size, per-packet assurance and number of bits per MAC tag for each

assurance level group (high, medium, and low).

Table 7.5. OMPR history buffer size, required per-packet assurance, and MAC tag size.

History buffer size | Desired failurerate | Required per-packet | MAC tag size (bits)
(samples) assurance
10”hr 2" 10
5 10°/hr 2° 8
10°hr 2° 6
10°/hr 2 5
10 10°/hr 2° 4
10°/hr 2° 3
10%/hr 2 3
20 10°/hr 2° 2
10°hr 2° 2

Tablesin Appendix A provide a detailed breakdown of bandwidth required for authentication

and the messages of the workload.

Evaluation - Automotive network 186

7.1.1 One MAC per receiver - summary

Table 7.15 summarizes the results of applying one MAC per receiver to the automotive work-
load. Using one MAC per receiver, as we increase the number of samples in a history buffer,
there is a exponential decrease in the bandwidth consumed by authentication. Similarly, there is
an exponential decrease in total bandwidth consumption (including CAN protocol overhead). As
we increase the history buffer size, it approaches the baseline workload bandwidth of 478782
bits per second. However, one MAC per receiver will always require at least one bit per receiver

no matter how samples messages are verified over.

Table 7.6. OMPR bandwidth summary.
History buffer size (samples)

5 10 20
Bandwidth increase 90525 | 45292 | 25482
dueto authentication (bits per second)
Total bandwidth 745662 | 629660 | 588735
including CAN protocol overhead (bits per second)
Percent increase in total bandwidth over baseline 56 % 32 % 23%

Evaluation - Automotive network 187

100000

90000 -]
—&— One MAC per receiver

80000 -

70000 -

60000 -

50000 +

40000 -

30000 -

20000 T T T T T T T T
4 6 8 10 12 14 16 18 20 22

Authentication bandwidth overhead (bits per second)

History buffer size (samples)

Figure 7.1. OMPR authentication bits per second (no CAN protocol overhead, varying history buf-
fer size from five samples to twenty samples).

760000

740000 -
—&— One MAC per receiver

720000 A

700000 +

680000 -

660000 -

640000 -

620000 -

600000 -

Total workload bandwidth (bits per second)

580000 T T T T T T T T
4 6 8 10 12 14 16 18 20 22

History buffer size (samples)

Figure 7.2. OMPR total bits per second transmitted on CAN bus (includes CAN protocol overhead)

Evaluation - Automotive network 188

7.2 Validity voting

For validity voting, we applied the maximum number of votes for every message type. All votes

were used to reduce the size of authenticators (optionaly, votes can aso be used to reduce the

number of message samples to verify over). We included votes only if they provided some

bandwidth savings. Table 7.16 shows the size of each MAC tag when zero votes are received for

that message type, one vote is received for the message type, and two votes are received for that

message type. Table 7.16 aso shows occurrences where increasing the number of votes did not

decrease the MAC tag bit size (marked N/A). When adding a vote to decrease tag size while

maintaining per-packet assurance, the tag size decreases by a fraction based on the number of

votes. Using v votes reduces tag size by afactor of dlightly less than 1/(v+1). For example, using

one vote decreases tag size to amost half the bits; two votes decreases tag size to alittle more

than one third the bits; three votes decreases the tag size to alittle more than one quarter. Thus,

votes save more bandwidth when used to reduce tag sizes for higher per-packet assurances.

Table 7.7. VV history buffer size, required per-packet assurance, and MAC tag sizes (for zero
votes, one vote, and two votes). N/A indicates votes do not provide any bandwidth reduction.

History buffer Desired failure Required per- MAC tagsize | MACtagsize | MAC tag size
size rate packet Zero votes onevote two votes
(samples) assurance (bits) (bits) (bits)
10°/hr 21 10 6 4
5 10°/hr 2° 8 5 4
10°/hr 2° 6 4 3
10'!/hr 2'! 5 3 N/A
10 10°hr 2" 4 3 2
10°/hr 2° 3 2 N/A
10~/hr 2 3 2 N/A
20 10°/hr 2° 2 N/A N/A
10°/hr 2° 2 N/A N/A

As with the elevator network workload, we applied votes based on the message types con-

sumed by each message type. For one receiver to vote on a message to another, both receivers

Evaluation - Automotive network

189

must consume that message type from the sender. Nodes receiving votes must consume at least
one message type from the voting node. Further, any message types carrying votes must be

broadcast at arate greater than or equal to the message type they vote upon.

We also limited message types to vote on messages of equal or lower criticality (a messagein
the high assurance group can vote on a message in the medium assurance group, but not vice
versa). This limitation was primarily based on the tag sizes for messages of each assurance level.
In a message that carries a vote, the tag designated for a receiver should be at least as many bits
as the tag designated for the same receiver in the message being voted upon. The tag sizes for
message types requiring low assurance have fewer bits than those requiring higher assurance.
Thus, if alower assurance message type carries a vote for a higher assurance message, it could
create a vulnerability that could alow an attacker to more easily forge a samples of the higher

assurance message.

Based on these limitations, we were able to apply at most two votes for any message type.

However, messages can carry votes for any number of other message types.

Tablesin Appendix A provide a detailed breakdown of bandwidth required for authentication

and the messages of the workload.

7.2.1 Validity voting - summary

Table 7.8 summarizes the results of applying validity voting to the automotive network work-
load. Validity voting uses one MAC per receiver as a base for multicast authentication, and uses
voting to reduce bandwidth consumption (or history buffer size). Figures 7.3 shows the authenti-

cation bits per second added to the workload bandwidth for each history buffer size, while Figure

Evaluation - Automotive network 190

7.4 shows the total bandwidth used by the workload (including CAN protocol overhead). Figures

7.3 and 7.4 d so show the results of applying one MAC per receiver to allow comparison.

Table 7.8. Validity voting bandwidth summary.

History buffer size (samples)

5 10 20
Bandwidth increase 72368 | 38856 | 24039
dueto authentication (bits per second)
Total bandwidth 702694 | 619584 | 587702
including CAN protocol overhead (bits per second)
Per cent increasein total bandwidth over baseline 47 % 29 % 23%

100000

90000 - 0\

— -0 — One MAC per receiver
\ ——e—— Validity voting

80000 -

70000 -

60000 -

50000 +

40000 -

30000 +

20000 T T T T T T T T
4 6 8 10 12 14 16 18 20 22

Authentication bandwidth overhead (bits per second)

History buffer size (samples)

Figure 7.3. Validity voting authentication bits per second (no CAN protocol overhead, varying his-
tory buffer size from five samples to twenty samples.

Evaluation - Automotive network 191

760000

740000 { X\

— -0 — ne per receiver
\ One MAC i
720000 - \ ——e—— Validity voting

700000 -

680000 -
660000 -
640000 -
620000 -
600000 -

Total workload bandwidth (bits per second)

580000 -

560000

4 6 8 10 12 14 16 18 20 22
History buffer size (samples)
Figure 7.4. Validity voting total bits per second transmitted on CAN bus (includes CAN protocol

overhead).

Table 7.8 and Figures 7.3 and 7.4 confirms that voting produces the greatest reduction in au-
thentication bandwidth for stronger per-packet assurance levels (i.e., smaller history buffer siz-
es). Voting provides the greatest reduction in authentication bandwidth overhead for stronger
per-packet assurance levels and greater numbers of receivers. For a history buffer size of five
samples, more votes could be applied that reduced bandwidth consumption. Reducing total
bandwidth from a 56% increase to 47%. For a history buffer size of ten samples, the reduction
was from 32% to 29%. For twenty samples, there was less than one percent difference. With
weaker per-packet assurances (larger history buffer sizes), fewer votes could be applied to reduce

authentication bandwidth. Appendix A provides all the votes applied to reduce bandwidth.

While validity voting provides less bandwidth savings as MAC tag size decreases, it can in-
stead be used to strengthen per-packet assurance (reducing the number of samples a receiver

must verify state-changes or actuations over) without increasing bandwidth overhead. This as-

Evaluation - Automotive network 192

pect of validity voting is likely more useful to reduce application level latency using the same

MAC tag sizes as those for history buffer sizes of twenty samples.
7.3 TESLA

For TESLA we used the same per-packet assurance levels and history buffer sizes as those for
one MAC per receiver and a key size of eighty bits (Table 7.9). To alow verification of each
message sample individually, transmitters must also send a key used to compute the correspond-
ing MAC tag. Asin elevator implementation, nodes are scheduled to transmit the key during the
message round after the round in which the corresponding value and MAC tag are transmitted.
Transmitting a key required at least one additional packet to be broadcast for each message type.
This analysis did not examine the bandwidth required for transmitting one key for multiple mes-

sage types from the same sender.

For simplicity, we assume each node maintains one key chain for each message type they
transmit. This workload does not contain information about what messages are used for by each
receiver, how often nodes execute their control loops, or whether batch-authenticating multiple
message types together using a single key chain would be acceptable. Unfortunately, this ap-
proach requires transmitting an eighty bit key for every sample of every message type, which
creates a very high bandwidth requirement. In Section 5.2.4, we discuss some tradeoffs asso-

ciated with using fewer key chains.

Evaluation - Automotive network 193

Table 7.9. TESLA history buffer size, per-packet assurance, MAC tag size, and key size.

10

20

History buffer size | Desired failurerate | Required per-packet | MAC tag | Key size
(samples) assurance size (bits) | (bits)
10°hr 2" 10 80
5 10°hr 2° 8 80
10°/hr 2° 6 80

10'!/ hr 2'! 5 80

10°%hr

4

80

107%hr

3

80

10'!/ hr 2'! 3 80

10%hr

2

80

10%/hr

2

80

Tablesin Appendix A provide a detailed breakdown of bandwidth required for authentication

and the messages of the workload.

7.3.1 TESLA - summary

Table 7.10 summarizes the results of applying TESLA to the automotive network workload. The
authentication overhead is mostly constant. Figures 7.5 and 7.6 show the decrease in bandwidth
as history buffer size increases. Although the tag sizes decreases exponentially as the history buf-
fer size increases, the transmitted key material makes up a mgjority of bandwidth required for
authentication. Thus, altering the size of the history buffer does not provide much benefit when
authenticating with TESLA (Percent increase over baseline workload bandwidth is between
147% and 140%). Also, since the changes in tag sizes from one history buffer parameter value to
another are at most afew bits in size, this reduction often is not large enough to reduce the payl-

oad size by a byte. This further reduces the effects of changing history buffer sizesfor TESLA.

As shown in Section 5, TESLA is best suited for applications which require very high per-

packet assurance (e.g., event-triggered systems which must verify state changes or actuations

Evaluation - Automotive network 194

over single samples), or applications which must scale to hundreds or thousands of receivers

(e.g., enterprise systems which distribute media to thousands of consumers).

Bandwidth for this approach could be reduced by authenticating multiple message types from

asingle sender using one key chain, rather than using one key chain for each message type.

Table 7.10. TESLA bandwidth summary.

History buffer size (samples)

5 10 20
Bandwidth increase 263537 | 250917 | 245377
dueto authentication (bits per second)
Total bandwidth 1184004 | 1170289 | 1149747
including CAN protocol overhead (bits per second)
Percent increase in total bandwidth over baseline 147% | 144% | 140%

266000

264000 -
262000 - *— TESLA

260000 -
258000 +
256000 -
254000 ~
252000 ~
250000 -
248000 -
246000 -

244000 T T T T T T T T
4 6 8 10 12 14 16 18 20 22

Authentication bandwidth overhead (bits per second)

History buffer size (samples)

Figure 7.5. TESLA authentication bits per second (no CAN protocol overhead), varying history
buffer size from five samples to twenty samples.

Evaluation - Automotive network 195

1190000

1180000 -+

1170000 -

1160000 +

1150000 -

Total workload bandwidth (bits per second)

1140000

—8— TESLA

4

History buffer size (samples)

Figure 7.6. TESLA total bits per second transmitted on CAN bus (includes CAN protocol overhead)

7.4 Master-dave

For our bandwidth analysis for master-slave, we again used the same per-packet assurance levels

and history buffer sizes as other techniques. Table 7.11 shows the MAC tag sizes for each assur-

ance level and history buffer size.

Table 7.11. Master-slave history buffer size, required per-packet assurance, and MAC tag size.

History buffer size | Desired failurerate | Required per-packet | MAC tag size (bits)
(samples) assurance
10°/hr 2% 11
5 10°/hr 2° 9
10°/hr 2° 7
10%/hr 2 6
10 10°%/hr 2 5
107/hr 2° 4
10°/hr 2 4
20 10°/hr 2° 3
10°hr 2° 3

Evaluation - Automotive network

196

The master-slave approach described in Section 5 requires that all receivers broadcast a mes-
sage as part of verifying the hash tree broadcast authenticator from the master node. There were

three issues with in applying the master-slave approach to this workload:

» First, the workload does not contain data regarding node control 1oop execution periods. Thus,
we do not know how often they must verify messages they consume. To resolve this, we as-
sume that al broadcasting nodes execute their control loops at approximately the same pe-
riod as the most frequent message type they broadcast. Thus, the message type from each
node with the shortest broadcast period contains the MAC tag for verifying the hash-tree
broadcast authenticator from the master node.

» Second, we did not allow lower assurance message types to participate in authentication of
higher assurance message types. This limitation was primarily based on the tag sizes for mes-
sages of each assurance level (similar to our application of validity voting in Section 7.2). To
resolve this, we included a message type from the master node for each assurance level (high,
medium, and low assurance message types). For each assurance group that a node consumes
at least one message type from, that node participates in verifying the hash tree broadcast au-
thenticator for that assurance group.

» Third, some nodes did not broadcast messages in the high, medium, or low assurance message
type groups. We treated these nodes as "silent receivers' for those assurance groups that they
did not transmit messages in. We added a message type to the workload for any node that did
not aready broadcast a message type within that group. Again, we assume each of these
nodes executes their control loops at approximately the same period as the most frequent
message type they broadcast. Alternatively, there are a few message types in the non-

authenticated group whose data payloads did not already contain the maximum amount of

Evaluation - Automotive network 197

data for a CAN payload. These message types could be moved from the non-authenticated
group to one of the other assurance groups. For simplicity, we did not attempt to move mes-

sage types from the non-authenticated group to another assurance group.

In addition to resolving these issues, we added a trusted master node and one message type to
carry its confirmation bit and hash-tree broadcast authenticator for each assurance level (three

total message types were added for the master node).

Tablesin Appendix A provide a detailed breakdown of bandwidth required for authentication
and the messages of the workload. Appendix A also identifies the added message types and

which message types carry MAC tags for verification of the hash tree broadcast authenticators.

7.4.1 Master-slave - summary

Table 7.11 summarizes the results of applying master-slave to the automotive network workload.
Figures 7.5 and 7.6 show the decrease in bandwidth as history buffer size increases. The band-
width required specifically for authentication data is extremely small in comparison to that for
other approaches. However, since several message types were added for each assurance level, the

overall bandwidth is about the same as OMPR or validity voting.

Table 7.12. Master-slave bandwidth summary.

History buffer size (samples)

5 10 20
Bandwidth increase 45153 24980 16221
dueto authentication (bits per second)
Total bandwidth 707175 | 638491 | 606741

including CAN protocol overhead (bits per second)
Percent increase in total bandwidth over baseline 48 % 33% 27 %

Evaluation - Automotive network 198

50000

45000 - —e— Master-slave

40000 -

35000 ~

30000 -

25000 +

20000 ~

15000 ~

10000 T T T T T T T T

Authentication bandwidth overhead (bits per second)

History buffer size (samples)

Figure 7.7. Authentication bits per second (no CAN protocol overhead), varying history buffer size
from five samples to twenty samples.

720000

700000 - —&— Master-slave

680000 -

660000 -

640000 -

620000 -

Total workload bandwidth (bits per second)

600000 T T T T T T T T
4 6 8 10 12 14 16 18 20 22

History buffer size (samples)

Figure 7.8. Total bits per second transmitted on CAN bus (includes CAN protocol overhead)

Evaluation - Automotive network 199

7.5 Discussion

Table 7.13, 7.14, and 7.15 compare all four techniques in terms of the bandwidth required for
authentication, the total bandwidth for the entire workload, and the percent increase in bandwidth
over baseline workload (techniques with lowest values are highlighted). For reference, the base-
line network workload without authentication is 478782 bits per second. After applying al four
techniques, the technique that required the least bandwidth for authentication was master-slave.
However, the technique requiring the least overall total bandwidth for the workload was validity
voting. In this case study, OMPR also required less overall bandwidth than master-slave (for ten
and twenty sample history buffers). The reason that master-slave required a more significant in-
crease in bandwidth than in the elevator case study is that multiple message types had to be add-
ed for verification of the hash tree broadcast authenticators from the master. This illustrates a
fundamental practical limit of master-slave. If nodes do not aready broadcast (in this case within
each assurance level), then new messages must be added to carry authenticators. Adding new

message types to carry authenticators for nodes is expensive in terms of bandwidth.

Table 7.13. Comparison of authentication bandwidth (bits per second) overhead as history buffer
size is varied.

Technique History buffer size (samples)
5 10 20
One MAC per receiver 90525 45292 25482
Validity voting 72368 | 38856 | 24039
TESLA 263537 | 250917 | 245377
M aster-slave 45153 24980 16221

Evaluation - Automotive network 200

Table 7.14. Comparison of total bandwidth (bits per second) required for workload (including CAN
protocol overhead) as history buffer size is varied.

Technique History buffer size (samples)
5 10 20
One MAC per receiver | 745662 | 629660 | 588735
Validity voting 702694 | 619584 | 587702
TESLA 1184004 | 1170289 | 1149747
M aster-slave 707175 | 638491 | 606741

Table 7.15. Comparison of percent increase in total bandwidth required for workload (including
CAN protocol overhead) as history buffer size is varied.

Technique History buffer size (samples)
5 10 20

One MAC per receiver | 56 % 32 % 23%
Validity voting 47 % 29 % 23%
TESLA 147 % 144 % 140 %
Master-save 48 % 33% 27 %

g 300000

3 ———__

2 250000 A B v

\g/ 200000 -

% ——@—— One MAC per receiver

3 1500004 | [Validity voting

< ———~—- TESLA

-'g —-—y-— Master-slave

‘2 100000 -

8

S

g 50000 -

% O T T T T T T T T

< 4 6 8 10 12 14 16 18 20 22

History buffer size (samples)

Figure 7.7. All techniques, authentication bits per second (no CAN protocol overhead) for all au-
thentication techniques, varying history buffer size from five samples to twenty samples.

Evaluation - Automotive network 201

1200000

1000000 - —&—— One MAC per receiver

iS)
c
(o]
[5]
(]
(2]
) -)
o ~O- Validity voting
% ——-v—— TESLA
= —-—— Master-slave
S Baseline workload
‘'S 800000 A
©
c
[
o]
he]
I
o
< 600000 -
o
=
©
°
'_
400000

History buffer size (samples)

Figure 7.8. All techniques, total bits per second transmitted on CAN bus for all authentication
techniques (includes CAN protocol overhead)

While one MAC per receiver had the third highest authentication bandwidth overhead, the
total bandwidth required for the workload was similar to that validity voting. While this work-
load did not allow voting on all message types, it is reasonable to assume that votes are likely to
be limited in some industry network workloads since they are not necessarily designed to support
validity voting. However, in some cases, adding new authentication channels between nodes may
introduce more options for votes which outweigh the cost of adding a single MAC tag. In work-
loads where nodes in the network receive a majority of message types, more options will exist

for votes.

These results show that for systems whose sampling rates allow authentication over ten to
twenty message samples, one MAC per receiver is likely the best option of the four presented
here. Validity voting might reduce bandwidth consumption, but it also carries a disadvantage of

reduced increased sensitivity to packet loss, and node compromise or failure. Master-slave also

Evaluation - Automotive network 202

has similar bandwidth consumption, but carries the disadvantage of being very sensitive to pack-

et losses (illustrated in Section 6).

In this analysis, TESLA increases the bandwidth required for the workload to well over the
one megabit per second bandwidth limit of the CAN protocol. This indicates that it might not be
suitable for a typical embedded network workload where bandwidth is extremely limited. TES-
LA would be best applied if the application required large numbers of receivers (hundreds or
thousands) or required strong per-packet assurances for event-triggered messages instead of pe-
riodic messages. Reducing the number of keys transmitted by each sender could significantly

decrease the authentication bandwidth overhead.

This analysis also illustrates one of the disadvantages of the master-slave approach using
hash-tree broadcast authentication: silent receivers require the addition of new messages to be
broadcast on the network. Adding new message types to the network requires significant band-
width. Thus, this approach did not perform well in terms of bandwidth. The analysis of the eleva-

tor system in Section 6 shows an example where the network has no silent receivers.

7.5.1 Limitations

The primary limitation of this analysis is that the workload included very limited information
about the system being analyzed. However, the workload provided almost all information re-
quired to apply our time-triggered authentication approach in conjunction with each of the four
multicast authentication techniques. With further information, selection of parameters for time-
triggered authentication could be improved. This limitation required assumptions about per-
packet assurance levels for al techniques. For TESLA, we did not explore possible tradeoffs for

maintaining and sending fewer key chains for each sender. In master-slave, we also had to make

Evaluation - Automotive network 203

assumptions about control loop execution periods to make reasonable estimates of how often

each node would have to participate in verifying the hash tree broadcast authenticators.

Another limitation is that we do not analyze the resulting workload (with authenticators) in
terms of schedulability. All techniques increase the bandwidth required for the workload signifi-
cantly. Such increases in bandwidth are unavoidable if the system must be protected from mas-
guerade attacks intended to maliciously induce system failures. Future work may include analy-

sis of the impacts of authentication techniques on schedul ability.

Evaluation - Automotive network 204

8 Technique modificationsand variations

This section describes some modifications andrateres for some of the multicast authentica-
tion techniques used in this work. These ideas wetemplemented. We leave implementation

of each variation along with associated analysefutare work.
8.1 OMPR - Shared keyswithin groups

One of limitations of using OMPR is that the praieg and authentication bandwidth scales li-
nearly with the number of receivers. One way toresisl this limitation is to reduce the number
of MAC tags to be computed of a message type byping receivers. A set of receivers might
be grouped together based on criticality or funttiéach group shares one symmetric key used
for communication within the group and shares d#edbht key for each external group to be

communicated with.

For example, if partitioning by criticality, thegsgem designer might partition the nodes in a
network into critical and non-critical nodes. Instltase, at most two MAC tags are required for
any broadcast message. Since no node in the niwaktgroup knows the key shared among the
critical nodes, a non-critical node cannot spoossages (maliciously or accidentally) to a node

in the critical group.

This may be useful if a security analysis detegsithat the most likely node to be compro-
mised does not directly control safety critical dtianality (e.g., an Internet or wireless gateway
node), or physical access to critical nodes istéohito trusted personnel. Nodes that are more
likely to be compromised can be partitioned intotaer group that does not have the required

key material to authenticate messages among ¢nitockes.

Technique modifications and variations 205

The benefit of this approach is that it can deseethe number of MAC tags required per
packet (in our example, at most two tags per paatenheeded). This reduces processing time as
well as authentication bandwidth. Nodes can betjmameéd into any number of groups. Further,
communications between groups can be limited basddey material held (as illustrated in our

example).

The limitation of this approach is that by shargyynmetric keys among a set of nodes, it is
no longer possible to determine which node withigreup actually broadcast a message. This
concern is not limited to a compromised node spgpfnessages within a group. In the event
that a node suffers a non-malicious failure andd&etally masquerades as another node, it may

no longer be possible to identify that node foltfaolation purposes.
8.2 OMPR - Tuning on a per-message type and per-receiver basis

OMPR allows tuning of time-triggered authenticatparameters on a per-message type and per-
receiver basis. When selecting the number of atittaion bits per MAC tag and the number of
message samples to verify across, each messagartgpeceiver can be considered individual-

ly. The per-packet assurance requirements mayrdiffieong receivers for the same message
type.

When tuning on a per-receiver basis, a systengdesican examine what functionality each
message type is used to support (e.g., is it ugeddafety-critical function, system performance,
or convenience feature). For example, a messadminomg the vehicle speed may be used in
optimizing system performance, but is also consumedodes such as door locks (doors might
automatically lock once a vehicle reaches a cedpéed) or the infotainment system (displaying

current vehicle performance characteristics). Aesysdesigner can devote more authentication

Technique modifications and variations 206

bits in a data payload for receivers that are aptilg performance characteristics, while other
receivers like the infotainment system might ordguire a single bit to be able to eventually
detect a masquerade attack. Similarly, those receimight verify state changes and actuations

over differing numbers of message samples basithorg requirements.

The system designer can also divide message ipfmedifferent criticality levels (similar to
the partitioning in Section 7); each set may haWkerént requirements for failure rates. Time-

triggered authentication parameters can then leeteel for each message type.

The benefit of tuning on a per-message type oirgeziver basis is that it allows more effi-
cient use of system resources (which are likelgaaly limited in an embedded control network).
This approach can also improve system performagcg, (Creating equal state transition delays

for two message types that are broadcast at diff@eriods).

The limitation of such tuning is that it can sigrantly increase design complexity. Further,
this complexity increases again if validity votirggapplied to the design, introducing new tra-

deoff parameters.
8.3 Validity voting - Tolerating asymmetric packet loss

One of the limitations of the baseline validity vt scheme described in Section 4 is that
asymmetric packet losses can cause invalid auttadots, creating a false alarm of a masque-
rade attack. Asymmetric packet losses can causeaueto receive a correctly formatted pack-
et, while another node receives a malformed padket. first node will record the value in the

packet, while the second node will record the paakdost. If these two nodes participate in va-

lidity voting on the observed message, they will Io@ able to compute a correct MAC tag (since

Technique modifications and variations 207

they are computing over a different set of valud@$jus, they might misinterpret an otherwise

non-malicious fault as a malicious one.

In baseline validity voting (described in Sectin an invalid authenticator due to asymme-
tric packet loss can occur in two cases. Considerreceivers Nand N that consume a mes-
sagem. Node N then broadcasts a vate that b consumes. An asymmetric omissive fault af-

fecting messagm can cause }s verification result ofm, to be invalid.

» Case 1: Ndrops message and N correctly receivesn. N; will recordm as a predefined
error code 'lost' while Nrecords the actual value. When verifyimg N, assumes that N
computed its authenticators over the same set sbage values that,Mbserved from the
network. In baseline validity voting,;Nloes not have a channel to communicatestaviNch
messages were lost. Thus, Will record bothm andm, as invalid.

» Case 2: Ncorrectly receives messageand N dropsm. N; records the actual value of mes-
sagem, while N, recordsm as 'lost." Again, Bhas no way of knowing that;Nlid not lose
the value (even if Ndid know that N did not losem, N, still would not know the value of

m). Thus, N will also recordm andm, as invalid in this case as well.

To address case 1, we propose each voter inclimhs gector in the payload of its transmit-
ted messages. The loss vector contains one b#aidt message value being voted upon, indicat-
ing whether each message value was recorded gsdloeceived correctly. In our example for
case 1, this would create a channel by whigltdh communicate the set of message values that

were lost to M.

Technique modifications and variations 208

Loss vectors work the same way validity vectorskan Section 4. When transmitting a mes-
sage, for each message value inputted to the MA€tifans that is 'lost’, the sender sets the cor-
responding bit in the loss vector to a '1." If semder recorded the message as invalid (with a '0’
in the validity vector), then the correspondingslagctor bit should be a '0" as well. When re-
ceiving and verifying a message, for any bit tilsaai'l" in the loss vector, the receiver replaces
that message value input to the MAC function wité 1ost' error code. The receiver's computed

MAC tag will then match the sender's since eachawasputed over the same set of values.

Loss vectors require additional bits to be plasgtiin a data payload, but prevents one case

in which an asymmetric packet causes an invalid Ma&g

Addressing case 2 is more difficult, because rekwards channel (from No N;) exists for
N> to communicate to Nthe set of messages Nid not receive. One way to handle this case is
for N, to recordm, as 'lost' (along with all other packets containoges onm) in addition to
recordingm as 'lost." This method will cause all values thauld normally be recorded as
invalid (using baseline validity voting) to be ieatl recorded as 'lost." This includes all the mes-
sages being voted upon by, in addition tom. One exception to this however, is thamifvas

lost, butm, indicatesm was invalid, then Nshould still rejectn as invalid.

A disadvantage of addressing case 2 in this waas it increases the number of packet
losses in the event of a symmetric packet losselBesvalidity voting allows receivers to con-
tinue authenticating voting messages despite synupecket losses affecting the messages be-
ing voted upon. However, with this modificationyexeiver drops any message carrying votes

for any message suffering any type of packet loss.

Technique modifications and variations 209

Another option (though not recommended) to haadignmetric packet losses might be for a
receiver to speculate on which packets have bestnakymmetrically. However, this is would
also increase the probability of successful pategfery by an attacker. If a receiver detects an
invalid MAC tag, the receiver can sequentially emg each message value being voted upon by
the 'lost’ error code. If one combination of valaesl ‘lost' error codes results in a valid MAC
tag, this might indicate an asymmetric loss hasuwed. This requires up td MAC function
computations to check all possible combinationsnek is the number of message values being
voted upon. The disadvantage is that this speoulaticreases the probability of a successful
packet forgery by an attacker. During an actualquasade attack, a receiver might misinterpret
a forgery attempt as an asymmetric packet losarigrof those 2combinations. Each combina-
tion inputs to a MAC function has ab:brobability of producing a valid authenticator,avlb is
the number of MAC tag bits. Another issue is thattiple speculated combinations might result

in valid MAC tags. The receiver would then havetess which is the correct

In future work, these approaches should be andli@zensure that an attacker cannot exploit

these mechanisms to successfully inject messagerfes undetected.
8.4 Validity voting - Improving tolerance to packet loss and node failure

In this section, we propose two methods to improlerance to packet loss and node failures. If
a message carrying votes is dropped, then all gesgalues being voted upon will also be
dropped by receivers. A persistent fault could eremtly prevent any authentication of mul-

tiple message types.

The techniques in this section could also be edpib our master-slave approach using hash

tree broadcast authentication to reduce the inqpfgzacket losses and node failures.

Technique modifications and variations 210

8.4.1 Assume a fixed level of packet loss

To allow validity voting more tolerance to permanande failures, nodes could accept a valid
packet after receiving a fraction of the confirroatpackets carrying votes. However, accepting
a value with only partial confirmation from the r@$ the group increases the probability of per-

packet forgery, requiring more bits in MAC tagstimpensate.

To tolerate at most lost votes, a receiver accepts a packet as validrey as no more than
confirmation packets carrying votes are lost (frmamsient or permanent faults). If the receiver
drops more thay confirmations for a value, then the receiver drbjesvalue being voted upon
as lost. To tolerate this fixed level of packetsloa system designer will have to increase the
number of authentication bits per MAC tag or ineeghe number of messages to authenticate

over.

We do not attempt to assign a specific probabuitysuccessful forgery for this approach,

leaving this analysis for future work.

Using this approach also grants an attacker newrapwhen attempting to forge a packet.
Typically, in baseline validity voting witk voting nodes, a node must receivezalbtes before
a message can be recorded as valid. Thus, aneattaoklld have to successfully forge messages
to or from all z voting nodes. However, by expectingf thesez votes to be lost, this approach
effectively grants an attackgifree tries to forge MAC tags in a sender's injpiatket containing
the value being voted upon. The attacker firstnapiis to forge a sufficient number of tags cor-
rect in the initial value packet. The attacker te@amines the validity bits in confirmation pack-
ets containing votes to determine how many ingisésses were correct and how many more are
needed. If the attacker gets an insufficient nunddarags correct in the initial value packet, it

attempts to forge a sufficient number of the canéition packets to force the value to be ac-

Technique modifications and variations 211

cepted by the targeted receiver. The attacker oam up toy confirmation packets that indicat-
ing the initial forgery attempt for that tag failethus, a system designer will need to use more

bits per MAC tag or verify state changes and aainatover more message samples.

The benefit of this method is that the numbeawthentication rounds remains constant for
time-triggered authentication. The disadvantagthad the number of lost packets tolerated is
fixed, limiting the system to suboptimal performan@he receiver gets no benefit from any ad-
ditional confirmations past those expected. Alsanare confirmation packets are lost than the
maximum tolerated number, then the packet contgitiie value being voted upon is still rec-

orded as lost.

8.4.2 Group membership to remove sources of failure

As an additional optional service on top of autietion, we can monitor each message type
and remove those that repeatedly interfere in tteng process using group membership tech-
niques. Typically, group membership techniqueswakhogroup of nodes to agree on the subset of
those nodes which are present and operating clyr@ristian88]. For validity voting, we can
use group membership to determine the set of doaret present message types in the schedule
in addition to the sending nodes themselves. A agessype may interfere with voting if it is
repeatedly dropped or is repeatedly invalid (drgm a masquerade fault). Because the transmit-
ter of a message type might not be the sourceeofathit, nodes remove message types from va-
lidity voting as a form of task reconfiguration exftagreeing on the set of correctly operating

nodes.

The Multicomputer Architecture for Fault Toleran®dAFT) provides a group membership

service that can be used to monitor and removéyfamtssage types in addition to faulty nodes

Technique modifications and variations 212

[Kiechafer98]. In MAFT, nodes execute the memberservice at periodic intervals. To track
the faulty behaviors of other nodes, each node kégp penalty counters for each other node
based upon their message traffic. A base penalipteo (BPC) indicates the current value of
accrued penalties for every node at the point efléist membership period. An incremental pe-
nalty counter (IPC) contains a proposed penaltgssssent for each node based on detected er-
rors since the last membership period. At the begg of each membership period, all nodes
exchange and reach Byzantine agreement on thesgecowsing an Interactive Consistency al-
gorithm (e.g., [Pease80]). Once completed, eacle nothpares the new BPC values to an exclu-
sion threshold and then broadcasts a new suggesedbership. Nodes perform a second execu-

tion of the Interactive Consistency algorithm teesgupon the new membership of the group.

The IPC can be incremented for any faulty behastedimed for the system. For validity vot-
ing, a receiver could increment a message typ€selifor counter for any reason which may in-
terfere with voting. For example, the IPC couldit@emented for packet loss, invalid authenti-

cators, or disagreement with authentication refaitmnessages voted upon.

Repeatedly dropped packets of a particular mesggpgemay indicate the node that broad-
casts the message type has silently failed orgierginetwork interference against that message
type. Removing the affected message types fronvdtiag scheme would prevent those mes-

sage types from repeatedly causing other messpgs tg be lost.

Similarly, invalid authenticators might indicateparticular message type is targeted by mas-
guerade attacks or affected by persistent asymemeket losses. Removing message types that
are repeatedly invalid from the voting process pnéy additional non-targeted message types

from being repeatedly invalidated.

Technique modifications and variations 213

If a voting node repeatedly disagrees with othwess, it may indicate that the node has suf-
fered some failure. For example, it may always dath samples of some message type are
invalid, when all other voters indicate they aréidiaConversely, a majority of nodes might re-
peatedly marked the values of a message type abdrdue to masquerade faults, but one of the
voting nodes repeatedly broadcasts a positive woafion with a correct authenticator. These
two cases might also indicate a node has been coniged either to propagate message forge-

ries or create a denial of service attack.

This list of reasons to increment error countsnsdt intended to be exhaustive. There may be

other types of observable faults that would warmaotementing an error counter.

Error counters can also be maintained for eacle mocddition to message types. MAFT de-
scribes how to maintain error counters on a nodadae basis to determine which nodes are
present and operating correctly. We do not explaeking errors on a per-node basis in this

work.

Periodically, group members exchange error coanterdetermine if message types should
be removed from the voting scheme. Once nodes agehand agree upon error counters, each
node proposes a new node membership and list i#attyr operating message types. Nodes vote
to remove any node or message type whose courtee@some predefined exclusion threshold.
If a node is found to be faulty during the membgr&xchanges, the accusing nodes might also
vote to remove any message types originating fleroffending node from voting. Nodes agree
on these two lists via an Interactive Consisteriggréhm. Once completed, nodes remove any
node convicted as faulty from membership, and riéggore the number of votes to remove any

message type considered to be faulty. The groupalgib have to agree on new time-triggered

Technique modifications and variations 214

authentication parameters (bits per MAC tag and bemof message samples to authenticate

across).

The main benefit of using group membership in eoajion with validity voting is that it al-
lows a system to recover from permanent (or pensisfaults that would prevent authentication
of messages. The approach is limited in that inoardentify and remove faulty nodes or mes-
sage types immediately, and executing the memhessgnvice will require additional processing
and bandwidth. Further, the messages related thtemactive Consistency algorithm must also
be authenticated using a scheme that will provideng per-packet assurance. We leave further
analysis and implementation for further work. Teéxtion is only intended to discuss the possi-

ble benefits and limitations of applying group memdhip to validity voting.

8.4.3 Variable number of confirmations (not secure)

Allowing a variable number of confirmations is regcure. Instead of assuming a fixed number
of votes will be lost, it is tempting to allow a&ceiver to act on a variable number of votes. This
would potentially allow a receiver to act on a martr sample of a message type with more or

less assurance that it is valid, depending on timeber of positive votes received.

However, using the same attack listed above ficxeal level of packet loss, an attacker can
simply examine which forgeries on the initial paickentaining a value succeeded, and drop any
confirmation packets that contain a negative vbleis, allowing a variable number of confirma-
tion packets grants an attacker ugz feee tries to forge votes. It does not necessatibw a re-

ceiver to detect that votes were tampered with.

Technique modifications and variations 215

8.5 TESLA - Usngfewer key chains

In some systems, a system designer can perforradifgdor TESLA with respect to the number
of key chains that each node maintains. In botk saglies, we assumed that each sender would

maintain a distinct key chain for authenticatingreenessage type it broadcasts.

In the elevator control network case study, ndeddfs were possible; all nodes only broad-
cast a single message type. Thus, each node nma&dtai single key chain. In the automotive
case study, we did not have sufficient system médion to perform a tradeoff analysis to de-
termine whether one key chain per message typekeymehain per sender, or some number in
between would be best. Thus, for simplicity, weitégd our analysis to one key chain per mes-

sage type.

However, in the automotive case study, transngtfiewer keys would reduce the added
bandwidth for authentication. In Section 5.2.4, weefly discussed tradeoffs associated with
maintaining different numbers of key chains in etransmitting node. In the automotive exam-
ple, maintaining a key chain for each message itypgreased the number of packets transmitted

on the network. Using fewer key chains could eliagnmany of those extra packets.

In future work, tradeoffs related to key chainedd be performed to minimize system re-
sources consumed by authentication while also ninnmg the impacts to loss tolerance (e.g.,
avoiding batch authentication of too many messgges) and system performance in an embed-
ded control network. Perrig et al. have alreadyl@go some aspects related to using different
numbers of key chains (e.g., using different kegich to authenticate messages to receivers
consuming messages at different rates [Perrig@@ugh these analyses are not specifically fo-

cused on embedded control networks. Groza and Mg explore some tradeoffs of different

Technique modifications and variations 216

numbers of key chains, focusing on memory and @sing overhead rather than bandwidth

overhead for authentication [Grozall].
8.6 Master-dave - Using different multicast authentication techniques

The master-slave approach described in Sectiorcdn3use any multicast authentication tech-
nique to distribute the master's hash tag to a#ivers. The disadvantages of hash tree broadcast
authentication limits its suitability in embeddeohtrol network applications. In particular, hash
tree broadcast authentication has high sensitigifyacket loss, node failure, and passive receiv-
ers. The master node could use other multicasteatitfation techniques (such as OMPR or
TESLA) to attest to the authenticity of a set ofsseges. System designers can explore the tra-
deoffs associated with each technique to identifiecnique that best fits their system con-

straints.
8.7 Multipletechniqguesin one system

Lastly, it is also possible to use multiple autheatton techniques within a single network. In

Section 5, we showed that each of the multicastesatication techniques performs best depend-
ing on the system configuration (e.g., TESLA regsiimuch less bandwidth for hundreds of re-
ceivers than OMPR). Thus, it is useful to identdien one technique may be better suited to

authenticating one message type vs. another.

For example, consider a case where all messags gycept one are broadcast to one or two
receivers and require weak per-packet assurance.|lagh message requires strong per-packet
assurance and is broadcast to fifty receivers. ONPbest suited for most of the messages, re-

quiring only one or two MAC tags per packet of jadiew bits each. However, for the last mes-

Technique modifications and variations 217

sage type, TESLA can be used to provide strongppeket assurance to the large number of re-

ceivers.

In our implementations in Sections 6 and 7, weaaly use both OMPR in addition to validity

voting; OMPR is simply validity voting with zero tes.

The benefit to this approach is that it allows enefficient use of system resources. However,

using multiple multicast authentication schemes aldo increase complexity in the design.
8.8 Alternateresponseto forgery attempts

Receivers can take any appropriately safe respmnse/alid packets. Another option is to in-
crease the number of valid packets required fde sthanges or to update actuators in the event
that invalid authenticators occur. For examplethie baseline time-triggered authentication ap-
proach described in Section 3, a receiver apphek eeactive control message input if it is valid,
and takes a safe action for invalid packets. Alitrly, if an invalid packet is received, then a
receiver can wait for two consistent valid packetfore applying that input to an actuator. Simi-
larly, a state change may occur aftezonsistent packets that are valid. If an invalithantica-

tor is received, then a receiver may require mbaamh consistent packets before committing to

subsequent state change commands.
8.9 Composability with fault tolerance techniques

In this work, we have shown several ways to com@aghentication with fault tolerance tech-
niques. Assuming secure cryptographic functionsttactker can only successfully forge a MAC
tag randomly and independently of other MAC tadsskey property enables the use of many

fault tolerance techniques in conjunction with amtication.

Technique modifications and variations 218

For example, Section 3 introduces the idea ddrfitiy over multiple authenticated input sam-
ples which drive state changes and actuationsiodbedtshows how to vote on verification re-

sults of a message sample among multiple receivers.

Another approach that could be used is retransmitt value multiple times for stronger as-
surance. A receiver could verify a repeated messaggle multiple times, each with their own

authenticators to strengthen per-packet assurance.

Error detection codes can also be used in conpmatith authentication to detect non-
malicious transmission errors. Communication prooften already incorporate error detec-
tion codes. We use these error detection codesffereshtiate between malicious and non-

malicious faults affecting packets.

Section 8.4 shows an example application of grmembership to remove nodes or message
types which interfere with authentication. Howevgmqup membership protocol exchanges like-
ly require strong assurance, so an attacker cdont# a node to agree to an incorrect member-

ship list.
8.10 Summary

This chapter discusses several possible modificatiw variations of the techniques proposed in
this thesis. For OMPR, we discuss the possibilitglaring keys among groups of nodes to re-
duce authentication overhead, and tuning time-¢ngd authentication parameters on a per-
receiver and per-message type basis. For validiting, we discuss methods to improve toler-
ance to packet loss and to prevent an asymmetckep#ss from producing in invalid authenti-

cators. For TESLA, we discuss using fewer key chator master-slave, other multicast authen-

tication techniques can be used to distribute thster's confirmation of message validity. We

Technique modifications and variations 219

also discuss the possibility of combining multiphelticast authentication techniques within an
embedded control network. Finally, we discuss a#tex responses to forgery attempts and com-

posability with fault tolerance techniques.

Technique modifications and variations 220

9 Concluson

A successful masquerade attack in an embeddedotomtiwork can make a system unsafe in
nearly limitless ways; multicast authenticatiomeeded to prevent these attacks. This thesis has
presented time-triggered authentication: a new atettor efficiently authenticating periodic
messages in an embedded control network to preawaestjuerade and replay attacks. We first
apply time-triggered authentication to OMPR, ousddme multicast authentication scheme. We
then improved one MAC per receiver using validibting: a method which uses voting to make
more efficient use of authentication bandwidth educe application level latency. We also
showed how to adapt TESLA and hash tree broadedkemtication (using a trusted master
node) to time-triggered authentication, and congbatee four multicast authentication tech-
niques. We demonstrated the applicability of timggered authentication in conjunction with

each of the four techniques in two representatimbezlded control network workloads.
9.1 Thesiscontributions
To address masquerade and replay attacks in enmbeddérol networks, this thesis has made

the following contributions:

9.1.1 Time-triggered authentication ussng OMPR

This thesis first proposes time-triggered authatibn in Chapter 3. The main idea behind this
approach is that individual packets in an embedubedrol network typically do not need strong
assurances of authenticity (i.e., hundreds or #ods of authentication bits). Instead, time-

triggered authentication can provide strong syskewvel assurance of the authenticity of state

Conclusion 221

change and actuation commands by verifying multipkssage samples, each with weak per-
packet assurances of authenticity (i.e., MAC tagsdated to just a few bits).

Time-triggered authentication takes advantagéefeixisting temporal redundancy in embed-
ded control networks to enable verification acrosdtiple periodic message samples; system
state variables and sensor inputs are typicallypseafaster than the time constraints of control
stability requirements. This temporal redundan@ntg the system tolerance to transient faults.
An undetected fault affecting a single message Bampunlikely to cause the system to fail.
More likely, it will result in some vibration, slig delay in updating control outputs, or less
smooth control.

We first combine time-triggered authenticatwith OMPR, our baseline multicast authen-
tication technique. A sender computes one trundslt&@ tag for each receiver of a message. In
Chapter 3, we show that OMPR can produce autheéotgpist a few bytes in size for embedded
control networks requiring weak per-packet asswrarand few receivers. We also verified the
probability of forgery success for state-changing eeactive control message types using simu-
lated masquerade attacks.

One of the main benefits of time-triggered autloation is that it enables a tradeoff among
authentication bits per packet, application le\akmhcy, tolerance to invalid MAC tags, and
probability of induced system failure. Using OMPRargfed this approach perfect tolerance to
packet losses, node compromise, and node failure.nfain limitations are that time-triggered
authentication only provides advantage to the degfetemporal redundancy in message sam-
pling rates and the authentication overhead of OMP&es linearly with respect to per-packet

assurance and number of receivers.

Conclusion 222

9.1.2 Validity voting

We proposed validity voting as an improvement to KR The main idea behind this approach
is that forging multiple MAC tags to a group of eaers has lower probability of success than
only forging one MAC tag to a single receiver. \dély voting takes advantage of the multiple
MAC tags used in OMPR; forgery attempts on each MAgin OMPR succeed randomly and
independently of one another. This property allangroup of nodes to cross check the validity
of a message value that was authenticated to dablera using OMPR. In validity voting, each
node in the group broadcasts an authenticatedbbiitd other nodes in the group attesting to
whether a particular message value was valid ar@ote all nodes have transmitted their votes,
each node takes a unanimous vote on the authgrdfdihe message value. Using this attestation
process reduces the probability that an attack#rswecessfully forge a message value, for a
given number of MAC tag bits.

In Chapter 4, we showed how to define votes feetaof message types in a network work-
load, how to implement validity voting, and howntmdify the approach to tolerate a fixed num-
ber of compromised voters. We also model-checkésl approach using the security model
checker AVISPA. Lastly, we simulated the probabibf successful forgery using simulated at-
tacks on messages verified with one to four votes.

Validity voting adds new tradeoffs to time-triggdrauthentication. Increasing the number of
votes allows the system designer to make moreieftiaise of authentication bandwidth, either
decreasing the number of bit per MAC tag or the Ineinof message samples that must be veri-
fied over in time-triggered authentication. Howeviercreasing the number of votes also de-

creases the loss tolerance of this approach. léssage containing a vote suffers a transmission

Conclusion 223

error, a receiver also drops any message valuevdsmtoted upon. Further, a single invalid au-
thenticator will cause a receiver to reject anysages being voted upon as invalid as well.

This approach also has several limitations. Valigoting only handles a fixed number of
compromised nodes (set at design time). If the rarmbcompromised nodes exceeds this num-
ber, an attacker will have a greater probabilityso€cessfully forging messages. The baseline
version of validity voting in Chapter 4 also reqsrmodifications to address asymmetric packet

losses and node failures. These are discussedapt€is.

9.1.3 Comparisonswith TESLA and hash tree broadcast authentication

We compared OMPR and validity voting to two exigtimulticast authentication schemes that
also use symmetric authentication functions: TESIDA master-slave (hash tree broadcast au-
thentication using a trusted master). In Chaptewne first described how to apply TESLA and
master-slave in conjunction with time-triggeredheuntication. This illustrates one way to adapt
TESLA and hash tree broadcast authentication feriugan embedded control network. We then
compared these four techniques in terms of scéhahilth respect to per-packet assurance, sca-
lability with respect to number of receivers, samgy to packet loss, and tolerance to compro-
mised or failed nodes. These comparisons illustrageoffs among techniques which can be
integrated with time-triggered authentication.

In this tradeoff analysis, we showed that the tthasidwidth efficient approach depends pri-
marily on the number of receivers, and is influehte a lesser extent by per-packet assurance
levels in networks where no trusted master is abl OMPR and validity voting with few
votes are the most bandwidth efficient approacbesdtworks characterized with few receivers
and weak per-packet assurance. TESLA and validityng using many votes are the most

bandwidth efficient approaches for very large nurel® receivers or strong per-packet assur-

Conclusion 224

ance levels. A master-slave approach is also vang\Width efficient, assuming a trusted master
node is available. In this analysis we experimén@ddmonstrated that OMPR and TESLA were
least sensitive to packet losses. Master-slave theanost sensitive to packet loss; a single
transmission error can cause an entire messagelsovorth of values to be dropped. Validity
voting's sensitivity to packet loss depended onntilmaber of votes. A single transmission error
forced a receiver to drop more packets as the nuofbeotes increased. We also showed that
despite some approaches being more sensitiverisiérd packet losses, all approaches are ro-
bust and recover automatically from transient faulising hash tree broadcast authentication in
our master-slave approach also resulted in seitgitiv passive nodes; new messages must be
added for any passive receiver that does not airbemhdcast a message of its own. Lastly we
find approaches with no inter-node dependencieadibhentication, such as one MAC per re-
ceiver and TESLA, are most robust to node compresngs failures. The master node in master-

slave is a single point of failure.

9.1.4 Two case studies

We demonstrated the applicability of time-triggesdhentication in conjunction with all four
techniques using two representative network woddo#irst, we implemented these techniques
in a simulated distributed elevator control netwarld examined the impact on bandwidth and
system performance. Second, we applied these tpadsito an industry automotive workload
and examined the impacts on bandwidth.

In the elevator, we first examined each statesttem in the door controllers and drive con-
troller to determine the effects of a masqueratiehtto force or deny each transition. We iden-
tified attacks which could force the system to a&ielsafety requirements and the associated mes-

sage types that would be targeted for those attdbksidentified the minimum and maximum

Conclusion 225

time-triggered authentication parameters for pakpaassurance and number of messages to
verify over (history buffer size). We used theseapazeters to determine the additional bandwidth
required for each authentication technique. Mas®re added the least bandwidth overhead for
authentication, followed by validity voting and ORRPTESLA added the most, due to the re-
quirement to transmit key material for each messagerify. We also experimentally tested the
effects of each set of parameters on delays ie $tabsitions, and delays in average passenger
delivery times. We also applied varying levels wisnetric packet losses and examined the re-
sulting effects on state transition delays and gragsr delivery times. We observed that varying
the history buffer size created a similar delagtate transitions for all four techniques. Similar-
ly, passenger delivery times increased by appraeiydahe same amount for all techniques.
However, when applying symmetric packet losses, @\MRAd TESLA had the least increase in
state transition and delivery time delays. Thedaydeincreased correspondingly with the num-
ber of inter-packet dependencies for validity vgtiMaster-slave suffered the worst delays,
since so many packets could be lost due to a streglemission error. We also performed simu-
lated masquerade attacks to confirm the forgergesscrate matches the expectations from the
equations in Chapters 3 and 4.

In the automotive workload, message types weraelilvinto four groups: high assurance,
medium assurance, low assurance, and no authémiegtplied. For the high, medium, and low
message types we assigned failure rate requirenygital to safety-critical systems. We then
examined the authentication bandwidth overheadefwh technique as we varied the time-
triggered authentication parameters. We observatdvadidity voting had the least authentication

bandwidth overhead, followed by OMPR. Master-sleeguired additional message types to be

Conclusion 226

added to transmit MAC tags for verification of theaster's hash value. TESLA required the

highest bandwidth overhead, again, due to the katgmal being transmitted.

9.2 Futurework

This work is a first step in identifying multicagtithentication techniques that conform to em-
bedded control network design constraints. Theeesaweral paths that future work could take
from this work.

First, this work only discusses methods to provitessage authentication and data integrity;
embedded control networks will also likely requaproaches for key management, tamper re-
sistance, secrecy, privacy, access control, angeptien of denial of service.

Second, Chapter 8 discusses numerous possibildiesodifications and variations of the
techniques we used in this work. For example, fi@mtng nodes into groups for sharing authen-
tication keys might be very useful in embedded ek& where compromise of critical nodes
can be restricted in some fashion. This approadmsdar to some existing fault tolerance me-
thods [Morris03]. Also, using TESLA with fewer késansmissions could amortize authentica-
tion bandwidth overhead over multiple message types

This work also could not explore all of the pobsitesign space for embedded control net-
works. The case studies in this work were limiteetbedded control networks using the CAN
protocol. Other protocols, such as FlexRay, offeater bandwidth and may be able to tolerate
higher authentication overhead. Further, our tridmualyses focused primarily on authentica-
tion bandwidth overhead and loss tolerance. Futtoek could include analysis of processing
and memory requirements and associated impactgsbans performance. Implementations and
analyses on other systems using embedded contwbrks may also reveal new design consid-

erations specific to those types of systems.

Conclusion 227

In this work, all time-triggered authenticationdawoting parameters were selected by hand.
Many of the associated tasks could be automatedyuspls to significantly reduce the time it
takes to perform these analyses. This would becesdpeuseful for updating these parameters
during system development. For example, over masygd iterations message types might be
added or removed, senders and receivers of mebgaege might change, or system characteris-
tics could change that affect the maximum numbene$sage samples that can be authenticated
across.

Lastly, we limited our analyses to multicast aatiwation approaches that use symmetric au-
thenticators that can be truncated. One optiorfiuimre work would be to create MAC functions
that are optimized to produce outputs of just a lbéw in size (our approach throws away a ma-
jority of the MAC output). Another research pathtisexplore digital signatures or one-time
digital signatures which could produce outputsva liés in size without compromising the secu-

rity of the cryptographic functions or key material

Conclusion 228

10 References

[AVISPA12] The AVISPA Project. Retrieved April 20X8m http://avispa-project.org/.

[Azadmanesh00] M. Azadmanesh and R. Kieckhafer. Exploiting omisdaults in
synchronous approximate agreemdéBEE Transactions on Computers
49(10):1031-1042, 2000.

[BergadanoO0] F. Bergadano, D. Cavagnino, and Bp@r Individual Single-Source
Authentication on the MBONE. IRroc. of the 2000 IEEE Int’'l Conf. on
Multimedia and Expovolume 1, pp. 541-544. IEEE, 2000.

[Bosch91] R. Bosch GmbH, CAN Specification, Versihrsept. 1991.

[Brown00] M. Brown, D. Cheung, D. Hankerson, JHernandez, M. Kirkup, and A.
Menezes. PGP in constrained wireless deviceSS\M’00: Proc. of the 9th
Conf. on USENIX Security Symposjym19, Berkeley, CA, USA, 2000.
USENIX Association.

[Canetti99] R. Canetti, J. Garay, G. ltkis, D. Mamcio, M. Naor, and B. Pinkas.
Multicast security: a taxonomy and sontéi@ent constructions. In
INFOCOM "99: Proc. 18th Annual Joint Conf. of tHeHE Computer and
Communications Societiegolume 2, pp. 708-716. IEEE, 1999.

[Chan08] H. Chan and A. Perrig. Efficient secuptymitives derived from a secure
aggregation algorithm. IRroc. ACM Conf. on Computer and
Communications Securijtpp. 521-534, 2008.

[Chan10] H. Chan and A. Perrig. Round-effcient biceest authentication protocols for
fixed topology classes. IAroc. of the IEEE Symposium on Security and
Privacy, pp. 257-272, 2010.

[Chavez05] M. L. Chavez, C. H. Rosete, and F. Rirldgiez. Achieving Confidentiality
Security Service for CAN. IRONIELECOMP '05: Proc. of the 15th Int’l
Conf. on Electronics, Communications and Compuigrs166—-170. IEEE,
2005.

[Cristian88] F. Cristian. Agreeing on who is presand who is absent in a synchronous
distributed system. IRroc. of the Eighteenth Int'l Symp. on Fault-Tolera
Computing pp. 206 —211. IEEE, 1988.

[Diffie76] W. Diffie and M. Hellman. New directions in cryptograph8EE
Transactions on Information Thegmyol. 22, 1976.

References 229

[Dolev81]

[Even89]

[Ewing10]

[FIPS 180-3]

[FIPS 198-1]

[FlexRay05]

[Freescalel?]

[Franklin02]

[FUhrer0OQ]

[Ganeriwal05]

[Gennaro97]

[Grozall]

[Grozall 2]

References

D. Dolev and A. C. Yao. On the securifypablic key protocols. I'sFCS
'81: Proc. of the 22nd Annual Symp. on Foundatioh€omputer Science
pp. 350-357. IEEE, 1981.

S. Even, O. Goldreich, and S. Micali. On-ling/tbne digital signatures. In
CRYPTO '89: Proc. on Advances in cryptolpgp. 263—-275. Springer-
Verlag, 1989.

G. Ewing. Reverse Engineering a CRC Aigion. Retrieved April 2012 from
http://www.cosc.canterbury.ac.nz/greg.ewing/es$ay€)-Reverse-
Engineering.html. March 2010.

Federal Information Processing Stassl®ublication (FIPS PUB) 180-3.
Secure Hash Standard (SHS). October 2008.

Federal Information Processing Stassl®ublication (FIPS PUB) 198-1.
The Keyed-Hash Message Authentication Code (HMAGIy 2008.

FlexRay Consortium. FlexRay Communimagi System Protocol
Specification, Version 2.1, Revision A, December®00

Freescale Semiconductor. S12XD Pté&lummary Page. Retrieved April
2012 from http://www.freescale.com/.

G. Franklin, J. Powell, and A. Emama&ini. Feedback Control of Dynamic
Systems. Prentice Hall, Upper Saddle River, NJ, | 82,

T. Fuhrer, B. Miller, W. Dieterle, F. tdaich, R. Hugel and M.Walther.
Time Triggered Communication on CAN (Time Trigge@AN - TTCAN).
7th International CAN Conference (ICC), 2000.

S. Ganeriwal, S Capkun, C.-C. Hanl &h B. Srivastava. Secure time
synchronization service for sensor networksMise '05: Proc. of the 4th
ACM workshop on Wireless securipp. 97-106. ACM, 2005.

R. Gennaro and P. Rohatgi. How to Bigyital Streams. I'CRYPTO '97:
Proc. of the 17th Annual Int’l Cryptology Conf. Advances in Cryptology
pp. 180-197. Springer-Verlag, 1997.

B. Groza and P. Murvay. Higher Layer Aarttication for Broadcast in
Controller Area Networks. IBECRYPT '11: Proc. of the Int'l Conf. on
Security and Cryptographypp. 188-197. 2011.

B. Groza and P. Murvay. Secure Broddegdk One-Time Signatures in

Controller Area Networks. IARES '11: Proc. of the Int'l| Conf. on
Availability, Reliability, and Securifypp. 188-197. 2011.

230

[Herrewegell]

[HoppeO7]

[HuO03]

[IEEE610.12]

[IEC61508]

[Jakobsson02]

[Karlof04]

[Kiechafer98]

[Koopman12]

[KoopmanO05]

[Kopetz97]

[Koscher10]

[Krawczyk97]

References

A. Van Herrewege, D. Singelée, antetbauwhede. CANAuth - A Simple,
Backward Compatible Broadcast Authentication Protéar CAN bus. In
ECRYPT Workshop on Lightweight Cryptography 2@01.1.

T. Hoppe and J. Dittman. Sfmg/Replay Attacks on CAN Buses: A
simulated attack on the electric window lift cldediusing an adapted CERT
taxonomy. InProc. of the 2nd Workshop on Embedded Systemsitgecur
(WESS)2007.

Y. Hu, M. Jakobsson, and A. Perrigfi€ient constructions for one-way hash
chains. InApplied Cryptography and Network Securipyp. 423—-441, 2003.

IEEE Standard Glossary of Softwareikegring Terminology, IEEE Std
610.12-1990.

International Electrotechnical Commissi&unctional Safety of electrical /
electronic / programmable electronic systems. IEG08. 1998.

M. Jakobsson. Fractal hash sequepoesentation and traversal.Rroc. of
the IEEE Int'l Symp. on Information Theopage 437. IEEE, 2002.

C. Karlof, N. Sastry, and D. Wagner. y8ec: a link layer security
architecture for wireless sensor networksS&mnSys '04: Proc. of the 2nd
Int’l Conf. on Embedded Networked Sensor Systpmal62-175. ACM,
2004.

R. Kiechafer, C. J. Walter, A. M. RirP. M. Thambidurai. The MAFT
Architecture for Distributed Fault Tolerance. IEEEans. on Computers,
Vol. 37, No. 4, April 1988.

P. Koopman. Carnegie Mellon Universit§-649 Distributed Embedded
Systems. Retrieved April 2012 from http://www.eoeucedu/ ece649/.

P. Koopman, J. Morris, and P. Narasmi@hallenges in Deeply Networked
System SurvivabilityNATO Advanced Research Workshop on Security and
Embedded Systenmp. 57—-64, 2005.

H. Kopetz. Real-Time Systems: Desigméigles for Distributed Embedded
Applications. Kluwer Academic Publishers, Norw®IA, USA, 1997.

K. Koscher, A. Czeskis, F. RoesneR&el, T. Kohno, S. Checkoway, D.
McCoy, B. Kantor, D. Anderson, H. Sha-cham, S.gg&v Experimental
Security Analysis of a Modern Automobile, In Pro€the IEEE Symposium
on Security and Privacy, pp.447-462, 2010.

H. Krawczyk, M. Bellare, and R. CangtHMAC: Keyed Hashing for
Message Authentication,” Feb. 1997, RFC 2104.

231

[Lamport82]

[Lang07]

[Lenstra01]

[Luk06]

[Martin10]

[Menezes96]

[Miner01]

[Morris03]

[Nace02]

[Neumann56]

[Nilsson08]

[Nilsson08_2]

References

L. Lamport, R. Shostak, and M. Peade Byzantine generals problem.
ACM Trans. on Programming Languages and Systé(33:382—-401, 1982.

A. Lang, J. Dittman, S. Kiltz, and T. Happg-uture Perspectives: The car and
its IP address - A potential safety and securgl assessment. Proc. of the
26th Int'l Conf. on Computer Safety, Reliabilityda®ecurity (SAFECOMP)
2007.

A. Lenstra and E. Verheul. Selectingpg@ographic Key Sizes. Journal of
Cryptology vol. 14(no. 4):pp. 255-293, 2001.

M. Luk, A. Perrig, and B. Whillock. Severa@iinal Properties of Sensor
Network Broadcast Authentication. Rroc. of the 4th ACM Workshop on
Security of Ad Hoc and Sensor Networks. 147-156. ACM, 2006.

T. Martin, N. White, and A. Jameson. @89 Course Project: Java Simulated
Elevator Controller Implementation and Design. @ara Mellon University,
May 2010.

A. J. Menezes, P. C. van OorschotSad Vanstone, Handbook of Applied
Cryptography, CRC Press, 1996.

S. Miner and J. Staddon. Graph-Based Antication of Digital Streams. In
SP '01: Proc. of the 2001 IEEE Symposium on Seacaritl Privacy pp.
232-246, 2001.

J. Morris and P. Koopman. Critical Megsdntegrity Over A Shared
Network.5th IFAC Int'l Conf. on Fieldbus Systems and thgplications
2003.

W. Nace. Graceful Degradation via SysteigevCustomization for
Distributed Embedded Systems. Ph.D. dissertatiept.Dof Electrical and
Computer Engineering, Carnegie Mellon Universitygyw2002.

J. von Neumann. Probabilistic Logic #relSynthesis of Reliable Organisms
from Unreliable Components. In Automata Studiesn@a of Mathematics
Studies, no. 34), pp. 43-99. Princeton Univ. Pressceton NJ, USA, 1956.

D. Nilsson and U. Larson. Simulatedag&tts on CAN Buses: Vehicle virus.
5th IASTED Asian Conf. on Communication Systems\mtaorks 2008.

D. Nilsson, U. Larson, E. Jonssoriicient In-Vehicle Delayed Data

Authentication Based on Compound Message Authditdic&odes. IrProc.
of the Vehicular Technology Conferenpp, 1-5. IEEE, 2008

232

[Park02]

[Pease80]

[Perrig00]

[Perrig01]

[Perrig02]

[Ray09

[Rivest92

[Schneier95]

[Shelton03

[Shirey00]

[SuperCoupel:

[TTTech03]

[Wolf04]

[Wong98]

References

J. M. Park, E. K. P. Chong, and H. J. Siegéfident Multicast Packet
Authentication Using Signature Amortization.3® '02: Proc. of the
Symposium on Security and Privapp. 227-240. IEEE, 2002.

M. Pease, R. Shostak, L. Lamport. Regdkgneement in the Presence of
Faults. Journal of the ACM vol. 27(no. 2), April8®

A. Perrig, J. D. Tygar, D. Song, and R. Canetffidient Authentication and
Signing of Multicast Streams over Lossy Chann@$P '00: Proc. of the
2000 IEEE Symposium on Security and Privggy 56—73. IEEE, 2000.

A. Perrig. The BiBa one-time signatunel &roadcast authentication
protocol. INCCS '01: Proc. of the 8th ACM Conf. on Computer and
Communications Securjtpp. 28-37. ACM, 2001.

A. Perrig, R. Szewczyk, J. D. Tygar,Wen, and D. E. Culler. SPINS:
security protocols for sensor networkgireless Networkssol. 8(no. 5):pp.
521-534, 2002.

J. Ray, P. Koopman. Data Management Mechanisntsnfdredded Systen
Gatewaysln DSN ’'09: Proc. of the Int'l Conference on DependaBstems
and Networkspp. 175-184, 2009.

R. Rivest, "The MD5 Messa-Digest Algorithm," April 1992, RFC 132

B. Schneier. Applied Cryptography (2ad): Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, Inc., New Yok, USA, 1995.

C. Shelton. Scalable Graceful Degradation for isted Embedded Systems. Ph
dissertation, Dept. of Electrical and Computer Begring, Carnegie Mellon
University, June 2003.

R. Shirey. “Internet Security Glossariay 2000, RFC 2828.

Super Coupe Club of lowa. 0-60 and ¥4 mile timeddotory stock vehicles.
Retrieved April 2012 from http://www.albeedigitadro/
supercoupe/articles/0-60times.html.

TTTech. Time-Triggered Protocol Spectiiwa TTP/C, Version 1.1,
November 2003.

M. Wolf, A. Weimerskirch, and C. Paar. Seity in Automotive Bus
SystemsWorkshop on Embedded Security in C2@04.

C. K. Wong and S. S. Lam. Digital Signawufor Flows and Multicasts. In

ICNP '98: Proc. of the 6th Int'| Conf. on Networkd®ocols pp. 198-209.
IEEE, 1998.

233

10.1 Thesis Publications

[SzilagyiO8] C. Szilagyi and P. Koopman. A flexilgpproach to embedded network
multicast authentication. IAroc. of the 2nd Workshop on Embedded Systems
Security (WESSP008.

[Szilagyi09] C. Szilagyi and P. Koopman. Flexiblelticast authentication for time-

triggered embedded control network application®8N '09: Proc. of the
Int'l Conference on Dependable Systems and Netwpksl65—-174, 2009.

[Szilagyil0] C. Szilagyi and P. Koopman. Low cosiltitast authentication via validity
voting in time-triggered embedded control netwotkSVESS '10: Proc. of
the Workshop on Embedded Systems SecRef0.

References 234

Appendix A - Automotive networ k workload analysis data

A.1 One MAC per receiver

A.1.10neMAC per receiver - history buffer size=5 samples

Table A.1. High assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 5 samples. Tag size is 10 bits.

Message | Period | Payload | Number Total Total | Authentication | Total bits per second
ID (ms) bits of authentication | payload bits per (including CAN
receivers bits (bytes) second over head)
ID_009 10 44 8 80 16 8000 32000
ID_008 10 49 1 10 8 1000 16000
ID_047 10 49 9 90 18 9000 42000
ID_040 12 62 1 10 9 833.3333 20833.33333
ID_001 12 55 2 20 10 1666.667 21666.66667
ID_007 12 64 12 120 23 10000 39166.66667
ID_039 20 36 2 20 7 1000 7500
ID_042 20 24 1 10 5 500 6500
ID_025 25 52 1 10 8 400 6400
ID_029 25 64 1 10 10 400 10400
ID_030 25 64 4 40 13 1600 11600
ID_038 25 56 1 10 9 400 10000
ID_036 25 64 3 30 12 1200 11200
ID_074 25 16 1 10 4 400 4800
ID_046 30 52 2 20 9 666.6667 8333.333333
ID_057 30 60 2 20 10 666.6667 8666.666667
ID_076 35 52 1 10 8 285.7143 4571.428571
ID_077 35 34 1 10 6 285.7143 4000
ID_078 35 34 1 10 6 285.7143 4000
ID_058 50 33 4 40 10 800 5200
ID_081 50 45 4 40 11 800 5400
ID_061 50 46 3 30 10 600 5200
ID_098 100 37 1 10 6 100 1400
ID_060 100 12 1 10 3 100 1100
Appendix A 235

Table A.2. Medium assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 5 samples. Tag size is 8 bits.

Message | Period | Payload | Number Total Total | Authentication | Total bits per second
ID (ms) bits of authentication | payload bits per (including CAN
receivers bits (bytes) second over head)

ID_006 6 32 1 8 5 1333.333 21666.66667
ID_004 10 64 10 80 18 8000 42000
ID_005 10 64 11 88 19 8800 43000
ID_010 12 61 4 32 12 2666.667 23333.33333
ID_003 12 9 1 8 3 666.6667 9166.666667
ID_026 12 31 1 8 5 666.6667 10833.33333
ID_027 12 62 2 16 10 1333.333 21666.66667
ID_048 12 59 1 8 9 666.6667 20833.33333
ID_052 12 61 1 8 9 666.6667 20833.33333
ID_041 20 26 3 24 7 1200 7500
ID_045 20 27 1 8 5 400 6500
ID_024 20 11 5 40 7 2000 7500
ID_049 20 62 12 96 20 4800 22000
ID_028 25 16 1 8 3 320 4400
ID_033 25 45 1 8 7 320 6000
ID_106 25 17 1 8 4 320 4800
ID_031 25 54 1 8 8 320 6400
ID_034 25 62 1 8 9 320 10000
ID_035 25 57 8 64 16 2560 12800
ID_037 25 48 2 16 8 640 6400
ID_075 50 40 2 16 7 320 3000
ID_018 100 24 1 8 4 80 1200
ID_020 100 34 2 16 7 160 1500
ID_053 100 54 12 96 19 960 4300
ID_059 100 9 2 16 4 160 1200
ID_023 100 18 1 8 4 80 1200
ID_021 100 18 1 8 4 80 1200
ID_102 250 58 6 42 13 168 1160
ID_101 250 44 1 7 7 28 600
ID_083 500 16 3 21 5 42 260
ID_017 1000 17 2 18 5 18 130
ID_117 1000 45 3 21 9 21 250

Appendix A

236

Table A.3. Low assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 5 samples. Tag size is 6 bits.

Message | Period | Payload | Number Total Total | Authentication | Total bits per second
ID (ms) bits of authentication | payload bits per (including CAN
receivers bits (bytes) second over head)
ID_044 20 3 1 6 2 300 5000
ID_002 25 53 1 6 8 240 6400
ID_056 25 64 11 66 17 2640 16400
ID_082 25 60 3 18 10 720 10400
ID_032 25 1 2 12 2 480 4000
ID_054 30 16 2 12 4 400 4000
ID_088 35 16 2 12 4 342.8571 3428.571429
ID_089 35 48 3 18 3 514.2857 7142.857143
ID_084 50 36 8 48 11 960 5400
ID_085 50 36 8 48 11 960 5400
ID_087 50 28 1 6 5 120 2600
ID_043 100 6 6 36 6 360 1400
ID_013 100 57 8 48 14 480 3000
ID_016 100 9 2 12 3 120 1100
ID_022 100 47 10 60 14 600 3000
ID_080 100 40 1 6 6 60 1400
ID_113 500 56 2 10 9 20 500
ID_136 500 64 1 5 9 10 500
ID_014 1000 3 1 5 1 5 90
ID_120 1000 25 9 45 9 45 250
ID_118 1000 44 8 40 11 40 270
ID_012 5000 33 1 4 5 0.8 26
Appendix A 237

A.1.20ne MAC per receiver - history buffer size= 10 samples

Table A.4. High assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 10 samples. Tag size is 5 bits.

Message | Period | Payload | Number Total Total | Authentication | Total bits per second
ID (ms) bits of authentication | payload bits per (including CAN
receivers bits (bytes) second over head)
ID_009 10 44 8 40 11 4000 27000
ID_008 10 49 1 5 7 500 15000
ID_047 10 49 9 45 12 4500 28000
ID_040 12 62 1 5 9 416.6667 20833.33333
ID_001 12 55 2 10 9 833.3333 20833.33333
ID_007 12 64 12 60 16 5000 26666.66667
ID_039 20 36 2 10 6 500 7000
ID_042 20 24 1 5 4 250 6000
ID_025 25 52 1 5 8 200 6400
ID_029 25 64 1 5 9 200 10000
ID_030 25 64 4 20 11 800 10800
ID_038 25 56 1 5 8 200 6400
ID_036 25 64 3 15 10 600 10400
ID_074 25 16 1 5 3 200 4400
ID_046 30 52 2 10 8 333.3333 5333.333333
ID_057 30 60 2 10 9 333.3333 8333.333333
ID_076 35 52 1 5 8 142.8571 4571.428571
ID_077 35 34 1 5 5 142.8571 3714.285714
ID_078 35 34 1 5 5 142.8571 3714.285714
ID_058 50 33 4 20 7 400 3000
ID_081 50 45 4 20 9 400 5000
ID_061 50 46 3 15 8 300 3200
ID_098 100 37 1 5 6 50 1400
ID_060 100 12 1 5 3 50 1100

Appendix A

238

Table A.5. Medium assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 10 samples. Tag size is 4 bits.

Message | Period | Payload | Number Total Total | Authentication | Total bits per second
ID (ms) bits of authentication | payload bits per (including CAN
receivers bits (bytes) second over head)

ID_006 6 32 1 4 5 666.6667 21666.66667
ID_004 10 64 10 40 13 4000 29000
ID_005 10 64 11 44 14 4400 30000
ID_010 12 61 4 16 10 1333.333 21666.66667
ID_003 12 9 1 4 2 333.3333 8333.333333
ID_026 12 31 1 4 5 333.3333 10833.33333
ID_027 12 62 2 8 9 666.6667 20833.33333
ID_048 12 59 1 4 8 333.3333 13333.33333
ID_052 12 61 1 4 9 333.3333 20833.33333
ID_041 20 26 3 12 5 600 6500
ID_045 20 27 1 4 4 200 6000
ID_024 20 11 5 20 4 1000 6000
ID_049 20 62 12 48 14 2400 15000
ID_028 25 16 1 4 3 160 4400
ID_033 25 45 1 4 7 160 6000
ID_106 25 17 1 4 3 160 4400
ID_031 25 54 1 4 8 160 6400
ID_034 25 62 1 4 9 160 10000
ID_035 25 57 8 32 12 1280 11200
ID_037 25 48 2 8 7 320 6000
ID_075 50 40 2 8 6 160 2800
ID_018 100 24 1 4 4 40 1200
ID_020 100 34 2 8 6 80 1400
ID_053 100 54 12 48 13 480 2900
ID_059 100 9 2 8 3 80 1100
ID_023 100 18 1 4 3 40 1100
ID_021 100 18 1 4 3 40 1100
ID_102 250 58 6 24 11 96 1080
ID_101 250 44 1 4 6 16 560
ID_083 500 16 3 12 4 24 240
ID_017 1000 17 2 8 4 8 120
ID_117 1000 45 3 12 8 12 160

Appendix A

239

Table A.6. Low assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 10 samples. Tag size is 3 bits.

Message | Period | Payload | Number Total Total | Authentication | Total bits per second
ID (ms) bits of authentication | payload bits per (including CAN
receivers bits (bytes) second over head)
ID_044 20 3 1 3 2 1 4500
ID_002 25 53 1 3 8 7 6000
ID_056 25 64 11 33 17 13 11600
ID_082 25 60 3 9 10 9 10000
ID_032 25 1 2 6 2 1 3600
ID_054 30 16 2 6 4 3 3666.666667
ID_088 35 16 2 6 4 3 3142.857143
ID_089 35 48 3 9 3 8 4571.428571
ID_084 50 36 8 24 11 8 3200
ID_085 50 36 8 24 11 8 3200
ID_087 50 28 1 3 5 4 2400
ID_043 100 6 6 18 6 3 1100
ID_013 100 57 8 24 14 11 2700
ID_016 100 9 2 6 3 2 1000
ID_022 100 47 10 30 14 10 2600
ID_080 100 40 1 3 6 6 1400
ID_113 500 56 2 6 9 8 320
ID_136 500 64 1 3 9 9 500
ID_014 1000 3 1 3 1 1 90
ID_120 1000 25 9 27 9 7 150
ID_118 1000 44 8 24 11 9 250
ID_012 5000 33 1 3 5 5 26
Appendix A 240

A.1.30ne MAC per receiver - history buffer size= 20 samples

Table A.7. High assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 20 samples. Tag size is 3 bits.

Message | Period | Payload | Number Total Total | Authentication | Total bits per second
ID (ms) bits of authentication | payload bits per (including CAN
receivers bits (bytes) second over head)
ID_009 10 44 8 24 9 2400 25000
ID_008 10 49 1 3 7 300 15000
ID_047 10 49 9 27 10 2700 26000
ID_040 12 62 1 3 9 250 20833.33333
ID_001 12 55 2 6 8 500 13333.33333
ID_007 12 64 12 36 13 3000 24166.66667
ID_039 20 36 2 6 6 300 7000
ID_042 20 24 1 3 4 150 6000
ID_025 25 52 1 3 7 120 6000
ID_029 25 64 1 3 9 120 10000
ID_030 25 64 4 12 10 480 10400
ID_038 25 56 1 3 8 120 6400
ID_036 25 64 3 9 10 360 10400
ID_074 25 16 1 3 3 120 4400
ID_046 30 52 2 6 8 200 5333.333333
ID_057 30 60 2 6 9 200 8333.333333
ID_076 35 52 1 3 7 85.71429 4285.714286
ID_077 35 34 1 3 5 85.71429 3714.285714
ID_078 35 34 1 3 5 85.71429 3714.285714
ID_058 50 33 4 12 6 240 2800
ID_081 50 45 4 12 8 240 3200
ID_061 50 46 3 9 7 180 3000
ID_098 100 37 1 3 5 30 1300
ID_060 100 12 1 3 2 30 1000

Appendix A

241

Table A.8. Medium assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 20 samples. Tag size is 2 bits.

Message | Period | Payload | Number Total Total | Authentication | Total bits per second
ID (ms) bits of authentication | payload bits per (including CAN
receivers bits (bytes) second over head)

ID_006 6 32 1 2 5 333.3333 21666.66667
ID_004 10 64 10 20 11 2000 27000
ID_005 10 64 11 22 11 2200 27000
ID_010 12 61 4 8 9 666.6667 20833.33333
ID_003 12 9 1 2 2 166.6667 8333.333333
ID_026 12 31 1 2 5 166.6667 10833.33333
ID_027 12 62 2 4 9 333.3333 20833.33333
ID_048 12 59 1 2 8 166.6667 13333.33333
ID_052 12 61 1 2 8 166.6667 13333.33333
ID_041 20 26 3 6 4 300 6000
ID_045 20 27 1 2 4 100 6000
ID_024 20 11 5 10 3 500 5500
ID_049 20 62 12 24 11 1200 13500
ID_028 25 16 1 2 3 80 4400
ID_033 25 45 1 2 6 80 5600
ID_106 25 17 1 2 3 80 4400
ID_031 25 54 1 2 7 80 6000
ID_034 25 62 1 2 8 80 6400
ID_035 25 57 8 16 10 640 10400
ID_037 25 48 2 4 7 160 6000
ID_075 50 40 2 4 6 80 2800
ID_018 100 24 1 2 4 20 1200
ID_020 100 34 2 4 5 40 1300
ID_053 100 54 12 24 10 240 2600
ID_059 100 9 2 4 2 40 1000
ID_023 100 18 1 2 3 20 1100
ID_021 100 18 1 2 3 20 1100
ID_102 250 58 6 12 9 48 1000
ID_101 250 44 1 2 6 8 560
ID_083 500 16 3 6 3 12 220
ID_017 1000 17 2 4 3 4 110
ID_117 1000 45 3 6 7 6 150

Appendix A

242

Table A.9. Low assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 20 samples. Tag size is 2 bits.

Message | Period | Payload | Number Total Total | Authentication | Total bits per second
ID (ms) bits of authentication | payload bits per (including CAN
receivers bits (bytes) second over head)

ID_044 20 3 1 2 1 100 4500
ID_002 25 53 1 2 7 80 6000
ID_056 25 64 11 22 11 880 10800
ID_082 25 60 3 6 9 240 10000
ID_032 25 1 2 4 1 160 3600
ID_054 30 16 2 4 3 133.3333 3666.666667
ID_088 35 16 2 4 3 114.2857 3142.857143
ID_089 35 48 3 6 7 171.4286 4285.714286
ID_084 50 36 8 16 7 320 3000
ID_085 50 36 8 16 7 320 3000
ID_087 50 28 1 2 4 40 2400
ID_043 100 6 6 12 3 120 1100
ID_013 100 57 8 16 10 160 2600
ID_016 100 9 2 4 2 40 1000
ID_022 100 47 10 20 9 200 2500
ID_080 100 40 1 2 6 20 1400
ID_113 500 56 2 4 8 8 320
ID_136 500 64 1 2 9 4 500
ID_014 1000 3 1 2 1 2 90
ID_120 1000 25 9 18 6 18 140
ID_118 1000 44 8 16 8 16 160
ID_012 5000 33 1 2 5 0.4 26

Appendix A

243

A.2 Validity voting

A.2.1Validity voting - history buffer size =5 samples

Tables A.10-15 show the validity vector size (numbkEmessage types voted upon), a list of

message types each node votes upon, and which geesgate upon them. Similar tables are

provided for each history buffer size to show whicdtes were applied.

Table A.10. High assurance messages. Validity vector size (number of validity votes carried), and

message types voted upon. History buffer size of 5 samples.

Message | Period | Sender Validity Other message | Ds voted on by this message type
ID (ms) ID vector size
(bits)
ID_009 10 | ECU_05 12 ID_004, ID_005, ID_007, ID_030, ID_035, ID_036, ID_047, ID_049,
ID_058, ID_061, ID_084, ID_085
ID_008 10 ECU_07 0
ID_047 10 | ECU_07 4 ID_007, ID_009, ID_030, ID_036
ID_040 12 ECU_07 0
ID_001 12 ECU_09 0
ID_007 12 ECU_09 4 ID_010, ID_039, ID_049, ID_081
ID_039 20 | ECU 07 1 ID_037
ID_042 20 ECU_07 0
ID_025 25 ECU_02 0
ID_029 25 ECU_02 1 ID_057
ID_030 25 ECU_02 2 ID_032, ID_081
ID_038 25 ECU_07 1 ID_030
ID_036 25 ECU_09 2 ID_030, ID_046
ID_074 25 ECU_09 1 ID_057
ID_046 30 ECU_05 0
ID_057 30 | ECU_05 1 ID_081
ID_076 35 ECU_11 0
ID_077 35 ECU_11 0
ID_078 35 ECU_11 0
ID_058 50 | ECU_07 2 ID_061, ID_102
ID_081 50 ECU_07 0
ID_061 50 | ECU_13 2 ID_058, ID_084
ID_098 100 ECU_09 1 1D_102
ID_060 100 ECU_13 0

Appendix A

244

Table A.11. High assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes. History buffer size of 5 samples.

Message | Period Other message Sender Nodesthat consume vote
ID (ms) typesthat vote of vote
on this message
type
ID_009 10 ID_047 ECU_07 | ECU_04, ECU_06, ECU_09, ECU_13
ID_008 10
ID_047 10 ID_009 ECU_07 | ECU_04, ECU_06, ECU_09, ECU_13
ID_040 12
ID_001 12
ID_007 12 ID_047 ECU_07 | ECU_01, ECU_04, ECU_05, ECU_06, ECU_08, ECU_13,
ECU_14
ID_009 ECU_05 | ECU_02, ECUO03, ECU_04, ECU_06, ECU_07, ECU_11,
ECU_13
ID_039 20 ID_007 ECU 09 | ECU_11
ID_042 20
ID_025 25
ID_029 25
ID_030 25 ID_038 ECU_07 | ECU_09
ID_036 ECU_09 | ECU_05, ECU_07, ECU_11
ID_047 ECU_07 | ECU_05
ID_009 ECU_05 | ECU_07, ECU_09, ECU_11
ID_038 25
ID_036 25 ID_009 ECU_05 | ECU_07,ECU_11
ID_047 ECU_07 | ECU_05
ID_074 25
ID_046 30 ID_036 ECU 09 | ECU_11
ID_057 30 ID_074 ECU_09 | ECU_02
ID_029 ECU_02 | ECU_09
ID_076 35
ID_077 35
ID_078 35
ID_058 50 ID_061 ECU_13 | ECU_05, ECU_11
ID_009 ECU_05 | ECU_06, ECU_11,ECU_13
ID_081 50 ID_007 ECU_09 | ECU_02, ECU_04, ECU_05
ID_030 ECU_02 | ECU_05, ECU_09
ID_057 ECU_05 | ECU_02, ECU_09
ID_061 50 ID_058 ECU_07 | ECU_05, ECU_11
ID_009 ECU_05 | ECU_07,ECU_11
ID_098 100
ID_060 100

Appendix A

245

Table A.12. Medium assurance messages. Validity vector size (humber of validity votes carried),

and message types voted upon.

History buffer size of 5 samples.

Message | Period | Sender Validity Other message | Ds voted on by this message type
ID (ms) ID vector size (hits)

ID_006 6 ECU_02 1 ID_027
ID_004 10 ECU_07 1
ID_005 10 ECU_07 0
ID_010 12 ECU_02 1 ID_041
ID_003 12 ECU_09 0
ID_026 12 ECU_09 0
ID_027 12 ECU_09 0
ID_048 12 ECU_09 0
ID_052 12 ECU_09 0
ID_041 20 ECU_04 0
ID_045 20 ECU_04 1 ID_075
ID_024 20 ECU_07 1 ID_088
ID_049 20 ECU_07 6 ID_032, ID_035, ID_041, ID_053, ID_056, ID_082
ID_028 25 ECU_02 0
ID_033 25 ECU_02 0
ID_106 25 ECU_05 0
ID_031 25 ECU_09 0
ID_034 25 ECU_09 0
ID_035 25 ECU_09 1 ID_053
ID_037 25 ECU_09 0
ID_075 50 ECU_09 0
ID_018 100 ECU_05 0
ID_020 100 ECU_05 1 ID_059
ID_053 100 ECU_05 1 1D_022
ID_059 100 ECU_06 1 ID_022
ID_023 100 ECU_07 0
ID_021 100 ECU_08 1 ID_059
ID_102 250 | ECU_05 2 ID_083, ID_120
ID_101 250 ECU_08 0
ID_083 500 ECU_06 1 ID_120
ID_017 1000 | ECU_O5 1 ID_120
ID_117 1000 | ECU_O5 1 ID_118

Appendix A

246

Table A.13. Medium assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes

. History buffer size of 5 samples.

Message | Period | Other message | Sender Nodes that consume vote
ID (ms) typesthat vote | of vote
on this message
type
ID_006 6
ID_004 10 ID_009 ECU_05 | ECU_02, ECU_04, ECU_06, ECU_09, ECU_13
ID_005 10 ID_009 ECU_05 | ECU_02, ECU_04, ECU_06, ECU_09, ECU_13
ID_010 12 ID_004 ECU_07 | ECU_04, ECU_06, ECU_09
ID_007 ECU_09 | ECU_04, ECU_06, ECU_07
ID_003 12
ID_026 12
ID_027 12 ID_006 ECU_02 | ECU_04
ID_048 12
ID_052 12
ID_041 20 ID_049 ECU_07 | ECU_02, ECU_11
ID_010 ECU_02 | ECU_07
ID_045 20
ID_024 20
ID_049 20 ID_007 ECU_09 | ECU_01, ECU_02, ECU_03, ECU_04, ECU_05, ECU_06, ECU_08,
ECU_11, ECU_13, ECU_14
ID_009 ECU_05 | ECU_02, ECU_03, ECU_04, ECU_06, ECU_09, ECU_11, ECU_13
ID_028 25
ID_033 25
ID_106 25
ID_031 25
ID_034 25
ID_035 25 ID_049 ECU_07 | ECU_04, ECU_05, ECU_06, ECU_08, ECU_11, ECU_13, ECU_14
ID_009 ECU_05 | ECU_04, ECU_06, ECU_07, ECU_11, ECU_13
ID_037 25 ID_039 ECU_07 | ECU_11
ID_075 50 ID_045 ECU_04 | ECU_07
ID_018 100
ID_020 100
ID_053 100 ID_049 ECU_07 | ECU_01, ECU_02, ECU_03, ECU_04, ECU_06, ECU_09, ECU_11,
ECU_12, ECU_13, ECU_14
ID_035 ECU_09 | ECU_04, ECU_05, ECU_06, ECU_07, ECU_11, ECU_13, ECU_14
ID_059 100 ID_021 ECU_08 | ECU_05
ID_020 ECU_05 | ECU_08
ID_023 100
ID_021 100
ID_102 250 ID_058 {7 to
4,6,13}
ID_098 {13 to 7}
ID_101 250
ID_083 500 ID_102 {5to 7}
ID_017 1000
ID_117 1000

Appendix A

247

Table A.14. Low assurance messages. Validity vector size (number of validity votes carried), and

message types voted upon. History buffer size of 5 samples.

Message | Period | Sender Validity Other message | Ds voted on by this message type
ID (ms) ID vector size (hits)

ID_044 20 ECU_04 0

ID_002 25 ECU_02 1 ID_054

ID_056 25 ECU_02 2 ID_013, ID_089
ID_082 25 ECU_06 0

ID_032 25 ECU_09 1 ID_054

ID_054 30 ECU_05 1 ID_089

ID_088 35 ECU_11 0

ID_089 35 ECU_11 0

ID_084 50 ECU_07 0

ID_085 50 ECU_07 0

ID_087 50 ECU_07 0

ID_043 100 ECU_04 1 ID_022

ID_013 100 ECU_05 1 1D_043

ID_016 100 ECU_05 0

ID_022 100 | ECU_07 2 ID_013, ID_043
ID_080 100 ECU_07 0

ID_113 500 ECU_09 0

ID_136 500 ECU_09 0

ID_014 1000 | ECU_O5 1 ID_120

ID_120 1000 | ECU_O7 1 ID_118

ID_118 1000 | ECU_09 0

ID_012 5000 | ECU_05 0

Appendix A

248

Table A.15. Low assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes

. History buffer size of 5 samples.

Message | Period | Other message | Sender Nodes that consume vote
ID (ms) typesthat vote | of vote
on this message
type
ID_044 20
ID_002 25
ID_056 25 ID_049 ECU_07 | ECU_01, ECU_04, ECU_05, ECU_06, ECU_08, ECU_09, ECU_11,
ECU_12, ECU_13, ECU_14
ID_082 25 ID_049 ECU_07 | ECU_01
ID_032 25 ID_049 ECU_07 | ECU_02
ID_030 ECU_02 | ECU_07
ID_054 30 ID_032 ECU_09 | ECU_02
ID_002 ECU_02 | ECU_09
ID_088 35 ID_024 ECU_07 | ECU_05
ID_089 35 ID_054 ECU_02 | ECU_05, ECU_07
ID_056 ECU_05 | ECU_02
ID_084 50 ID_061 ECU_13 | ECU_05, ECU_11
ID_009 ECU_05 | ECU_03, ECU_04, ECU_06, ECU_11, ECU_13
ID_085 50 ID_009 ECU_05 | ECU_03, ECU_04, ECU_06, ECU_11, ECU_13
ID_087 50
ID_043 100 ID_013 ECU_05 | ECU_02, ECU_07, ECU_09, ECU_11
ID_022 ECU_06 | ECU_07, ECU_08, ECU_11
ID_013 100 ID_022 ECU_01, ECU_06, ECU_10, ECU_11, ECU_13
ID_056 ECU_02 | ECU_01, ECU_06, ECU_07, ECU_09, ECU_11, ECU_13
ID_016 100
ID_022 100 ID_053 ECU_05 | ECU_01, ECU_03, ECU_04, ECU_06, ECU_10, ECU_11, ECU_12,
ECU_13, ECU_14
ID_059 ECU_06 | ECU_05, ECU_08
ID_043 ECU_04 | ECU_05, ECU_08, ECU_11
ID_080 100
ID_113 500
ID_136 500
ID_014 1000
ID_120 | 1000 ID_102 ECU_05 | ECU_04, ECU_06, ECU_13, ECU_14
ID_014 ECU_05 | ECU_10
ID_017 ECU_05 | ECU_11
ID_083 ECU_06 | ECU_05, ECU_08
ID_118 | 1000 ID_120 ECU_07 | ECU_04, ECU_05, ECU_10, ECU_11, ECU_12, ECU_13
ID_117 ECU_05 | ECU_02, ECU_04
ID_012 5000

Appendix A

249

Tables A.16-18 show the bandwidth consumed by eaetsage type for a history buffer size of five slaspusing validity voting.
Votes were applied as per Tables A.10-15.

Table A.16. High assurance message bandwidth consumption for validity voting. History buffer size is 5 samples.

M essage | Period | Payload | Validity Tag sizefor each receiver (bits) Total Total |Authentication| Total bits
ID (ms) bits | vector authentication | payload bits per per second
bits [1]|2|3|4|5|6/7|8|9|10(11|12(13|14 bits (bytes) second
ID_009 10 44 12 10(10| 6 6|10 6 10 6 76 15 7600 31000
ID_008 10 49 0 10 10 8 1000 16000
ID_047 10 49 4 10 6 |10|6 10| 6 10| 6 |10 78 16 7800 32000
ID_040 12 62 0 10 10 9 833.3333 20833.33333
ID_001 12 55 0 10 10 20 10 1666.667 21666.66667
ID_007 12 64 4 6|6|6|4|6|4/6]|6 10| 6 416 74 18 6166.667 35000
ID_039 20 36 1 10 6 17 7 850 7500
1D_042 20 24 0 10 10 5 500 6500
ID_025 25 52 0 10 10 8 400 6400
ID_029 25 64 1 10 11 10 440 10400
ID_030 25 64 2 4 4 4 4 18 11 720 10800
ID_038 25 56 1 10 11 9 440 10000
ID_036 25 64 2 6 6 6 20 11 800 10800
ID_074 25 16 1 10 11 4 440 4800
ID_046 30 52 0 10 6 16 9 533.3333 8333.333333
ID_057 30 60 1 6 6 13 10 433.3333 8666.666667
ID_076 35 52 0 10 10 8 285.7143 4571.428571
ID_077 35 34 0 10 10 6 285.7143 4000
ID_078 35 34 0 10 10 6 285.7143 4000
ID_058 50 33 2 6 |6 4 6 24 8 480 3200
ID_081 50 45 0 4 6|4 4 18 8 360 3200
ID_061 50 46 2 6 6 4 18 8 360 3200
ID_098 100 37 1 10 11 6 110 1400
ID_060 100 12 0 10 10 3 100 1100

Appendix A 250

Table A.17. Medium assurance message bandwidth consumption for validity voting. History buffer size is 5 samples.

Message| Period | Payload | Validity Tag sizefor each receiver (bits) Total Total |Authentication| Total bits
ID (ms) bits | vector authentication | payload bits per per second
bits 3|4|5(6|7|8(9|10|11|12|13|14 bits (bytes) second
ID_006 6 32 1 8 9 6 1500 23333.33333
ID_004 10 64 1 5|85 8|5(8 8 |5 |8 66 17 6600 41000
ID_005 10 64 0 5|85 815(8 8 |5 |8 73 18 7300 42000
ID_010 12 61 1 4 4|5 5 19 10 1583.333 21666.66667
ID_003 12 9 0 8 3 666.6667 9166.666667
ID_026 12 31 0 8 5 666.6667 10833.33333
ID_027 12 62 0 5 13 10 1083.333 21666.66667
ID_048 12 59 0 8 8 9 666.6667 20833.33333
ID_052 12 61 0 8 8 9 666.6667 20833.33333
ID_041 20 26 0 5 5 15 6 750 7000
ID_045 20 27 1 8 9 5 450 6500
ID_024 20 11 1 8|8 8 |8 41 7 2050 7500
ID_049 20 62 6 5/4(5|4 5|5 4 18 |4 |5 65 16 3250 16000
ID_028 25 16 0 8 8 3 320 4400
ID_033 25 45 0 8 8 7 320 6000
ID_106 25 17 0 8 8 4 320 4800
ID_031 25 54 0 8 8 320 6400
ID_034 25 62 0 8 9 320 10000
ID_035 25 57 1 4|5|4(5|5 4 4 |5 37 12 1480 11200
ID_037 25 48 0 8 5 13 8 520 6400
ID_075 50 40 0 8 5 13 7 260 3000
ID_018 100 24 0 8 4 80 1200
ID_020 100 34 1 8|8 17 7 170 1500
ID_053 100 54 1 5|4 4|4 5|8 |4 |5 |4 |4 58 14 580 3000
ID_059 100 9 1 5 5 11 3 110 1100
ID_023 100 18 0 8 8 4 80 1200
ID_021 100 18 1 8 9 4 90 1200
ID_102 250 58 2 5 5|5 8 5 1|8 38 12 152 1120
ID_101 250 44 0 8 8 7 32 600
ID_083 500 16 1 8 5|8 22 5 44 260
ID_017 | 1000 17 1 8 17 5 17 130
ID_117 | 1000 45 1 8 8 25 9 25 250

Appendix A

251

Table A.18. Low assurance message bandwidth consumption for validity voting. History buffer size is 5 samples.

Message| Period | Payload | Validity Tag sizefor each receiver (bits) Total Total |Authentication| Total bits
ID (ms) bits | vector authentication | payload bits per per second
bits 3|4|5(6|7|8(9|10|11|12|13|14 bits (bytes) second
ID_044 20 3 0 6 6 2 300 5000
ID_002 25 53 1 6 7 8 280 6400
ID_056 25 64 2 4|/4|416|4|4 4 |4 (14]|4 48 14 1920 12000
ID_082 25 60 0 6 10 9 400 10000
ID_032 25 1 1 4 9 2 360 4000
ID_054 30 16 1 4 9 4 300 4000
ID_088 35 16 0 4 6 10 4 285.7143 3428.571429
ID_089 35 48 0 4 4 12 8 342.8571 4571.428571
ID_084 50 36 0 414144 316|146 35 9 700 5000
ID_085 50 36 0 414|164 4/6(4]|6 38 10 760 5200
ID_087 50 28 0 6 6 5 120 2600
ID_043 100 6 1 4 41414 3 24 4 240 1200
ID_013 100 57 1 3|4 414 1|3 3 31 11 310 2700
ID_016 100 9 0 6 6 12 3 120 1100
ID_022 100 47 2 414|134 3 4131414 39 11 390 2700
ID_080 100 40 0 6 6 6 60 1400
ID_113 500 56 0 6 6 12 9 24 500
ID_136 500 64 0 6 9 12 500
ID_014 | 1000 3 1 6 7 2 7 100
ID_120 | 1000 25 1 44|14 4 414164 |4 39 8 39 160
ID_118 | 1000 44 0 3|4 6 414144 33 10 33 260
ID_012 | 5000 33 0 6 6 5 1.2 26
Appendix A 252

A.2.1Validity voting - history buffer size = 10 samples

Table A.19. High assurance messages. Validity vector size (humber of validity votes carried), and

message types voted upon. History buffer size of 10 samples.

Message | Period | Sender Validity Other message | Ds voted on by this message type
ID (ms) ID vector size (hits)
ID_009 10 ECU_05 7 ID_004, ID_005, ID_007, ID_035, ID_036, ID_047,
ID_008 10 ECU_07 0
ID_047 10 ECU_07 2 ID_007, ID_009
ID_040 12 ECU_07 0
ID_001 12 ECU_09 0
ID_007 12 ECU_09 4 ID_010, ID_039, ID_049, ID_081
ID_039 20 ECU_07 0
ID_042 20 ECU_07 0
ID_025 25 ECU_02 0
ID_029 25 ECU_02 1 ID_057
ID_030 25 ECU_02 0
ID_038 25 ECU_07 1 ID_030
ID_036 25 ECU_09 2 ID_030, ID_046
ID_074 25 ECU_09 1 ID_057
ID_046 30 ECU_05 0
ID_057 30 ECU_05 1 ID_081
ID_076 35 ECU_11 0
ID_077 35 ECU_11 0
ID_078 35 ECU_11 0
ID_058 50 ECU_07 1 ID_061
ID_081 50 ECU_07 0
ID_061 50 ECU_13 2 ID_058, ID_084
ID_098 100 ECU_09 0
ID_060 100 ECU_13 0

Appendix A

253

Table A.20. High assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes. History buffer size of 10 samples.

Message | Period Other message Sender Nodesthat consume vote
ID (ms) typesthat vote of vote
on this message
type
ID_009 10 ID_047 ECU_07 | ECU_04, ECU_06, ECU_09, ECU_13
ID_008 10
ID_047 10 ID_009 ECU_07 | ECU_04, ECU_06, ECU_09, ECU_13
ID_040 12
ID_001 12
ID_007 12 ID_047 ECU_07 | ECU_01, ECU_04, ECU_05, ECU_06, ECU_08, ECU_13,
ECU_14
ID_009 ECU_05 | ECU_02, ECUO03, ECU_04, ECU_06, ECU_07, ECU_11,
ECU_13
ID_039 20 ID_007 ECU 09 | ECU_11
ID_042 20
ID_025 25
ID_029 25
ID_030 25 ID_038 ECU_07 | ECU_09
ID_036 ECU_09 | ECU_05, ECU_07, ECU_11
ID_038 25
ID_036 25 ID_009 ECU_05 | ECU_07,ECU_11
ID_074 25
ID_046 30 ID_036 ECU 09 | ECU_11
ID_057 30 ID_074 ECU_09 | ECU_02
ID_029 ECU_02 | ECU_09
ID_076 35
ID_077 35
ID_078 35
ID_058 50 ID_061 ECU_13 | ECU_05, ECU_11
ID_081 50 ID_007 ECU_09 | ECU_02, ECU_04, ECU_05
ID_057 ECU_05 | ECU_02, ECU_09
ID_061 50 ID_058 ECU_07 | ECU_05, ECU_11
ID_009 ECU_05 | ECU_07,ECU_11
ID_098 100
ID_060 100

Appendix A

254

Table A.21. Medium assurance messages. Validity vector size (humber of validity votes carried),

and message types voted upon. History buffer size of 10 samples.

Message | Period | Sender Validity Other message | Ds voted on by this message type
ID (ms) ID vector size (hits)

ID_006 6 ECU_02 0

ID_004 10 ECU_07 1 ID_010
ID_005 10 ECU_07 0

ID_010 12 ECU_02 0

ID_003 12 ECU_09 0

ID_026 12 ECU_09 0

ID_027 12 ECU_09 0

ID_048 12 ECU_09 0

ID_052 12 ECU_09 0

ID_041 20 ECU_04 0

ID_045 20 ECU_04 0

ID_024 20 ECU_07 0

ID_049 20 ECU_07 4 ID_035, ID_041, ID_053
ID_028 25 ECU_02 0

ID_033 25 ECU_02 0

ID_106 25 ECU_05 0

ID_031 25 ECU_09 0

ID_034 25 ECU_09 0

ID_035 25 ECU_09 1 ID_053
ID_037 25 ECU_09 0

ID_075 50 ECU_09 0

ID_018 100 ECU_05 0

ID_020 100 ECU_05 0

ID_053 100 ECU_05 1 1D_022
ID_059 100 ECU_06 1 ID_022
ID_023 100 ECU_07 0

ID_021 100 ECU_08 0

ID_102 250 ECU_05 0

ID_101 250 ECU_08 0

ID_083 500 ECU_06 0

ID_017 1000 | ECU_O5 0

ID_117 1000 | ECU_O5 0

Appendix A

255

Table A.22. Medium assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes. History buffer size of 10 samples.

Message | Period | Other message | Sender Nodes that consume vote
ID (ms) typesthat vote | of vote
on this message
type
ID_006 6
ID_004 10 ID_009 ECU_05 | ECU_02, ECU_04, ECU_06, ECU_09, ECU_13
ID_005 10 ID_009 ECU_05 | ECU_02, ECU_04, ECU_06, ECU_09, ECU_13
ID_010 12 ID_004 ECU_07 | ECU_04, ECU_06, ECU_09
ID_007 ECU_09 | ECU_04, ECU_06, ECU_07
ID_003 12
ID_026 12
ID_027 12
ID_048 12
ID_052 12
ID_041 20 ID_049 ECU_07 | ECU_02, ECU_11
ID_045 20
ID_024 20
ID_049 20 ID_007 ECU_09 | ECU_01, ECU_02, ECU_03, ECU_04, ECU_05, ECU_06, ECU_08,
ECU_11, ECU_13, ECU_14
ID_009 ECU_05 | ECU_02, ECU_03, ECU_04, ECU_06, ECU_09, ECU_11, ECU_13
ID_028 25
ID_033 25
ID_106 25
ID_031 25
ID_034 25
ID_035 25 ID_049 ECU_07 | ECU_04, ECU_05, ECU_06, ECU_08, ECU_11, ECU_13, ECU_14
ID_009 ECU_05 | ECU_04, ECU_06, ECU_07, ECU_11, ECU_13
ID_037 25
ID_075 50
ID_018 100
ID_020 100
ID_053 100 ID_049 ECU_07 | ECU_01, ECU_02, ECU_03, ECU_04, ECU_06, ECU_09, ECU_11,
ECU_12, ECU_13, ECU_14
ID_035 ECU_09 | ECU_04, ECU_05, ECU_06, ECU_07, ECU_11, ECU_13, ECU_14
ID_059 100
ID_023 100
ID_021 100
ID_102 250
ID_101 250
ID_083 500
ID_017 1000
ID_117 1000

Appendix A

256

Table A.23. Low assurance messages. Validity vector size (number of validity votes carried), and

message types voted upon. History buffer size of 10 samples.

Message | Period | Sender Validity Other message | Ds voted on by this message type
ID (ms) ID vector size (hits)

ID_044 20 ECU_04 0

ID_002 25 ECU_02 0

ID_056 25 ECU_02 0

ID_082 25 ECU_06 0

ID_032 25 ECU_09 0

ID_054 30 ECU_05 1 ID_089
ID_088 35 ECU_11 0

ID_089 35 ECU_11 0

ID_084 50 ECU_07 0

ID_085 50 ECU_07 0

ID_087 50 ECU_07 0

ID_043 100 ECU_04 0

ID_013 100 ECU_05 1 1D_043
ID_016 100 ECU_05 0

ID_022 100 | ECU_07 2 ID_013, ID_043
ID_080 100 ECU_07 0

ID_113 500 ECU_09 0

ID_136 500 ECU_09 0

ID_014 1000 | ECU_O5 0

ID_120 1000 | ECU_O7 1 ID_118
ID_118 1000 | ECU_09 0

ID_012 5000 | ECU_05 0

Appendix A

257

Table A.24. Low assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes. History buffer size of 10 samples.

Message | Period | Other message | Sender Nodes that consume vote
ID (ms) typesthat vote | of vote
on this message

type
ID_044 20
ID_002 25
ID_056 25 ID_049 ECU_07 | ECU_01, ECU_04, ECU_05, ECU_06, ECU_08, ECU_09, ECU_11,

ECU_12, ECU_13, ECU_14

ID_082 25
ID_032 25
ID_054 30
ID_088 35
ID_089 35 ID_054 ECU_02 | ECU_05, ECU_07
ID_084 50 ID_061 ECU_13 | ECU_05, ECU_11
ID_085 50
ID_087 50
ID_043 100 ID_013 ECU_05 | ECU_02, ECU_07, ECU_09, ECU_11

ID_022 ECU_06 | ECU_07, ECU_08, ECU_11
ID_013 100 ID_022 ECU_01, ECU_06, ECU_10, ECU_11, ECU_13
ID_016 100
ID_022 100 ID_053 ECU_05 | ECU_01, ECU_03, ECU_04, ECU_06, ECU_10, ECU_11, ECU_12,

ECU_13, ECU_14

ID_059 ECU_06 | ECU_05, ECU_08
ID_080 100
ID_113 500
ID_136 500
ID_014 1000
ID_120 1000
ID_118 | 1000 ID_120 ECU_07 | ECU_04, ECU_05, ECU_10, ECU_11, ECU_12, ECU_13
ID_012 5000

Appendix A

258

Tables A.25-27 show the bandwidth consumed by eae$sage type for a history buffer size of ten segplsing validity voting.
Votes were applied as per Tables A.19-24.

Table A.25. High assurance message bandwidth consumption for validity voting. History buffer size is 10 samples.

M essage| Period | Payload | Validity Tag sizefor each receiver (bits) Total Total |Authentication| Total bits
ID (ms) bits | vector authentication | payload bits per per second
bits [1]2|3|4(|5|6|7(8|9|10(11|12|13|14 bits (bytes) second
ID_009 10 44 7 5(5(3 3|5 3 5 3 39 11 3900 27000
ID_008 10 49 0 5 5 7 500 15000
ID_047 10 49 2 5 3|5(3 5|3 5{3]|5 39 11 3900 27000
ID_040 12 62 0 5 5 9 416.6667 20833.33333
ID_001 12 55 0 5 5 10 9 833.3333 20833.33333
ID_007 12 64 4 31313|3|3(3|3]|3 5|3 3|13 42 14 3500 25000
ID_039 20 36 0 5 3 8 6 400 7000
1D_042 20 24 0 5 5 4 250 6000
ID_025 25 52 0 5 5 8 200 6400
ID_029 25 64 1 5 6 9 240 10000
ID_030 25 64 0 3 3 3 3 12 10 480 10400
ID_038 25 56 1 5 6 8 240 6400
ID_036 25 64 2 5 3 3 13 10 520 10400
ID_074 25 16 1 5 6 3 240 4400
ID_046 30 52 0 5 3 8 8 266.6667 5333.333333
ID_057 30 60 1 3 3 7 9 233.3333 8333.333333
ID_076 35 52 0 5 5 8 142.8571 4571.428571
ID_077 35 34 0 5 5 5 142.8571 3714.285714
ID_078 35 34 0 5 5 5 142.8571 3714.285714
ID_058 50 33 1 3|5 3 5 17 7 340 3000
ID_081 50 45 0 3 3|3 3 12 8 240 3200
ID_061 50 46 2 3 5 3 13 8 260 3200
ID_098 100 37 0 5 5 6 50 1400
ID_060 100 12 0 5 5 3 50 1100

Appendix A 259

Table A.26. Medium assurance message bandwidth consumption for validity voting. History buffer size is 10 samples.

Message| Period | Payload | Validity Tag sizefor each receiver (bits) Total Total |Authentication| Total bits
ID (ms) bits | vector authentication | payload bits per per second
bits 3|4|5(6|7|8(9|10|11|12|13|14 bits (bytes) second
ID_006 6 32 0 4 4 5 666.6667 21666.66667
ID_004 10 64 1 3143 4|3 4 41314 36 13 3600 29000
ID_005 10 64 0 31413 4|3| 4 41314 39 13 3900 29000
ID_010 12 61 0 i 2|3 3 10 9 833.3333 20833.33333
ID_003 12 9 0 4 2 333.3333 8333.333333
ID_026 12 31 0 4 5 333.3333 10833.33333
ID_027 12 62 0 4 8 9 666.6667 20833.33333
ID_048 12 59 0 4 4 8 333.3333 13333.33333
ID_052 12 61 0 4 4 9 333.3333 20833.33333
ID_041 20 26 0 4 3 10 5 500 6500
ID_045 20 27 0 4 4 4 200 6000
ID_024 20 11 0 4|4 4 | 4 20 4 1000 6000
ID_049 20 62 4 212(3|2 3|3 214123 34 12 1700 14000
ID_028 25 16 0 4 4 3 160 4400
ID_033 25 45 0 4 4 7 160 6000
ID_106 25 17 0 4 4 3 160 4400
ID_031 25 54 0 4 8 160 6400
ID_034 25 62 0 4 9 160 10000
ID_035 25 57 1 2|3(2|3|3 2 2|3 21 10 840 10400
ID_037 25 48 0 4 4 8 7 320 6000
ID_075 50 40 0 4 4 8 6 160 2800
ID_018 100 24 0 4 4 40 1200
ID_020 100 34 0 414 8 6 80 1400
ID_053 100 54 1 3|2 2|3 31412322 33 11 330 2700
ID_059 100 9 1 4 4 9 3 90 1100
ID_023 100 18 0 4 4 3 40 1100
ID_021 100 18 0 4 4 3 40 1100
ID_102 250 58 0 4 4|4 4 4|4 24 11 96 1080
ID_101 250 44 0 4 4 6 16 560
ID_083 500 16 0 4 414 12 4 24 240
ID_017 | 1000 17 0 4 8 4 8 120
ID_117 | 1000 45 0 4 4 12 8 12 160

Appendix A

260

Table A.27. Low assurance message bandwidth consumption for validity voting. History buffer size is 10 samples.

Message| Period | Payload | Validity Tag sizefor each receiver (bits) Total Total |Authentication| Total bits
ID (ms) bits | vector authentication | payload bits per per second
bits 3|4|5(6|7|8(9|10|11|12|13|14 bits (bytes) second
ID_044 20 3 0 3 3 1 150 4500
ID_002 25 53 0 3 3 7 120 6000
ID_056 25 64 0 212(2(3|2]2 2121212 23 11 920 10800
ID_082 25 60 0 313 9 9 360 10000
ID_032 25 1 0 3 6 1 240 3600
ID_054 30 16 1 3 7 3 233.3333 3666.666667
ID_088 35 16 0 3 3 6 3 171.4286 3142.857143
ID_089 35 48 0 2 2 7 7 200 4285.714286
ID_084 50 36 0 313(2(3 213|313 22 8 440 3200
ID_085 50 36 0 313(3|3 313|133 24 8 480 3200
ID_087 50 28 0 3 3 4 60 2400
ID_043 100 6 0 2 20122 2 12 3 120 1100
ID_013 100 57 1 2|3 3122 2 20 10 200 2600
ID_016 100 9 0 3 3 6 2 60 1000
ID_022 100 47 2 2(2(2|2 2 212|2|2 22 9 220 2500
ID_080 100 40 0 3 3 6 30 1400
ID_113 500 56 0 3 3 6 8 12 320
ID_136 500 64 0 3 9 6 500
ID_014 | 1000 3 0 3 3 1 3 90
ID_120 | 1000 25 1 3133 3 313(13(3]3 28 7 28 150
ID_118 | 1000 44 0 2|2 3 212|122 18 8 18 160
ID_012 | 5000 33 0 3 3 5 0.6 26

Appendix A

261

A.2.3 Validity voting - history buffer size = 20 samples

Tables A.28-33 show the validity vector size (numbkEmessage types voted upon), a list of

message types each node votes upon, and whichgeessate upon them.

Table A.28. High assurance messages. Validity vector size (nhumber of validity votes carried), and

message types voted upon. History buffer size of 20 samples.

Message | Period | Sender Validity Other message | Ds voted on by this message type
ID (ms) ID vector size (hits)

ID_009 10 | ECU 05 2 ID_007, ID_047,
ID_008 10 | ECU_07

ID_047 10 | ECU_07 2 ID_007, ID_009
ID_040 12 ECU_07

ID_001 12 ECU_09

ID_007 12 ECU_09

ID_039 20 | ECU_07

ID_042 20 | ECU_07

ID_025 25 ECU_02

ID_029 25 ECU_02

ID_030 25 ECU_02

ID_038 25 ECU_07

ID_036 25 ECU_09 1 ID_030

ID_074 25 ECU_09

ID_046 30 | ECU_05

ID_057 30 | ECU_O5 1 ID_081

ID_076 35 ECU_11

ID_077 35 ECU_11

ID_078 35 ECU_11

ID_058 50 | ECU_07 1 ID_061

ID_081 50 | ECU_07

ID_061 50 | ECU_13 1 ID_058

ID_098 100 ECU_09

ID_060 100 ECU_13

Appendix A

262

Table A.29. High assurance messages. Message types, nodes that vote upon them, nodes that

receive those votes. History buffer size of 20 samples.

Message | Period Other message Sender Nodesthat consume vote
ID (ms) typesthat vote of vote
on this message
type
ID_009 10 ID_047 ECU_07 | ECU_04, ECU_06, ECU_09, ECU_13
ID_008 10
ID_047 10 ID_009 ECU_07 | ECU_04, ECU_06, ECU_09, ECU_13
ID_040 12
ID_001 12
ID_007 12 ID_047 ECU_07 | ECU_01, ECU_04, ECU_05, ECU_06, ECU_08, ECU_13,
ECU_14
ID_009 ECU_05 | ECU_02, ECUO03, ECU_04, ECU_06, ECU_07, ECU_11,
ECU_13
ID_039 20
ID_042 20
ID_025 25
ID_029 25
ID_030 25 ID_036 ECU_09 | ECU_05, ECU_07, ECU_11
ID_038 25
ID_036 25
ID_074 25
ID_046 30
ID_057 30
ID_076 35
ID_077 35
ID_078 35
ID_058 50 ID_061 ECU_13 | ECU_05, ECU_11
ID_081 50 ID_057 ECU_05 | ECU_02, ECU_09
ID_061 50 ID_058 ECU_07 | ECU_05, ECU_11
ID_098 100
ID_060 100

Appendix A

263

Table A.30. Medium assurance messages. Validity vector size (humber of validity votes carried),

and message types voted upon. History buffer size of 20 samples.

Message | Period | Sender Validity Other message | Ds voted on by this message type
ID (ms) ID vector size (hits)

ID_006 6 ECU_02

ID_004 10 | ECU_07

ID_005 10 | ECU_07

ID_010 12 | ECU_02

ID_003 12 | ECU_09

ID_026 12 | ECU_09

ID_027 12 | ECU_09

ID_048 12 | ECU_09

ID_052 12 | ECU_09

ID_041 20 | ECU 04

ID_045 20 | ECU_04

ID_024 20 | ECU_0O7

ID_049 20 | ECU_07

ID_028 25 | ECU_02

ID_033 25 | ECU_02

ID_106 25 ECU_05 These messages do not vote on others.
ID_031 25 ECU_09 Voting did not reduce bandwidth.
ID_034 25 | ECU_09

ID_035 25 | ECU_09

ID_037 25 | ECU_09

ID_075 50 | ECU_09

ID_018 100 ECU_05

ID_020 100 ECU_05

ID_053 100 ECU_05

ID_059 100 ECU_06

ID_023 100 ECU_07

ID_021 100 ECU_08

ID_102 250 ECU_05

ID_101 250 ECU_08

ID_083 500 ECU_06

ID_017 1000 | ECU_O5

ID_117 1000 | ECU_O5

Appendix A

264

Table A.31. Medium assurance messages. Message types, nodes that vote upon them, nodes that

Appendix A

receive those votes. History buffer size of 20 samples.

Message | Period Other message Sender | Nodesthat consume vote
ID (ms) typesthat vote of vote
on this messagetype
ID_006 6
ID_004 10
ID_005 10
ID_010 12
ID_003 12
ID_026 12
ID_027 12
ID_048 12
ID_052 12
ID_041 20
ID_045 20
ID_024 20
ID_049 20
ID_028 25
ID_033 25
ID_106 25 No messages voted on this message type.
ID_031 25 Voting did not reduce bandwidth.
ID_034 25
ID_035 25
ID_037 25
ID_075 50
ID_018 100
ID_020 100
ID_053 100
ID_059 100
ID_023 100
ID_021 100
ID_102 250
ID_101 250
ID_083 500
ID_017 1000
ID_117 1000

265

Table A.32. Low assurance messages. Validity vector size (number of validity votes carried), and

message types voted upon. History buffer size of 20 samples.

Message | Period | Sender Validity Other message | Ds voted on by this message type
ID (ms) ID vector size (hits)

ID_044 20 | ECU 04

ID_002 25 | ECU_02

ID_056 25 | ECU_02

ID_082 25 | ECU_06

ID_032 25 | ECU_09

ID_054 30 | ECU_O5

ID_088 35 | ECU_11

ID_089 35 | ECU_11

ID_084 50 | ECU_O7

ID_085 50 | ECU_07

ID_087 50 ECU_07 These messages do not vote on others.
ID_043 100 ECU_04 Voting did not reduce bandwidth.
ID_013 100 ECU_05

ID_016 100 ECU_05

ID_022 100 ECU_07

ID_080 100 ECU_07

ID_113 500 ECU_09

ID_136 500 ECU_09

ID_014 1000 | ECU_O5

ID_120 1000 | ECU_O7

ID_118 1000 | ECU_09

ID_012 5000 | ECU_05

Appendix A

266

Table A.33. Low assurance messages. Message types, nodes that vote upon them, nodes that

Appendix A

receive those votes. History buffer size of 20 samples.

Message | Period Other message Sender | Nodesthat consume vote
ID (ms) typesthat vote of vote
on this messagetype
ID_044 20
ID_002 25
ID_056 25
ID_082 25
ID_032 25
ID_054 30
ID_088 35
ID_089 35
ID_084 50
ID_085 50
ID_087 50 No messages voted on this message type.
ID_043 100 Voting did not reduce bandwidth.
ID_013 100
ID_016 100
ID_022 100
ID_080 100
ID_113 500
ID_136 500
ID_014 1000
ID_120 1000
ID_118 1000
ID_012 5000

267

Tables A.34-36 show the bandwidth consumed by ssedsage type for a history buffer size of twenty@as, using validity voting.

Votes were applied as per Tables A.28-33.

Table A.34. High assurance message bandwidth consumption for validity voting. History buffer size is 20 samples.

M essage| Period | Payload | Validity Tag sizefor each receiver (bits) Total Total |Authentication| Total bits
ID (ms) bits | vector authentication | payload bits per per second
bits 3|4|5(6|7|8(9|10|11|12|13|14 bits (bytes) second
ID_009 10 44 7 3|2 2|3 2 3 2 22 9 2200 25000
ID_008 10 49 0 3 3 7 300 15000
ID_047 10 49 2 2|32 3|2 3123 25 10 2500 26000
ID_040 12 62 0 3 3 9 250 20833.33333
ID_001 12 55 0 3 6 8 500 13333.33333
ID_007 12 64 4 212(2|2|2|2 3|12 2|2 25 12 2083.333 23333.33333
ID_039 20 36 0 3 3 6 6 300 7000
1D_042 20 24 0 3 3 4 150 6000
ID_025 25 52 0 3 3 7 120 6000
ID_029 25 64 1 3 3 9 120 10000
ID_030 25 64 0 2 2 3 2 9 10 360 10400
ID_038 25 56 1 3 3 8 120 6400
ID_036 25 64 2 3 3 3 10 10 400 10400
ID_074 25 16 1 3 3 120 4400
ID_046 30 52 0 3 3 6 8 200 5333.333333
ID_057 30 60 1 3 7 9 233.3333 8333.333333
ID_076 35 52 0 3 3 7 85.71429 4285.714286
ID_077 35 34 0 3 3 5 85.71429 3714.285714
ID_078 35 34 0 3 3 5 85.71429 3714.285714
ID_058 50 33 1 2|3 2 3 11 6 220 2800
ID_081 50 45 0 3|3 2 10 7 200 3000
ID_061 50 46 2 2 3 2 8 7 160 3000
ID_098 100 37 0 3 3 5 30 1300
ID_060 100 12 0 3 3 2 30 1000
Appendix A 268

Table A.35. Medium assurance message bandwidth consumption for validity voting. History buffer size is 20 samples.

Message| Period | Payload | Validity Tag sizefor each receiver (bits) Total Total |Authentication| Total bits
ID (ms) bits | vector authentication | payload bits per per second
bits 3|4|5(6|7|8(9|10|11|12|13|14 bits (bytes) second
ID_006 6 32 0 i 2 5 333.3333 21666.66667
ID_004 10 64 0 2122 2|22 2122 20 11 2000 27000
ID_005 10 64 0 2122 212)2 2122 22 11 2200 27000
ID_010 12 61 0 i 2|2 2 8 9 666.6667 20833.33333
ID_003 12 9 0 2 2 166.6667 8333.333333
ID_026 12 31 0 2 5 166.6667 10833.33333
ID_027 12 62 0 2 4 9 333.3333 20833.33333
ID_048 12 59 0 2 2 8 166.6667 13333.33333
ID_052 12 61 0 2 2 8 166.6667 13333.33333
ID_041 20 26 0 2 2 6 4 300 6000
ID_045 20 27 0 2 2 4 100 6000
ID_024 20 11 0 2|2 2|2 10 3 500 5500
ID_049 20 62 0 212(2|2 2|2 212122 24 11 1200 13500
ID_028 25 16 0 2 2 3 80 4400
ID_033 25 45 0 2 2 6 80 5600
ID_106 25 17 0 2 2 3 80 4400
ID_031 25 54 0 2 7 80 6000
ID_034 25 62 0 2 8 80 6400
ID_035 25 57 0 2|12(2|2]|2 2 2|2 16 10 640 10400
ID_037 25 48 0 2 2 4 7 160 6000
ID_075 50 40 0 2 2 4 6 80 2800
ID_018 100 24 0 2 4 20 1200
ID_020 100 34 0 2|2 4 5 40 1300
ID_053 100 54 0 2|2 2|2 2022222 24 10 240 2600
ID_059 100 9 0 2 2 4 2 40 1000
ID_023 100 18 0 2 2 3 20 1100
ID_021 100 18 0 2 2 3 20 1100
ID_102 250 58 0 2 2|2 2 2|2 12 9 48 1000
ID_101 250 44 0 2 2 6 8 560
ID_083 500 16 0 2 2|2 6 3 12 220
ID_017 | 1000 17 0 2 4 3 4 110
ID_117 | 1000 45 0 2 2 6 7 6 150

Appendix A

269

Table A.36. Low assurance message bandwidth consumption for validity voting. History buffer size is 20 samples.

Message| Period | Payload | Validity Tag sizefor each receiver (bits) Total Total |Authentication| Total bits
ID (ms) bits | vector authentication | payload bits per per second
bits 3|4|5(6|7|8(9|10|11|12|13|14 bits (bytes) second
ID_044 20 3 0 2 2 1 100 4500
ID_002 25 53 0 2 2 7 80 6000
ID_056 25 64 0 212(2(2|2]2 2121212 22 11 880 10800
ID_082 25 60 0 2|2 6 9 240 10000
ID_032 25 1 0 2 4 1 160 3600
ID_054 30 16 0 2 4 3 133.3333 3666.666667
ID_088 35 16 0 2 2 4 3 114.2857 3142.857143
ID_089 35 48 0 2 2 6 7 171.4286 4285.714286
ID_084 50 36 0 2(2(2|2 2121212 16 7 320 3000
ID_085 50 36 0 2(2(2|2 212|122 16 7 320 3000
ID_087 50 28 0 2 2 4 40 2400
ID_043 100 6 0 2 20122 2 12 3 120 1100
ID_013 100 57 0 2|2 2122 2 16 10 160 2600
ID_016 100 9 0 2 2 4 2 40 1000
ID_022 100 47 0 2(2(2|2 2 212|2|2 20 9 200 2500
ID_080 100 40 0 2 2 6 20 1400
ID_113 500 56 0 2 2 4 8 8 320
ID_136 500 64 0 2 9 4 500
ID_014 | 1000 3 0 2 2 1 2 90
ID_120 | 1000 25 0 2122 2 212222 18 6 18 140
ID_118 | 1000 44 0 2|2 2 212|122 16 8 16 160
ID_012 | 5000 33 0 2 2 5 0.4 26

Appendix A

270

A3TESLA

A.3.1TESLA - history buffer size =5 samples

Table A.37. High assurance messages authenticated with TESLA. Message type, period,

authentication overhead. History buffer size is 5 samples. Tag size is 10 bits. Key size is 80 bits.

Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second
ID_009 10 44 90 17 9000 41000
ID_008 10 49 90 18 9000 42000
ID_047 10 49 90 18 9000 42000
ID_040 12 62 90 19 7500 35833.33333
ID_001 12 55 90 19 7500 35833.33333
ID_007 12 64 90 20 7500 36666.66667
ID_039 20 36 90 16 4500 16000
ID_042 20 24 90 15 4500 15500
ID_025 25 52 90 18 3600 16800
ID_029 25 64 90 20 3600 17600
ID_030 25 64 90 20 3600 17600
ID_038 25 56 90 19 3600 17200
ID_036 25 64 90 20 3600 17600
ID_074 25 16 90 14 3600 12000
ID_046 30 52 90 18 3000 14000
ID_057 30 60 90 19 3000 14333.33333
ID_076 35 52 90 18 2571 12000
ID_077 35 34 90 16 2571 9142.857143
ID_078 35 34 90 16 2571 9142.857143
ID_058 50 33 90 16 1800 6400
ID_081 50 45 90 17 1800 8200
ID_061 50 46 90 17 1800 8200
ID_098 100 37 90 16 900 3200
ID_060 100 12 90 13 900 2900

Appendix A

271

Table A.38. Medium assurance messages authenticated with TESLA. Message type, period,

authentication overhead. History buffer size is 5 samples. Tag size is 8 bits. Key size is 80 bits.

Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second

ID_006 6 32 88 15 14667 51666.66667
ID_004 10 64 88 19 8800 43000
ID_005 10 64 88 19 8800 43000
ID_010 12 61 88 19 7333 35833.33333
ID_003 12 9 88 13 7333 24166.66667
ID_026 12 31 88 15 7333 25833.33333
ID_027 12 62 88 19 7333 35833.33333
ID_048 12 59 88 19 7333 35833.33333
ID_052 12 61 88 19 7333 35833.33333
ID_041 20 26 88 15 4400 15500
ID_045 20 27 88 15 4400 15500
ID_024 20 11 88 13 4400 14500
ID_049 20 62 88 19 4400 21500
ID_028 25 16 88 13 3520 11600
ID_033 25 45 88 17 3520 16400
ID_106 25 17 88 14 3520 12000
ID_031 25 54 88 18 3520 16800
ID_034 25 62 88 19 3520 17200
ID_035 25 57 88 19 3520 17200
ID_037 25 48 88 17 3520 16400
ID_075 50 40 88 16 1760 6400
ID_018 100 24 88 14 880 3000
ID_020 100 34 88 16 880 3200
ID_053 100 54 88 18 880 4200
ID_059 100 9 88 13 880 2900
ID_023 100 18 88 14 880 3000
ID_021 100 18 88 14 880 3000
ID_102 250 58 88 19 352 1720
ID_101 250 44 88 17 352 1640
ID_083 500 16 88 13 176 580
ID_017 1000 17 88 14 88 300
ID_117 1000 45 88 17 88 410

Appendix A

272

Table A.39. Low assurance messages authenticated with TESLA. Message type, period,

authentication overhead. History buffer size is 5 samples. Tag size is 6 bits. Key size is 80 bits.

Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second

ID_044 20 3 86 12 4300 14000
ID_002 25 53 86 18 3440 16800
ID_056 25 64 86 19 3440 17200
ID_082 25 60 86 19 3440 17200
ID_032 25 1 86 11 3440 10800
ID_054 30 16 86 13 2867 9666.666667
ID_088 35 16 86 13 2457 8285.714286
ID_089 35 48 86 17 2457 11714.28571
ID_084 50 36 86 16 1720 6400
ID_085 50 36 86 16 1720 6400
ID_087 50 28 86 15 1720 6200
ID_043 100 6 86 12 860 2800
ID_013 100 57 86 18 860 4200
ID_016 100 9 86 12 860 2800
ID_022 100 47 86 17 860 4100
ID_080 100 40 86 16 860 3200
ID_113 500 56 86 18 172 840
ID_136 500 64 86 19 172 860
ID_014 1000 3 86 12 86 280
ID_120 1000 25 86 14 86 300
ID_118 1000 44 86 17 86 410
ID_012 5000 33 86 15 17 62

Appendix A

273

A.3.2TESLA - history buffer size=10 samples

Table A.40. High assurance messages authenticated with TESLA. Message type, period,

authentication overhead. History buffer size is 10 samples. Tag size is 5 bits. Key size is 80 bits.

Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second
ID_009 10 44 85 17 8500 41000
ID_008 10 49 85 17 8500 41000
ID_047 10 49 85 17 8500 41000
ID_040 12 62 85 19 7083 35833.33333
ID_001 12 55 85 18 7083 35000
ID_007 12 64 85 19 7083 35833.33333
ID_039 20 36 85 16 4250 16000
ID_042 20 24 85 14 4250 15000
ID_025 25 52 85 18 3400 16800
ID_029 25 64 85 19 3400 17200
ID_030 25 64 85 19 3400 17200
ID_038 25 56 85 18 3400 16800
ID_036 25 64 85 19 3400 17200
ID_074 25 16 85 13 3400 11600
ID_046 30 52 85 18 2833 14000
ID_057 30 60 85 19 2833 14333.33333
ID_076 35 52 85 18 2429 12000
ID_077 35 34 85 15 2429 8857.142857
ID_078 35 34 85 15 2429 8857.142857
ID_058 50 33 85 15 1700 6200
ID_081 50 45 85 17 1700 8200
ID_061 50 46 85 17 1700 8200
ID_098 100 37 85 16 850 3200
ID_060 100 12 85 13 850 2900

Appendix A

274

Table A.41. Medium assurance messages authenticated with TESLA. Message type, period,

authentication overhead. History buffer size is 10 samples. Tag size is 4 bits. Key size is 80 bits.

Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second

ID_006 6 32 84 15 14000 51666.66667
ID_004 10 64 84 19 8400 43000
ID_005 10 64 84 19 8400 43000
ID_010 12 61 84 19 7000 35833.33333
ID_003 12 9 84 12 7000 23333.33333
ID_026 12 31 84 15 7000 25833.33333
ID_027 12 62 84 19 7000 35833.33333
ID_048 12 59 84 18 7000 35000
ID_052 12 61 84 19 7000 35833.33333
ID_041 20 26 84 14 4200 15000
ID_045 20 27 84 14 4200 15000
ID_024 20 11 84 12 4200 14000
ID_049 20 62 84 19 4200 21500
ID_028 25 16 84 13 3360 11600
ID_033 25 45 84 17 3360 16400
ID_106 25 17 84 13 3360 11600
ID_031 25 54 84 18 3360 16800
ID_034 25 62 84 19 3360 17200
ID_035 25 57 84 18 3360 16800
ID_037 25 48 84 17 3360 16400
ID_075 50 40 84 16 1680 6400
ID_018 100 24 84 14 840 3000
ID_020 100 34 84 15 840 3100
ID_053 100 54 84 18 840 4200
ID_059 100 9 84 12 840 2800
ID_023 100 18 84 13 840 2900
ID_021 100 18 84 13 840 2900
ID_102 250 58 84 18 336 1680
ID_101 250 44 84 16 336 1280
ID_083 500 16 84 13 168 580
ID_017 1000 17 84 13 84 290
ID_117 1000 45 84 17 84 410

Appendix A

275

Table A.42. Low assurance messages authenticated with TESLA. Message type, period,

authentication overhead. History buffer size is 10 samples. Tag size is 3 bits. Key size is 80 bits.

Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second

ID_044 20 3 86 11 4150 13500
ID_002 25 53 86 17 3320 16400
ID_056 25 64 86 19 3320 17200
ID_082 25 60 86 18 3320 16800
ID_032 25 1 86 11 3320 10800
ID_054 30 16 86 13 2767 9666.666667
ID_088 35 16 86 13 2371 8285.714286
ID_089 35 48 86 17 2371 11714.28571
ID_084 50 36 86 15 1660 6200
ID_085 50 36 86 15 1660 6200
ID_087 50 28 86 14 1660 6000
ID_043 100 6 86 12 830 2800
ID_013 100 57 86 18 830 4200
ID_016 100 9 86 12 830 2800
ID_022 100 47 86 17 830 4100
ID_080 100 40 86 16 830 3200
ID_113 500 56 86 18 166 840
ID_136 500 64 86 19 166 860
ID_014 1000 3 86 11 83 270
ID_120 1000 25 86 14 83 300
ID_118 1000 44 86 16 83 320
ID_012 5000 33 86 15 17 62

Appendix A

276

A.3.3TESLA - history buffer size =20 samples

Table A.43. High assurance messages authenticated with TESLA. Message type, period,

authentication overhead. History buffer size is 20 samples. Tag size is 3 bits. Key size is 80 bits.

Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second
ID_009 10 44 83 16 8300 32000
ID_008 10 49 83 17 8300 41000
ID_047 10 49 83 17 8300 41000
ID_040 12 62 83 19 6917 35833.33333
ID_001 12 55 83 18 6917 35000
ID_007 12 64 83 19 6917 35833.33333
ID_039 20 36 83 15 4150 15500
ID_042 20 24 83 14 4150 15000
ID_025 25 52 83 17 3320 16400
ID_029 25 64 83 19 3320 17200
ID_030 25 64 83 19 3320 17200
ID_038 25 56 83 18 3320 16800
ID_036 25 64 83 19 3320 17200
ID_074 25 16 83 13 3320 11600
ID_046 30 52 83 17 2767 13666.66667
ID_057 30 60 83 18 2767 14000
ID_076 35 52 83 17 2371 11714.28571
ID_077 35 34 83 15 2371 8857.142857
ID_078 35 34 83 15 2371 8857.142857
ID_058 50 33 83 15 1660 6200
ID_081 50 45 83 16 1660 6400
ID_061 50 46 83 17 1660 8200
ID_098 100 37 83 15 830 3100
ID_060 100 12 83 12 830 2800

Appendix A

277

Table A.44. Medium assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 20 samples. Tag size is 2 bits. Key size is 80

bits.
Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second

ID_006 6 32 82 15 13667 51666.66667
ID_004 10 64 82 19 8200 43000
ID_005 10 64 82 19 8200 43000
ID_010 12 61 82 18 6833 35000
ID_003 12 9 82 12 6833 23333.33333
ID_026 12 31 82 15 6833 25833.33333
ID_027 12 62 82 18 6833 35000
ID_048 12 59 82 18 6833 35000
ID_052 12 61 82 18 6833 35000
ID_041 20 26 82 14 4100 15000
ID_045 20 27 82 14 4100 15000
ID_024 20 11 82 12 4100 14000
ID_049 20 62 82 18 4100 21000
ID_028 25 16 82 13 3280 11600
ID_033 25 45 82 16 3280 12800
ID_106 25 17 82 13 3280 11600
ID_031 25 54 82 17 3280 16400
ID_034 25 62 82 18 3280 16800
ID_035 25 57 82 18 3280 16800
ID_037 25 48 82 17 3280 16400
ID_075 50 40 82 16 1640 6400
ID_018 100 24 82 14 820 3000
ID_020 100 34 82 15 820 3100
ID_053 100 54 82 17 820 4100
ID_059 100 9 82 12 820 2800
ID_023 100 18 82 13 820 2900
ID_021 100 18 82 13 820 2900
ID_102 250 58 82 18 328 1680
ID_101 250 44 82 16 328 1280
ID_083 500 16 82 13 164 580
ID_017 1000 17 82 13 82 290
ID_117 1000 45 82 16 82 320

Appendix A

278

Table A.45. Low assurance messages authenticated with one MAC per receiver. Message type,

period, authentication overhead. History buffer size is 20 samples. Tag size is 2 bits. Key size is 80

bits.
Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second
ID_044 20 3 82 11 4100 13500
ID_002 25 53 82 17 3280 16400
ID_056 25 64 82 19 3280 17200
ID_082 25 60 82 18 3280 16800
ID_032 25 1 82 11 3280 10800
ID_054 30 16 82 13 2733 9666.666667
ID_088 35 16 82 13 2343 8285.714286
ID_089 35 48 82 17 2343 11714.28571
ID_084 50 36 82 15 1640 6200
ID_085 50 36 82 15 1640 6200
ID_087 50 28 82 14 1640 6000
ID_043 100 6 82 11 820 2700
ID_013 100 57 82 18 820 4200
ID_016 100 9 82 12 820 2800
ID_022 100 47 82 17 820 4100
ID_080 100 40 82 16 820 3200
ID_113 500 56 82 18 164 840
ID_136 500 64 82 19 164 860
ID_014 1000 3 82 11 82 270
ID_120 1000 25 82 14 82 300
ID_118 1000 44 82 16 82 320
ID_012 5000 33 82 15 16 62

Appendix A

279

A.4 Master-dave

Tables A.46-48 define the message types in whidesanclude the MAC tags for verification

of the master node's hash tree broadcast authiemsica

Table A.46. High assurance message types that carry tags for verifying hash-tree broadcast

authenticators.

Sender | Message | Period | Added message
ID ID (ms) type?

ECU 01 | ID_A_01 | 100 Y
ECU_02 | ID_025 25
ECU 03 | ID_A_03 | 100
ECU_04 | ID_A_04 20
ECU_05 | ID_009 10
ECU_06 | ID_A_06 25
ECU_07 | ID_008 10
ECU_08 | ID_A_08 | 100
ECU_09 | ID_001 12
ECU_10 | ID_A_10 12
ECU_11 | ID_076 35
ECU_12 | ID_A_12 | 1000
ECU_13 | ID_061 50
ECU_14 | ID_A_14 | 1000

<|z|<|z|<|z|<|zZ|<|zZ|<|<]|z

Table A.47. Medium assurance message types that carry tags for verifying hash-tree broadcast

authenticators.

Sender | Message | Period | Added message
ID ID (ms) type?
ECU 01 | ID B.O1 | 100 Y
ECU_02 | ID_006 6 N
ECU_03 | ID_B_03 | 100 Y
ECU_0O4 | ID_041 20 N
ECU_O5 | ID_106 25 N
ECU_06 | ID_059 100 N
ECU_O07 | ID_004 10 N
ECU_08 | ID_021 100 N
ECU_09 | ID_003 12 N
ECU_10 | ID_B_10 12 Y
ECU_11 | ID_B_11 35 Y
ECU_12 | ID_B_12 | 1000 Y
ECU 13 | ID_B_13 10 Y
ECU_14 | ID_B_14 | 1000 Y

Appendix A 280

Table A.48. Low assurance message types that carry tags for verifying hash-tree broadcast

Appendix A

authenticators.

Sender | Message | Period | Added message
ID ID (ms) type?
ECUO1 | ID.C 01 | 100 Y
ECU_02 | I1D_002 25 N
ECU 03 | ID.C_ 03 | 100 Y
ECU_O4 | ID_044 20 N
ECU_O5 | ID_054 30 N
ECU_06 | ID_082 25 N
ECU_07 | ID_084 50 N
ECU 08 | ID_C_ 08 | 100 Y
ECU_09 | ID_032 25 N
ECU_10 | ID_C_10 12 Y
ECU_11 | ID_088 35 N
ECU_12 | ID_C_12 | 1000 Y
ECU_13 | ID_C_13 50 Y
ECU_ 14 | ID_C_14 | 1000 Y

281

A.4.1 Master-dave - history buffer sze=5 samples

Table A.49. High assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 5 samples. Tag size is 11 bits.

Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second
1D_009 10 44 22 9 2200 25000
ID_008 10 49 22 9 2200 25000
1D_047 10 49 11 8 1100 16000
ID_040 12 62 11 10 917 21666.66667
1D_001 12 55 22 10 1833 21666.66667
ID_007 12 64 11 10 917 21666.66667
1D_039 20 36 11 6 550 7000
1D_042 20 24 11 5 550 6500
ID_025 25 52 22 10 880 10400
1D_029 25 64 11 10 440 10400
ID_030 25 64 11 10 440 10400
ID_038 25 56 11 9 440 10000
ID_036 25 64 11 10 440 10400
ID_074 25 16 11 4 440 4800
ID_046 30 52 11 2 367 3333.333333
ID_057 30 60 11 9 367 8333.333333
ID_076 35 52 22 10 629 7428.571429
ID_077 35 34 11 6 314 4000
ID_078 35 34 11 6 314 4000
ID_058 50 33 11 6 220 2800
1D_081 50 45 11 7 220 3000
ID_061 50 46 22 9 440 5000
ID_098 100 37 11 6 110 1400
ID_060 100 12 11 3 110 1100
ID_A_Mstr 10 1 11 2 1100 10000
ID_A_01 10 0 11 P 110 1000
ID_A_03 10 0 11 2 110 1000
ID_A_04 10 0 11 P 550 5000
ID_A_06 10 0 11 2 440 4000
ID_A_08 10 0 11 2 110 1000
ID_A_10 12 0 11 2 917 8333.333333
ID_A_12 10 0 11 2 11 100
ID_A_14 10 0 11 2 11 100

Appendix A

282

Table A.50. Medium assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 5 samples. Tag size is 9 bits.

Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second
ID_006 6 32 18 7 3000 25000
ID_004 10 64 18 11 1800 27000
ID_005 10 64 9 10 900 26000
ID_010 12 61 9 9 750 20833.33333
ID_003 12 9 18 4 1500 10000
ID_026 12 31 9 5 750 10833.33333
ID_027 12 62 9 9 750 20833.33333
ID_048 12 59 9 9 750 20833.33333
ID_052 12 61 9 9 750 20833.33333
ID_041 20 26 18 6 900 7000
ID_045 20 27 9 5 450 6500
ID_024 20 11 9 3 450 5500
ID_049 20 62 9 9 450 12500
ID_028 25 16 9 4 360 4800
ID_033 25 45 9 7 360 6000
ID_106 25 17 18 5 720 5200
ID_031 25 54 9 8 360 6400
ID_034 25 62 9 9 360 10000
ID_035 25 57 9 9 360 10000
ID_037 25 48 9 8 360 6400
ID_075 50 40 9 7 180 3000
ID_018 100 24 9 5 90 1300
ID_020 100 34 9 6 90 1400
ID_053 100 54 9 8 90 1600
ID_059 100 9 18 4 180 1200
ID_023 100 18 9 4 90 1200
ID_021 100 18 18 5 180 1300
ID_102 250 58 9 9 36 1000
ID_101 250 44 9 7 36 600
ID_083 500 16 9 4 18 240
ID_017 1000 17 9 4 9 120
ID_117 1000 45 9 7 9 150
ID B Mstr | 10 1 9 2 900 10000
ID_B_01 10 0 9 2 90 1000
ID_B_03 20 0 9 2 90 1000
ID_B_10 10 0 9 2 750 8333.333333
ID_B_11 20 0 9 2 257 2857.142857
ID_B_12 10 0 9 2 9 100
ID_B_13 10 0 9 2 180 2000
ID_B_14 10 0 9 2 9 100

Appendix A

283

Table A.51. Low assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 5 samples. Tag size is 7 bits.

Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second
ID_044 20 3 14 3 700 5500
1D_002 25 53 14 9 560 10000
ID_056 25 64 7 9 280 10000
1D_082 25 60 14 10 560 10400
ID_032 25 1 14 2 560 4000
ID_054 30 16 14 4 467 4000
ID_088 35 16 14 4 400 3428.571429
1D_089 35 48 7 1 200 2571.428571
ID_084 50 36 14 7 280 3000
1D_085 50 36 7 6 140 2800
ID_087 50 28 7 5 140 2600
ID_043 100 6 7 2 70 1000
ID_013 100 57 7 1 70 900
ID_016 100 9 7 2 70 1000
1D_022 100 47 7 7 70 1500
1D_080 100 40 7 6 70 1400
1D_113 500 56 7 8 14 320
ID_136 500 64 7 9 14 500
ID_014 1000 3 7 2 7 100
ID_120 1000 25 7 4 7 120
ID_118 1000 44 7 7 7 150
ID_012 5000 33 7 5 1 26
ID_C_Mstr 20 1 7 1 350 4500
ID_C_01 25 0 7 1 70 900
ID_C_03 50 0 7 1 70 900
ID_C_08 25 0 7 1 70 900
ID_C_10 100 0 7 1 583 7500
ID_C_12 25 0 7 1 7 90
ID_C_13 25 0 7 1 140 1800
ID_C_14 25 0 7 1 7 90

Appendix A

284

A.4.2 Master-dave - history buffer size= 10 samples

Table A.52. High assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 10 samples. Tag size is 6 bits.

Message | Period | Payload Total Total | Authentication | Total bits per second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second
ID_009 10 44 12 7 1200 15000
ID_008 10 49 12 8 1200 16000
1D_047 10 49 6 7 600 15000
1D_040 12 62 6 9 500 20833.33333
ID_001 12 55 12 9 1000 20833.33333
ID_007 12 64 6 9 500 20833.33333
ID_039 20 36 6 6 300 7000
1D_042 20 24 6 4 300 6000
ID_025 25 52 12 8 480 6400
ID_029 25 64 6 9 240 10000
ID_030 25 64 6 9 240 10000
ID_038 25 56 6 8 240 6400
ID_036 25 64 6 9 240 10000
ID_074 25 16 6 3 240 4400
ID_046 30 52 6 1 200 3000
ID_057 30 60 6 9 200 8333.333333
ID_076 35 52 12 8 343 4571.428571
ID_077 35 34 6 5 171 3714.285714
ID_078 35 34 6 5 171 3714.285714
ID_058 50 33 6 5 120 2600
1D_081 50 45 6 7 120 3000
ID_061 50 46 12 8 240 3200
1D_098 100 37 6 6 60 1400
ID_060 100 12 6 3 60 1100
ID_A_Mstr 10 1 6 1 600 9000
ID_A_01 10 0 6 1 60 900
ID_A_03 10 0 6 1 60 900
ID_A_04 10 0 6 1 300 4500
ID_A_06 10 0 6 1 240 3600
ID_A_08 10 0 6 1 60 900
ID_A_10 12 0 6 1 500 7500
ID_A_12 10 0 6 1 6 90
ID_A_14 10 0 6 1 6 90

Appendix A

285

Table A.53. Medium assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 10 samples. Tag size is 5 bits.

Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second
ID_006 6 32 10 6 1667 23333.33333
ID_004 10 64 10 10 1000 26000
ID_005 10 64 5 9 500 25000
ID_010 12 61 5 9 417 20833.33333
ID_003 12 9 10 3 833 9166.666667
ID_026 12 31 5 5 417 10833.33333
ID_027 12 62 5 9 417 20833.33333
ID_048 12 59 5 8 417 13333.33333
ID_052 12 61 5 9 417 20833.33333
ID_041 20 26 10 5 500 6500
ID_045 20 27 5 4 250 6000
ID_024 20 11 5 2 250 5000
ID_049 20 62 5 9 250 12500
ID_028 25 16 5 3 200 4400
ID_033 25 45 5 7 200 6000
ID_106 25 17 10 4 400 4800
ID_031 25 54 5 8 200 6400
ID_034 25 62 5 9 200 10000
ID_035 25 57 5 8 200 6400
ID_037 25 48 5 7 200 6000
ID_075 50 40 5 6 100 2800
ID_018 100 24 5 4 50 1200
ID_020 100 34 5 5 50 1300
ID_053 100 54 5 8 50 1600
ID_059 100 9 10 3 100 1100
ID_023 100 18 5 3 50 1100
ID_021 100 18 10 4 100 1200
ID_102 250 58 5 8 20 640
ID_101 250 44 5 7 20 600
ID_083 500 16 5 3 10 220
ID_017 1000 17 5 3 5 110
ID_117 1000 45 5 7 5 150
ID B Mstr | 10 1 5 1 500 9000
ID_B_01 10 0 5 1 50 900
ID_B_03 20 0 5 1 50 900
ID_B_10 10 0 5 1 417 7500
ID_B_11 20 0 5 1 143 2571.428571
ID_B_12 10 0 5 1 5 90
ID_B_13 10 0 5 1 100 1800
ID_B_14 10 0 5 1 5 90

Appendix A

286

Table A.54. Low assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 10 samples. Tag size is 4 bits.

Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second
ID_044 20 3 8 2 400 5000
1D_002 25 53 8 8 320 6400
ID_056 25 64 8 2 320 4000
1D_082 25 60 4 9 160 10000
ID_032 25 1 8 9 320 10000
ID_054 30 16 8 3 267 3666.666667
ID_088 35 16 8 3 229 3142.857143
1D_089 35 48 4 1 114 2571.428571
ID_084 50 36 8 6 160 2800
1D_085 50 36 4 5 80 2600
ID_087 50 28 4 4 80 2400
ID_043 100 6 4 1 40 900
ID_013 100 57 4 2 40 1000
ID_016 100 9 4 7 40 1500
1D_022 100 47 4 P 40 1000
1D_080 100 40 4 6 40 1400
1D_113 500 56 4 8 8 320
ID_136 500 64 4 9 8 500
ID_014 1000 3 4 1 4 90
ID_120 1000 25 4 6 4 140
ID_118 1000 44 4 4 4 120
ID_012 5000 33 4 5 1 26
ID_C_Mstr 20 1 4 1 200 4500
ID_C_01 25 0 4 1 40 900
ID_C_03 50 0 4 1 40 900
ID_C_08 25 0 4 1 40 900
ID_C_10 100 0 4 1 333 7500
ID_C_12 25 0 4 1 4 90
ID_C_13 25 0 4 1 80 1800
ID_C_14 25 0 4 1 4 90

Appendix A

287

A.4.3 Master-dave - history buffer size =20 samples

Table A.55. High assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 20 samples. Tag size is 4 bits.

Message | Period | Payload Total Total | Authentication | Total bits per second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second
ID_009 10 44 8 7 800 15000
ID_008 10 49 8 8 800 16000
1D_047 10 49 4 7 400 15000
1D_040 12 62 4 9 333 20833.33333
ID_001 12 55 8 8 667 13333.33333
ID_007 12 64 4 9 333 20833.33333
ID_039 20 36 4 5 200 6500
1D_042 20 24 4 4 200 6000
ID_025 25 52 8 8 320 6400
ID_029 25 64 4 9 160 10000
ID_030 25 64 4 9 160 10000
ID_038 25 56 4 8 160 6400
ID_036 25 64 4 9 160 10000
ID_074 25 16 4 3 160 4400
ID_046 30 52 4 1 133 3000
ID_057 30 60 4 8 133 5333.333333
ID_076 35 52 8 8 229 4571.428571
ID_077 35 34 4 5 114 3714.285714
ID_078 35 34 4 5 114 3714.285714
ID_058 50 33 4 5 80 2600
1D_081 50 45 4 7 80 3000
ID_061 50 46 8 7 160 3000
1D_098 100 37 4 6 40 1400
ID_060 100 12 4 2 40 1000
ID_A_Mstr 10 1 4 1 400 9000
ID_A_01 10 0 4 1 40 900
ID_A_03 10 0 4 1 40 900
ID_A_04 10 0 4 1 200 4500
ID_A_06 10 0 4 1 160 3600
ID_A_08 10 0 4 1 40 900
ID_A_10 12 0 4 1 333 7500
ID_A_12 10 0 4 1 4 90
ID_A_14 10 0 4 1 4 90

Appendix A

288

Table A.56. Medium assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 20 samples. Tag size is 3 bits.

Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second
ID_006 6 32 6 5 1000 21666.66667
ID_004 10 64 6 9 600 25000
ID_005 10 64 3 9 300 25000
ID_010 12 61 3 8 250 13333.33333
ID_003 12 9 6 2 500 8333.333333
ID_026 12 31 3 5 250 10833.33333
ID_027 12 62 3 9 250 20833.33333
ID_048 12 59 3 8 250 13333.33333
ID_052 12 61 3 8 250 13333.33333
ID_041 20 26 6 4 300 6000
ID_045 20 27 3 4 150 6000
ID_024 20 11 3 2 150 5000
ID_049 20 62 3 9 150 12500
ID_028 25 16 3 3 120 4400
ID_033 25 45 3 6 120 5600
ID_106 25 17 6 3 240 4400
ID_031 25 54 3 8 120 6400
ID_034 25 62 3 9 120 10000
ID_035 25 57 3 8 120 6400
ID_037 25 48 3 7 120 6000
ID_075 50 40 3 6 60 2800
ID_018 100 24 3 4 30 1200
ID_020 100 34 3 5 30 1300
ID_053 100 54 3 8 30 1600
ID_059 100 9 6 2 60 1000
ID_023 100 18 3 3 30 1100
ID_021 100 18 6 3 60 1100
ID_102 250 58 3 8 12 640
ID_101 250 44 3 6 12 560
ID_083 500 16 3 3 6 220
ID_017 1000 17 3 3 3 110
ID_117 1000 45 3 6 3 140
ID B Mstr | 10 1 3 1 300 9000
ID_B_01 10 0 3 1 30 900
ID_B_03 20 0 3 1 30 900
ID_B_10 10 0 3 1 250 7500
ID_B_11 20 0 3 1 86 2571.428571
ID_B_12 10 0 3 1 3 90
ID_B_13 10 0 3 1 60 1800
ID_B_14 10 0 3 1 3 90

Appendix A

289

Table A.57. Low assurance messages authenticated with master-slave. Message type, period,

authentication overhead. History buffer size is 20 samples. Tag size is 3 bits.

Message | Period | Payload Total Total | Authentication | Total bitsper second (including
ID (ms) bits authentication | payload bits per CAN overhead)
bits (bytes) second
ID_044 20 3 6 2 300 5000
1D_002 25 53 6 8 240 6400
ID_056 25 64 3 9 120 10000
1D_082 25 60 6 9 240 10000
ID_032 25 1 6 1 240 3600
ID_054 30 16 6 3 200 3666.666667
ID_088 35 16 6 3 171 3142.857143
1D_089 35 48 3 1 86 2571.428571
ID_084 50 36 6 6 120 2800
1D_085 50 36 3 5 60 2600
ID_087 50 28 3 4 60 2400
ID_043 100 6 3 2 30 1000
ID_013 100 57 3 1 30 900
ID_016 100 9 3 2 30 1000
1D_022 100 47 3 7 30 1500
1D_080 100 40 3 6 30 1400
1D_113 500 56 3 8 6 320
ID_136 500 64 3 9 6 500
ID_014 1000 3 3 1 3 90
ID_120 1000 25 3 4 3 120
ID_118 1000 44 3 6 3 140
ID_012 5000 33 3 5 1 26
ID_C_Mstr 20 1 3 1 150 4500
ID_C_01 25 0 3 1 30 900
ID_C_03 50 0 3 1 30 900
ID_C_08 25 0 3 1 30 900
ID_C_10 100 0 3 1 250 7500
ID_C_12 25 0 3 1 3 90
ID_C_13 25 0 3 1 60 1800
ID_C_14 25 0 3 1 3 90

Appendix A

290

