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Abstract

It has long been a tenet of the fault-tolerance research community that fault–

tolerance is possible by exploiting resource redundancy in order to achieve

the mission result. Hardware designers, for instance, rely upon various forms

of redundant hardware to ensure the availability of at least one system that

can produce correct responses. Strangely, one source of redundancy has

not been comprehensively examined. Such redundancy is found in the opti-

mizations used by system designers to enhance the core system mission. It

is possible to design reliable systems that, upon detecting a fault, shed such

optimizations. Most users are willing to forgo an optimization (such as a

few percentage points of fuel efficiency) rather than face full system failure.

Such a gentle system response to faults is the hallmark of a gracefully de-

grading system. Fault-tolerance based upon graceful degradation provides

additional techniques to build dependable systems without the heavy costs

of hardware replication.

This work identifies a heretofore-unknown problem in the system syn-

thesis research space and explores solution methods. The problem, called

system-wide customization , is to maximize the utility of a system with pre-
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vi ABSTRACT

specified hardware by selecting and allocating software components from an

extensive, flexible library.

The importance and applicability of system-wide customization is ap-

parent when focusing on the distributed embedded system domain. Within

this domain, fixed hardware resources — distributed microcontrollers and

the networks connecting them — limit the software components that can

be executed. Each choice of possible hardware components can be viewed

as a single vertex of a dense lattice that represents a fine-grained product

family architecture (PFA). For each combination of hardware components,

there are many different software configurations available. Using the PFA

lattice concept, the system-wide customization problem may be expressed

as the process of choosing the software configuration for a particular vertex

(e.g., the one representing available hardware) that maximizes the utility of

the system.
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Chapter 1

Introduction

Designers of distributed embedded systems have, until now, had few tech-

nologies available for reaching high dependability system goals during system

execution. The only widely used hardware techniques are based on redun-

dant hardware – triply (or more) redundant modules or a near cousin such

as hot spares. Software dependability technology is limited to a similar n-

version programming technique or to claims about improvements in software

process. Other methods exist for pre-deployment hardening of the software

and hardware in order to discover specification and implementation prob-

lems, but are of no help when the system is faced with hardware failures

at run time. Unfortunately, both hardware and software redundancy tech-

niques are quite expensive, as they require extra hardware or the production

of multiple versions of the software. Furthermore, the ability of n-version

programming to reach dependability goals has not been conclusively demon-

strated.

Two major trends collide and exacerbate the lack of technological tools:

1



2 CHAPTER 1. INTRODUCTION

increased cost sensitivity and higher dependability requirements. System

cost is a driving factor in the production of most complex, embedded sys-

tems, especially those – such as automobiles – that are to be fielded in large

quantities. They simply cannot be economically constructed with triplex

computing hardware. Simultaneously, distributed embedded systems are

being used in more facets of the human lifestyle, and in ways that demand re-

liable, dependable systems. As the transportation, industrial control, home

security and office automation systems that surround us become filled with

computer systems to handle their increasingly complex control, they must

not founder when faced with exceptional conditions or hardware failures.

Otherwise, such failures escalate to mission and safety critical status.

Graceful degradation has the potential to alleviate this nettlesome prob-

lem. Operational systems can have more than two states, more than just

“working” and “not working.” Rather, when faced with a failure, a grace-

fully degrading system may shed some functionality in order to ensure the

remaining functionality operates properly. If done properly, a graceful degra-

dation approach might extend mission operation until repairs can be made.

A gracefully degrading system does not inherently demand more hard-

ware than a non-gracefully degrading one. It might, however, require sig-

nificantly more development effort. There is a surprising lack of research to

guide system designers with construction techniques that would minimize

the development costs. The naive design method is to examine each com-

bination of failed components and determine what the appropriate system

response would be. In general, such a naive method will examine and design

the system for each of the 2n configurations of an n component system. Since
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such combinatorial explosion is obviously untenable for realistic distributed

systems with large n, techniques must be devised to either automatically col-

lapse the number of configurations to a set which can be handled by human

designers or, alternately, to find algorithms to automatically use available

software components to maximize functionality of whatever hardware is op-

erational. This dissertation examines the latter approach.

1.1 Problem Statement

System-wide customization is the process of maximizing the utility of a sys-

tem with pre-specified hardware by selecting and allocating software compo-

nents. This dissertation examines system-wide customization (or customiza-

tion for short) as a mechanism that may be employed to achieve graceful

degradation. A system’s fixed hardware resources — distributed microcon-

trollers and the networks connecting them — limit the software components

that can be employed. Each choice of possible hardware components can be

viewed as a single vertex of a dense lattice. For each combination of hard-

ware components, there are many different software configurations available.

The system-wide customization problem may be expressed as the process of

choosing the software configuration for a particular vertex (i.e., the one rep-

resenting available hardware) that maximizes the utility of the system. As

a system undergoes successive failures, the system’s hardware state changes

and can be represented by a series of neighboring lattice vertices. If the

system is to degrade in a graceful manner, it must deliver a great deal of its

potential functionality at each stage. After a particular failure, the hard-
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ware is fixed — a repair action must be performed to change hardware. By

customizing after each failure, the degradation trajectory is such that the

system’s utility is maximized at each stage — and thus the degradation is

as graceful as possible, given the particular hardware failure sequence.

We believe system-wide customization is a general enough mechanism

to be useful in quite a few different types of computing systems. How-

ever, we set out to investigate system-wide customization in the context

of distributed embedded systems as a way to constrain the problem to a

solvable size. Distributed embedded systems have three characteristics that

make them especially good candidates for customization: distribution, gen-

eral compute ability, and optimization requirements. A distributed system

is able to survive many types of failures with computing and network re-

sources intact, as opposed to a centralized system where a single failure may

crash the sole CPU. General compute ability is becoming more common

on distributed embedded systems, as “smart” sensors (and actuators) use

microcontrollers to interface the sensor to the rest of the system. Code in

the microcontroller is responsible for control of the sensor/actuator and for

converting the raw sensor data to/from values usable by other components.

But, the microcontroller can execute general purpose software components;

it might be called upon to do so if a higher utility component is forced to be

rehosted due to a hardware failure. The third characteristic is the presence

of many optimization requirements, or non-mission critical functions. Mar-

keting pressures force designers to add features to systems that do not result

in changes to core functionality; they merely add system optimizations. For

example, an automobile has a large portion of its electronic systems devoted
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to passenger entertainment, fuel economy, emission management, and ad-

vanced stability and control algorithms. While all such functions are useful,

they do not materially change the basic mission of the automobile: to con-

vey passengers along a roadway in a safe manner. All computing resources

originally intended for the non-mission algorithms can be used, in case of an

emergency, to rehost the critical control algorithms of the automobile.

This dissertation documents our explorations, which formed, in essence,

a voyage of discovery leading to our goal of system-wide customization.

We do not claim our path is the only one, nor that it is the best, merely

that it arrives at the destination. The results of our exploration fall into

three areas, which together form a framework wherein the customization

problem can be solved. The framework involves three algorithms working

together, each algorithm responsible for one of the three aspects of system-

wide customization: the feature model, the software repository and the

allocation to hardware.

The Feature Selection algorithm operates on the feature model, and is

responsible for choosing system features to implement. A feature is a mech-

anism to accomplish a system function, or desirable system behavior. Func-

tions, such as automotive braking, can be accomplished in a multitude of

ways (e.g., standard or anti-lock braking). From this view, system design

(or architecting) is the process of choosing features to implement for each

function. In system-wide customization, the feature selection algorithm is

responsible for optimizing which features get picked for which functions. The

feature model we use is based on the notion of functions and features, where

features are cleanly separated among functions. Such a feature model is not
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comprehensive enough to cover the world of complex systems — in some

systems the features interact in ways that cannot be cleanly divided into

functions. The feature model is, however, sufficiently powerful for framing a

general approach to graceful degradation and refining our understanding of

how system-wide customization might fulfill the requirements of gracefully

degrading distributed embedded systems.

The Adapter Selection algorithm chooses software components (called

adapters, for reasons described in Section 4.1.2) to fulfill the requirements

of the features chosen by the feature selection algorithm. It chooses from

a library of available components (an adapter repository) in such a manner

that dependent components are also included. In many cases, a large and

flexible library of components will not be available as such. However, we

make use of a library that often will be available — software components

from related product models. Other models in the product family likely

have software that can be composed to create various different product in-

stances. Our work models the entire product family as a Product Family

Architecture graph (or PFA graph), the supergraph of the data flow graph

of all product instances. Again, we feel such a model of the available compo-

nents and their dependencies is quite useful for many distributed embedded

systems, but is not universal. The PFA graph assumes, for instance, a sys-

tem architecture amenable to representation as synchronous data flow. A

transactional system, for instance, might require different description, and

thus different algorithms. For the embedded domains we considered, the

PFA representation is quite useful and quite realistic.

The final portion of the framework is the Adapter Allocation algorithm,
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PFA Flow Graph

Phase 1
Feature Selection

Phase 3
Adapter Allocation

Network

Processor #1 Processor #2

Phase 2
Adapter Selection

Algorithm input

Represented as

Configuration Lattice

Figure 1.1: Solution overview

which determines a feasible placement of software components on the micro-

controllers of the system. Software components are placed such that their

computational requirements do not exceed the computational resources of

the microcontrollers, and the communication between components does not

require more bandwidth than the network provides. This allocation prob-

lem is well studied, with heuristic algorithms based on bin packing, integer

programming, graph theoretic means, guided searches and vertex clustering.

We chose to implement a bin packing solution. The reason we did so is fairly

arbitrary, but we needed to ensure the placement of sensors and actuators

within the solution was properly represented — a constraint uncommon to

allocation algorithms. Other allocation algorithms generally assume homo-

geneous processing elements. Modification of the bin packing algorithms

appeared simpler than the other types of algorithms. In the process of al-

tering the algorithm, we gained additional insight that allowed for a different

style of bin packing and resulted in an improved algorithm with a significant
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speedup.

Figure 1.1 illustrates the employment of the customization framework.

A configuration lattice with all of the abundant possibilities of the prod-

uct family architecture can be represented as a PFA graph. Phase 1, the

feature selection algorithm, picks features based upon the system’s feature

model. Our feature model uses portions of the PFA graph as a bookkeeping

method to represent particular features (much more detail is presented in

Chapter 6.1). Phase 1’s output is a set of features and serves as the input

to Phase 2. Phase 2 is the adapter selection algorithm, which employs the

PFA graph to determine dependencies among software components. Phase

2’s output is an subset of the PFA graph, a set of software components that

fulfills the features selected in Phase 1. Phase 3, the adapter allocation al-

gorithm, takes the set of components and determines how they fit on the

available hardware.

The framework is iterative. A failure of a particular phase will result in

a return to a previous phase for an alternative. Phase 3 is NP-complete,

so Phases 1 and 2 should be as efficient as possible in order to direct the

search to rapid solution. Otherwise, Phases 1 and 2 merely become large

loop constructs — which results in repeated executions of the NP-complete

3rd phase and the attendent poor performance of the framework.

1.2 Summary of Related Work

Very little research has been done on graceful degradation in computer sys-

tems, none of it aimed at distributed embedded system. Specification of
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graceful degradation has been examined in [Herlihy91] and to a lesser de-

gree in [Weber89]. The former is the source of the lattice models discussed in

Chapter 5.2.1. Graceful degradation of real-time scheduling was examined

in [Ramanathan97], where degradation referred to the failure of some tasks

to meet deadlines. Customizing a system in order to change the functional-

ity, as opposed to performance, is a novel idea.

The customization aspects of this approach are similar in some respects

to several research areas, primarily hardware-software codesign and recon-

figurable computing. The codesign field usually views system synthesis as

a search for the minimal hardware that fulfills a fixed utility. In contrast,

this research attempts to find the maximum utility that can operate on fixed

hardware. Reconfigurable computing uses special hardware, typically a Field

Programmable Gate Array (FPGA), and dynamically modifies the opera-

tion of that hardware to increase performance. System-wide customization

operates on an entire distributed system, changing and re-allocating soft-

ware components in response to failure events in an attempt to provide

robustness.

On the other end of the spectrum, task allocation is a fertile re-

search area, well plowed ever since [Stone77] first examined data flow

graphs for scheduling dual processor systems. Further research includes

[Stone78, Altenbernd96, Altenbernd98, Benveniste91, Blickle98, Bokhari81,

Bokhari88, Efe82, Woodside93]. By examining the constraints unique to

distributed embedded system, we developed a new twist on task allocation,

which is thoroughly examined in Chapter 7. [Kwok99] compared the mul-

titude of task allocation algorithms, in the process of which a standardized
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data set was generated. An alternate data set is proposed in [Tobita00].

1.3 Thesis Outline

The organization of the rest of the thesis is described below:

Background

Chapter 2 is a detailed examination of some of the motivation for this re-

search.

Related Work

Chapter 3 discusses work related to this thesis, primarily from the areas of

hardware - software codesign, CAD algorithms, task allocation.

System Model

A computationally tractible model of the system is developed in Chapter 4.

Because distributed embedded systems are fundamentally different from

general purpose computing systems, the chapter starts with a short overview

of some of the important differences. A representation of the system objects

— processing elements, software components, network communication and

the system data flow — follows. We also discuss the fault model used.

Problem Definition

Chapter 5 examines the use of product family architectures to build speci-

fications that guide system-wide customization. It includes an operational
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scenario that provides useful boundaries for the development of the problem

definition. Two descriptive models of graceful degradation are examined: a

hardware lattice and a 3-dimensional graph which integrates system utility

with the lattice. A data flow model of the product family architecture is

developed.

Algorithmic Framework

Chapter 6 proposes a three phase, iterative framework for solving the system-

wide customization problem. Algorithms for computation of each phase are

discussed. The chapter also investigates the use of feedback from the fail-

ure of one phase to guide decisions made in other phases. Such feedback

effectively guides the overall search process to significantly shorten runtimes.

Transducer Sensitive Allocation

In the search for useful algorithms to handle the third phase, allocation,

we discovered a surprisingly effective heuristic that exploits some of the

constraints of distributed embedded systems, namely the fixed location of

sensors and actuators (collectively known as transducers). The resulting

algorithm is documented in Chapter 7.

Proof of Concept

Chapter 8 documents the process of building a product family architecture

specification for a complex distributed embedded system. Two product in-

stances of a robust elevator control system are measured and merged to

build a PFA specification. A customization manager is constructed and
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tuned to customize the resulting specification. The results from several

graceful degradation experiments are analyzed.

Conclusions

Chapter 9 concludes the thesis with a pragmatic overview of the techniques

and a brief summary of some possible extensions to the present approaches.

1.4 Research Contributions

The research reported in this thesis contributes to the existing body of

knowledge in the following manner:

Problem Identification

– This is the first comprehensive treatment of the system-wide customiza-

tion problem. A formulation of the problem definition is developed.

– Ramifications of solutions are examined as they apply to the distributed

embedded system domain.

Problem Solutions

– A three-phased solution framework is developed. Algorithms are pre-

sented to solve each of the three phases. Experimental results, gained

through construction of a tool—called a customization manager —

provide key parameter choices for building the algorithm.
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– The entire idea of feature selection is one of the most novel aspects of this

dissertation. Fundamentally, feature selection allows only parts of a

specified system to be implemented, unlike other system construction

techniques which assume the entire specification must be met.

– The allocation of software components to hardware (phase 3) is well

known to be NP-complete. A new allocation heuristic is proposed,

which exploits characteristics of distributed embedded systems, re-

sulting in a 2.7x speedup on example systems.

Proof of Concept

– Two product instances of a complex distributed embedded system are

measured and combined into a single product family.

– The customization manager is used to examine system-wide customization

of the proof of concept system in response to various hardware failures.
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Chapter 2

Background

Complex embedded applications such as transportation systems, power dis-

tribution, telecommunications, construction equipment and weapon systems

are moving toward highly distributed implementations. As a result, tradi-

tional centralized approaches are being replaced by federated systems in

which many processors collaborate to provide system functionality. This

trend certainly is not universal; integration is another common architec-

tural style — especially in avionics[Di Vito97]. If the promise of MEMS

(Micro-ElectroMechanical System) devices based on standard semiconduc-

tor process technology comes to fruition, it will soon be possible for many

sensors and actuators to have their own integrated microcontrollers, accel-

erating this trend.

A particularly demanding pair of requirements for many distributed em-

bedded systems is that they be both inexpensive and dependable. Fortu-

nately, distributed systems have an inherent capability to spread functional-

ity across many nodes. While it may be that brute-force redundancy is the

15
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only way to satisfy stringent reliability requirements for critical functions,

not every function is critical. In fact, much of the increasing computing

power in embedded systems provides extra functionality or performance op-

timization rather than basic critical functions. It is often acceptable for

optimization functions to be shed by the system as components fail, so long

as this is done in a safe and controlled manner. In an automobile, for ex-

ample, losing a few percent of fuel economy is often acceptable, especially

when the alternative is complete vehicle failure.

Thus, there is room in many embedded systems to implement graceful

degradation of functionality as a way to improve dependability for non-

critical (but highly desirable) functions. A gracefully degrading system is

one in which faults are masked and only manifest themselves as a reduced

level of system functionality.

In fact, some systems implement graceful degradation today, but use

labor-intensive techniques that often involve specific engineering efforts for

every anticipated failure mode [Herlihy91]. Such traditional approaches usu-

ally accomplish graceful degradation using a combination of replication and

failover algorithms. Alternative approaches include multi-version redun-

dancy and load sharing [Lyons62]. The former is too expensive for non-

critical functionality, while the latter usually provides only graceful per-

formance degradation for a fixed set of functionality, potentially causing

problems in real-time systems.
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2.1 A Graceful Degradation Mechanism

Of the various means to achieve graceful degradation, we selected for our

research system-wide customization as being the least esoteric and one with

a fair assurance of success. System-wide customization is a compositional

approach, wherein more than one level of system utility can be achieved

through different combinations of basic components. Obviously, the system’s

architecture must be such that differing combinations are possible. Further

research is ongoing into exactly what architectural styles promote graceful

degradation [Shelton01, Shelton02].

By combining different combinations of components, including ones not

originally examined by the designers, a system can achieve varying levels of

functionality. This is the strength of an automatic system-wide customiza-

tion mechanism — it is not necessary for the system designers to consider

each of the combinations. Such a task is impossible for even moderately com-

plex systems, as the number of combinations increases exponentially with

the number of components. For this reason, the automatic system-wide

customization mechanism must carefully choose components to combine,

ensuring the dependency requirements of each component are met and the

validity of the overall system functionality is not compromised.

A graceful degradation mechanism based on system-wide customization

can be enhanced with additional flexibility in the availability of software

components. If the system’s functionality is strictly compositional, then

different levels of functionality can be achieved merely by omitting some

components. However, if a source of alternate components is available that
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can achieve similar functionality in different manners, or even functionality

that is not part of the original system, then the range of possible system

states will be widened and deepened considerably.

Unfortunately, building a distributed embedded system is difficult

enough that the thought of expending additional effort in order to accom-

plish basically the same thing in different ways is somewhat feckless. How-

ever, it is likely that a source of additional components is available — the

system’s product family architecture (PFA). A PFA is a region of a system

design space populated by different, but related, products sharing similar

architectures and components. A PFA provides a structured view of all pos-

sible hardware components in the system [Jiao00]. Each system instance

within a PFA yields a distinct price/performance point and represents a

different model in the product family. The concept of a PFA is familiar to

anyone who has purchased a stereo, computer or automobile. However, opti-

mization for product families is typically done assuming a perfectly working

system and targeted to minimizing production costs, rather than with an

eye toward graceful degradation. See [Brownsword96] for an exceptionally

good case study of PFA use in the software engineering of a ship building

company.

Consider a product implemented by assembling dozens or even hundreds

of different “smart” components (i.e., components incorporating microcon-

trollers) into a fine-grained distributed embedded system. There may be

a huge number of different product instances possible. And, if a suitable

way to allocate functionality can be provided, any system in which a single

component breaks can be treated simply as a closely related system in the
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PFA that (using a fail-silent assumption) just happens to differ in having the

failed component missing from it. Thus, PFAs can form a conceptual frame-

work for specifying and implementing graceful degradation within highly

distributed embedded systems.

The system must be compositional for system-wide customization to be

viable. In order to match standardized hardware and software within such a

large variety of system configurations, we envision the components as mobile

object adapters or simply adapters. They will be examined in detail in Chap-

ter 4, but for this discussion it is sufficient to understand that an adapter is

a software component that adapts or converts a device or algorithmic inter-

face into a logical interface. Such adaptation breaks a basic combinatorial

explosion in required components and allows the compositional system to

be constructed from the various adapters. The adapters are mobile in that

they can be hosted on any of the processing elements of the system.

2.2 The Customization Manager

In a system with an automatic customization mechanism, graceful degrada-

tion becomes fairly easy to accomplish. After each error is detected, a new

configuration is installed to obtain maximal functionality using remaining

system resources, resulting in a system that still functions, albeit with lower

overall utility. Designers using such an approach do not necessarily have

to examine each combination of faults to specify designated configurations,

but rather rely upon a generalized customization engine to deal with any

combination of faults as it actually happens.
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A customization manager has the following functionality:

Fault Discovery/System Model - The customization manager can ei-

ther start with a system model and then cut out pieces whenever it

discovers a subsystem is faulty (the fault discovery mechanism) or it

can build a system model from scratch by asking each working com-

ponent to describe itself. The concept is the same – the customization

manager must know what sensors and actuators are operational before

it builds a configuration.

Configuration Generator - The extremely large configuration space

must be searched and candidate configurations intelligently choosen.

In order to ensure only valid configurations are chosen, the configu-

ration generator would generate candidates from a dependency model

and filter them with a validity checker.

Dependancy Model - Certain elements of a configuration may re-

quire or restrict other elements; either by requiring they be

present, absent or placed in a particular manner. An example

of the latter might occur in an automobile, where use of a par-

ticular braking algorithm might require the same algorithm be

used on all other brake actuators. Such dependencies define the

search space from which the configuration generator may draw

candidates.

Validity Checker - Ensures only valid configurations are consid-

ered. Ensures the configuration would be schedulable, is consis-

tent (e.g., consumer algorithms can properly partake of producer
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data), and consumes no more resources (processing and network

resources) than are available.

Cost Model - Allows comparison of various configurations. Cost models

may be fairly complex, as they may become scenario specific.

Adapter Repository - A library that holds all of the adapters available

in the product family architecture.

Device Customization - An adapter loader deploys the chosen config-

uration throughout the system. Over the low bandwidth networks

common to distributed embedded systems, component migration op-

portunities may be limited. In such cases, the deployment may consist

of transfering small bits of state to prepositioned executables.

The Fault Discovery, Adapter Repository and Device Customization

functionality is not covered in this dissertation. However, they are often

included as mechanisms in various middleware projects. See [Beveridge02]

for a discussion of several middleware systems as well as an examination of

their applicability to distributed embedded systems.

The point in time when automatic customization is executed must be

carefully managed. The cost of running a customization manager to deter-

mine the the appropriate configuration can be significant. While we would

like to be able to build a run-time customization manager, we find doing so

to be overly burdensome and only rarely required. Especially in the case

of a tightly scheduled and resource constrained system, there might not be

enough resources (CPU or network cycles, timing slack, etc.) to actually
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execute a customization step. Instead, we envision automatic system-wide

customization employed during extreme duress or down time. In the case of

a crisis, breaking schedules to run the customization manager makes sense

in that the system would be completely broken and have no chance of ful-

filling its mission otherwise. Running the customization step may allow the

system to find a configuration where some useful work can still be accom-

plished with the available resources. More typically, execution will happen

when the system is down for maintenance, or at a slack time in the schedule.

In an automobile, for instance, system-wide customization may occur when

the engine is off — perhaps when the car has been pulled to the side of the

road to deal with the emergency. An alternate approach might employ an

incremental customization manager that can, in a series of steps, make small

changes in the system configuration and eventually arrive at a high-quality

configuration.

2.3 Customization as Logistical Support

Once a system has a system-wide customization mechanism, it can be ex-

ploited to provide a potentially major logistical benefit — the ability to

make replacements with non-exact spares. If achieved, this would free main-

tenance personnel from the burden of carrying every conceivable spare part.

For example, they might just carry more capable, and expensive, generalized

spares instead of cost-optimized specific repair parts. (But, reduced labor

costs for trips to pick up spares could easily offset any increased component

costs. Likewise, inventory costs would plummet.) In emergencies, subopti-
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mal repair parts might be used to perform temporary partial repairs. While

the military implications for compact spares inventories and non-exact bat-

tlefield repairs are obvious, such issues are also important for any system

involving mobile maintenance personnel or systems with few installed sys-

tems served per supply depot.

In addition, a major cost of supporting legacy systems is the need to pro-

vide legacy spares. In the US, a seven year spare parts pipeline is mandated

for automobiles, subjecting vehicle manufacturers to interesting factory uti-

lization challenges. Manufacturers must weigh the warehousing costs of

spare parts with the need to keep a factory line hot for the parts. This

mandate will be increasingly challenging as more and more automobile sub-

systems involve digital electronics – entire fabrication processes may need

to be kept operational far beyond their obselecence merely to provide spare

parts designed a decade earlier.

An automatic system-wide customization mechanism may ease such lo-

gistic nightmares. Rather than replacing a part with its exact duplicate, a

non-exact spare may be employed. The customization mechanism can then

be used to find a different configuration that still provides for the same level

(or perhaps an enhanced level) of functionality. By building updated sen-

sors and actuators capable of several different algorithms, system designers

will fulfill requirements for legacy spares. Such a situation is analagous to

providing legacy device drivers for a computing device and is probably no

more costly.

Ultimately, it is important to gracefully reintegrate a repaired component

as well as to reconfigure in the face of a component failure. As subsystems are
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repaired or replaced, the customization manager determines configurations

that can use the added resources to restore functionality.

In addition, system-wide customization allows access to configurations

beyond the original product design. If a repair is made with a replacement

part having superior performance, reintegration of the repair part is not

just a repair, but also a system upgrade. Beyond that, it is possible that

new components (and associated abstract functionality blocks and software

modules) can be added to perform field upgrades using the same approach

as that employed for reintegrating repair components.

In fact, graceful degradation and upgrade via customization are simply

ways of moving down or up the lattice of points in a product family archi-

tecture. When some hardware breaks or is inserted, it is as if a different

model in the PFA has been realized. The customization manager then can

determine the best collection of features to install on available hardware.

2.4 Problems with Customization

System-wide customization is not a panacea. If it were, it would already be

in widespread use in almost every distributed embedded system. Some of

the challenges discussed in this section are merely research challenges that

could be solved with the application of more thought power. Others are

fundamental to the types of systems being built and will remain formidable

barriers for those applications.
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2.4.1 Loss of Design Determinism

Design determinism is the control that a designer has over the state of the

end product. At the beginning of a development process, the system archi-

tect and designer envision the final product and vary their design to ensure

their vision of the final product meets the requirements. At first exami-

nation, it appears that using a system-wide customization framework for

a product decreases the linkage between architect’s vision and final prod-

uct, and to a certain degree this impression is correct. The designer can

envision how the final product operates in one particular system state, but

cannot imagine every possible system state that might result from hardware

failures and the follow-on system reconstitution of a customization opera-

tion. By implementing system-wide customization in a system design, the

designer loses some degree of design determinism — he must rely upon the

customization algorithms rather than his own design abilities to ensure the

system state is desirable and proper. The problems discussed in several of

the following sections are a result of or similar to the loss of design deter-

minism.

The loss of design determinism is mitigated to a large degree by the

realization that the system-wide customization process and algorithms em-

ployed on a system are well within the purview of the system designer. If the

customization process does not generate the end system states envisioned

by the designer, then the algorithms and the process should be modified.

The situation is analagous to the rise of the early source code compilers.

Programmers who were well versed in the assembly languages of their sys-



26 CHAPTER 2. BACKGROUND

tems often did not trust the compilers to emit proper or efficient assembly

code. The linkage between their vision of what the assembly code should

look like and the code actually emitted by the compiler was quite weak.

The situation did not improve until compiler technology matured and the

programmers learned to trust their compiler. Perhaps the same can be said

of system-wide customization. A great deal of the design determinism might

be regained when customization technology matures and system designers

trust the algorithms of the customization manager.

2.4.2 Development for System-wide Customization

It is possible that the design of a system with system-wide customization

capabilities will be too disruptive to the design process. This dissertation

makes certain assumptions about the development process: e.g., that a prod-

uct family architecture exists and that data flow is an important enough

aspect of the system to be well-documented. If a system under development

did not fit into a product family, or if it could not properly be described in

data flow diagrams, then the techniques described herein may need to be

modified to be useful. It is possible that the system architecture might be

molded in the wrong way in order to take advantage of customization. For

instance, a transactional system might be cast as a data flow system. A

better alternative is probably to expand the research to develop additional

customization techniques that fit the transactional system. More detail of

this point is available in Chapter 9.2, where it can be treated with more

depth.

Building a system with system-wide customization capabilities will in-
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volve a slightly different development process from that used to build a

standard distributed embedded system. Designing and generating prod-

uct family architecture artifacts, such as the data flow graphs, may entail

additional time or expense. The testing and certification, not only of the

customizable system, but also the customization mechanisms themselves, is

more complex, as discussed in the following sections. Nevertheless, we feel

that today’s distributed embedded systems have reached a level of sophis-

tication that merits this type of graceful degradation mechanism, and they

have enough extra resources and resource fragmentation to merit searching

for alternative configurations that may benefit the end user.

2.4.3 Debugging and Technical Support

The problems with debugging and maintenance are quite similar to the issues

surrounding design determinism. The existence of a customization mecha-

nism allows for a wide variety of system states, and determining proper

system operation in each is impossible — after all, doing so for a single con-

figuration is often infeasible. The proliferation of configurations raises an-

other level of complexity for the debugging process to overcome. In essence,

the debug, technical support, or maintenance personnel does not have an

accurate system model that accounts for all possible system states. They

must first examine the system state and construct a system model, before

beginning the debug, support or maintenance process.

The debugging problem may be alleviated with adherence to a carefully

controlled architecture. In the same way that the abstraction of an object

oriented system reduces overall complexity and assists with interface com-
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patibility, customization is much easier when the adapters fit well defined

and properly abstracted logical interfaces. The extent to which architecture

can support customization is an interesting research problem [Shelton01,

Shelton02].

Technical support can also be a challenge. When an error or problem

is reported by a user, knowledge of the current configuration is likely to be

useful. The customization manager must scrupulously log all configuration

changes and make the configuration data available to the problem resolution

team. This can be a problem if there are frequent configuration changes.

In a system where system-wide customization is only executed during main-

tenance, the configuration data will be easier to maintain. If, however,

customization happens often, say whenever a vehicle is started or whenever

an elevator door is opened, then it is a difficult process to track exactly what

the contents of the configuration were when the problem occurred.

2.4.4 Certification Challenges

Many safety critical applications need to be approved by a certification au-

thority. In the USA, nuclear power plants must pass specification, design

and implementation verification by the Nuclear Regulatory Commission.

Avionic systems are certified by the FAA, while some security systems are

in the purview of the NSA. A system-wide customization mechanism might

increase the certification costs, as the developers now must ensure the certi-

fiers are comfortable with the customization mechanism and the manner in

which configurations are chosen and deployed.

The real gains from system-wide customization come when the next ver-
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sion of the product must be certified. If the regulatory agency understands

customization and is comfortable with the implementation, then recertifica-

tion is merely the process of checking that any changed subsystems live up

to the same logical interface.

In the case of safety critical systems, system-wide customization may be

deemed too great a risk. In such a situation, a different approach is still

possible. As in so many safety critical systems, a separation strategy can

easily be pursued. Such a strategem is accomplished by ensuring the safety

critical functionality is partitioned away from all other features. This is

common, for instance, in vehicles where one network is employed for engine

control, braking, etc. and another network is used for the power windows,

door locks, and emission control. Following such a strategy requires careful

attention to possible second order feedback that might unexpectedly pro-

mote non-safety critical functionality. For instance, a mobile pager is not

usually considered safety critical, but hospitals often use them to make sure

doctors are summoned for emergency surgery.

2.4.5 Multi-vendor Challenges

When a single team is responsible for developing the entire system, system-

wide customization can be a quite elegant technology. However, much

like other software, if the system is built by integrating components from

multiple vendors or organizations, some special design and legal challenges

emerge.

Designing a system for cross-vendor system-wide customization is quite

a challenge. At its core, system-wide customization takes advantage of some
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extra resources, provided by design or by freeing them from lower priority

uses, to install functionality. In a multi-vendor environment, the extra re-

sources might be taken from one vendor’s unit in order to provide extra

functionality to a unit from a different vendor. The first vendor would likely

object, as the cost to provide the resources makes the unit more costly

compared to any non-reconfigurable competitors.

It is not clear how the liability for an accident or failure would be al-

located in a system-wide customization capable system. Determining the

origin of the error is complex, as described in Section 2.4.3, and more subtle

problems will probably stem from the all-too-common lack of good commu-

nication among organizations. In general, if a module written by vendor A

was installed on vendor B’s device by a customization manager provided by

vendor C, a jury could easily find any of the parties liable in the case of an

incident.

2.5 Conclusion

This chapter has provided an overview of the motivations for designing a

customization manager for use in distributed embedded system. Graceful

degradation can be accomplished by customizing the system at any change

in available hardware. If the system-wide customization process truly max-

imizes the functionality of the synthesized system, then the system’s utility

will gracefully degrade as hardware components are lost. System-wide cus-

tomization also brings interesting logistical benefits, such as a decreased

reliance upon legacy spares and the ability to maintain and repair a system
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with non-exact spares. In order to become a widely employed technology,

system-wide customization will need to overcome or avoid some challenges,

however. Getting to that point is an intellectually stimulating research

agenda that has the possibility of substantially changing how embedded

systems are designed, implemented and deployed.
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Chapter 3

Related Work

This chapter considers four areas closely related to the contents of this thesis:

graceful degradation, reconfiguration, hardware–software codesign, and task

allocation.

3.1 Graceful Degradation

Systems that gracefully degrade lose partial functionality in response to fail-

ure events, as opposed to failing precipitously. Little research has been re-

ported on building computer systems with mechanisms for graceful degrada-

tion. In cases where graceful degradation is desired (usually military, space

or industrial systems), enormous effort is required by the system designers,

who must examine every fault hypothesis and design an appropriate system

response for each. [Borgerson75] developed a model for analyzing the reli-

ability of gracefully degrading and standby-sparing computer systems. The

model is useful as a means to analyze a system’s reliability parameters, but

33



34 CHAPTER 3. RELATED WORK

does not provide any assistance in determining how to build a gracefully

degrading system.

By far the most insightful paper dealing with graceful degradation is

[Herlihy91], which examines a specification method. The method revolves

around a relaxation lattice of system states, the partial ordering of which

determines degradation trajectories. As environmental changes restrict a

system, the system responds by relaxing the constraints of its specification

along the paths allowed by the relaxation lattice. The contribution of this

paper is to posit a lattice model for thinking about graceful degradation.

Unfortunately, the mechanisms for construction of the lattice, as described,

do not scale to larger systems. For instance, the relaxation lattice must

be examined by the designers for an appropriate system responses for each

degraded state.

[Knight00] examines system survivability for large scale infrastructure

systems (e.g., banking, rail transport) with an eye towards strengthening

them against security and environmental faults. Survivability is similar in

scope to graceful degradation — the infrastructure system must, in Knight’s

words, undergo

damage and repair sequences. Events that damage a system

are not necessarily independent nor are they necessarily mutually

exclusive. In practice, a sequence of events might occur over time

in which each event causes more damage in effect, a bad situation

gets progressively worse. It is likely, therefore, that a critical

infrastructure application will experience damage while it is in
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an already damaged state, and that a sequence of partial repairs

might be conducted. Thus, a series of changes in functionality

might be experienced by a user with progressively less service

available over time as damage increases and progressively more

available as repairs are conducted.

This prediction of damage and repair sequence is remarkably analagous to

the degradation trajectories of the distributed embedded system we are con-

cerned with. Unfortunately, [Knight00] does not provide scalable tools for

construction of survivable systems. Rather a list of reduced functionality

states is generated, along with specifications for the system behaviours in

those states. A state machine is then designed to show how the system

should change states to react to failures.

[Shimomura95] is a fascinating examination of a commercial copy ma-

chine with something approaching graceful degradation capabilities. The

self-maintenance copy machine used a detailed physics model and an in-

ference engine, such as one might find in artificial intelligence research, to

reason about failures. The failures were in the sensor and manipulators, not

the computational engines. The machine could diagnose errors, simulate

overlapping fault cases and execute limited repair actions. It is unclear if

this method scales, because quite a bit of effort went into designing fault

cases that could be reasoned about.

The difficulties of providing graceful degradation are well covered

in [Cailliau99], a study of the customization mechanisms in a (single pro-

cessor) satellite system. In this particular case, customization is handled
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through pointer redirection and controlled via ground segment command,

not automated methods.

A complimentary (to this thesis) research project is underway, as re-

ported in [Shelton02], to develop system architectures that are amenable

to graceful degradation, either passively by their construction or actively

through methods such as system-wide customization. That research seeks

architectural patterns and principles which will aid designers to measure

and reason about the dependability strengths of a design.

The emerging field of amorphous computing is somewhat related in

their desire for automatic graceful degradation and organization mecha-

nisms [Abelson00]. That research field envisions a future where vast quanti-

ties of microsensors will form embedded systems, for instance when placed

inside construction material such that buildings and bridges can be moni-

tored for excessive stress or internal faults. Amorphous systems will need

to be self-organizing and able to withstand failure of individual computing

units.

The research in this dissertation advances the state of the art in graceful

degradation system design by achieving automatic graceful degradation—

that is, graceful degradation mechanisms that require no state-by-state de-

sign of the degradation trajectories of the system.

3.2 Reconfiguration and Customization

System-wide customization is not yet a research field with any prior re-

sults. It is very similar in concept to a case study reported in [Beck00]
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and [Reagin99]. These papers examined the construction of a robotic work-

cell application using the customization opportunities of a component-based

software architecture, with impressive results. Some of the optimizations

done manually by the application engineer are similar to the operations

executed by the system-wide customization algorithms of this dissertation.

Another quite active related research field is “reconfigurable computing.”

In this context, reconfiguration generally is understood to mean altering the

form of hardware — often a Field Programmable Gate Array or (FPGA)

— in response to program constructs [Green00]. Such alteration may be

computed and scheduled statically (by a compiler [Li00]) or dynamically

(by the operating system [Bapty99, Bazargan00, Dave99]). The hardware

that is reconfigured is not constrained to only FPGAs. [Goldstein00] utilizes

an extremely innovative hardware architecture. However, the field of recon-

figurable computing is still primarily focused on single processor systems

(or low numbers) with special hardware. Further, the goal is to maximize

performance of a software specification, all of which must be executed.

Our approach is different in that we attempt to reconfigure (customize)

an entire system of general purpose microcontrollers in order to maximize

functionality. We also relax the requirement that all of the software spec-

ification must be met. In order to limit confusion with the reconfigurable

computing research field, we have adopted the term system-wide customiza-

tion for our work.
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3.3 Hardware–software Codesign

Hardware–software codesign is the design of special-purpose systems com-

posed of a few Application Specific Integrated Circuits (ASICs) cooperating

with software procedures on general-purpose processors [Chiodo94]. It is a

design-time technique, whose goal is to reduce the cost of a system by care-

fully examining the partitioning of functionality into hardware and software.

It is an active research area, with impressive results [Gupta93, Thomas93,

Edwards97]. [Ernst98] is a good survey of the field. [Hu94] reports results

of the use of codesign techniques to develop automotive powertrain control

modules. Automated techniques are sought to make the partitioning de-

sisions [Knieser96], but often they must be made by designers and simply

tested by the codesign techniques [Kalavade93, Chiodo94, Pimentel01]. Sys-

tem examples in this field tend to be fairly small — often only 15-20 objects,

so scalability of automated mechanisms is an active concern [Wolf97].

The system-wide customization research of this dissertation is fundamen-

tally different from the codesign field. Customization attempts to maximize

functionality of specified hardware, while codesign tries to minimize the

hardware requirements needed to implement specified system functionality.

3.4 Task Allocation

Task allocation is related to the well-known bin packing problem. In even

a two-processor form, it is NP-complete [Garey79]. Because of the applica-

bility to OS scheduling on multiprocessor systems, a great body of heuristic

algorithms and analyses exists, such as [Kasahara84, Woodside93, Stone77,
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Shen85, Bokhari81, Bokhari88, Indurkhya86, Efe82]. See [Kwok99] for an

excellent bibliography of such efforts. The two basic approaches to solving

bin packing problems are list processing, where the objects are sorted and

placed in the bins according to their order, and guided search, such as sim-

ulated annealing, where an initial solution is incrementally improved. The

algorithm presented in this dissertation, in Chapter 7, is a list processing

algorithm.

In a multi-processor scheduling algorithm, the metric being optimized is

generally the length of the critical path schedule. All parameter values used

for the allocation are time units for each task to process or for communication

to be transmitted. In contrast, in a distributed embedded environment the

algorithmic interest is to ensure tasks can execute together on the limited,

fixed resources of the microcontrollers.

Task allocation is is also a critical building block in hardware–software

codesign research — where software is allocated to hardware to test if a

partitioning decision is correct [Kalavade93, Gupta93, Hu94]. [Lee95] goes

so far as to name a codesign process “dataflow process networks”, as it is

based on the data flow through the system, much like our research.

The development of the transducer sensitive allocation algorithm, in

Chapter 7, is based to a large degree on [Beck98]. Beck used a design advi-

sor (DA) algorithm to generate a system hardware specification to meet the

requirements of the software. The DA algorithm bin-packed vector valued

software requirements (i.e. CPU cycles, RAM, ROM, I/O channels) into

multi-dimensional bins representing the resources of the microcontrollers.

Whenever the packing algorithm failed, the DA would expand the hardware
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specification. The basic idea is similar to much hardware/software co-design

research — allocate software to the hardware to test if a partitioning deci-

sion is correct [Kalavade93]. Prakash used linear programming techniques

for a similar problem — simultaneous specification and allocation — though

the application of such techniques to problems with large numbers of tasks

appears to be computationally challenging[Prakash92]. The DA algorithm

was extended to cover multi-network specification in [McNally98].

The large size of this research area has spawned at least two attempts for

standardization of the system descriptions. The use of standard task graphs

facilitates benchmarking and comparison of the allocation algorithms. Kwok,

et. al. collected 11 graphs from published papers (all of 7–18 vertices in

size), combined them with a large number of randomly created graphs, and

proceeded to benchmark the various scheduling algorithms[Kwok99]. Un-

fortunately, we have been unable to obtain this graph set for use in this

research. The “Standard Task Graph” project has randomly generated a

set of large graphs (30–2700 vertices) for the same purpose[Tobita00]. The

standard graphs with communication costs, which would be most useful for

our research, are not yet available.

Our work builds upon the volumnous research of this field, yet incorpo-

rates the constraints of a distributed embedded system. Chapter 7 describes

a transducer sensitive task allocation algorithm that exploits the fixed loca-

tion of sensors and actuators in a distributed embedded system in a “divide

and conquer” style algorithm. The result is a healthy 2.7x speedup over

other task allocation algorithms.



Chapter 4

System Model

The system-wide customization concept relies quite heavily upon the sys-

tem model used. Without sufficient flexibility, system-wide customization

is overly constrained and always results in the same configuration. Yet

too much flexibility creates a combinatorial explosion of dependent software

components leading to excessive difficulties on the part of the customization

manager. To manage the complexity, we require decoupling of inputs and

outputs through the use of logical intermediary interfaces. This chapter is,

at a fairly low level, an architectural description of the system components.

The next chapter discusses how to extend this model to include product

family architectures.

A distributed embedded system is somewhat different in form from that

of other distributed computing systems. Such differences lead to an un-

fortunate number of misunderstandings when practitioners unfamiliar with

distributed embedded systems attempt to transfer their system knowledge

and research agendas into the domain. While the diversity of embedded sys-

41
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tems resists a simple classification that covers all product instances, most

distributed embedded control system are similar to the model we have used.

4.1 Overview

All embedded systems attempt to control the environment, by crafting a

control loop where data about the environment is sensed, operated upon

by the compute elements of the system, and the environment modified via

actuators. Figure 4.1 illustrates the control loop. Distributed embedded

systems merely deploy a multicomputer computing facility, consisting of an

embedded network and multiple processing elements, to provide the com-

putational power of the system. In the very near future, smart sensors

and actuators will make up most of the processing elements of industrial

distributed embedded systems.

Sensor Process Actuator

Environment

Figure 4.1: The distributed embedded system control loop

4.1.1 Embedded Networks

A distributed embedded system consists of one or more networks connecting

two or more microcontrollers (or, more typically, dozens), each of which
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manages one or more sensors or actuators. This work will assume a single

network, though multiple networks can be incorporated using the techniques

examined in [McNally98].

Embedded networks differ from the typical Ethernet or ATM networks

commonly found connecting general purpose computing platforms. Embed-

ded networks generally require a means to ensure real-time deadlines are

respected, and thus require a great deal of determinism. Collisions (simul-

taneous desire to send a message on the part of two or more senders) must be

avoided or resolved in a deterministic manner. Two network protocol mech-

anisms are commonly used to meet real-time requirements: time division or

bit dominance. Time division protocols, such as the Time-Triggered Proto-

col (TTP) [Kopetz], reserve transmission slots of set period and phase for

each potential sender, who is then restricted from transmitting at any other

time. Bit dominance protocols are represented by the Control Area Network

(CAN) protocol [CAN] which uses bit-by-bit collision detection to form a

global consensus of which pending message has priority for transmission.

Embedded networks are also typically broadcast networks, use low pay-

load sizes, and support lower bandwidth than the typical computing net-

work. The broadcast nature naturally results from the single link networks

where each node uses a hardware filter to ignore unwanted messages. Pay-

load sizes are small in order to reduce latency and because the required data

messages need not be large. The messages are generally about the state of a

particular controller or a sensor measurement — a few bytes usually suffices.

For instance, CAN message payloads are 0–8 bytes and TTP messages are a

maximum of 16 bytes. Available bandwidth is similarly low. The maximum



44 CHAPTER 4. SYSTEM MODEL

CAN bandwidth is 1Mbps, though it is often used at a mere 125Kbps.

Such characteristics of embedded networks are important factors to keep

in mind when judging the success of distributed embedded system research.

The system model used in this thesis is a 1Mbps CAN network. All data

elements have a unique type, which is transmitted as the message ID. As dis-

cussed later, no scheduling analysis has been done, so messages are assumed

to have the correct priority for the application, without explicitly determin-

ing what that priority is. Typical priority assignment can be accomplished

through deadline monotonic analyisis [Tindell00], earliest deadline first, or

other schemes [Zuberi00].

4.1.2 Smart Sensors and Actuators

As discussed in Section 2, distributed embedded system consist of numerous

“smart” sensors, each of which is a computing engine in its own right. These

microcontrollers manage the raw sensor signals, converting them to the log-

ical values necessary for consumption by other software components. Such

conversion may be a simple formatting change, where the raw information

is placed on the network with minimal work. In other cases, sophisticated

conversion may include Kalman filtering, temporal averaging, or sensor fu-

sion. Such conversion is accomplished via a software adapter, responsible

for adapting raw information to the logical values required by the rest of the

system. Similarly, smart actuators use adapters to convert logical system

variables into the raw control signals that drive physical processes to affect

the environment.

Each adapter operates within the computing regime of a microcontroller.
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The microcontroller has some runtime elements, hardware interfaces to its

sensors and actuators, and a network connection. Figure 4.2 is a high level

picture, showing the structure of an example processing element (PE).
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Figure 4.2: Anatomy of a PE

The basic hardware is the core of the sensor/actuation facility – it does

something useful to the real world. We do not attempt to do any sort of

system-wide customization on the basic hardware – we are stuck with it

until a maintenance operation repairs or replaces it.

The basic hardware communicates its results to the first level adapter

(a “driver” level) in its own format via an I/O interface. This format is

specified by the sensor or actuator, and thus is often proprietary and con-

sidered fairly “raw.” For instance, the output of an accelerometer may be

just a voltage level. But when put in context through a table lookup or

arithmetic calculation, can be converted to express the g-force (or m/s2 or

whatever units are desired) that was measured. The driver adapter can

convert this format and any associated timing or semantics into a logical
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interface, known as a mid–level interface. Driver adapters also do the re-

verse conversion, from logical to raw, for actuators. Note that several driver

adapters may be capable of doing such transformations, and perhaps to sev-

eral different mid-level interfaces. It is reasonable to believe that a complex

driver adapter could support several mid-level interfaces, while a slimmed

down version could only support one. Conceivably, quality attributes could

also separate otherwise similar mid-level interfaces.

Next are the algorithm adapters. One or more such adapters will be

loaded to transform mid-level interface information to something that other

nodes of the network would like to hear. These adapters are generally of

higher complexity, and form the core of the flexibility required for system-

wide customization. They are most often replaced or moved to other PEs

to meet reconfiguration goals. A system may have an arbitrary number of

algorithm adapters — this is a catch-all term to cover all the other software

components.

It is important to note that both the driver adapter and the algorithm

adapters are mobile. Driver adapters may be replaced with, for instance,

a null adapter whose sole responsibility is to communicate the raw sensor

information to the network and thus to a driver adapter which is hosted

on a different PE. In Figure 4.2, for instance, a null adapter recieves the

raw information from a sensor and transmits it via the network to a remote

driver adapter (not shown in the figure). The term Mobile Object Adapters

(MOAs) is sometimes used to refer to both driver and algorithm adapters.

We also use the term adapter to include null, algorithm and driver adapters.

The infrastructure interface provides access to the collection of runtime
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services that assist with customization. These services form a system-wide

customization runtime executive, which could conceivably be a portion of an

embedded operating system or monitor. Implementations of the infrastruc-

ture include an adapter loader, which is responsible for retrieving adapters

from the network or activating adapters already in storage on the node. Mid-

dleware services, such as Jini (Javasoft’s technology for delivery of adaptive

network services) may assist to some degree with discovery and lookup. A

reconfiguration assistant is the local representative of the reconfiguration

manager. It notifies the customization manager of any changes in PE status

(e.g., broken sensors, reconstituted PE), PE capabilities (e.g., more RAM

available), etc.

The network interface is responsible for getting messages to and from

the network. It handles (and thus abstracts) all of the details of network

protocol. It can also route messages within the PE so purely local communi-

cation does not pollute the network. Advanced network interfaces can also

combine signals from various adapters into a single network message. The

network is also used to load the adapters from an adapter repository. In spe-

cial cases where mobile adapters are not available, prepositioned adapters

may be available in a local ROM repository on some PEs.

4.2 Representation

Three elements must be represented in the model: the network, processing

elements,. and adapters. We follow the general approach of [Beck98] to

model these elements. Beyond that, the flexibility present in the Product
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Family Architecture must be represented.

4.2.1 Processing Elements

Our processor model is very high level, and thus easily managed. It consists

of a resource vector, of arbitrary length n. Each element of the vector

is a consumable resource, such as RAM, Flash Memory, or I/O channels.

The number of dimensions in the resource vector is arbitrary, but must be

consistent among all processing elements. [Beck98] collected data for 6-way

vectors: CPU Cycles, ROM, RAM, digital I/O, analog I/O and PWM I/O.

Note how the use of CPU cycles allows a performance characteristic to be

included, merely by recasting performance as a consumable.

While use of a single dimension in the vector is not ruled out by this

model, interesting real-world issues arise when multiple dimensions are used.

The allocation algorithms must be able to deal with, if not exploit outright,

the tension between the competing demands inherent in a multi-dimensional

resource vector. For this reason, we have ensured all experiments were

executed with n ≥ 2.

Sensors and actuators are physically connected to particular processing

elements, and require computational resources for proper execution. Such

resources are considered to be pre-allocated and not included in the PE’s

resource vector.

4.2.2 Network

Our model of the network is a simple resource vector. In the cases illustrated

in this thesis, only a single network resource was modeled — bandwidth. The
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resulting single element resource vector thus collapses into a single scalar.

There is no reason precluding the addition of further consumable resources

in the vector, if called for by a particular design.

Latency and other scheduling concepts are difficult to apply to this net-

work model. Ideas on how to expand the network model suitably are dis-

cussed in the future work section, Section 9.4.

4.2.3 Configuration

We base the model of software elements on the flow of information from

sensors, through software elements, to the system actuators that actually

modify the environment, as shown in Figure 4.1. For this purpose, we employ

a synchronous data flow graph (SDFG)[Lee87]. The SDFG is a directed,

possibly cyclic, graph, where vertices are algorithms and edges the data

flow between them. Exterior vertices (those with only inputs or outputs)

represent sensors and actuators — sources and sinks of data. Figure 4.3

shows an example SDFG, representing a frequency division multiplexed,

full-duplex modem. In this respect, synchronous merely refers to the a

priori ability to describe the rate at which data is generated or consumed

by each vertex. In other words, each adapter must consume and generate

data at a rate that is independent of the actual contents of the data. As most

distributed embedded systems operate in a time-triggered fashion, such an

assumption is fully warranted.

A well-formed configuration can be represented by a unique DFG ar-

ranged to show the interconnections among sensors, adapters and actua-

tors. This is a fairly common representation of embedded systems and is
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used traditionally in signal processing applications [Woodside93], hardware-

software codesign [Prakash92, Kalavade93, Blickle98], and elsewhere [Efe82,

Beck95, Beck98]. It was first proposed for task (adapter) allocation algo-

rithms in [Stone77]. Note that interior vertices are all adapters and exterior

vertices are sensors and actuators.

Each interior vertex of
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Figure 4.3: A simple data flow graph

a configuration’s DFG rep-

resents an adapter, which

must be allocated to a pro-

cessing element. The exte-

rior vertices are the sensors

and actuators — they are pinned by their physical connections to a partic-

ular processing element, and thus do not require allocation. Each adapter,

however, needs a specification for the computing resources it will consume

when placed on a processing element. The specification takes the form of a

requirements vector, where each element of the vector indicates the amount

of a particular type of resource that the adapter requires. The requirements

vector has the same dimensionality as the resource vector used in the PE

model. In fact, the elements correspond between the two vectors — require-

ments will be satisfied by consuming from the resources vector. For example,

if CPU cycles are the first element of the resource vector for the PEs, then

CPU cycles are also the first element of each adapter’s requirement vector.

The edges of the data flow graph represent communication between

adapters, sensors and actuators. Each edge is directed in order to distin-

guish the source and destination of the communication. Edges are labeled
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with a requirement vector, in the same dimensionality and element order as

the network resource vector.

4.3 Fault Model

Since our basic idea is to respond to reliability problems in a system, we

must be careful to cover the types of faults that system-wide customization

is capable of responding to. The reliability field uses the following system

fault models (in addition to numerous other local hardware fault models

such as “stuck at one”):

Omission failure a processing element or software component fails to gen-

erate an output.

Timing failure an otherwise correct response is generated either too early

or too late.

Value failure the value of a response is incorrect.

Crash failure a processing element fails to generate outputs.

Byzantine processing failure results in arbitrary, even malicious, behavior.

See [Cristian91] for a detailed examination of fault semantics, or [Gartner99]

for a higher level survey.

The system-wide customization concept and operational scenario have

been conceived as a defense against the failure of a microcontroller or trans-

ducer. Thus, failure of a PE, sensor or actuator must be allowed (and

detectable) by the fault model. For the most part, we consider only crash
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failures. It could be that a timing, omission or value failure which was de-

tected by the system would result in a PE being shut down and cause a

system-wide customization. On the other hand, network failures are not

addressed, as it is critical for moving the adapters to their allocated target

PEs and communicating other results of the customization process. The net-

work is also necessary to gather information about the operational status of

each PE, sensor and actuator prior to starting a system-wide customization

operation.

4.4 Summary

This chapter introduced the system model that was used for this research.

The model was carefully based upon the dominant traits of industrial sys-

tems: embedded networks and the use of microcontroller-based smart sen-

sors. The system model includes:

• capability vectors for processing elements,

• a scalar bin to represent the bandwidth of the network,

• requirement vectors for software components,

• and a simple data flow graph to represent composability of the system

from the data manipulation elements (sensors, adapters and actua-

tors).



Chapter 5

Problem Definition

This chapter examines the problem of graceful degradation and puts to-

gether some of the building blocks that lead to a thorough understanding of

the problem. First, graceful degradation is related to the real world through

descriptions of an operational scenario. Such an example scenario is illus-

trative of many subtleties, and helps to guide implementation decisions.

An automobile navigation system is also introduced as an example system.

Several problem models are discussed, leading to the mechanics of the PFA

graph, a representation of the customization opportunities available in a

system. It is from the PFA graph that algorithmic solutions are built in the

next chapter.
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5.1 Guiding Scenario

5.1.1 Operational Scenario

Currently available automobiles have no system-wide customization capabil-

ities, of course. But they do consist of the distributed embedded architecture

on which customization can be constructed. In high end automobiles, cur-

rent year models have as many as 75 microcontrollers. Designers anticipate

that in a few years, even low end automobiles will employ 50 to 100 smart

sensors connected by a CAN network[Leen02].

In the customization-capable automobile, the scenario in the case of a

fault would unfold along these lines:

1. A hardware failure occurs. We assume the driver has enough system

functionality remaining to pull the car to the side of the road.

2. A customization manager is connected. The connection is either via a

remote connection such as OnStarTM or to a laptop carried in a tow

truck.

3. The customization manager polls the system to discover what hard-

ware is available.

4. The system-wide customization algorithm is executed. The output is

a list of adapters to be downloaded to particular hardware.

5. Adapters are downloaded and installed. The adapters are taken from

the adapter repository, either on a remote server or a CD-ROM in the
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laptop. Note that the adapter repository might contain adapters that

were not necessarily available when the automobile was constructed.

6. The driver reboots the auto and goes on his way.

This scenario places a few bounds on what is to be accomplished by a

customization manager— static timing, computational location, and exe-

cution time. The timing is static in that the system is not performing its

mission during the actual customization process. Building a dynamic system

for system-wide customization is quite a challenging proposition. The root

of the problem is a lack of computational resources to execute the customiza-

tion manager or the lack of network bandwidth to transfer mobile adapters

to new host PEs. The lack of resources (computational and network) is due

to previous system-wide customization actions which would have allocated

the resources to increase system functionality.

Fortunately, most distributed embedded system have a ground state

which can be exploited. [Kopetz97] defines ground state on a node-by-node

basis as a state where no task is active and no messages are in transit. In

a system-wide context, the ground state is a time of reduced functionality

when most nodes are generally idle and the network is fairly free of messages.

In the example above, the auto reaches a ground state when turned off at

the side of the road. Elevators, for instance, can execute the system-wide

customization during the time when passengers are loading onto a motion-

less car. Systems designed for reliability routinely have such ground states

on a node-by-node basis, as they help with checkpointing the state of the

PE.
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We also don’t expect every auto to have the data storage or compu-

tational capability of a customization manager onboard — quite a bit of

processing power would be required to run the algorithm. Perhaps an au-

tomobile’s infotainment computer could be put to good use, but access to

the repository of all current adapters would be problematic. Remote access

capabilities are being added to many distributed embedded systems, which

can be used for communication with a reconfiguration server. In many other

cases, the customization manager may be hosted in a diagnostic tool, such

as might be available to an auto mechanic.

Finally, this scenario helps to put bounds on the execution time — several

minutes would be available, but not much more. There is no reason to

expend significant effort to speed it up into the sub-second range.

5.1.2 An Example Subsystem

A hypothetical automotive navigation system is a simple, though non-trivial,

example of the ideas presented in this and the following chapters. It was

used to guide the development of many of the customization algorithms.

This model has been vetted with an industrial partner so we believe it is

fairly realistic and representative of current system capabilities.

Two navigation applications are posited: location detection and path

planning. The system can indicate the automobile’s current location through

a special purpose display unit, showing location on a local map segment. The

display could also be used to provide a turn–by–turn set of directions for

path planning. In that case, the display would indicate the direction of and

distance until the next turn (e.g., “Turn left at Wilson Avenue in .4 miles”).
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Path planning information could also be provided to the user via several

different system actuators, in the case of damage to the display unit or if the

display were being used to provide the location map. For instance, a speaker

may aurally indicate the turn, either by speech synthesis or via special tones

(i.e., high pitches mean turn left, low pitches turn right. Loudness could

indicate distance to the turn). Finally, the turn indicator can actually be

used to notify the driver of an upcoming turn. By blinking (perhaps in a

different pattern from the standard turn indicator) the driver can be told to

turn left or right.

The following sections and chapter contain more details of the navigation

subsystem, which is used to illustrate the corresponding ideas.

5.2 Problem Models

We have developed several informal models to help us think about and

communicate about graceful degradation. The lattice and MUSH models

that follow are descriptive (as opposed to prescriptive) in nature, but have

been quite helpful. Neither model would actually be built for real systems

— they are far too large for human construction. But thinking about how

the models operate helps to clarify many graceful degradation concepts.

5.2.1 The Lattice

The fixed hardware resources of a system limit the software components

that can be executed. Each choice of possible hardware components can be

viewed as a single vertex of a dense lattice that represents a fine-grained
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product family architecture (PFA). Figure 5.1 is a subset of an example lat-

tice. The lattice is a partial ordering based on the number of components,

with arcs connecting those combinations of components (or configuration)

that differ in only the addition or subtraction of a single component. The

system’s configuration state falls toward the bottom of the lattice as com-

ponents are broken, and rises when they are repaired or replaced. Such

movement makes no statement about the desirability of different configu-

rations, though it is often the case that “more components” is better than

“fewer.”

For each combination
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= Product Variant
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Figure 5.1: Part of an example lattice

of hardware components,

there are many different

software configurations

available. In terms of

the PFA lattice, the

system-wide customization

problem may be expressed

as the process of choosing

the software configuration for a particular vertex (i.e., the one representing

available hardware) that maximizes the utility of the system. In general,

there are many different combinations of software components that could

be used at each vertex. Unfortunately, the lattice model doesn’t help

determine which software configuration would be the best.

As an aid in determining which software configuration would be best, it

is tempting to formulate a lattice model from software as well as hardware
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components. Such a model is less intuitive, in that many lattice vertices are

invalid (in that the proper software components are not available to oper-

ate the given hardware) or contain excessive software components. However,

once the invalid configurations were weeded out, utility values could conceiv-

ably be assigned to each vertex. Graceful degradation would then simply be

the process of moving the system state down the lattice to a neighboring ver-

tex having the largest utility and all the available hardware. Such a lattice

is fairly close to the relaxation lattice described in [Herlihy91]. It still has

all the same problems, as well: an inability for human designers to examine

the large number of vertexes and the complex process of actually generating

consistent utility values. An alternate model, which integrates the hardware

and software elements of the system, is given in the next section.

Both lattice models have the advantage of being an intuitive vehicle for

discussions of graceful degradation. One naturally can imagine a system

degrading as its hardware state falls down the lattice. Recall, however,

the counter-intuitive nature of higher utility states possibly being located

at lower levels of the lattice. This is a direct result of the lattice’s partial

ordering being based on number of components, not the utility of individual

components.

As an example Figure 5.2 shows a small portion of the overall lattice

for the automotive navigation system. Notice that the top-left collection

includes a GPS and a compass sensor. The compass is thus completely

redundant, and its loss results in a usable system state. However, if the

second loss includes the GPS, then no source of location information is

available and the system is not functional.
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{GPS, Compass, Display,
Speaker, PE1, PE2}

{GPS, Display,
Speaker, PE1, PE2}

{Display, Speaker,
PE1, PE2}

{GPS, Sbox, Display,
Speaker, PE1, PE2}

{Compass, Display,
Speaker, PE1, PE2}

{GPS, Speaker,
PE1, PE2}

Figure 5.2: A portion of the navigation PFA lattice

5.2.2 Mapping Utility, Hardware and Software

The desire to link system utility directly to a model of graceful degradation

led to the formulation of an integrated model, which maps the available

hardware and software in the system to system utility. As this model Maps

Utility, Hardware and Software, we call it the MUSH model. A three di-

mensional graph is proposed, a completely contrived example of which is

shown in Figure 5.3. On the x and y axes, the combinations of software and

hardware components are respectively enumerated. The order is not partic-

ularly important, though our convention is such that higher along the axis

indicates a higher number of components. For the system composed of h

hardware components, the y–axis has 2h distinct allowable values. Likewise,

the x–axis has 2s possibilities for the s software components. The cartesian

intersections on the x–y plane then consist of an enumeration of all possible

collections of system components.

The z–axis on the graph is the system utility. Higher values are more
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System Utility
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H/W Combinations
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binations

Figure 5.3: The MUSH model

desirable systems, in that they provide more value to the users. At each

of the potential system configurations (i.e., the 2(h+s) points on the x–y

plane), the total utility of the system is measured and plotted in the z

direction. Many of the utility values will be zero, for many of the system

configurations do not have sufficient components to be operational. While

the overall trend is to increased system utility at higher x and y values, in

general the trend will be non-linear and will not be monotonic. Recall that

the system combinations on the x and y axes are ordered only on the number

of components available, not the desirability of particular components. In

many cases, an additional component would be redundant or not usable.

Figure 5.3 shows an additional feature of this model — the maximal

utility projection graph, shown here in the x–z plane. For each value on the

x–axis, the largest system utility is chosen from all of the y values and plot-

ted. The resulting graph is the optimal solution guide for the system-wide
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customization problem. In effect, it shows the best possible combination

of software components that can be chosen for each possible combination

of hardware components. In fact, an oracular customization manager can

be postulated which would know, for each x–axis value, the y value that

resulted in the largest system utility.

Note that the maximal utility projection graph has the same trend issues

as the rest of the graph. While it tends to increase as the x value gets larger,

it is not monotonic. Two factors are primarily responsible for this effect.

First, the contribution of individual components to overall system utility is

non-uniform: some components are more valuable than others. However,

the hardware combinations are ordered on the x–axis based on the number

of components, not their value. In effect, the x–axis is partitioned into re-

gions with an equal number of components. Within a region, no ordering

is implied. One can imagine re-sorting the x–axis numbering so that com-

binations within regions reflect the inclusion of more desirable components.

However, some components are only desirable on a local scale — generally

reflecting the effects of PE allocation. For instance, a sensor that does very

little but has a large amount of available RAM may be very useful as a host

for adapters when the system has few components. Yet in a system with

many components, the extra RAM is not needed — and thus the sensor

itself is unnecessary.

The MUSH model is not as intuitive as the lattice model for under-

standing the failure/repair process, as failures only guarantee a movement

towards the origin. It does a much better job, however, with integrating an

understanding of system utility and how it is affected by the configuration
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process.

5.3 Specifying PFAs

Both of the problem models proposed in Section 5.2 are descriptive in nature

and, while quite useful for communicating ideas, are quite insufficient for

algorithm development. In addition, the construction of either model is

obviously intractable for usefully complex systems. The following model is

algorithmically sufficient for specification of a Product Family Architecture

(PFA), and is the primary input to the customization manager.

The basic idea of the PFA graph is to provide alternate system com-

ponents for inclusion in whatever configuration the customization manager

proposes as a solution. Most distributed embedded systems will be designed

without thought for redundancy. In fact, any redundancy discovered among

various components will often be designed out of the system as a means to

reduce costs. But, for customization to work as a mechanism for graceful

degradation, there must be a source of flexibility as to which components

can be used to solve the system’s mission.

The required flexibility may be gained by exploiting product family ar-

chitectures. Several products which accomplish similar missions will have

common components (perhaps more capable components on the higher-end

automotive models) and different versions of the control algorithms for the

same sensors (for instance, on different model year automobiles). The PFA

graph is a problem representation that can be constructed by merging the

DFG for several similar models in a product family.
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5.3.1 Merging DFGs to Form a PFA Graph

Section 4.2.3 discussed the idea of a configuration, which is any collection

of sensors, adapters and actuators. These are the elements which act, re-

spectively, as data sources, data processors and data sinks. For a particular

combination of available hardware components, many different configura-

tions are possible — each with different adapters. The customization man-

ager must search (not necessarily exhaustively) the space, consisting of all

possible configurations, for a configuration with maximal utility that can

be allocated to the current hardware. The software configuration space has

several interesting partitions (illustrated in Figure 5.4).

All possible configurations

Allocatable

Un-allocatable

Well-formed

Valid

Max Utility

Figure 5.4: Various configuration spaces of interest

• Allocatable configurations are constrained to fit on the available hard-

ware. More precisely, the software requirements cannot exceed the
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resources of the hosting hardware (including network resources such

as bandwidth). Configurations that cannot fit are unallocatable.

• A well-formed configuration is one in which the data flow properly

transports data from sensors, through a series of properly connected

adapters to actuators. Every adapter in a well-formed configuration is

part of a path from some sensor to some adapter.

• A valid configuration is one which, in addition to being allocatable and

well-formed, all system constraints are fulfilled. For instance, tasks and

network messages are schedulable and meet all real-time deadlines.

• Max utility configurations are valid configurations whose utility value

is only exceeded by other software configurations requiring different

hardware. For a particular set of hardware components, the results of

the system-level configuration algorithm is bounded from above by the

configurations in the max utility space—no other configuration has a

higher utility. Note this definition is careful to include the case where

several configurations might have equal utility.

These classifications of the configuration space are somewhat arbitrary,

but do reflect useful views of the space. The allocatable division deals with

the available hardware and networking resources — if the un-allocatable

space was too large, for instance, it could be shrunk with the addition of

more hardware. Well-formed configurations are completely determined by

the data flow properties of the software available. The addition of data

manipulation elements (sensors, actuators, or adapters) to the PFA will en-
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large the well-formed configuration space. The valid configuration subspace

encompasses all the systems that can be constructed — they have sufficient

hardware, software and fulfill other system constraints. And the max util-

ity space encompasses all the desriable systems — those the customization

manager should recommend.

For each vertex in a hardware-only lattice there are many possible DFGs.

If sufficient hardware exists at the vertex (and the PFA has been well enough

designed to provide the appropriate software adapters), at least one valid

configuration also exists. If the DFGs for each such configuration were

merged, the resulting graph would be an alternate representation of all the

valid configurations available in the lattice. This merged graph is a PFA

graph, a supergraph of all possible well-formed system configurations. Its

construction would probably not follow the process just described. Instead,

system designers would construct several DFGs for systems they are thinking

about and work with them to find extensions and abstractions that are useful

to building the PFA graph.

In order to merge DFGs, a notational element must be introduced to

allow for choices between different components. Insertion of a choice element

between adapter connections is easily accomplished. The choice element

allows data flow from at most one of its inputs through to the output.

A simple edge in the DFG can trivially be expressed as a choice element

with only a single input. A useful specialization of a choice element is

the data element, to represent message types sent via a broadcast network.

Most distributed system designers would have little trouble utilizing data

elements—various adapters may emit a particular data element and any
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IN1 A

IN2 B

OUTC

D
Data Element

Figure 5.5: Simple example of data elements

adapter listening for the data element may read it as input, as illustrated

in Figure 5.5. General networks might require more coordination between

publisher and subscriber of the data, but most embedded networks do not,

since they are broadcast networks (see Section 4.1.1).

The PFA graph is an expressive, uncomplicated mechanism to spec-

ify the configuration options for a system. It is sufficiently useful and yet

computationally manageable enough for this research. Vertices (adapters,

sensors and actuators) and edges (choice elements) of the graph are labeled

as described in Section 4.2 to support the different algorithmic requirements

of the reconfiguration mechanism. All such labels are values the system

designer would be able to generate.

Figure 5.6 shows the PFA graph (unlabelled with resource sizes for read-

ability) for the in-vehicle navigation application. Notice how the data ele-

ments, such as Ground Speed or Turn Info, can be provided or synthesized

from many different combinations of adapters.
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5.3.2 Features

If given the PFA graph of Figure 5.6, a customization manager would not

have any guidance about how to optimize functionality of the system. Which

is more important, location display or path planning? Of the available lo-

cation display options, which should be used? These are difficult questions,

the answer to which really depends upon external requirements, not merely

upon the data flow through the PFA graph. Recall that the overall goal

of customization is to maximize the functionality of a given set of hard-

ware. The algorithm can only attempt to maximize quantitative values, so

functionality must be represented quantitatively.

At a high level, a feature is a means to accomplish a particular function

of the system. The basic functions of a system are the requirements it has

to accomplish its mission. Automobiles, for instance, have several different

functions: steering, braking, speed control, passenger entertainment, etc.

A difficult problem for the system architects has always been to determine

exactly the scope of each function in such a decomposition. However, from

a PFA perspective, each function has several possible realizations. Different

automobile models have different components responsible for braking. Some

are much more desirable than others — anti-lock braking systems (ABS) are

in higher demand than standard brakes.

Each such different means of accomplishing the function is a feature. To

a large degree, the customization problem revolves around choosing the ap-

propriate features to maximize the functionality of the hardware. Features,

and their associated utility values, are the means by which the system de-
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signer communicates the desirability of different configuration elements to

the customization manager.

On its face, this seems to be a fairly simple problem. The knee-jerk

reaction of almost any engineer is to label, with utility or desirability val-

ues, different pieces or paths of the PFA graph. Such pieces being labelled

are known as features, for reasons to be explained below. Unfortunately,

labelling features in a consistent manner across a complex system basically

requires examination of every combination of possible features to pair-wise

rank them. Spotting meaningless combinations, for instance, requires the

designers to think hard about each combination. Such combinatorial com-

parisons are only possible when the number of features is low.

Other decision methods, such as Analytic Hierarchy Process (AHP), at-

tempt to break the combinatorial explosion, but are still widely viewed as

insufficient for cases where the number of choices is large [Braglia99]. An-

other feature selection procedure is the Quality Function Deployment (QFD)

methodology, a pre-cursor to AHP, which is insufficiently quantitative for

use in this research [Cohen95].

The feature problem is very common in many system description method-

ologies such as aspect-oriented programming, feature-oriented programming,

subject-oriented programming, and black-box composition [Kiczales97]. The

basic problem is one of composibility of features, where the features need

complex interaction. Some relatively new directions toward solving the prob-

lem include multi-dimensional separation of concerns [Tarr99] and generative

programming [Czarnecki00], which provide syntactic support for assembly

of features, but fall short on the semantic level, for example in spotting
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meaningless or even faulty combinations.

This research did not attempt to solve the feature problem, but does

require a low-complexity feature representation. As an attempt to lower

the degree of the combinatorial explosion, we developed the feature class

specification mechanism. It solves one of the difficult feature problems —

deconflicting overlapping features. If a function can be satisfied by any of

a set of features, then only one of the features should be installed on the

system. In the navigation subsystem, only one software component can

drive the speaker with turn information. If the system-wide customization

algorithm chose the speech-synthesis turn feature as well as the tonal turn

feature, both would conflict as they send differing information to the speaker.

By placing both features into a single feature class, we can ensure that only

one of the turn features is chosen.

Under the feature class specification mechanism, particular adapters in

the PFA graph are designated as features. Each feature is an adapter that

has been given a utility value to represent its desirability. Each feature

belongs to one of several feature classes. All features with the same class

represent redundant adapters, only one of which can be used in a configu-

ration. The overall utility of a configuration then is the sum of the utility

of all the features of a configuration. Some feature classes (not the features

themselves) can be labeled as critical, thus imposing a constraint whereby

any valid configuration must include one of the features from the critical

class.

Features can be zero sized (in terms of resources required), if a designer

wanted to insert a vertex to show the desirability of obtaining data from a



72 CHAPTER 5. PROBLEM DEFINITION

particular source, for instance. In the navigation system, a zero sized dead

reckoner feature exists to handle the GPS inputs — zero resources required,

as the GPS sensor already generates the current location and error estimate

data elements.

The class-based feature model is not a general model; but, it is suffi-

ciently expressive to cover a wide variety of systems. There are, however,

some useful systems that cannot be expressed and others where the expres-

sion is possible, but clumsy. An example of an inelegant expression is a

feature that requires two different adapter paths. In this case, the system

designer would add a zero sized (in terms of system requirements) feature

and feed the two adapters to it. Mode changing [Lee01, Chou00] and dual

use features are two examples of difficulties with this feature model, and

await further research.

The feature class also provides a mechanism to represent optional (or

optimizing) relations among adapters in the PFA graph. It is sometimes

the case that one adapter can provide additional service if another adapter

is providing additional data. As an example, examine Figure 5.7, a sub-

set of the navigation subsystem’s PFA graph. In this case, the display is

capable of displaying a map and turn information (perhaps it has window-

ing capability). But the turn information is clearly optional. To show an

optional dependency, a null adapter (one which takes no computational or

communication resources) can be constructed to also provide the data ele-

ment needed to display turn information. This is a partial solution, though,

since a good customization manager would never have a reason to allocate

system resources to host the turn adapter (the null adapter appears to do
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everything necessary without cost). By placing both adapters into a feature

class, and giving the turn adapter a utility higher than the null adapter’s,

there will be a reason to choose the turn adapter. In fact, we can mark the

feature class as non-critical and then eliminate the null adapter entirely.
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Figure 5.7: A subset of the navigation PFA graph

By organizing features into feature classes, the combinatorial explosion of

feature comparisons has been somewhat limited. Determining utility values

is still challenging, but now on a smaller scale. Within each feature class,

ordering of utility is generally easy to assign. The pairwise comparisons are

then limited to the features within each class, and a bit of class-to-class

comparisons.
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5.4 Summary

This chapter introduced a formulation of the system-wide customization

problem that is amenable to solution. Several descriptive problem models

— in either lattice or three-dimensional graph form — are useful for commu-

nicating graceful degradation ideas. The PFA graph, however, can actually

be used to solve the customization problem. The PFA graph is constructed

by merging the data flow graphs of several distinct products. Those prod-

ucts might be different models in a product line or versions from different

product years. By adding a class-based feature model to the PFA graph,

sufficient flexibility is gained to accomplish customization.



Chapter 6

Algorithmic Framework

Our approach to solving this problem is illustrated, at a fairly high level,

in Figure 6.1. Inputs to the problem are the PFA graph, which provides

all the alternatives, and a description of the available hardware. The goal

is to generate a valid configuration of adapters to the processing elements

(PE) and message traffic to network elements (NE). Optimally, the output

configuration would be a maximum utility configuration. Because the search

relies upon NP-complete components, we focus on finding fast heuristics that

yield high quality solutions.

Three major searches make up the phases of the system-wide customiza-

tion algorithm. Each phase is iterative and may need to be repeated upon

failure of a subsequent search. The first search is to select a set of features

for implementation. In order for the utility of the selected features to be

functional in the system, however, the dependencies inherent in the DFG

(data flowing into and out of the features) must be taken into account —

the target of the second search. It is during this second phase that a set

75
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Figure 6.1: The reconfiguration algorithm

of adapters must be chosen to implement those features in a well-formed

configuration. Finally the adapters must be allocated to the hardware and

constraints checked to produce a valid configuration.

The last phase, adapter allocation, has been researched in somewhat dif-

ferent circumstances, as discussed in Section 3. Allocation is an NP-complete

problem, easily mapped to the well-known bin packing problem [Beck95].

The real challenge of solving the system customization problem is to find

creative means to keep the first two phases from merely being huge loop

constructs around the third, NP-complete phase.

The experiments to determine heuristic effectiveness were performed in

three steps, corresponding to the three phases of the algorithmic framework.

The work on Phase 3 was done first to establish an appropriate allocation
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methodology. The transducer sensitive algorithm was then used for all the

allocations required by the experiments for Phase 1 and 2. The Phase 1

experiments were then conducted to determine a good feature selection al-

gorithm, which was then used as required for the experiments for Phase 2.

At the end of the three experimental steps, three heuristics had been chosen

for the three phases of the algorithmic framework.

6.1 Phase 1: Feature Selection

Much of the feature selection sub-algorithm depends upon the feature rep-

resentation model. As discussed in Section 5.3.2, a general feature model

that scales well is not the point of this research; instead, a class-based fea-

ture model that is sufficiently expressive to cover most complex distributed

embedded systems has been used. In this model, some interior vertices of

the PFA graph are features and are labeled with a class and a utility value.

All features within the same class represent redundant adapters, only one

of which can be used on the system at a time. The overall utility of a con-

figuration is the sum of the utility of all the features of a configuration. In

addition, classes (not features) can be labeled as critical, thus imposing a

constraint whereby any valid configuration must include one of the features

from the critical class.

More formally, a PFA graph includes a set of feature classes,

{C0, C1, . . . , Cm} where each class Ck contains some number of features

{Fk,0, Fk,1, . . . , Fk,n}. For some a ≥ 0, classes {C0, . . . , Ca−1} are critical,

the remainder {Ca, . . . , Cm} are non-critical. Each feature has a utility



78 CHAPTER 6. ALGORITHMIC FRAMEWORK

u (Fk,i) indicating its desirability in the system. Note that the features are

sorted in their classes by utility, so that u (Fk,i) ≥ u (Fk,j) ,∀ i ≤ j.

The feature selection algorithm is a combinatorial optimization prob-

lem[Garey79] and quite intractible. Each invocation of the algorithm will

return a set of features
{

F0,i0 , F1,i1 , F2,i2 , . . . , Fj,ij

}

where a ≤ j ≤ m. The

total utility, Utot =
∑j

i=1 U(Fi), is the optimization metric.

An examination of the brute force solution is instructive in developing a

useful approximation heuristic. In essence, a combinatorial algorithm, such

as [Trotter62] or a recursive “duplicate and add”, can be used to generate a

list of all possible combinations — we call this algorithm COMB ALL. Each

combination on the list will then have its Utot calculated and used as the

basis to sort the list. Each invocation of the algorithm would then return the

next combination on the list, such that a complete search of all combinations,

in order of Utot, would occur. In the navigation system example, there are

three feature classes: dead reckoner, turn calculation and map. Only the last

would be considered critical. With 5, 2 and 8 (respectively) features in each

of the three classes, the total number of combinations is 6 × 3 × 8 = 144.

Recall that one must be added to the non-critical classes to account for

combinations that lack any member of that class. And, it so happens that

the critical map class depends upon having a dead reckoner available, so any

combination without a dead reckoner is automatically invalid (and thus the

number of combinations is actually 5× 3× 8 = 120).

Brute force combinational algorithms are a poor choice for implemen-

tation of the feature selection algorithm, however. While 120 combinations

is perfectly acceptable for the small navigation system of our example, the
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number of combinations grows exponentially. As a rough estimate, consider

a system with f features in c classes. If the features are uniformly distributed

among the classes, each class would hold f
c
features. Making a conservative

assumption that all classes are critical, the total number of combinations

would then be ( f
c
)c. Since excessively huge feature classes will probably not

be supported by management, the number of feature classes can be approx-

imated as c ≈ 2√f . The total number of combinations, as a function of

the number of features, is thus approximately (f/2)2
√

f . In Chapter 8, a

complex distributed embedded system is examined, which turns out to have

50 features in 18 classes. The resulting 2.7 billion combinations is obviously

too many to handle through the brute force algorithm.

In a bid to understand the various parameters of a feature selection al-

gorithm, we fully enumerated all adapter configurations for the navigation

system. The configuration space is 233 or 8.6 × 109 distinct configurations.

Surprisingly, the space of well-formed configurations is quite a bit less — a

mere 36,112. In terms of the integrated model of Section 5.2.2, the over-

whelming majority of x-y intersection points have a zero z-axis value. Only

4.2 ppm have a positive utility. Even this small a number is quite optimistic,

as it is based on the assumption is that the appropriate hardware would al-

ways be available to provide or consume data (sensors and actuators) or to

execute the software (i.e., appropriately sized PEs). So of the 233 config-

urations at maximum x value on the integrated model graph, only 36,112

are of non-zero utility. At other x values, there cannot be any more than

those 36,112, and in many cases there will be significantly less (if a configu-

ration is not well-formed with all of the hardware, it cannot be so with less
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hardware. However, less hardware will, in many cases, disrupt well-formed

configurations that rely upon the missing hardware).
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Figure 6.2: The number of configurations for each feature set

Further examination of the configuration space shows the well-formed

configurations to be quite structured. Figure 6.2 shows the relationship

between particular combinations of features (in enumeration order) on the

x-axis and the number of well-formed configurations available on the y-axis.

Visible groupings on the graph are:

• the 6 large partitions of the x-axis, each corresponding to the use or

absence of a particular dead reckoner. The low x-value partition is

the one which does not include a dead reckoner. Even though the
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dead reckoner feature class is non-critical, the map features all rely

upon a dead reckoner to provide current location, so no configurations

are valid which do not include a member of the dead reckoner feature

class. The configurations on the right use the GPS sensor to provide

location, thus reducing the number of combinations associated with

generating ground speed and direction, the inputs to all of the other

dead reckoners.

• the 8 peaks for each of the 4 groupings in the middle (i.e., the clusters

of 8 data points with y-value of 810). These peaks each represent one

of the 8 different map features.

• the 3 value levels for each of the groupings (y-value of 30, 270 or 810 in

the middle groupings). Each is representative of the choices available

for generating turn information, either from one of the two features or

from neither.

Such structure, upon reflection, is not surprising. The configurations

are constrained by the PFA graph, which is not densely connected. Further,

many of the features are parallel choices, in that their inputs and outputs

are substantially similar. When faced with such stark order, a brute-force

combinatorial algorithm is overkill. We merely need to ensure an algorithm

will cover the alternatives of each feature class.

We explore such a heuristically driven feature selection algorithm, which

we name COMB SHORT. By additively combining the feature classes, as

opposed to the multiplicative combinations of COMB ALL, the algorithm
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is reduced in run-time complexity

from O

(

m
∏

i=0

(ni + νi)

)

to O

(

m
∑

i=0

(ni + νi − 1)
)

where m is the number of feature classes, ni is the number of features in

feature class i and νi is the is criticality of feature class i, with a value of

0 for critical classes and 1 for non-critical ones. Such a drastic reduction in

the number of generated feature sets must be carefully weighed against the

chances of missing important possibilities. Such skepticism is normal, but in

this case is outweighed by the clear rationale — the structure of the feature

choices is such that missing all the important possibilities is unlikely due to

the redundancy in feature combinations.

COMB SHORT is a greedy approximation algorithm, which makes a

single pass through each feature class list. It works by building m lists,

one for each feature class, of the features in the class, sorted such that the

highest utility is at the beginning of the list. The lists for the navigation

system are shown in Figure 6.3. The collection of features at the heads
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of their respective lists make up the set of features passed to the Adapter

Selection phase. On each invocation (save the first) it discards one of the

features at the head of one of the lists. The crux of the heuristic, then, is to

choose carefully which feature should be discarded.

Without further information, the feature which has the smallest utility

increase over the next feature of that class (i.e., choose Fk,0 for feature class

Ck which U(Fk,0) − U(Fk,1 is smallest) should be the one to be discarded,

resulting in the highest Utot of the available options. As we will show later,

further information is often available.

The Feature Selection algorithm must choose a feature set under three

different conditions: initial, adapter selection failure and adapter allocation

failure. The first time through the algorithm, since there is no information

about the usefulness of any particular feature, simply choose the highest

possible Utot, i.e., the head of each list. The adapter selection algorithm

fails only because adapters cannot be chosen to fulfill all of the dependencies

of a feature. For instance, a feature may require a particular sensor that is

not available on the current hardware platform. Such a feature will never be

achievable, so it should not appear in any further feature sets. In such a case,

the feature should be discarded. Upon adapter allocation failure, the packing

state achieved on each attempt could be examined to attempt to discover

the core reason behind the failure. Drawing a conclusion that a particular

feature is problematic, based on a series of failed allocation attempts, is

a difficult, time-consuming, and error-prone process. Fortunately, as the

following experiment shows, such deduction is not necessary.



84 CHAPTER 6. ALGORITHMIC FRAMEWORK

6.1.1 Heuristic Evaluation for Feature Selection

The COMB SHORT algorithm described above is concieved as a suitable

compromise that avoids the high runtime and memory requirements of

COMB ALL, yet does not overly sacrifice the quality of the solution as

measured by Utot. The following experiments were designed to evaluate the

heuristics behind the various algorithms, the result of which was used for all

further research in this dissertation.

COMB ALL is optimal with respect to Utot. It ensures the first valid,

allocatable configuration generated is the one with the highest Utot by exam-

ining all possible feature combinations in decreasing Utot order. At the other

end of the spectrum is ORACLE, a speed optimal algorithm. It generates

a valid, allocatable configuration in the least number of iterations. Such an

algorithm can be hypothesized, but due to its oracular nature, the exact

mechanics of the algorithm are unknowable.

To examine the effects of each such algorithm, all well-formed configu-

rations of the navigation system were generated. As discussed above, the

resulting 36,112 configurations were collected. This was a simple, brute force

enumeration of all 233 combinations. Each combination was then tested to

ensure the proper input and output dependencies were met — other adapters

existed to generate each input and no other adapter was included that gen-

erated the same outputs. Additional tests ensured consumers existed for

each output data element. Throughout these tests, the necessary sensors

and actuators were assumed to be operational in the system. This is an

overly optimistic assumption and the subject of the next round of testing.
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The navigation system has 12 possible sensors and actuators, thus 212 or

4096 different combinations. A careful examination shows there are actu-

ally only 936 different combinations that could ever result in an operational

system. The remainder includes systems without a mapping database to

draw the maps from, without any sensors, without any actuators, etc. Each

of the 36,112 adapter configurations was then tested against each of the 936

sensor/actuator combinations. Almost 75% of the resulting configurations

were invalid — the adapters did not have a source of data, for instance. The

remaining 25% were then allocated to the hardware and the results noted.

Table 6.1 shows a portion of the summary data. Each line of the table repre-

sents all of the hardware and adapter combinations associated with a single

feature set. There are 120 such possible feature sets for the navigation sys-

tem. Note that the pass rate varies widely. The only discernable trend is a

slight inverse relationship between the pass rate and Utot— highly desirable

system configurations generally require more adapters and more resources,

and are thus harder to allocate.

An analysis of the data from this experiment shows that COMB ALL

would make 40 selections of feature sets before the cumulative probability

of generating a valid, allocatable configuration exceeds 95%. The Utot of

the resulting configuration would be between 219 and 191, depending upon

which of the 40 steps resulted in an allocatable configuration. The expected

value of total utility, E(Utot), is 192.4. E(Utot) turns out to be very low on

the range, due to the almost 5% chance of no solution in 40 steps, which

has been counted as a failure. A similar analysis of the ORACLE was at-

tempted by choosing the feature combinations with the highest chance of
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Feat. Combo Total # Utot Total Number of Combinations to Pass
Signature Combinations Passed Adap Select Net Alloc PE Alloc Rate

...
...

...
88 17784 167 15263 2520 1 0 0.86
89 270504 179 19928 213264 0 37312 0.07
90 775944 186 0 604224 0 171720 0.00
91 17784 185 7632 10152 0 0 0.43
92 270504 197 19716 213264 0 37524 0.07
93 775944 204 0 604224 0 171720 0.00
94 17784 194 0 10152 7632 0 0.00
95 270504 206 0 213264 57240 0 0.00
96 775944 213 0 604224 57240 114480 0.00
97 2808 160 1024 1784 0 0 0.36
98 30888 172 3072 27048 0 768 0.10
99 87048 179 4224 75528 3840 3456 0.05
100 2808 181 1024 1784 0 0 0.36
101 30888 193 2560 27048 0 1280 0.08
102 87048 200 4096 75528 3584 3840 0.05
103 2808 195 0 2296 512 0 0.00
104 30888 207 2304 27048 256 1280 0.07
105 87048 214 896 75528 5888 4736 0.01
106 2808 200 512 2296 0 0 0.18
107 30888 212 2560 27048 0 1280 0.08
108 87048 219 1664 75528 2176 7680 0.02
...

...
...

Table 6.1: Allocation results for some feature combinations
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success. Several combinations have an 85.8% success rate, so the two with

the largest utility were chosen. An ORACLE that chose those two combi-

nations would result in a 97.9% cumulative pass rate and a utility range

of 172 to 177 (the Utot of the two feature combinations). These two algo-

rithms, COMB ALL and ORACLE, provide the bounds (smallest number

of iterations and resultant utility) against which heuristics can be measured.

Analysis of COMB SHORT shows that it is a mediocre compromise that

efficiently (from a memory perspective) generates a valid, allocatable con-

figuration in fewer steps than COMB ALL. Unfortunately, it sacrifices quite

a bit of Utot in the process. Its Utot range of 129 to 219 is significantly worse

than ORACLE. In fact, its E(Utot) of 162 is even worse than ORACLE’s

worst case.

Before discarding the basic idea of COMB SHORT, we examined the

performance of an oracular version that performed the same greedy me-

chanics. This version, called SHORT ORACLE, showed some promise to

the idea. If the decision of the proper feature to discard was made to maxi-

mize the pass rate, the resulting algorithm could produce configurations with

Utot between 177 and 219 (E(Utot) is 187.1). Such good results prompted

us to examine COMB SHORT further. It turns out that a large number

(almost 77%) of the allocation attempts requested by the Feature Selector

were unattainable, due to a lack of hardware. In such cases, the algorithm

should reject the features that don’t have sufficient hardware. By using such

feedback from the Adapter Selection phase, we improved the algorithm in

the Feature Selection phase.

In order to quantify the improvement, we examined a variant algorithm
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Number of Cumulative Utility
Iterations Pass Rate Low Expected High

ORACLE 2 97.9% 172 172.8 177

COMB ALL 40 95% 191 192.4 219

COMB SHORT 13 97.5% 129 162.0 219

SHORT ORACLE 8 97.2% 177 187.1 219

SHORT FEEDBACK 5.8 96.9% 177 183.8 219

Table 6.2: Algorithm evaluation results

of COMB SHORT called SHORT FEEDBACK. SHORT FEEDBACK dis-

cards features from the feature class lists whenever insufficient sensors or

actuators exist to support the feature. The algorithm was executed for each

of the 936 possible hardware combinations, with good results. Configura-

tions with Utot between 177 and 219 (identical to SHORT ORACLE) were

achieved with a 96.9% cumulative pass rate. The E(Utot) of 183.8 is quite

close to SHORT ORACLE’s as well.

An additional optimization speeds SHORT FEEDBACK considerably.

If multiple features are designated as unattainable in the feedback, the algo-

rithm speeds through the unusable feature sets. It is with this optimization

in place that SHORT FEEDBACK was able to average a mere 5.8 iterations,

as shown in Table 6.2.

By incorporating the feedback from the graph analysis of phase 2, the

SHORT FEEDBACK algorithm is able to capture 95.5% of the Utot of

the COMB ALL algorithm, with only 14.5% of the iterations. Its results

are remarkably close to the oracular version, SHORT ORACLE. We used

SHORT FEEDBACK for all further experiments.

The results of all five experiments are summarized in Table 6.2.
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6.2 Phase 2: Adapter Selection

The selection of adapters to implement the feature set forms the core of

the system-wide customization algorithm. It is during this phase that the

relationships and dependencies between adapters, as expressed in the PFA

graph, are incorporated into a solution. As such, the algorithm employs

graph manipulation techniques to find various sets of adapters (and the

links that join them) for allocation.

With a bit more formalism, the adapter selection problem is:

Given: a PFA graph P , set of features F and the state of all sen-

sors/actuators (i.e. working, not working)

Find: an allocation graph A, which is a subgraph of P , that describes a

minimalist valid configuration. Ideally, find A such that the probability it

will be allocatable is maximized.

Both graphs, A and P are each (V, E), where V is a set of adapters,

sensor, and actuators. E is the set of directed communication elements

joining them. F ⊂ V , because all features of the feature set are in V . In

fact, no other features are in V — (V − F ) ∩ F = ∅, where the set F is a

subset of P , containing all the features of the PFA graph. A is minimalist

in the sense that the removal of any vertex in V or edge in E would make

A no longer a valid configuration.

All of the graph traversal and manipulation takes place in Phase 2. Each

feature f in F can be implemented in various manners, each of which we

call a path through the PFA graph.1 Each path must connect one or more

1Graph theorists use the term to denote a walk with no repeated edges or vertices. We
relax this condition to permit loops and multiple branches. In essence, our term path is a
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operational sensors, through intervening adapters, as well as f , to one or

more operational actuators.2. Every adapter included in the path must also

have all of its input communication elements and at least one output com-

munication element included as well. Any communication element included

must have one and only one input adapter and at least one output adapter

included.

Each feature f has its own set of paths, any one of which will satisfy

the requirements to use the feature. The allocation graph A is the union

of one path for each of the features in F . The resulting allocation graph

will be passed to the adapter allocation phase to see if it can be fit into the

hardware resources available.

In order to determine a path for a feature f , two graph traversals are

necessary — one of the feature’s inputs, back to the sensors and the other

from the outputs forward to actuators. The traversals are fairly straightfor-

ward, with only a few places for concern. If an adapter is to be included in

a path, all of the communication elements at its inputs and at least one of

its outputs must also be added. For a communication element to be added,

one and only one input and at least one of its outputs must be included. If

the traversal examines a sensor or actuator in the PFA graph, it must be

operational in the system, of course. If the traversal comes across a feature,

it must be an element of F , or else the traversal will need to backtrack, be-

cause only features included in F are to be part of A. To do otherwise is to

union of walks.
2Paths that do not employ a sensor (or actuator) are possible in real systems. One

example is a diagnostic database that merely acts as storage for system exceptions. We
chose to simplify the problem somewhat by focusing on the much more frequent paths
that use both a sensor and an actuator
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disregard the separation of responsibilities assigned to the different phases.

If the feature is to be included, it will be (or has been) specified by phase 1.

Such graph traversals are sufficient to generate a path for each of the

features in F . A is then the union of each such path.

Obviously, the success rate of an algorithm to generate A will depend on

how the various choices are made (where success is defined as the generation

of an allocation graph that is allocatable). Since the only variance in the

graph traversals occur when choosing one of the inputs to a communication

element, that decision will be the focus of our heuristic search.

But there is an even more fundamental issue that must be dealt with

— devising a mechanism to keep track of which choices were made so that

alternate paths can be attempted in the case of an allocation failure. When

the adapter allocation fails, then the adapter selection algorithm will need

to choose a different allocation graph for the next attempt. The graph

traversals that generate the paths make a decision at each communication

element as to which input will be chosen. The state of those decisions defines

the path generated. We need a mechanism to ensure the decision state varies

in a way that sufficiently covers the different combinations of path elements.

If, for instance, the algorithm merely chose the next input for communication

elements on a re-traversal, then all of the choices throughout the graph would

vary. Such variance would likely miss many interesting combinations that

should be more fully explored.

As a solution, the algorithm we employed uses a single depth-first re-

cursive traversal, but instead of collecting a single feature path, it generates

all the different combinations — in essence flattening the graph to a sin-
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gle choice. This is not exactly a lean algorithm that would be used in an

actual embedded system. But it is extremely useful to analyze the com-

binations and the means to make choices about them. In building a real

world system, algorithm designers may find a better solution in the field of

algorithmic combinatorics [Even73].

6.2.1 Heuristic Development for Adapter Selection

Heuristic development began with examination of local choice policies that

can be applied at each communication element to decide upon which input to

use. Such choices are inherently limiting in that they examine only the state

of the PFA graph in the neighborhood of the communication element. But

the limitation is often necessary or useful, because the choices also tend to

be ones that can be made rapidly and thus do not degrade the performance

of the algorithm.

The measure of merit for a particular adapter selection heuristic is the

success rate of allocating the adapters in phase 3. Since the allocation varies

based on the particular hardware available, we carefully explore the results

over a wide variety of hardware possibilities. In the following discussion of

the Navigation System, we examined all 936 combinations of hardware for

which allocation is possible.

The experimental protocol was thus established: for each of the 936 hard-

ware configurations, the feature selection algorithm of phase 1 was executed.

Each feature set produced was then run through the adapter selection graph

traversal to produce all possible allocation graphs (corresponding to well-

formed configurations) for this particular hardware configuration. Each of
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the various heuristics favor certain of these allocation graphs above others,

in essence providing an ordering, from most favorable (for the particular

heuristic) to least favorable. A successful heuristic favors allocation graphs

that lead to successful allocation (in phase 3). To measure the success of

each heuristic, all of the allocation graphs were then passed to phase 3,

with the results noted. The heuristics were then compared to determine the

corrolation between the heuristic’s ordering and the successful allocation re-

sults. The measure of merit for this comparison was the number of attempts

necessary before phase 3 successfully allocated the results. Note that since

the heuristics merely reorder the allocation of the possible allocation graphs,

the resultant utility is the same for all heuristics. This restriction is lifted

in the Chapter 8 in order to handle the complexity of the proof-of-concept

system, as the number of combinations gets too large.

The first heuristic choice examined was simply to choose the allocation

graph with the smallest sum of adapter sizes. The reasoning behind this

heuristic is that such adapters would be easier to allocate, and thus result

in better packing rates. Two different means of measuring adapter size were

employed, scaling them with regard to the total amount of PE resources

available or to the total required resources needed by the adapters in the

PFA graph. Along the same lines, another heuristic was examined that

simply measured the total number of adapters in an allocation graph. This

heuristic doesn’t have the same intuitive sense backing it up, because a

small number of adapters may include all the large elements of the PFA

graph. Similarly, a large number of small adapters can probably be packed

(allocated) more efficiently.
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Further heuristics examined the communication elements, both in num-

ber and required bandwidth, of the allocation graph. Comparison data was

also collected for random choice and PFA graph traversal order. Ascending

and descending sorts were done for many of the heuristics as a sensitivity

analysis, to ensure the scores generated were real discriminators. A sum-

mary of the heuristics, as well as the naming convention to refer to them, is

in Table 6.3.

Heuristic Name Description Variants

Random Random choice
InOrder-Up As generated by graph traversal Ascending Sort
InOrder-Dn As generated by graph traversal Descending Sort

Scaled by
SizeAdap-Res

PE resources
Sum of the adapter sizes

Scaled by
SizeAdap-Rqt

Adapter requirements

NumAdap-Up Ascending Sort
NumAdap-Dn

Simple count of the number of adapters
Descending

CommNum Number of communication elements
CommBW Bandwidth required by all comm elements

Table 6.3: Summary of phase 2 heuristics

The results of our experiment are displayed in Table 6.4. These selection

and allocation attempts are only the cases where the particular feature set

results in allocation graphs that in some cases can pack onto the hardware

and in other cases will not. We are not interested in the cases where all

allocation graphs can be allocated. In those cases, the use of any of these

heuristics is equally good as all the others. Likewise, cases where no allo-

cation graph can be allocated only illustrate that any heuristic is equally

bad. In order that the discriminatory cases are more clearly highlighted, we
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remove all other cases from the results.

A few comments help to understand the data presentation. Recall that a

particular heuristic will examine and essentially score each allocation graph.

In many cases, diverse graphs will result in the same score. For instance,

NumAdap merely counts the number of adapters in the graph, so many

different allocation graphs result in the same score. It may happen that

one (or more) of the allocation graphs with a particular score turns out to

successfully be allocated in phase 3. With no means to differentiate among

the allocation graphs with the same score, the heuristic may sometimes

discover the allocatable configuration earlier than or later than the other

graphs within the score category. This range is labelled “Best Case” to

“Worst Case” in Table 6.4. Many heuristics uniquely score each allocation

graph and thus only have a “Best Case.” For instance, SizeAdap measures

the size of the adapters, and thus would only rarely (for our PFA graph)

find two allocation graphs that consist of different combinations of adapters

yet result in identical size measures. Systems with very regular component

sizes would have different results, of course.

Table 6.4 also summarizes the results of each heuristic against all 936

hardware configurations. The minimum, average and maximum values found

are shown for each heuristic. The last two rows show the minimum, average

and maximum allocation graphs that pass for any of the hardware configu-

rations, as well as the statistics for the totals found, regardless of whether

they could be allocated. So, there are hardware configurations with 30 to

810 different possible allocation graphs, of which 13 to 61 can be allocated.

On average, about 10% of the allocation graphs could be allocated.
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Heuristic Best Case Worst Case
Name Min Avg Max Min Avg Max

NumAdap-Up 1 1 1 1 6.99 16
NumAdap-Dn 7 107.89 283 11 194.17 499
SizeAdap-Res-Up 1 1.60 3
SizeAdap-Res-Dn 10 255.08 655

SizeAdap-Rqt-Up 1 1.60 3
SizeAdap-Rqt-Dn 11 254.36 652
CommBW-Up 1 1 1 11 53.61 220
CommBW-Dn 1 49.21 211 11 89.48 351
InOrder-Up 1 1 1
InOrder-Dn 4 20.83 36

Random 1 9.17 100
Random 1 8.46 83
Random 1 8.05 65
Random 1 8.11 66
Random 1 7.68 74
Random 1 7.82 78
Random 1 8.30 80
Random 1 8.11 99

13 31.79 61 Pass
30 323.68 810 Total

Table 6.4: Number of iterations required for different heuristics
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The random heuristics give us a good sense of what can be accomplished

easily. Certainly any heuristic should be able to occasionally generate an

allocation graph that packs on the first try and on average takes only 8 or

9 tries.

The performance of the InOrder-Up heuristic is surprisingly good. It was

included as a debugging measure and to help establish comparison bounds.

But it shows an unerring ability to choose an allocatable graph on the first

try. An examination of this surprising result shows us that in fact, the first

allocation graph generated by the traversal happens to pack properly on

every hardware configuration. There is no guarantee of such a result on

any other PFA graph or PE configuration. Note that when reverse sorted,

InOrder-Dn shows much worse results.

The four remaining choices of heuristic (NumAdap, SizeAdap-Res,

SizeAdap-Rqt and CommBW) are all reasonably good at choosing successful

allocation graphs. They all are good discriminators when compared with the

random and their own reverse sorting versions. In addition, they all score

allocation graphs such that one of the set with the lowest score (or highest

— whichever was attempted first) is allocatable for all hardware configura-

tions. NumAdap and CommBW both result in good best case situations.

But there are so many allocation graphs with identical bandwidth require-

ments (in many cases, 220 such graphs) that on average bandwidth is a

poor choice for a heuristic. NumAdap does better, with no more than 16 at-

tempts required on any hardware configuration. For the heuristics that size

the adapters (by requirements of the PE or by available resources doesn’t

make much difference), there are hardware configurations where that scoring
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would take three allocation attempts to find a winner. With an average of

1.6 attempts, these are superior and will be used for the rest of our research.

When we began this research, we imagined that feedback from phase

3 would be critical to ensure phase 2 doesn’t overly exercise the adapter

allocation of phase 3. However, 1.6 attempts is low enough that we see

no reason at this point to put much effort into examining failure results in

trying to improve the heuristic. The proof of concept system in Chapter 8

provides an interesting viewpoint on this decision.

6.3 Phase 3: Adapter Allocation

The purpose of allocation is to determine if a configuration is allocatable

and find the specific mapping of adapters to hardware and messages to

networks. The allocation problem is not uncommon, and has been studied

in similar contexts. Most such research thrusts approach the problem as a

bin-packing problem. Bin packing is NP-complete, but heuristic methods

based on non-guided search and list processing exist.

We use list processing heuristic mechanism for adapter allocation. This

is a greedy algorithm that sorts the adapters and then runs down the list,

placing adapters into one of the processing elements. If the list can be

exhausted, then the allocation was a success. Otherwise, it is a failure that

requires stepping back to Phase 2 for a choice of different adapters.

The specific adapter allocation algorithm we use is a transducer sensitive

algorithm, more detail of which is available in Chapter 7
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6.4 Summary

This chapter has been an examination of the experimental methods capable

of discovering good heuristics to populate the three phase customization

framework. A greedy feature selection heuristic was shown to be sufficient,

when paired with a feedback mechanism, to capture 95.5% of the utility, with

only 14.5% of the iterations of the combinatinal algorithm. Adapter selection

for the second phase via a simple adapter count proved to be a suitable

heuristic. A discussion of adapter allocation heuristics is forthcoming in

Chapter 7.
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Chapter 7

A New Adapter Allocation

Algorithm

7.1 Introduction

The adapter allocation algorithm is responsible for determining the place-

ment of software components and their corresponding communication ele-

ments to the hardware, processing elements and the network, resident in the

system. The allocation algorithm to be used is a bit different from previously

explored algorithms. In this case, the hardware is fixed and heterogeneous.

Most other allocation algorithms come from the field of hardware/software

co-design, where the hardware specification is part of the output of the

problem, and is thus not fixed. The optimization sought in this case is usu-

ally a cost measure — silicon area, for instance. Parallel processing task

algorithms also determine the mapping between software adapters and the

homogeneous hardware processors that will execute the tasks. The goal of

101
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such algorithms is usually to minimize the schedule length of execution of the

tasks. In contrast, distributed embedded systems are most frequently com-

posed of many different microcontroller types, each with different amounts

of compute resources, and very limited network bandwidth. A survey of the

related allocation research was covered in Chapter 3.

In addition to the minor differences caused by such fixed, heterogeneous

hardware, the allocation desired by RoSES is constrained by an additional

factor, unlike classical co-design or parallel processing realms. The software

components of a distributed embedded system are managing and interacting

with the sensors and actuators of the system. Those hardware components

are not general — the fuel-air sensor in the automobile is located in a par-

ticular place, hooked to a particular microcontroller. It does no good for

the allocation algorithm to think of moving the fuel-air sensor’s driver soft-

ware to any other microcontroller — it must be co-located with the sensor.

Likewise, any software that interfaces directly to any hardware component

is fixed — it cannot be allocated elsewhere.

The algorithm described in this chapter exploits the fixed nature of hard-

ware interface software components by examining the other adapters that it

might call or be called by. These neighboring adapters can often be allocated

locally and thus save any network communication. The process continues,

allocating neighboring adapters in an attempt to minimize network usage.

The remainder of the chapter examines the details of how to choose the

adapters to allocate, how many neighbors to examine and what to do when

the processing elements with the transducers are filled.
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7.2 System Model

The software to be allocated is a collection of mobile components called

adapters. The adapters are joined in an allocation graph, A(V,E) whose

vertices are the adapters and edges Ei,j represent communication between

adapteri and adapterj. Edges may be directed, though doing so has no

effect on this algorithm. Each adapteri,j is labeled with its processing re-

quirements, p(i). Processing requirements are often a list of multiple in-

dependent values such as CPU cycles, RAM, or I/O channels. Similarly,

edges are labeled with communication requirements c(i), usually represent-

ing bandwidth. Figure 7.1 shows a sample allocation graph. This particular

graph, from [Efe82], is often referenced in the allocation and task scheduling

research field. p(i) and c(i) are shown in parenthesis.
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Figure 7.1: A sample allocation graph

Originating vertices (those with no inputs) represent sensor components

that are the source of data. Likewise, those vertices with no outputs are
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actuators which act as a sink of data. We use the term transducer to describe

both sensors and actuators. The allocation graph in Figure 7.1 has a single

sensor (S1) and actuator (A1).

The components of the allocation graph must be mapped to the avail-

able hardware. The hardware is a collection of processing elements (PEs)

connected to a single network. Each PE has a fixed resource list, in the same

size and types as the requirements of the adapters. Likewise, the network

resources match the requirements of the communication edges. Addition-

ally, transducer adapters are pre-assigned to PEs, as their physical hardware

is not general to all PEs. This system model uses a single network, though

an extension to multiple network links is possible. The general approach for

such an extension would follow the techniques described in [McNally98].

The major opportunity for optimization occurs by allocating incident

adapters to the same microcontroller. In such a case, the communication

requirement c(j) is fulfilled through local inter-adapter communication, and

thus does not impact the network at all. In contrast, if the adapters are

allocated to different microcontrollers, c(j) must be borne by the network.

Because we are not overly concerned with schedule, but rather resource

usage, we make the assumption that the program will cycle continually. This

assumption is quite reasonable for embedded systems where new samples are

periodically available at the sensors and serviced in a time-triggered manner.
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7.3 The TRANS FIRST Algorithm

The key insight behind the TRANS FIRST algorithm is to exploit knowledge

about transducer location. This bit of knowledge is not available when

allocation algorithms are used for general purpose computing systems, as

there is little reason to require a particular adapter to execute on a particular

PE. But in a distributed embedded system, the transducer adapters are

managing special purpose hardware only available at a particular PE, so

they must be allocated to those PEs. By working inwards from the exterior

vertices of the allocation graph, large sections, or subgraphs, of the graph

may be allocated so as to eliminate network communication among adapters

in the subgraph.

The basic algorithm is:

BEGIN {TRANS_FIRST}

Chose a PE: pe (7.4.2)

REPEAT

Initialize set T with all adapters which:

Are incident to an adapter allocated on pe

Can fit on pe (7.4.4)

Haven’t been allocated yet

REPEAT

Select adapter: k from T (7.4.1)

Remove k from T

IF k can fit on pe THEN

Allocate k to pe

Add to T all adapters which:

Are incident to k

Can fit on pe (7.4.4)

Are unallocated

Haven’t been rejected before
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ELSE

Remember that k has been rejected

UNTIL (T is empty)

UNTIL (All PEs considered)

Allocate remaining adapters

END {TRANS_FIRST}

This algorithm is a variant of the list-processing heuristics for solving bin

packing problems. Its usefulness and performance will depend upon the par-

ticular policies for making decisions within the algorithm. We examine the

alternate policy choices available at the numbered lines in the corresponding

portion of the following section.

7.4 Policy Choices

The TRANS FIRST algorithm is affected by four basic policy choices, three

of which were illustrated in the algorithm pseudo-code of Section 7.3. The

fourth (Adapter at a Time) requires a slight re-organization of the algorithm

and will be described fully in Section 7.4.3. All of the choices are listed in

Table 7.1, along with an identifying character for easy reference in the results

tables.

7.4.1 Choosing an Adapter for Allocation

This is the policy choice with the most latitude. Adapters can be chosen from

the set of candidates based on the characteristics of the particular adapter,

or of their neighborhood of the alloation graph. We chose to examine six

alternatives. The use of adapter size follows from the well-known bin packing

rule-of-thumb: “pack the largest item first.” We contrast this approach by
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Table 7.1: 4 axes of policy choices
Adapter at PE Fill

Adapter Choice PE Choice
a Time Level

Largest (L) Id Order (1) Yes (Y) Full (F)

Smallest (S) Reverse Id (2) No (N) 80% (8)

Max B/W (B) Largest (L) 50% (5)

Min Neighbors (N) Smallest (S)

Max Neighbors (M) Random (R)

Random (R)

also attempting to pack the smallest first. Often, the network bandwidth

is a scarce resource worth conserving. To that end, we choose adapters

based on the bandwidth savings offered by a local allocation. Recall that

communicating co-located adapters need no network resources.

In an attempt to choose adapters based on their neighborhood in the

allocation graph, we examine the results of a choice based on the numbers

of neighbors. By choosing adapters with the most neighbors, we provide a

bigger pool for choices in successive iterations. The danger, however, is that

the subgraph will consist of several tendrils that block off and interfere with

the growth of other subgraphs, without making the kind of bundles that

can pay off from a network perspective. We also consider a policy which

chooses the adapter with the lower number of neighbors. Such a policy

should consume all the adapters in a region of the graph before expanding.

For comparison purposes, we also randomly choose adapters from a uni-

form distribution. The random choice uses absolutely no knowledge of the

graph or adapter charactersitics, so provides a baseline which the algorithm

must be able to outperform in order to be of any use whatsoever.
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7.4.2 Choosing a PE

Clearly if the subgraphs allocated to the various PEs are not adjacent, then

the order in which PEs are chosen for allocation will have no effect on the

solution. Conflict occurs only when some adapter has the potential for al-

location to multiple PEs. One would think that on large allocation graphs

such potential would be rare. Such intuition is incorrect for the distributed

embedded allocation graphs, as the transducers cluster in particular neigh-

borhoods of the graph.

To explore the degree to which PE choice policy affects the solution,

we implement 5 different alternatives. The first uses an arbitrary, though

fixed, ordering — by identification number. We also examine the reverse

ordering. The only characteristic of the PE which may have some bearing

on the potential solution is the amount of resources the PE has available.

The PE with a large resource stash should be able to carve out a larger

subgraph if unimpeded by other PEs. Such a policy choice is not clearly a

winner, as such a large subgraph may block off the later PEs from access to

any portion of the graph. For this reason we study PE ordering by resource

in both ascending and descending order.

We also include random choice as a baseline, for the same reasons as in

Section 7.4.1.

7.4.3 Adapter at a Time Allocation

The TRANS FIRST algorithm, as described in Section 7.3, allocates all the

adapters that fit on a PE before allocating any to other PEs. In an allocation
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graph where many sensors are coupled via a few adapters, such a strategy

will generate a large subgraph for the first PE chosen. But the subgraph

will block off development of subgraphs on closely associated PEs. By re-

organizing the main loop of the algorithm, a “breadth-first” strategy can

be attempted, where a single adapter is allocated to a PE at any particular

time. The re-organized algorithm must maintain the state of each PE’s

search in independent T sets. After an adapter is allocated to one PE, the

algorithm queries another PE, in the same order specified for Section 7.4.2.

7.4.4 PE Fill Level

By allowing PE resources to be fully consumed by this pre-process step,

allocation of other large adapters may be inhibited. It is possible that re-

stricting adapter allocation during the first phase of TRANS FIRST may

conserve space for the adapters at the middle of the graph that are far from

transducers. We explore allocating adapters only to fill 80% (or 50%, or

some other arbitrary cap) of PE resource levels. The inevitable tradeoff is

that packing to 80% on all the PEs may then leave us vulnerable to a 21%

(or 51%) sized adapter. This tradeoff is merely another case of the typical

best-fit versus worst-fit bin packing policy choice.

7.4.5 Allocation of Remaining Adapters

Once all PEs which host transducer adapters have been filled using the

TRANS FIRST algorithm, remaining vertices of the allocation graph may

remain. Use of another bin packing algorithm will allocate them to the

remaining PEs.
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Graph Adapters Edges Sensors Actuators PEs

ranA 80 200 8 10 9

ranB 80 200 8 10 5

ranC 42 110 1 6 6

ranD 43 100 13 13 9

ranE 17 50 22 21 11

ranF 20 50 4 1 10

iac 14 98 3 64 9

tract 43 282 2 115 16

sch 34 316 3 117 16

Table 7.2: Allocation graph characteristics

Typical distributed embedded systems will not have many (or any) PEs

remaining at this point. Rather, all PEs are connected to, or encompass on

the same silicon, the system’s sensors and actuators. This “smart sensor”

strategy leaves few PEs remaining as merely compute nodes. In the case of

a transducer hardware failure, however, the microcontroller is still capable

of operation and would be allocated adapters from the central portion of the

allocation graph.

7.5 Results

7.5.1 Test Set

All experimentation was done using a collection of 9 graphs from [Beck95].

Six are randomly generated graphs and 3 are from real-world automotive

applications. The salient features of each graph are shown in Table 7.2.

PE and network resource sizes were developed via execution of the system

specification generation algorithm from [Beck95].
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7.5.2 Experimental Method

We first present four experiments to determine the appropriate policy gen-

eration choices. An additional experiment compares the TRANS FIRST

algorithm to system allocations done without sensitivity to transducer loca-

tion. Both algorithms were implemented using as much of the same code as

possible (to screen out implementation differences) and all executions done

on the same computer (A 750MHz Pentium 3, in an IBM Thinkpad T20).

Each experiment involved 10 runs of each algorithm choice. Averaged values

over the 10 runs are reported.

Three values of interest were measured and calculated for each of the

graphs: success rate, network usage and algorithm running time. Success

rate is a measure of the number of times the algorithm found an allocation

over repeated execution of the algorithm. Unless explicitly using a random

policy choice, the TRANS FIRST algorithm is completely deterministic –

though the follow on phase, as described in section 7.4.5, is not. Success

rate, therefore, is often 100% or 0%, regardless of the number of executions.

Network usage is a figure of merit which measures the extent to which

an allocation placed edges of the allocation graph in locally. It is calculated

as the ratio of the bandwidth of the allocation graph edges with incident

adapters placed on the same PE to the total bandwidth of all allocation

graph edges. A value of zero indicates that all communication is on the

network, while a value of one is the (highly unlikely) case where all commu-

nication is local to a PE.
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7.5.3 Finding the Right Policy Choices

Adapter Choice

Table 7.3 shows the results of 6 experiments, each differing only in the

adapter selection policy. Choosing the Adapter with the largest require-

ment is the best of the policy choices. Note that no other policy choice had

a higher success rate on any of the graphs. It is less impressive with respect

to network usage — a situation that is not surprising given that such a pol-

icy choice pays no attention to the network at all. All of the graph sensitive

choices (Min Neighbor, Max Neighbor and Bandwidth Savings) have good

network usage statistics. Those choices do not react to the resource require-

ments for actual packing on the PE, so they do not actually allocate with

good success rates. We use the Largest Adapter policy choice for all other

experiments.

PE Choice

Table 7.3 also shows the results of the 5 experiments on PE choice. Using

an arbitrary ordering (By ID and By Reverse ID) shows no difference in

packing success, but does use the network to a strikingly different degree

most notably in the real-world allocation graphs. Both are still outper-

formed by a Random choice and both resource level choices. Selecting the

Largest Resource policy is a narrow winner over Random with respect to

packing success. However, Largest Resource allocates many more commu-

nication edges to local PE communication. Our hypothesis in this regard

is correct: choice of a large PE allows for large subgraphs to be allocated
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Experiment 1: Adapter Choice

Network Usage Success Rate

Policy ranA ranB ranC ranD ranE ranF sch tract iac ranA ranB ranC ranD ranE ranF sch tract iac
L .35 .53 .35 .45 .70 0 .17 .21 .23 .8 .8 .9 1.0 1.0 0 .8 .8 1.0
S 0 0 .42 0 .70 0 .17 .24 .38 0 0 .2 0 1.0 0 .1 .6 .9
B .44 0 .56 0 .68 0 .22 .27 .29 .2 0 .6 0 1.0 0 .7 .7 .9
N 0 .48 0 .46 .70 0 .16 .29 .33 0 .4 0 .9 1.0 0 .8 .4 1.0
M .32 .44 .41 .44 .70 0 .18 .29 .31 .3 .4 1.0 .1 1.0 0 .7 .7 1.0
R .40 .45 .38 .46 .69 0 .18 .24 .29 .2 .3 .8 .3 1.0 0 .6 .6 1.0

Experiment 2: PE Choice

2 .37 0 0 .48 .68 0 .16 .20 .27 1.0 0 0 1.0 1.0 0 1.0 1.0 1.0
1 .33 0 0 .48 .72 0 .41 .49 .71 1.0 0 0 1.0 1.0 0 1.0 1.0 1.0
L .32 .59 .35 .48 .73 0 .40 .26 .35 1.0 .7 1.0 1.0 1.0 0 1.0 1.0 1.0
S 0 .45 .43 .44 .68 0 .21 .26 .22 0 1.0 1.0 1.0 1.0 0 .5 1.0 1.0
R .35 .53 .35 .45 .70 0 .17 .21 .23 .8 .8 .9 1.0 1.0 0 .8 .8 1.0

Experiment 3: Adapter at a Time

Y 0 0 0 .47 .67 0 0 .24 .20 0 0 0 1.0 1.0 0 0 1.0 1.0
N .32 .59 .35 .48 .73 0 .40 .26 .35 1.0 .7 1.0 1.0 1.0 0 1.0 1.0 1.0

Experiment 4: PE Fill Level

F .32 .59 .35 .48 .73 0 .40 .26 .35 1.0 .7 1.0 1.0 1.0 0 1.0 1.0 1.0
8 0 .59 .29 .42 .68 0 .33 0 0 0 1.0 1.0 1.0 1.0 0 1.0 0 0
5 .29 .59 .41 .41 .70 .20 0 0 0 1.0 .8 1.0 1.0 1.0 .1 0 0 0

Table 7.3: Results of each policy
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locally, without restricting further development from the smaller PEs. We

use the Largest PE policy for the following experiments.

Adapter at a Time Allocation

In Section 7.4.3, we advanced the supposition that it may be better to

allocate a single adapter from the PE before trying a different PE. The

experiment documented in Table 7.3 shows this not to be the case. The

Adapter at a Time policy resulted in successful allocations on only 4 of the

9 graphs. It turns out that this allocation policy fills up each PE somewhat

equally, without a reserve in case a large adapter is encountered. We use

the PE at a Time allocation policy.

PE Fill Level

One remarkable aspect of the results shown in Table 7.3 is the complete

lack of success for any policy on the ranF graph. In this particular case, a

large adapter is near the center of the graph, and thus out of reach of each

of the PEs until they have already allocated some adapters. Unfortunately,

by filling up with smaller adapters, the PEs have no remaining resources

for the large adapter. In our final experiment, we attempt to limit the

adapter allocation during the transducer sensitive phase of the algorithm in

order to save some space for such large adapters. Our experiments show

this approach is generally unsuccessful. However, by leaving a 50% cap in

place, we have our only success — a limited one — with the ranF allocation

graph. We will conclude that the best general set of policy choices is L-L-N-F

(Largest Adapter Size, Largest PE first, PE at a Time, Full PE).
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7.5.4 Comparison to Base Algorithm

A careful examination of the Beck algorithm[Beck95] reveals a few strengths

of the TRANS FIRST algorithm: complete determinism and improved ex-

ecution time. Table 7.4 shows a comparison. BECK is almost as good in

terms of packing success — it is, after all, a very good algorithm. However,

BECK has a surprisingly large random component. Table 4 does not show

this effect, but the values that were averaged to get network usage vary

quite a bit. BECK orders the adapters by their size and packs in decreasing

order to the PE which would minimize the network bandwidth. Early in the

algorithm’s execution there are quite a few ties, where placement to any PE

would take zero bandwidth (since the adapter’s neighbors haven’t been al-

located yet). Such ties are resolved randomly, which significantly affects the

remainder of the execution. The policy choices selected for TRANS FIRST

preclude any random elements, thus reserving any randomness for the follow

on allocation. Randomness is not, of course, always a bad thing. If BECK

fails to find an allocation, it is always possible to re-execute it to see if it

will find a different, successful, allocation.

Table 7.4 also shows a clear time advantage for the TRANS FIRST algo-

rithm. The average speedup of 2.7 is substantial, and is a result of the “di-

vide and conquer” nature of the algorithm. By operating on small portions

of the entire allocation graph (the regions near the transducers), choices are

made among a much smaller set of adapters. Such small comparisons are

much quicker than the large comparisons required by BECK as it examines

the entire graph.
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TRANS FIRST

ranA ranB ranC ranD ranE ranF sch tract iac

Net Usage .32 .59 .35 .48 .73 0 .40 .26 .35
Pass Rate 1 .7 1 1 1 0 1 1 1
Execution Time (mS) 617 609 379 365 192 0 710 678 287
Speedup 2.2 1.8 2.3 3.2 3.4 0 3.1 3.1 2.8

BECK

Net Usage .19 .62 .27 .39 .69 0 .43 .49 .6
Pass Rate 1 .6 1 1 1 0 1 1 1
Execution Time (mS) 1350 1080 855 1170 647 0 2215 2108 815

Table 7.4: Comparison to base algorithm

7.6 Conclusions

We have shown an adapter allocation algorithm that successfully exploits a

constraint unique to the distributed embedded system domain. The algo-

rithm works by allocating adapters that manage transducer hardware (and

thus cannot be allocated elsewhere) to the local processing element, and

then operating on the neighboring set of adapters. Large subgraphs are

thus swept into a single processing element, which saves significant network

bandwidth.

In order to tune the heuristic algorithm, a set of experiments was con-

ducted. Each policy choice was clearly delineated and executed on a series

of random and real-world allocation graphs. The following policy choices re-

sulted in a heuristic algorithm with good packing quality and a substantial

speedup: Largest Adapter First, Largest PE first, PE at a Time, and 100%

PE Fill level. Such choices were used on all experiments involving adapter

allocation found elsewhere in this thesis.



Chapter 8

Proof of Concept

This chapter presents an examination of the system-wide customization

framework in the context of an another system, a distributed elevator control

system. It is intended to validate the concept of product family architecture

as a means to gain flexibility for customization. To demonstrate the viabil-

ity of the PFA concept, the DFGs of two product instances were merged to

form a PFA graph. The algorithms in the customization framework were

applied to the elevator PFA graph, a process that exposed a few interesting

subtleties. The chapter concludes with suggestions for solutions to these

problems.

8.1 The Distributed Elevator Control System

In the Spring of 2001, a graduate-level class at Carnegie Mellon University

examined reliability in complex distributed embedded systems. As a means

to understand the reliability problems and solutions discussed in the class,

117
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two student teams constructed the specifications for and a simulator im-

plementation of a distributed elevator system. Extreme care was taken to

deal with many of the real-world difficulties, and thus this class built two

non-trivial elevator descriptions, unlike so many of the examples available

in the literature [Knuth73, Liu87, Sha98, Sendall00, Coleman90]. These

specifications made a good starting point for a credible PFA graph, along

with some realistic resource usage comparisons (gleaned from the simulator

code). Table 8.1 describes the elevator nomenclature we use in this chapter.

The message nomenclature is available in Table 8.2.

The elevator simulators were constructed on a discrete event simulation

framework, which had been strengthened through use in three undergrad-

uate distributed embedded system courses. The framework provided Java

APIs for networking, event notification and the elevator environment (peo-

ple, sensor inputs, etc.). The project teams then generated Java classes to

control the system actuators. The elevator was non-trivial – it included, for

example, reliability goals and system-wide modes (normal, fire recall and

fireman service).

Our viewpoint, as we examined the code base (two projects built on

a common framework), was that of engineers in an elevator corporation

who wish to meld the two projects into a single product family architecture

for graceful degradation reasons. For instance, generation or refactoring of

code was limited, as such a corporation would seek to take advantage of

the company’s code without the expense and risk of a major re-architecting

project. We simply wished to see if several product instances of a suitably-

distributed embedded system could gain the benefits of graceful degradation
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through system-wide customization.

8.2 Building a PFA graph

Data flow graphs were generated for each team’s control objects. The data

flow graphs capture the flow of data from the sensors, through various

adapters to actuators. To generate the DFGs, the data connections be-

tween the adapters were discovered, the data flow across the connections

was measured, and the size of the various adapters was determined.

8.2.1 Connectivity

It was a relatively trivial task to determine the connections between adapters,

because knowledge of the message types sent and received by each object

was sufficient to establish each connection. Recall from Chapter 4.1.1 that

embedded control networks are broadcast networks. When an adapter sends

a message, it need not specify a recipient. The act of receiving the partic-

ular message type suffices to confirm data flow from the sending adapter.

As each simulation object interacted with the network through the simula-

tion framework API, a simple search for the proper method invocations for

message transmission and reception determined connectivity.

8.2.2 Bandwidth Requirements

The acquisition of network bandwidth requirements was also relatively sim-

ple. The simulation framework provides a networking API for controllers

and modules to send messages to each other. All messages are instantiations
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Sensor Description Number Location

DoorOpened Detects when doors have fully opened 2 Door
DoorClosed Detects when doors have fully closed 2 Door
DoorReversal Passenger or object is obstructing the door 2 Door
DoorCloseButton Request for doors to close 1 Car
DoorOpenButton Request for doors to open 1 Car
ModeKey Change elevator operating mode (fire response) 1 Car
CarCallButton Destination request by passenger per floor Car
Weight Detects weight of passengers in car 1 Car
AtFloor Detects car position 3 per floor Hoistway

(above, below or at particular floor)
HallCallButton UP/DOWN request by passenger per arrow Hallway
HoistwayLimit Car position out of bounds 4 Hoistway

(top and bottom of hoistway)
TimeOfDay Wall clock time 1 Building
FireAlarm Fire is possible 1 Building

Actuator
DoorMotor Opens/Closes the car door 2 Door
Car Position Indicator Number display inside car. Shows current floor 1 Car
Car Lantern Up/Down arrow. Shows car’s current direction 2 Car
Car Light Light inside CarCallButton per floor Car
Hall Light Light inside HallCallButton per arrow Hallway
Hall Lantern Up/Down arrow. Shows car’s current direction per arrow Hallway
Drive The motor that moves the car up and down 1 Hoistway

Controller
Dispatcher Determines where car should go next 1
DriveControl Controls speed and direction of drive 1
HallLantern Turns on correct direction arrow per arrow
HallButton Detects HallButton. Controls Hall Light per arrow
CarButton Detects CarCallButton. Controls Car Light per floor
CarLantern Shows current direction on CarLantern 2
CarPositionControl Shows current floor on CarPositionIndicator 1
DoorControl Opens/Closes the door 2

Table 8.1: Elevator nomenclature
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of objects in the class hierarchy descending from MessagePayload. Each of

the subclass objects was investigated (the 25 classes listed in Table 8.2)

and manually examined to determine how big the payload needed to be to

transmit the information in the object’s fields. For instance, a message that

needed to describe a floor would send a byte for that data. Messages in

which multiple fields could consume less than a byte were combined into a

one byte payload (e.g., direction (1 bit) and speed (2 bits) can fit in a single

byte). In no case did a message require more than the 8 bytes available in

a single CAN message. Protocol overhead was added to each message that

consumed additional bandwidth.

Message size is only one component of bandwidth — it is necessary to

also know the transmission period of each message. Luckily, the networking

API encapsulated a time-triggered mechanism that simply allowed the con-

troller to specify how often the message should be sent. A simple trace mod-

ule was inserted into the network object to capture the registration method

calls and keep track of requested message periods. Since the controller ob-

jects don’t dynamically change the period of their message transmissions, a

single run was sufficient to capture the specified period. Both transmission

period and message size are shown in the tables of Appendix A.

8.2.3 Adapter Size

Determining “size” for each adapter was a bit more complex. The total code

size and size of all the fields in the object were measured (the tables that

follow and in Appendix A are labelled with CODE and FIELD for these two

quantities). These data would roughly map to the required flash and RAM
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Message Name Description Payload Size

AtFloorPayload Is Car near AtFloor sensor? 2 bytes
CarCallPayload Is CarCallButton pressed? 2 bytes
CarLanternPayload Floor to display on CarLantern 1 byte
CarLightPayload Should CarLight be lit? 2 bytes
CarPositionIndicatorPayload Floor to display on Indicator 1 byte
DesiredDwellPayload Length of time to open doors 8 bytes
DesiredFloorPayload Destination of next journey 2 bytes
DoorClosedPayload Is DoorClosed entirely? 1 byte
DoorClosePayload Is passenger pressing DoorClose? 1 byte
DoorMotorPayload Direction and speed of Door Motor 1 byte
DoorOpenedPayload Is DoorOpened entirely? 1 byte
DoorOpenPayload Is passenger pressing DoorOpen? 1 byte
DoorReversalPayload Is door obstructed? 1 byte
DrivePayload State of Drive 2 bytes
DriveSpeedPayload Direction and speed of drive 2 bytes
EmergencyBrakePayload Is Emergency Brake enabled? 1 byte
FireAlarmPayload Is Fire Alarm signalling? 1 byte
HallCallPayload Is passenger pressing HallCall? 2 bytes
HallLightPayload Should HallLight be lit? 2 bytes
HoistwayLimitPayload Is car over bounds of hoistway? 1 byte
ModeKeyPayload Has Fireman turned ModeKey? 1 byte
PeakModePayload Is it rush hour? 1 byte
TimeOfDayPayload What time is it? 8 bytes
WeightPayload How many pounds are in the car? 8 bytes

Table 8.2: Elevator messages, meaning and payload sizes
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requirements for the object when executing on a microcontroller. Further

detailed information, in terms of runtimes (i.e., cyclecount) or stack require-

ments would be possible, but require much more difficult dynamic analyisis.

The algorithmic techniques developed for this research were not dependent

upon such detail, so these two pieces of information were determined to be

sufficient for the proof of concept. By the way, having multiple pieces of data

for each adapter is important. As [Beck95] showed, multi-valued binpacking

is problematic and additionally complex, but it is a necessary complexity.

Software objects will need to be allocated to processing elements based on

multi-valued requirements. This realistic challenge must be overcome, not

merely avoided.

Class Loaders

The first attempt to measure size of the adapters was to exploit the Java

classloader to determine object information at runtime. From within a Java

method, it is fairly easy to find out a fair amount about an object. For

instance:

public void

printInfo(Object obj){

Class c = obj.getClass();

if (c.isPrimitive()){

System.out.println("Primitive classes aren’t interesting");

return;

}

Field [] fields = c.getFields();

int objSize = 0;

for (int i = 0; i < fields.length; i++){
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String name = fields[i].getName();

Class type = fields[i].getType();

int size = 0;

// a small, illustrative cheat

if (type.isPrimitive() && type.equals(Integer.getType())){

size = 4;

.... other checks for Booleans, bytes, strings, etc.

System.out.println(name + " is of type " + type +

" and size " + size + " bytes");

objSize += size;

}

System.out.println("Total size of all fields is " + objSize);

}

Chains of field descriptions can be followed to determine the size of any

fields. Arrays are problematic — no method exists to inquire about the

bounds of an array, when that array is represented by the Class object. A

reference to the actual array could be queried with the length keyword, but

getting that reference is difficult. The Class object has similar methods to

discover code sizes (in bytes of bytecode) for each method of an object.

Notice, however, that the code above requires an instance of an object in

order to get the Class object that starts the reflective process. How would

one get instances of the objects? The reflective code (i.e., the method

printInfo shown above and its invocations) could be inserted somewhere

in the code base under examination and then be executed after the objects

of interest are instantiated. The fundamental problem with this approach

is the lack of a common point which has references to the instances of all

objects of interest, and yet would be unaffected by the measurements on

itself. This problem was exacerbated, because the startup procedure for the

code examined was far from clear.
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Classloaders promise, yet ultimately fail to deliver, a related opportunity

to measure the adapter sizes at runtime. A Java classloader is an extension

to the Java Virtual Machine (JVM) that loads a class file when an object

of the class is to be constructed. The classloader transforms the data that

represents the class (such as a file on disk) into data for the JVM to execute,

checks security permissions, and ensures the code is properly constructed

bytecode. A default classloader is available in the java.lang package. It is

a fairly easy matter to create an instance of a class from within Java code:

Class c = this.getClass();

// get classloader that was used to load this class

ClassLoader loader = c.getClassLoader();

Object inst = loader.loadClass("Dispatcher").newInstance();

There are a few subtleties here. The first is that the classloader used to

create the object instance, in this case loader, is the one that was used to

load the class in the first place. Unless the class was loaded across a network

or in some other unusual manner — and for purposes of this experiment such

is not the case — the default loader works fine.

The second subtlety is what kills this approach. It turns out that the

newInstance()method will build a new instance of the object (Dispatcher

in the example code) by calling the default, zero parameter constructor of

the class. Those classes that don’t have such a constructor cannot be han-

dled by this approach. Such a restriction is necessary, as the classloader

must construct the object and so must have the information the object
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needs to create itself (the constructor’s parameter list). It is possible to use

the class.getConstructors() method to find out what constructors are

available, choose one, and then use the constructor.newInstance(Object

[] initargs) method to build the object using an alternate constructor.

However, notice the work that such an approach would require: each ob-

ject needs other objects built (its complete argument list), which must be

valid objects if the instance is to complete the constructor and be mea-

sured accurately. This amount of work is equivalent (or worse) to inserting

measurement code into the project code base.

Binary Formats

Fortunately, a better method to measure adapter sizes exists for the elevator

system — that of examining the classfile itself. This works because most

of the objects in the project are static, mainly due to the time-triggered

nature of the system. Static allocation of code and data space is typical of

distributed embedded control systems. So an examination of the classfile

(in Java’s binary code format) leads to a knowledge of size information. For

instance, the classfile has information about an object’s fields (type, name,

size, etc). It also contains the bytecode for each of the methods in the object.

A parser was constructed to examine the data inside the classfile in or-

der to determine the codesize and fieldsize of each adapter. Extensions were

added to a general classfile parser1 in order to collect and summarize mea-

surements of each classfile. The resulting tool reads a classfile, determines

1Many thanks to Dr. Zvi Har’El, Department of Mathematics, Israel Institute of Tech-
nology for providing the code that became the core of the classfile parser.
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the superclass, add up the bytes of bytecode in each method, and sums the

lengths of all strings. In addition, it would print the name and type of each

field and add up the length of all primitive fields (boolean, int, double...)

and primitive wrappers (Boolean, Integer, ...). Arrays are still a difficult

area, as the size of the arrays isn’t determined at compile time. The parser

did, however, print the name, type and dimensionality of each array, which

made a source code hunt straightforward.

The codesize and fieldsize of each adapter are listed in the tables in

Appendix A. The fieldsizes do not include strings, which are rare in dis-

tributed embedded control systems and are exclusively used for debugging

information (almost without exception used in the instantiation of excep-

tion objects) in this system. Likewise, codesize does not include the size of

superclasses, which did little that was considered indicative of a real con-

trol system. In production code on an optimized system, neither would

have been included to start with. But, these simulations were executed on

resource rich, non-embedded processors and the designers felt no need to

eliminate unused fields or methods.

8.2.4 Missing Modules

The framework provides sensor and actuator mechanisms for several objects

that should be part of the simulator. For instance, HallLights are used by

the people to determine if they should get on an elevator. But there is

no HallLight object. The framework simply passes the HallLight message

straight to the people waiting in the hallway. Similarly, the HallButton

messages are effectively created by the people objects. The following is a
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list of the missing modules:

• Hall Lantern (Up/Down arrows in the hallway)

• Hall Light (Button lights in the hallway)

• Hall Button

• Car Lantern (The Up/Down arrows in the car)

• Car Lights (The lights on the buttons in the car)

• Car Button

• Car Position Indicator

• Emergency Brake (omitted, as should be mechanically linked)

• Fire Alarm

For each of the missing modules, sizes were based on careful study of

similar functionality objects. Information about those modules is available

in Table A.2.

8.2.5 Replication

A serious challenge presented by the elevator is object replication. Many

of the objects in use, be they sensors, actuators or adapters, are present

in quantity in the system. For example, each floor has a trio of AtFloor

sensors to determine car location. Each door has a DoorMotor, and each

HallButton has a controller. In a seven floor instance of an elevator there

are 21 AtFloor sensors – each of which must be visible to the reconfiguration

algorithm as a separate object. One of those sensors may be broken or (in
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the case of an adapter) rehosted individually, so it must be represented

individually.

In implementing such a replication of system objects, no elegant so-

lution presented itself. A satisfactory system was implemented based on

naming conventions. The naming mechanisms are visible in the tables of

Appendix A. Each object can have a replication specification, which are

tailored for the elevator domain. Replication specifications are things like

“numFloor” or “LEFT/RIGHT” which indicate an element should be repli-

cated for each floor of the elevator or replicated for a left and right side

element. Replication is accomplished by generating the appropriate number

of objects and modifying the name of the object in the appropriate manner.

For instance, if SensorA has the numFloor replication specification, then

7 sensors (for our 7 floor elevator) are created, named SensorA_Floor1,

SensorA_Floor2, through SensorA_Floor7. Subordinate elements may be

replicated based on the results of the parent’s replication. For instance, a

Sensor that is replicated numFloor would have output messages replicated

to SameFloor to ensure the names match properly.

8.2.6 Splitting Monolithic Controllers

The initial graph for TeamA reflects the hierarchical control style archi-

tecture used in its construction. A few large control objects (Dispatcher,

DoorController, etc.) receive input from lots of sensors, compute control

values (set points) which are communicated straight to the actuators. This

is a natural architectural style for many distributed embedded systems. Un-

fortunately, the PFA graph was somewhat limited, because path lengths
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were small and opportunities for rehosting controllers non-existent.

The PFA graph was enhanced through some small and opportunistic

methods. Some of the monolithic controllers were broken apart without be-

ing re-designed. For instance, the DoorController has two “utility” func-

tions that can become separate objects: a ModeManager and a FloorFinder.

The ModeManager looks at the FireAlarm and ModeKey messages to emit

a new message type describing the mode. The FloorFinder examines all

the individual floor sensors and generates a message describing which floor

the car is on. It turns out that such utility functions are needed in several

components — for instance, the Dispatcher and CarButtonController

also need the ModeManager— so by breaking out a utility, the size of other

controllers also decreases. In addition, the total size of the system de-

creases dramatically. The utility object, in a singlely replicated item, re-

places code used in several classes, some of which are heavily replicated. A

modification of several adapters (DoorController, CarPositionIndicator,

CarLanternController, HallButtonController and Dispatcher) to use

the ModeManager or the FloorFinders was undertaken, the results of which

are shown in Table 8.3 (assuming a seven floor elevator). The point of the

modification was not to save space, but to increase the configurations pos-

sible. With different versions of the controller adapters, the elevator PFA

graph has more such possibilities.

The use of the utility adapters is not universal, as originally ex-

pected. The DriveController reads all of the messages from all of the

AtFloor sensors (3 per floor), much like the FloorFinder. However, the

DriveController’s requirements go beyond the simple abstraction enforced
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by the FloorFinder’s interface. The DriveController needs access to in-

dividual sensor information, not merely an understanding of which floor the

car is on.

An added opportunity arose to increase the configuration possibilities

of the PFA graph. Slight modifications to the DoorController resulted

in three different versions. DoorController-FF uses the FloorFinder.

DoorController-MM uses the ModeManager, while DoorController-FF-MM

uses both. The intent is to have a few more configuration options as well as

allocation options available. The DoorController was further segmented

into two modules — a state manager that detects state transitions and a

behavior manager that produces the proper outputs based on the current

state. Such a split was easy to manage for a state machine, doesn’t change

its behavior in unexpected ways and is an easy step for a designer facing this

type of challenge. All of the modifications to TeamA’s DFG are summarized

in Table A.3.

Original Size New Size Savings
Controller Replicas

CODE FIELD CODE FIELD CODE FIELD

Door 2 4054 244 3589 208 930 72
Door-BH 2 — — 360 38 -720 -76
CarPosition 1 670 87 310 40 360 47
CarLantern 2 731 51 653 36 156 30
CarButton # Floor 938 49 817 48 847 7
HallButton # Arrow 907 43 834 46 876 -36
Dispatcher 1 7433 478 7294 413 139 65
Mode Mgr 1 — — 173 19 -173 -19
Floor Finder 1 — — 207 19 -207 -19
Floor Finder2 1 — — 516 71 -516 -71

Total (assuming 7 floors) 1692 0

Table 8.3: TeamA’s modified controllers. Code and Data sizes are in bytes
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8.2.7 Team1

The system simulation developed by the other team, Team1, is quite sim-

ilar in structure to TeamA’s software. Team1 does include a modular

safety control mechanism. A SafetyDriveControl monitors the DoorOpen,

DoorClosed and Drive messages. In the case that a door is open while

the drive is moving, the module sends out its own Drive message to

shut down the drive actuator. It then sets the EmergencyBrake, as the

DriveController is presumably untrustworthy of further operation.

Team1’s DFG is described in Table A.4. Modifications to use the

FloorFinder and ModeManager are likewise in Table A.5.

8.2.8 Completing the PFA graph

The completed PFA graph for the elevator needs only hardware information.

Since the simulations were designed for use on general purpose computing

platforms, in a non-distributed simulation, no hardware constraints were im-

posed. Because we wish to explore the usefulness of the algorithms, several

hardware architectures (including sizing information) were proposed based

on our industrial experience.

The PFA graph, save for the hardware information, is described in Ta-

bles A.1 through A.5. Appendix B contains an XML description of the

elevator PFA, including all sizes and an example hardware description. The

graph itself is too large to actually be drawn in useful form for this publica-

tion. The PFA graph for the three floor elevator has 33 sensors, 18 actuators,

85 adapters, 60 features (in 18 feature classes) and 115 data elements.
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8.3 Algorithmic Changes

Execution of the algorithms developed in Chapters 6 and 7 on the elevator

system highlighted a weakness of the phase 2 adapter selection algorithm.

With the enormous choice available in the graph traversal, some trimming

was necessary in the number of path combinations available. Otherwise,

there are 3× 1044 different combinations of paths available — far too many

to be calculated or stored efficiently. One would think that the trimming

process would be a fairly simple process, as we have determined the proper

heuristic to help sort partial paths as the traversal progresses. Unfortu-

nately, the heuristic proposed in the Chapter 6 was based upon the adapter

size as a fraction of available resources. But, the replication issue interacts

poorly with that heuristic — many of the adapter choices being made are

from identically sized adapters being used as driver adapters for similar sen-

sors. We were reduced to making arbitrary distinctions among choices in

the traversal of the PFA graph.

A second problem, that of path overlap, occurs in the elevator PFA graph.

Examine Figure 8.1 for a simple example. In this case, both Feature1 and

Feature2 have 4 path alternatives to choose from:

1. Sensor1, AdapterA, Sensor2, AdapterC

2. Sensor1, AdapterA, Sensor2, AdapterD

3. Sensor1, AdapterB, Sensor2, AdapterC

4. Sensor1, AdapterB, Sensor2, AdapterD
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Sensor 2

Sensor 1 A

D

C

B

Feature 1

Feature 2

Element 1

Data

Element 2

Data

Figure 8.1: An example of path overlap

Recall that the generation algorithm collects a list of paths for each feature

and then chooses one path per feature to combine into the allocation graph.

If Feature1 chooses path number 1 from the list above, then Feature2 must

also choose path number1. If Feature2 made a different choice — number 2

for instance — a conflict would ensue because both AdapterC and AdapterD

transmit their individual results of the conversion of Sensor2’s output.

This problem did not arise in the navigation system, because it had no

overlap of the path fragments. In other words, much of the PFA graph was

segmented into portions covered by the different features. In the elevator

system, however, that is not the case. Many features need AtFloor sen-

sor information, for instance. But, because the outputs of any particular

AtFloor sensor can be handled by several different adapters, there is no
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coordination to ensure only one such adapter is included in the allocation

graph. It is a simple matter to check to ensure the path chosen for a fea-

ture doesn’t conflict with the path chosen for a second feature. However,

the likelihood of having non-conflicting paths is very slim on the elevator

system — the path overlap is too great among the various features and the

number of paths retained (i.e., not trimmed away as discussed in the previ-

ous paragraph) for each feature is too small a fraction of the overall total.

In the example of Figure 8.1, there is only a 25% chance that Feature2 will

choose a path that doesn’t conflict with Feature1’s choice. In the elevator

system, two features using the AtFloor sensors would not conflict with a

probability of 1
3× numfloors .

The solution is to re-order the traversal algorithm. Rather than execute

several graph traversals — one per feature — to collect the path alternatives,

the updated algorithm does a single graph traversal for each feature set.

Further, during the traversal the results of a choice at a choice element is

cached and the same list of alternatives is returned, no matter how many

different features would require traversal from that choice element.

8.4 PFA Limitations

Futher examination of the elevator PFA graph brings to light additional

limitations to the expressiveness of the PFA graphs. Unlike the navigation

system, the elevator PFA does not have much sensor redundancy — few

sensors can directly act as another sensor. The DoorReversal sensor, which

detects blockages of the door, is one of the few sensors that can. In effect,
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the DoorReversal sensors are redundant copies, either one of which is suf-

ficient to request the reverse of both doors. In the elevator PFA graph, this

situation is indicated by ensuring both sensors emit the same data element,

which feeds both the left and right DoorControllers.

Other types of available redundancy are more difficult to express in the

PFA graph. For instance, it is common for the current floor’s CarCall

button to act like the door reversal sensor to open the doors. When the car

is on any other floor, it merely operates in the normal capacity to summon

the car. The PFA graph has no way to express this second usage mode.

This mode is always available in the DoorController, but there is no way

to specify that the DoorController’s requirements can still be met in the

absence of both DoorReversal sensors.

More troubling is the situation with regard to the AtFloor sensors. Many

of the non-critical features require information about the car’s current po-

sition (e.g., the HallLanternController, which lights up the indicator to

provide floor location feedback to passengers waiting in the hallway). As

drawn in the PFA graph, they require knowledge of all AtFloorUp and

AtFloorDown sensors, and cannot be implemented in the absence of even

a single such sensor. However, in reality they will still operate in the ab-

sence of some AtFloor sensors. They merely operate at a lower utility —

they do not display floor information for a particular floor if it’s AtFloor

sensors are missing, or display a floor value for too long if just one direction

AtFloor is missing. To specify such operation with the PFA graph, which

has no notion of optional inputs or “as many as possible” flow, would be

difficult. It can be done by adding one “null” adapter for each possible
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Figure 8.2: A (difficult) solution to the combination sensor problem
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combination, the output of which flow into a data element, so that one of

the combinations will be chosen. An example of the solution is shown in

Figure 8.2. To keep the network requirement bookkeeping in proper shape,

the null adapter would need to be allocated wherever the receiving adapter

(HallLanternController in this case) is allocated. To ensure such co-

location, an infinite bandwidth (or at least more than available) would be

assigned to the data element that connects them. For our three floor ele-

vator, 26 − 1 null adapters would be necessary to cover all combinations of

at least one AtFloor sensor. Similar combinational explosion would be re-

quired for other features that need AtFloor input. Even if the other feature

has identical AtFloor requirements (i.e., needs the exact same sensors), the

need to allocate the null adapters with the second feature derails any idea

of sharing null adapters.

Similar problems exist on a smaller scale with a few other elevator sen-

sors. The state of one DoorOpened sensor can be inferred from the other

and could thus be analytically simulated. The Dispatcher can continue

to operate in the face of broken HallCall or CarCall sensors. In fact,

the Dispatcher can operate (in a highly inefficient manner) without any

HallCall/CarCall sensors by merely travelling up and down the hoistway,

stopping at each floor. It may be a low utility solution, but it isn’t fully

broken. A better solution can occur for an intelligent Dispatcher that knew

the expected distribution of request messages. Such a Dispatchermight de-

duce missing requests and simply synthesize replacements. Either solution

would require a host of null adapters to collect the HallCall and CarCall

combinations in a manner similar to Figure 8.2.
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The solution discussed in the previous two paragraphs is admittedly less

than elegant. An alternate means for handling the problem is to modify the

PFA graph and adapter selection algorithm in order to handle the situation

as a special case. A pseudo-sensor can be inserted in the PFA graph to

represent “all available AtFloor sensors.” Phase 1 and 2 algorithms can then

run unchanged. But, before the allocation step of Phase 3, the allocation

graph would be converted, by special purpose code, to replace the pseudo-

sensor with any AtFloor sensors that are available. Similar pseudo-sensors

can be used for HallCall and CarCall sensors.

The fact that special case code is employed does not reduces the gen-

eral applicability of the system-wide customization process. The supporting

insight is tied to a fundamental understanding of how the system-wide cus-

tomization algorithms will be used. The customization manager will always

be tied directly to particular PFA graphs. When the automobile of our

operational scenario (Chapter 5.1.1) has a hardware problem, it is not the

customization manager of the elevator that is used to fix it. Both the tow

truck and the OnStar server are forced to operate upon the PFA graph that

are specific to the particular product model that is broken. If the tow truck

operator is to service several different product lines (which is likely, as dif-

ferent manufacturers will not share PFA details), then he will be forced to

have different customization manager algorithms anyway. Inclusion of spe-

cial purpose code is unfortunate in that it may require regeneration of the

experimental data of Chapters 6 and 7. However, the experimental results

will then most likely produce tuning parameters that increase the effective-

ness of the specific customization manager on the PFA graph.
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Of these two particular solutions to the combination problem, the for-

mer has an extra degree of freedom that might result in some better solu-

tions. In a bandwidth constrained system, inclusion of all available sensors

could potentially consume too much bandwidth. By explicitly specifying

dropped sensors as a potential solution, the possibility exists that adapter

allocation would be successful with only a subset of available sensors in

use. The pseudo-sensor approach removes such possibilities by including all

available sensors. If a particular system is bandwidth constrained, then the

null-adapter approach is recommended as a means of exploring additional

configuration space. However, the potential cost of increased phase 2 iter-

ations (to traverse and explore the various combinations of null-adapters)

makes pseudo-sensors the preferred mechanism for all other systems.

8.5 Graceful Degradation in Action

We executed a simple fault injection experiment to ensure the algorithms op-

erate correctly on the elevator system. First, we had to generate a plausible

hardware architecture — a specification of the number and size of avail-

able PEs — for the system. The simulation that served as the archetype

for our PFA graphs did not contain any information or assumptions about

the hardware architecture of the system. The simulations were executed

on general purpose computing systems, so the designers had no reason to

develop hardware constraints. For this experiment, we chose a hardware

architecture similar to the “smart sensor” vision discussed in Chapter 1 —

each sensor and actuator has its own microcontroller (PE). Five additional
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PEs were added to act as compute nodes for the controller adapters. The

PEs were given sufficient resources (RAM and Flash) for all of the preferred

adapters to be allocated. Utility values were assigned randomly.

Step # Utility Remarks

1 1213 13 features in solution
↓
↓ 1 PE removed

2 1212 Left DoorController replaced
↓
↓ Six random adjustments to Flash/RAM
↓ Reduced PE2 to 50 bytes of RAM (essentially unusable)

3 1212 Same features as #2
↓
↓ Reduced PE3 Flash by 50%

4 1157 Remaining RAM is very tight – only 22 bytes unused
↓
↓ Another PE removed

5 693 7 features (4 of them critical) in solution
↓
↓ PE3 reduced to 100 bytes of RAM
↓ Only 2 PEs still functional

6 413 Only critical features remain

Table 8.4: Fault injection results

After the first and each subsequent allocation, we broke elements of the

system by removing PEs or some PE capability. We then executed the

system-wide customization algorithms and noted the resulting utility of the

system. All failures were confined to the compute nodes, as the solutions

to the limitations discussed in the previous section were not implemented.

Decisions as to which PE or resource to break were made randomly, with

a 25% chance of breaking a PE. If a PE was not broken, then one of the

resources (either RAM or Flash) on one of the remaining PEs was randomly
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(and uniformly) chosen. The chosen resource was reduced by 100 or 1000

bytes (respectively for RAM and Flash), or by one more than the remainder

after the last allocation. The results are summarized in Table 8.4.

The system started with a total utility of 1213, in 13 implemented fea-

tures. The five PEs were assigned abundant resources to start, so allocation

happened easily. After the first run, one of the five PEs was removed. The

customization algorithms allocated the same functionality, resulting in no

loss of utility. After the second run, six adjustments were made to RAM

and Flash, each time resulting in a valid allocation. These six steps are not

shown in the table, because they merely tightened up the available resources.

In the process of removing resources, though, a second PE was reduced to 50

bytes of RAM, less than required to host almost 60% of the adapters in the

PFA graph. By the fourth run, RAM was scarce, with only 22 bytes unused

systemwide. The resulting utility of 1157 represented a mostly functional

system – all 13 feature classes were still implemented. The fifth run was

quite different, however. The removal of an entire PE, when resources were

already in short supply, represented a large step — which was reflected in

the resulting utility of 693. After the fifth run, only 7 features were available

— the elevator was still operational, but most user feedback (button lights,

position indicators, etc.) was not. The last run was again a big step down

in utility as a result of the virtual failure of a third PE. Only the critical

features were operational.

This fault injection experiment, while limited, shows the strength of

system-wide customization as a mechanism for graceful degradation. The

elevator system was able to withstand a number of faults before losing func-
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tionality. Passengers would not have noticed any reduction in capability

until two of the five compute nodes had failed. And even after another

PE failed, the elevator could still deliver passengers to their destination —

admittedly slowly, because no controllers remained for handling user input.

These results bode well for the concept of automatic graceful degradation

as a means to achieve reliability goals.

8.6 A Few Notes About Performance

The customization manager implementation was not designed with perfor-

mance in mind, flexibility as a research platform was judged as the more

important trait. Furthermore, as discussed in the operational scenario, Sec-

tion 5.1.1, execution time is dominated by operational effects, such as the

response time of maintenance personnel. Acceptable execution time is gen-

erally on the order of seconds or minutes. However, the results of a few

measurements are instructive. Table 8.5 shows benchmark results, using

the rough timing mechanisms native to Java, of the six steps of the fault

injection experiment. Execution times are shown in milliseconds.

Clearly, the most time is spent in Phase 2 which is a complex graph

traversal process. Efforts to speed up the algorithm should concentrate in

Phase 2 and 3. The algorithm in Phase 1 is extremely simple, so uses little

time. The execution time of Phase 2 and 3 are roughly linear functions

of the number of iterations, which is not surprising — the slight effects of

different allocation graph sizes on Phase 3, for instance, are evened out over

the vast number of iterations the algorithm made.
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Step Iterations Execution Time (mS)
Num Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3
1 1 1 1 10 2604 53
2 2 65 64 10 3439 4394
3 2 65 64 10 3439 4394
4 20 1236 1217 17 51360 19660
5 29 1372 1344 37 49784 22115
6 39 2625 1650 40 98077 27450

Table 8.5: Performance of each phase

Elevator Phase 2 PFA Graph
Floors Execution Time (S) # Vertices
3 2.927 191
4 8.338 232
5 16.756 273
6 24.615 314
7 40.782 355

Table 8.6: Execution time of phase 2 for various sized elevators

The number of iterations for Phase 2 are of some concern, however. The

graph traversals are relatively time consuming and are something of a “brute

force” attack on the PFA graph. Some simple speedups are likely available,

such as caching traversal information from one iteration to the next. But a

fundamentally different algorithm might be necessary for large PFA graphs.

To test the growth of the iteration count of Phase 2 algorithm invocations,

we expanded the PFA graph by using a simple stratagem. We increased the

number of floors in the simulated elevator, and executed the customization

algorithms on the resulting PFA graphs. The results are shown in Table 8.6.

As the PFA graph increased in size (which it does linearly as a function

of the number of floors), the execution time of Phase 2 increased about

proportionally to the third power of the number of floors.
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8.7 Conclusion

Applying the ideas and techniques of the previous chapters to a different

domain helps to highlight the strengths and root out weaknesses of those

techniques. This chapter discussed the examination of a PFA derived from

two high quality simulations of an elevator control system. The elevator has

different characteristics from the navigation system that was used to tune

the algorithms, so it is no surprise that a few problems were encountered.

Most of the problems surfaced in the combinational explosion of the PFA

graph, caused by replication of the sensors, adapters and actuators in the

elevator system. A specification mechanism based on naming strategies al-

lowed simple creation of the PFA graph, though the graph grows significantly

as the size of the elevator increases.

With the huge size of the PFA graph, the traversal algorithm of Phase

2 has difficulty handling the large number of possible path combinations. A

trimming method is proposed to enhance the traversal, though it has limited

applicability due to the lack of discrimination among the replicated sensors

— they are all the same size.

Finally, the lack of sensor redundancy limits the types of hardware fail-

ures that can be tolerated by the system. Failure of PEs used primarily

as compute nodes can be tolerated to the extent that additional computing

resources can host critical adapters. But, failure of key sensors or actua-

tors will cause complete system failure. Two techniques to specify sensor

redundancy were discussed: the enumeration of all tolerable sensor combi-

nations through the addition of null adapters and the use of pseudo-sensors
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coupled with special purpose code to replace such sensors prior to alloca-

tion. The former is computationally challenging, and the latter relies upon

graph-specific code.

Overall, the elevator proof-of-concept was a fascinating examination of

the strengths and pitfalls of the system-wide customization concept. Fortu-

nately, the pitfalls can be circumscribed without overly effecting the useful-

ness of customization as a mechanism for graceful degradation.

The fault injection test sequence validated the idea of system-wide cus-

tomization as a means to graceful degradation. The example elevator was

still able to provide service to passengers after losing three PEs and com-

puting resources from the other two. Further, it persevered by shedding

functionality, not merely by failover to spare resources.



Chapter 9

Conclusions

This dissertation has examined automatic graceful degradation mechanisms.

The specific problem addressed was to find techniques to maximize the func-

tionality of fixed hardware by choosing and allocating software from a flexi-

ble library of components. The dissertation has been exploratory in nature,

surveying the landscape, and finding a route to a solution. We have framed a

general approach to graceful degradation through the customization mech-

anisms and provided some baseline algorithms for basic implementations.

More refined algorithms can easily be substituted in situations where the

baseline assumptions do not hold. Section 9.1 is a summary of the findings.

A more detailed discussion of our findings, including a discussion of what

areas need to be examined more carefully, is in Section 9.2. A specific list

of contributions appears in Section 9.3. Plenty of room remains in the re-

search field for further work, be it in improving the algorithms, more expres-

sive specification methods, better models, or varied styles of customization

manager. Speculation on such future work follows, in Section 9.4.

147
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9.1 Summary

System-wide customization is a useful mechanism, able to provide grace-

ful degradation and other benefits, as discussed in Chapter 2. Graceful

degradation is one of the truly valueable techniques to achieve the relia-

bility requirements of a modern distributed embedded system. By using

customization, a system is able to accomplish automatic graceful degrada-

tion, as opposed to the manual methods that resist scaling as the number

of components increases.

Chapter 4 defined the system model that was used in the rest of the

thesis. The system model is a familiar network connection of processing

elements, each potentially attached to sensors and actuators. Because the

processing elements are general compute engines — microcontrollers or mi-

croprocessors — they can execute algorithms designed for use with other

sensors and actuators. The problem definition of Chapter 5 describes how

the general processing power of the processing elements can be exploited

by allocating software components to compose a system with reduced func-

tionality. The chapter described several models for describing the grace-

ful degradation process, including the Product Family Architecture (PFA)

graph. The PFA graph makes use of the various product instances in a prod-

uct family graph. The PFA graph is the supergraph of the data flow graphs

of each product model, merged by joining communication elements accord-

ing to their type. Chapter 5 also described a feature model that describes

desirable portions of functionality and is expressible in the PFA graph.

A three phase, iterative, algorithmic framework was proposed in Chap-
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ter 6. Heuristics were examined to populate the algorithms of the framework.

The feature selection algorithm handles the details of the feature model and

generates a list of features to implement. The second phase is adapter se-

lection, which operates upon the PFA graph to propose a set of adapters

that fulfills all the dependencies of the features. The third phase handles

the mapping of adapters to the available hardware: processing elements and

the network. A novel technique for adapter allocation was developed, one

which allocates the adapters in a data flow graph based on their proximity to

the sensors and actuators of the graph. The algorithm was described, along

with the policy choices to guide the algorithm’s decisions, in Chapter 7.

The development of the algorithmic framework was grounded by using

a hypothetical navigation system for automobiles. In order to ensure wider

applicability, the algorithms were tested upon an elevator simulation, the re-

sults of which are in Chapter 8. Two product instances of the elevator were

measured and a PFA graph was generated. In the elevator, a great deal of

component replication exists that was not anticipated during work on the

navigation system. Such replication creates difficulties in the generation of

a PFA graph, because explicit representation makes for a large graph. Im-

plicit replication, where only the type of component, and not each particular

component, is represented in the graph does not sufficiently handle failure

situations where only some of a component type are broken. The elevator

system also had a great deal of sensor overlap, which did not exist in the

navigation graph. The sensor overlap required a simple re-ordering of the

adapter selection algorithm to ensure paths were consistent across features.

A fault injection experiment on a small instance of an elevator was suc-
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cessful in demonstrating the ability of the system-wide customization al-

gorithms to generate valid configurations for each hardware configuration.

In the experiment, the elevator lost 60% of its processing elements, yet

continued to operate, though at reduced functionality. The fault injection

experiment was a feasibility demonstration of the customization manager

providing graceful degradation capability to a distributed embedded sys-

tem.

9.2 Retrospective

We have stated several times that this work has been a journey of explo-

ration, because the field is new. This section provides a look back at the

decisions and assumptions of the journey, as well as a discussion of alternate

paths we might have taken. We have shown a positive answer to the central

question, of whether system-wide customization can be made to work as a

mechanism for graceful degradation. But, there are many different choices

that make up a customization process and we only demonstrated one path.

In some cases, we were lucky and found that nettlesome problems did not

apply to our specific circumstances. In others we found workarounds or other

engineering sleights-of-hand to reduce the complexity of the problem. The

following subsections discuss our assumptions, the workarounds and other

routes we might have taken. Throughout these sections, keep in mind that

we are merely refining the central question and how we think about it, not

disavowing it.
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9.2.1 The PFA Model

We based much of our solution on the exploitation of a product family

architecture (PFA). The flexibility and redundancy required for system-wide

customization flows from the availability of various alternative hardware and

software components in the PFA. The major assumption, of course, is in the

availability of such a PFA. For many product domains, access to a PFA

is a forgone conclusion — especially in recent years. For instance, major

automotive manufacturers have created or are in the process of forming a

software architecture at the system level. However, in a field that does

not document a PFA, one may be constructed by examining the network

messages of the various products. The network message types are the inter-

subsystem interface. They constitute the merge points for building the PFA

graph. This situation is exactly what happened in the proof of concept of

Chapter 8. Without documentation of the PFA (or even the data flow graphs

of the product instances), the network messages still provided enough data

to construct individual DFGs and finally a PFA graph.

The use of a PFA graph built on a data flow model seems quite use-

ful for a broad range of systems, many of which inhabit the distributed

embedded domain. However, data flow is not a universally useful model.

Exceptional condition paths and conditional branches are difficult to ele-

gantly incorporate. Some problem domains do not exhibit their interesting

and challenging aspects in terms of data flow. An example is a financial

system where transactional processing is the norm.

If the data flow paradigm does not apply, another mechanism must be
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sought. The role of the PFA graph is primarily to represent alternate soft-

ware components, organize dependencies, and allow verification that a collec-

tion of components is a “complete” system. System designers could generate

an explicit database with such information as an alternative to a PFA graph.

We believe the process of developing a PFA graph is actually quite similar

to the process of developing such a database, except that data flow seman-

tics provide shortcuts that reduce the effort involved. Data flow between

components is a powerful indicator of dependency, for instance.

9.2.2 Feature and Utility Models

The use of feature selection is easily a novel aspect of this dissertation. Other

research based on compositional systems assumes that all features must show

up in the final product. We break such an assumption, instead choosing a

subset of all available features in order to achieve graceful degradation. In

essence, we have proposed functional redundancy as an additional fault-

tolerant technique, to be added to the arsenal of tools that exploit different

types of redundancy: modular, analytical, temporal, and design.

Functional redundancy requires a feature model to articulate how differ-

ent portions of the system can be combined. The class-based feature model

we used is of medium complexity — useful to represent many distributed

embedded systems, but not comprehensive. It is quite easily applied to func-

tional decomposition type system architectures. In such cases, the functions

map to the different feature classes. In cases where the system architecture

was generated through some other means than functional decomposition, a

deeper semantic model of the features might be useful.
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The feature model we used employed particular adapters in the PFA

graph as stand-ins for each feature. Such a model merely uses the adapter

as an implication of a feature. In reality, the feature is more than a sin-

gle adapter – it is any of the possible ways that the adapter and all its

dependencies can be satisfied. By using a single adapter and allowing the

dependencies to be represented in the PFA graph, the data structures are

simplified considerably. But in the end, our use of an adapter is merely

a bookkeeping strategem. Nevertheless, the method does allow for manip-

ulation of the PFA graph to represent complex features. For instance, a

feature that represented several disparate software components can be rep-

resented by adding a zero-sized adapter to the PFA graph, with zero sized

communication from the various components to the new adapter. The zero-

sized adapter represents the feature. Other complex features (for instance,

“either-or features” or “m-of-n features”) can be represented by similar ma-

nipulations.

Another central problem that any system-wide customization mechanism

will have to overcome is the difficulty of designing a satisfactory utility

model to represent the desirability of particular features. We chose a simple

scheme wherein each feature was given a numeric utility value, the sum of

which represented the desirability of a configuration. Such a model has no

support to guide the designer in generating numeric values. In the worst

case, pairwise comparisons might be required between each pair of features

— which does not necessarily lead to a globally valid ranking of the features

(similar to the well-known voting problem).

Another alternative for a utility model is a qualitative ranking system,
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where features are ranked in one of several equivalence classes (e.g., “good”,

“better”, “best”). The algorithm could then make clear choices whenever

feature combinations included different rankings of features. If features of

the same class were compared, then a random or some other tie-breaking

strategy would be needed.

The utility problem is one that will exist in any system-wide customiza-

tion system. It is a difficult problem, any solution to which needs to ensure

the designer’s desires can be properly expressed without overwhelming him.

9.2.3 Allocation Algorithms

There are many allocation techniques that could have been employed in

Phase 3. We chose a binpacking process. However, equally valid techniques

can be found that use a different underlying process. Graph theoretic meth-

ods, such as [Stone77], construct a graph of the adapters (and sometimes,

the processing elements) in such a way that graph theory tools like min-cut

can be used. Graph cutsets then correspond to adapter allocation assign-

ments. Other allocation methods include integer programming, clustering

heuristics, and guided search.

The only requirement that made our allocation algorithm different from

any of these standard allocation methods is the presence of sensors and ac-

tuators in fixed locations. Most allocation algorithms assume heterogeneous

processing elements (PE), whereby any software runs equally well on any

PE. In a distributed embedded system, the processors may be equally ca-

pable of running any software, but they are distinguished by the particular

sensors and actuators attached. Our choices with respect to the standard
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allocation algorithm amount to:

1. Use a standard allocation method and treat the sensors and actuators

as software components. Allow the algorithm to allocate the sensors

and actuators. Adjust the allocation (or give up) if the sensors and

actuators are allocated to different processing elements from their real

locations.

2. Use a standard allocation method and ignore sensors and actuators.

Allocate just the software components. Adjust the allocation by adding

communication from the sensors and actuators to the already allocated

software components. Adjust the allocation (or give up) if the added

communication overwhelms the network.

3. Modify a standard allocation method to properly handle sensors and

actuators. In many cases this might be achievable by simply starting

the allocation after sensors and actuators have already been placed

(in the proper PE, of course). For instance, if a clustering heuristic is

used, the clusters would start based on the assignments of sensors and

actuators. If binpacking, then the bins would start with the sensors

and actuators already packed.

While working on the third choice, we discovered that we could actually

exploit the constraint, rather than merely work around it. The result was the

transducer-sensitive algorithm of Chapter 7. Similar opportunities might be

possible if integer programming, clustering or guided search methods were

similarly modified to account for sensor and actuator location.
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9.3 Contributions

The contributions of this research are summarized below:

Problem Identification

– This was the first comprehensive treatment of the system-wide customiza-

tion problem. A formulation of the problem definition was developed.

We framed the question of how to customization a system, in the con-

text of distributed embedded systems, and then refined the ways to

think about the question. (Chapter 5)

– Ramifications of solutions were examined as they apply to the distributed

embedded system domain. Pros and cons of the PFA approach were

discussed. (Chapter 2)

Problem Solutions

– A three-phased solution framework was developed. Algorithms were pre-

sented to solve each of the three phases. Experimental results, gained

through construction of a tool—called a customization manager —

provided key parameter choices for building the algorithms. (Chap-

ter 6)

– The entire idea of feature selection is one of the most novel aspects of this

dissertation. Fundamentally, feature selection allows only parts of a

specified system to be implemented, unlike other system construction

techniques which assume the entire specification must be met.
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– The allocation of software components to hardware (phase 3) is well

known to be NP-complete. A new allocation heuristic was proposed,

which exploits characteristics of distributed embedded systems, result-

ing in a 2.7x speedup on example systems. (Chapter 7)

– Phase feedback was proposed as a means to increase speed and quality of

problem solution. A feedback mechanism was examined for the fea-

ture selection algorithm (phase 1) that resulted in drastically improved

solutions. (Chapter 6.1.1)

Proof of Concept

– Two product instances of a complex distributed embedded system were

measured and combined into a single product family. (Chapter 8.2)

– The customization manager was used to examine system-wide customiza-

tion of the proof of concept system in response to various hardware

failures. (Chapter 8.5)

9.4 Future Work

Since this research opens up a new research field, there are plenty of issues

to explore. The issues can be categorized in the following partitions:

9.4.1 System Model

One area that has not been examined are applications with real-time re-

quirements. The data flow graphs do not express any timing requirements.
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In fact, since time is not a consumable resource in the same way that mem-

ory or I/O channels are, it would be quite interesting to explore. A simple

approach would add a schedulability check to the validity checks of a fourth

phase. However, it is probably much more efficient to have a way to express

the timing requirements in the PFA graph, such that the adapter selection

only generates allocation graphs that have been pre-vetted or at least heuris-

tically selected for schedulability. Because the timing constraints can only

be fulfilled by the cooperation of all software along the critical path, it makes

sense to include such considerations when the PFA graph is manipulated.

However, the actual timing will also depend upon the allocation decisions.

For instance, communication among components on the same processing el-

ement presumably will take less time than communication over the network.

Similarly, execution timing of adapters is dependent upon the speed of the

processing element. A promising attack to this problem would be for the

adapter selection to collect and screen adapters along the critical path, have

the adapter allocation algorithm check and allocate those components, and

then go back to the adapter selection for the remainder of the system.

9.4.2 Problem Definition

Two issues with the problem definition are in need of examination: the PFA

graph and feature models.

The mechanics of the PFA graph are sufficiently expressive to cover the

systems we have explored. However, additional semantics would make for

cleaner graphs, and may simplify the adapter selection algorithms. We men-

tioned in Chapter 8 the need for optional or low-criticality connections in
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the PFA graph. It would be very helpful to be able to express the “as many

as possible” type of relations, and even to put bounds on the range of re-

quired inputs. Furthermore, the replication of components, as illustrated by

the elevator system, should be expressable without requiring full enumer-

ation. Unfortunately, any change to the semantics of the PFA graph will

complicate the algorithms in the adapter selection phase to at least the same

degree as they simplify the PFA graph. Finding a good tradeoff is critical.

The representation of features in a composable and consistent manner is

also a difficult problem. [Shelton02] is a good start, with hierarchical feature

subsets and a quantitative utility model. A detailed and quantitative model

is required for the customization algorithms to compare configurations. But

the emphasis on detail and precision makes the process of designing such

a system more difficult. We do not have any good ideas on how to ensure

detailed numbers are meaningful — beyond a “big”, “bigger”, “biggest”

type of triage.

9.4.3 Algorithms

Alternate algorithm construction is also possible as an interesting compari-

son to the algorithms of Chapters 6 and 7. The customization manager algo-

rithm developed in this dissertation is basically a depth first search through

feature sets, adapter sets and adapter allocation. Perhaps a broader search

would better cover the configuration space. Another intriguing approach

would be to guide constructive solutions — starting out with the smallest

configuration that is almost certain to fit (and, which could be mostly spec-

ified a priori to the algorithm) and then making small changes to attempt
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to build up, or construct, a more feature-rich solution.

Integer programming constructs have been suggested, especially as a so-

lution means to the adapter allocation phase. Using integer programming

for the entire problem appeared exceptionally challenging. However, a new

tool, called constraint programming has recently become available in the

operations research field. Constraint programming uses a two level archi-

tecture:

1. a constraint component: a constraint-solving system reasoning about

fundamental properties of the system constraints such as satisfiability;

2. a programming component: specifies how to generate, combine and

process constraints, often in non-deterministic ways.

It is possible that the myriad of system issues and constraints could be

modelled, in a tractable manner, for solution by a constraint programming

engine[Van Hentenryck99].

9.4.4 Customization Manager Styles

Several possibilities exist for useful extensions to the customization manager.

Dynamic customization would be a very useful capability — the ability to

execute a customization manager while the system is operational. To do

so would involve a careful dance between two modes. In the first mode, a

reconfiguration trajectory is calculated that would change system function-

ality to relocate adapters and free up space for alternate adapters, all the

while ensuring the system is always functional. The second mode would
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load adapters onto available processing elements — while ensuring the im-

pact of network communication does not interfere with system operation.

As a first start, the planner could move the system to a state with minimum

functionality (only critical features are implemented, perhaps). The freed

resources could then be populated with improved utility critical features and

optimization features. Clearly the calculation of reconfiguration trajectory

would be challenging.

Another useful customization manager style that would not be as difficult

to construct is a failover friendly one. A failover friendly customization

manager ensures replicated adapters are available for critical features in case

a failure occurs. A useful fault model would guide development of strategies

to ensure minimum functionality adapters were replicated to take over in

case of a failure. For instance, if the fault model specified failure of any single

processing element was to be tolerated, then each critical adapter would

have to be replicated on two different processing elements. The replicated

adapters do not need to be identical to the operational adapters. Ideally,

the replicated adapters would be selected to be on the easiest to allocate

of all the paths for any feature in the feature class. Allocation constraints

would be imposed to keep the replicas on different processing elements.
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Appendix A

Elevator System Tables

Table A.1: Team A — Original code measurements

Name Replication CodeSize FieldSize Period Payload

Sensor DoorOpened LEFT/RIGHT
Outputs DoorOpenedRAW SameSide 100mS 1byte
Adapter DoorOpenedAdapter LEFT/RIGHT 625 30
Inputs DoorOpenedRAW SameSide
Outputs DoorOpened SameSide 100mS 1byte
Sensor DoorClosed LEFT/RIGHT
Outputs DoorClosedRAW SameSide 100mS 1byte
Adapter DoorClosedAdapter LEFT/RIGHT 698 30
Inputs DoorClosedRAW SameSide
Outputs DoorClosed SameSide 100mS 1byte
Sensor DoorReversal LEFT/RIGHT
Outputs DoorReversalRAW SameSide 100mS 1byte
Adapter DoorReversalAdapter LEFT/RIGHT 871 26
Inputs DoorReversalRAW SameSide
Outputs DoorReversal SameSide 100mS 1byte
Sensor Weight 1
Outputs WeightRAW 1 1mS 8bytes
Adapter WeightAdapter 1 351 26
Inputs WeightRAW 1
Outputs Weight 1 1mS 8bytes
Sensor TimeOfDay 1

continued on next page
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Table A.1: (Continued)

Name Replication CodeSize FieldSize Period Payload
Outputs TimeOfDayRAW 1 1mS 8bytes
Adapter TimeOfDayAdapter 1 437 54
Inputs TimeOfDayRAW 1
Outputs TimeOfDay 1 1mS 8bytes
Sensor AtFloorUp numFloor
Outputs AtFloorUpRAW SameFloor 100uS 2bytes
Adapter AtFloorUpAdapter numFloor 640 48
Inputs AtFloorUpRAW SameFloor
Outputs AtFloorUp SameFloor 100uS 2bytes
Sensor AtFloorStop numFloor
Outputs AtFloorStopRAW SameFloor 100uS 2bytes
Adapter AtFloorStopAdapter numFloor 640 48
Inputs AtFloorStopRAW SameFloor
Outputs AtFloorStop SameFloor 100uS 2bytes
Sensor AtFloorDown numFloor
Outputs AtFloorDownRAW SameFloor 100uS 2bytes
Adapter AtFloorDownAdapter numFloor 640 48
Inputs AtFloorDownRAW SameFloor
Outputs AtFloorDown SameFloor 100uS 2bytes
Sensor HoistwayLimit1 UP/DOWN
Outputs HoistwayLimit1RAW SameDirection 10uS 1byte
Adapter HoistwayLimit1Adapter UP/DOWN 710 39
Inputs HoistwayLimit1RAW SameDirection
Outputs HoistwayLimit1 SameDirection 10uS 1byte
Sensor HoistwayLimit2 UP/DOWN
Outputs HoistwayLimit2RAW SameDirection 10uS 1byte
Adapter HoistwayLimit2Adapter UP/DOWN 710 39
Inputs HoistwayLimit2RAW SameDirection
Outputs HoistwayLimit2 SameDirection 10uS 1byte
Sensor ButtonControl 1
Outputs ModeKeyRAW 1 500uS 1byte

DoorCloseButtonRAW 1 500uS 1byte
DoorOpenButtonRAW 1 500uS 1byte

Adapter ButtonControlAdapter 1 266 3
Inputs ModeKeyRAW 1

DoorCloseButtonRAW 1
DoorOpenButtonRAW 1

Outputs ModeKey 1 500uS 1byte
DoorCloseButton 1 500uS 1byte
DoorOpenButton 1 500uS 1byte

Actuator DoorMotor LEFT/RIGHT
continued on next page
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Table A.1: (Continued)

Name Replication CodeSize FieldSize Period Payload
Inputs DoorMotorRAW SameSide
Adapter DoorMotorAdapter LEFT/RIGHT 1631 58
Inputs DoorMotor SameSide
Outputs DoorMotorRAW SameSide 100uS 1byte
Actuator Drive 1
Inputs DriveSpeedRAW 1
Adapter DriveAdapter 1 2716 58
Inputs DriveSpeed 1
Outputs DriveSpeedRAW 1 100us 2bytes
Feature DoorControlMonolithic LEFT/RIGHT 4054 244
Inputs DesiredFloor 1

DesiredDwell 1
DoorReversal LEFT/RIGHT
DoorOpened LEFT/RIGHT
DoorClosed LEFT/RIGHT
HallCall numArrow
CarCall numFloor
DriveState 1
AtFloorStop numFloor
ModeKey 1
FireAlarm 1

DoorOpenButton 1
DoorCloseButton 1

Outputs DoorMotor SameSide 100uS 1byte
Feature CarPositionControl 1 670 87
Inputs DesiredFloor 1

AtFloorUp numFloor
AtFloorStop numFloor
AtFloorDown numFloor

Outputs CarPositionIndicator 1 200us 1byte
Feature Dispatcher 1 7433 478
Inputs Weight 1

TimeOfDay 1
ModeKey 1
FireAlarm 1
DoorClosed LEFT/RIGHT
HallCall numArrow
AtFloorUp numFloor
AtFloorStop numFloor
AtFloorDown numFloor
CarCall numFloor

continued on next page
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Table A.1: (Continued)

Name Replication CodeSize FieldSize Period Payload
Outputs DesiredDwell 1 100uS 8bytes

DesiredFloor 1 100uS 2bytes
PeakMode 1 100uS 1byte

Feature LanternControl UP/DOWN 731 51
Inputs DesiredFloor 1

CarLantern OtherDirection
AtFloorStop numFloor
DoorClosed LEFT/RIGHT

Outputs CarLantern SameDirection 500uS 1byte
Feature HallButtonControl numArrow 907 43
Inputs DesiredFloor 1

DoorOpened LEFT/RIGHT
DoorClosed LEFT/RIGHT
AtFloorStop numFloor
ModeKey 1
FireAlarm 1
HallCallRAW SameArrow

Outputs HallLight SameArrow 500uS 2bytes
HallCall SameArrow 500uS 2bytes

Feature CarButtonControl numFloor 938 49
Inputs Weight 1

AtFloorStop SameFloor
DoorClosed LEFT/RIGHT
DoorOpened LEFT/RIGHT
FireAlarm 1
ModeKey 1
CarCallRAW SameFloor

Outputs CarLight SameFloor 500uS 2bytes
CarCall SameFloor 500uS 2bytes

Feature DriveControl 1 2549 204
Inputs HoistwayLimit1 UP/DOWN

DesiredFloor 1
AtFloorUp numFloor
AtFloorStop numFloor
AtFloorDown numFloor
DoorClosed LEFT/RIGHT
DoorMotor LEFT/RIGHT

Outputs DriveSpeed 1 100us 2bytes
DriveState 1 50us 2bytes
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Table A.2: Team A — Missing modules measurements

Name Replication CodeSize FieldSize Period Payload

Sensor CarCallButton numFloor
Outputs CarCallRAW SameFloor 100mS 1byte
Sensor HallCallButton numArrow
Outputs HallCallRAW SameArrow 100mS 1byte
Sensor FireAlarm 1
Outputs FireAlarmRAW 1 500uS 1byte
Adapter FireAlarmAdapter 1 650 50
Inputs FireAlarmRAW 1
Outputs FireAlarm 1 500uS 1byte
Actuator CarPositionIndicator 1
Inputs CarPositionIndicatorRAW 1
Adapter CarPositionIndicatorAdapter 1 800 30
Inputs CarPositionIndicator 1
Outputs CarPositionIndicatorRAW 1 200uS 1byte
Actuator CarLantern UP/DOWN
Inputs CarLanternRAW SameDirection
Adapter CarLanternAdapter UP/DOWN 800 30
Inputs CarLantern SameDirection
Outputs CarLanternRAW SameDirection 500uS 1byte
Actuator CarLight numFloor
Inputs CarLightRAW SameFloor
Adapter CarLightAdapter numFloor 800 30
Inputs CarLight SameFloor
Outputs CarLightRAW SameFloor 500uS 2bytes
Actuator HallLantern numArrow
Inputs HallLanternRAW SameArrow
Adapter HallLanternAdapter numArrow 800 300
Inputs HallLantern SameArrow
Outputs HallLanternRAW SameArrow 100uS 1byte
Actuator HallLight numArrow
Inputs HallLightRAW SameArrow
Adapter HallLightAdapter numArrow 800 300
Inputs HallLight SameArrow
Outputs HallLightRAW SameArrow 500uS 2bytes
Feature HallLanternControl numArrow 653 36
Inputs DesiredFloor 1

AtFloorDown FloorOfThisArrow
AtFloorUp FloorOfThisArrow
DoorClosed LEFT/RIGHT

Outputs HallLantern SameArrow 100uS 1byte
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Table A.3: Team A — Modified modules measurements

Name Replication CodeSize FieldSize Period Payload

Feature DoorControl MOD1 LEFT/RIGHT 3741 230
Inputs DesiredFloor 1

DesiredDwell 1
DoorReversal LEFT/RIGHT
DoorOpened LEFT/RIGHT
DoorClosed LEFT/RIGHT
HallCall numArrow
CarCall numFloor
DriveState 1

DoorOpenButton 1
DoorCloseButton 1
AtFloorStop numFloor
ModeKey 1
FireAlarm 1

Outputs DoorControlState MOD1 SameSide 500uS 1byte
Feature DoorControl FF MM MOD1 LEFT/RIGHT 3589 208
Inputs DesiredFloor 1

DesiredDwell 1
DoorReversal LEFT/RIGHT
DoorOpened LEFT/RIGHT
DoorClosed LEFT/RIGHT
HallCall numArrow
CarCall numFloor
DriveState 1

DoorOpenButton 1
DoorCloseButton 1
CurrentMode MOD1 1
CurrentFloor1 MOD1 1

Outputs DoorControlState MOD1 SameSide 500uS 1byte
Feature DoorControl FF MOD1 LEFT/RIGHT 3640 213
Inputs DesiredFloor 1

DesiredDwell 1
DoorReversal LEFT/RIGHT
DoorOpened LEFT/RIGHT
DoorClosed LEFT/RIGHT
HallCall numArrow
CarCall numFloor
DriveState 1

DoorOpenButton 1
DoorCloseButton 1

CurrentFloor1 MOD1 1
continued on next page
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Table A.3: (Continued)

Name Replication CodeSize FieldSize Period Payload
ModeKey 1
FireAlarm 1

Outputs DoorControlState MOD1 SameSide 500uS 1byte
Feature DoorControl MM MOD1 LEFT/RIGHT 3690 225
Inputs DesiredFloor 1

DesiredDwell 1
DoorReversal LEFT/RIGHT
DoorOpened LEFT/RIGHT
DoorClosed LEFT/RIGHT
HallCall numArrow
CarCall numFloor
DriveState 1

DoorOpenButton 1
DoorCloseButton 1
AtFloorStop numFloor

CurrentMode MOD1 1
Outputs DoorControlState MOD1 SameSide 500uS 1byte
Adapter BehaviorManager MOD1 LEFT/RIGHT 360 38
Inputs DoorControlState MOD1 SameSide
Outputs DoorMotor SameSide 100uS 1byte
Adapter ModeManager 1 173 19
Inputs ModeKey 1

FireAlarm 1
Outputs CurrentMode MOD1 1 500uS 1byte
Adapter FloorDetector1 MOD1 1 207 19
Inputs AtFloorStop numFloor
Outputs CurrentFloor1 MOD1 1 100uS 1byte
Adapter FloorDetector2 MOD1 1 516 71
Inputs AtFloorUp numFloor

AtFloorStop numFloor
AtFloorDown numFloor

Outputs CurrentFloor2 MOD1 1 100uS 1byte
Adapter CarPositionControl MOD1 1 310 40
Inputs DesiredFloor 1

CurrentFloor2 MOD1 1
Outputs CarPositionIndicator 1 200us 1byte
Feature Dispatcher FF MOD1 1 7294 413
Inputs Weight 1

TimeOfDay 1
ModeKey 1
FireAlarm 1

continued on next page
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Table A.3: (Continued)

Name Replication CodeSize FieldSize Period Payload
DoorClosed LEFT/RIGHT
HallCall numArrow

CurrentFloor2 MOD1 1
CarCall numFloor

Outputs DesiredDwell 1 100uS 8bytes
DesiredFloor 1 100uS 2bytes
PeakMode 1 100uS 1byte

Feature LanternControl MOD1 UP/DOWN 653 36
Inputs DesiredFloor 1

CarLantern OtherDirection
CurrentFloor1 MOD1 1

DoorClosed LEFT/RIGHT
Outputs CarLantern SameDirection 500uS 1byte
Feature HallButtonControl MOD1 numArrow 834 46
Inputs DesiredFloor 1

DoorOpened LEFT/RIGHT
DoorClosed LEFT/RIGHT

CurrentFloor1 MOD1 1
CurrentMode MOD1 1
HallCallRAW SameArrow

Outputs HallLight SameArrow 500uS 2bytes
HallCall SameArrow 500uS 2bytes

Feature CarButtonControl MOD1 numFloor 816 48
Inputs Weight 1

CarCallRAW SameFloor
DoorOpened LEFT/RIGHT
DoorClosed LEFT/RIGHT
AtFloorStop SameFloor

CurrentMode MOD1 1
Outputs CarLight SameFloor 500uS 2bytes

CarCall SameFloor 500uS 2bytes

Table A.4: Team 1 — Original system measurements

Name Replication CodeSize FieldSize Period Payload

Adapter DoorOpenedAdapterTeam1 LEFT/RIGHT 356 18
Inputs DoorOpenedRAW SameSide
Outputs DoorOpened SameSide 100mS 1byte
Adapter DoorClosedAdapterTeam1 LEFT/RIGHT 354 18
Inputs DoorClosedRAW SameSide

continued on next page
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Table A.4: (Continued)

Name Replication CodeSize FieldSize Period Payload
Outputs DoorClosed SameSide 100mS 1byte
Adapter AtFloorUpAdapterTeam1 numFloor 428 44
Inputs AtFloorUpRAW SameFloor
Outputs AtFloorUp SameFloor 100uS 2bytes
Adapter AtFloorStopAdapterTeam1 numFloor 428 44
Inputs AtFloorStopRAW SameFloor
Outputs AtFloorStop SameFloor 100uS 2bytes
Adapter AtFloorDownAdapterTeam1 numFloor 428 44
Inputs AtFloorDownRAW SameFloor
Outputs AtFloorDown SameFloor 100uS 2bytes
Adapter HoistwayLimit1AdapterTeam1 UP/DOWN 325 31
Inputs HoistwayLimit1RAW SameDirection
Outputs HoistwayLimit1 SameDirection 10uS 1byte
Adapter HoistwayLimit2AdapterTeam1 UP/DOWN 325 31
Inputs HoistwayLimit2RAW SameDirection
Outputs HoistwayLimit2 SameDirection 10uS 1byte
Sensor FireAlarm numFloor
Outputs FireAlarmRAW SameFloor 100mS 1byte
Adapter FireAlarmAdapter numFloor 1200 150
Inputs FireAlarmRAW SameFloor
Outputs FireAlarm SameFloor 10mS 1byte
Adapter FireAlarmAdapter2 1 1400 250
Inputs FireAlarmRAW numFloor
Outputs FireAlarm 1 500uS 1byte
Adapter DoorMotorAdapterTeam1 LEFT/RIGHT 1628 58
Inputs DoorMotor SameSide
Outputs DoorMotorRAW SameSide 100uS 1byte
Adapter CarPositionIndicatorAdapterTeam1 1 176 4
Inputs CarPositionIndicator 1
Outputs CarPositionIndicatorRAW 1 200mS 1byte
Adapter CarLanternAdapterTeam1 UP/DOWN 378 2
Inputs CarLantern SameDirection
Outputs CarLanternRAW SameDirection 500mS 1byte
Adapter CarLightAdapterTeam1 numFloor 228 6
Inputs CarLight SameFloor
Outputs CarLightRAW SameFloor 500mS 2bytes
Adapter HallLightAdapterTeam1 numArrow 395 6
Inputs HallLight SameArrow
Outputs HallLightRAW SameArrow 500mS 2bytes
Adapter DriveAdapterTeam1 1 2327 55
Inputs DriveSpeed 1

continued on next page
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Table A.4: (Continued)

Name Replication CodeSize FieldSize Period Payload
Outputs DriveSpeedRAW 1 100us 2bytes
Actuator EmergencyBrake 1
Inputs EmergencyBrakeRAW 1
Adapter EmergencyBrakeAdapter 1 800 1600
Inputs EmergencyBrake 1
Outputs EmergencyBrakeRAW 1 100mS 1byte
Feature DoorControlTeam1 LEFT/RIGHT 1901 120
Inputs DesiredFloor 1

DesiredDwell 1
DoorReversal LEFT/RIGHT
DoorOpened LEFT/RIGHT
DoorClosed LEFT/RIGHT
DriveSpeed 1
AtFloorStop numFloor
ModeKey 1
FireAlarm numFloor

DoorOpenButton 1
DoorCloseButton 1

Outputs DoorMotor SameSide 5mS 1byte
DoorMotor OtherSide 5mS 1byte

Feature CarPositionControlTeam1 1 373 68
Inputs ModeKey 1

AtFloorUp numFloor
AtFloorStop numFloor
AtFloorDown numFloor

Outputs CarPositionIndicator 1 200us 1byte
Feature LanternControlTeam1 UP/DOWN 380 34
Inputs ModeKey 1

DesiredFloor 1
DoorClosed LEFT/RIGHT

Outputs CarLantern SameDirection 500uS 1byte
Feature CarButtonControlTeam1 numFloor 589 58
Inputs CarCallRAW SameFloor

CarCallRAW OtherFloors
AtFloorStop SameFloor
ModeKey 1
FireAlarm numFloor

Outputs CarLight SameFloor 500uS 2bytes
CarCall SameFloor 250uS 2bytes

Feature HallButtonControlTeam1 numArrow 535 47
Inputs DesiredFloor 1

continued on next page
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Table A.4: (Continued)

Name Replication CodeSize FieldSize Period Payload
ModeKey 1
AtFloorStop FloorOfThisArrow
AtFloorUp FloorOfThisArrow
AtFloorDown FloorOfThisArrow
HallCallRAW SameArrow

Outputs HallLight SameArrow 500uS 2bytes
HallCall SameArrow 500uS 2bytes

Feature DispatcherTeam1 1 1853 201
Inputs TimeOfDay 1

ModeKey 1
FireAlarm numFloor
HallCall numArrow
AtFloorUp numFloor
AtFloorStop numFloor
AtFloorDown numFloor
CarCall numFloor

Outputs DesiredDwell 1 100uS 8bytes
DesiredFloor 1 100uS 2bytes

Feature DriveControlTeam1 1 2124 136
Inputs HoistwayLimit1 UP/DOWN

HoistwayLimit2 UP/DOWN
DesiredFloor 1

EmergencyBrake 1
AtFloorUp numFloor
AtFloorStop numFloor
AtFloorDown numFloor
DoorClosed LEFT/RIGHT
DoorMotor LEFT/RIGHT
ModeKey 1
FireAlarm numFloor
CarCall numFloor

Outputs DriveSpeed 1 150ms 2bytes
DriveState 1 150ms 2bytes

Adapter SafetyDriveControl 1 735 49
Inputs DoorOpened LEFT/RIGHT

DoorClosed LEFT/RIGHT
DriveSpeed 1

Outputs DriveSpeed 1 120ms 2bytes
EmergencyBrake 1 120ms 1byte

Adapter SafetyDoorMotorControl LEFT/RIGHT 1118 81
Inputs DriveSpeed 1

continued on next page
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Table A.4: (Continued)

Name Replication CodeSize FieldSize Period Payload
DoorReversal SameSide
DoorOpened SameSide
DoorClosed SameSide
AtFloorStop numFloor

Outputs EmergencyBrake 1 500ms 1byte
DoorMotor SameSide 500ms 1byte

Table A.5: Team 1 — Modified adapter measurements

Name Replication CodeSize FieldSize Period Payload

Feature DoorControl FF Team1 LEFT/RIGHT 1773 128
Inputs DesiredFloor 1

DesiredDwell 1
DoorReversal LEFT/RIGHT
DoorOpened LEFT/RIGHT
DoorClosed LEFT/RIGHT
HallCall numArrow
CarCall numFloor
DriveState 1

DoorOpenButton 1
DoorCloseButton 1

CurrentFloor1 MOD1 1
CurrentMode MOD1 1

Outputs DoorMotor SameSide 500uS 1byte
Adapter CarPositionControl Team1 1 270 55
Inputs DesiredFloor 1

CurrentFloor2 MOD1 1
Outputs CarPositionIndicator 1 200us 1byte
Feature Dispatcher FF Team1 1 1694 196
Inputs Weight 1

TimeOfDay 1
DoorClosed LEFT/RIGHT
HallCall numArrow

CurrentFloor2 MOD1 1
CarCall numFloor

Outputs DesiredDwell 1 100uS 8bytes
DesiredFloor 1 100uS 2bytes
PeakMode 1 100uS 1byte

Feature HallButtonControl Team1 numArrow 468 70
Inputs DesiredFloor 1

DoorOpened LEFT/RIGHT
continued on next page



175

Table A.5: (Continued)

Name Replication CodeSize FieldSize Period Payload
DoorClosed LEFT/RIGHT

CurrentFloor2 MOD1 1
CurrentMode MOD1 1
HallCallRAW SameArrow

Outputs HallLight SameArrow 500uS 2bytes
HallCall SameArrow 500uS 2bytes

Feature CarButtonControl Team1 numFloor 516 82
Inputs Weight 1

CarCallRAW SameFloor
DoorOpened LEFT/RIGHT
DoorClosed LEFT/RIGHT

CurrentFloor1 MOD1 1
CurrentMode MOD1 1

Outputs CarLight SameFloor 500uS 2bytes
CarCall SameFloor 500uS 2bytes
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Appendix B

Navigation System

Description

The following XML markup describes the automotive navigation system

used in Chapters 5 and 6 to develop the algorithmic framework and tune

the feature selection and adapter selection algorithms

B.1 XML Description

<?xml version="1.0" encoding="UTF-8"?>

<systemDescription>

<GlobalProperties>

<Comment>The sample navigation scenario</Comment>

<Scenario>Bosch Navigation</Scenario>

<ScenarioVersion>3</ScenarioVersion>

<FileVersion>7</FileVersion>

<ResourceSize Type="PE" NumElements="2"/>

<ResourceSize Type="DE" NumElements="1"/>

<FileID>1</FileID>

<FeatureSelector Type="red"/>
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<AdapterSelector Type="red"/>

<AdapterAllocator Type="TRANS" Param="1ARNSSBARNI"/>

</GlobalProperties>

<Sensor SensorId="0" Name="UserInterface" Active="true">

<OutputDataElement DataId="313"/>

</Sensor>

<Sensor SensorId="1" Name="EngineSensor" Active="true">

<OutputDataElement DataId="314"/>

<OutputDataElement DataId="315"/>

<OutputDataElement DataId="316"/>

</Sensor>

<Sensor SensorId="2" Name="MM1" Active="true">

<OutputDataElement DataId="300"/>

<OutputDataElement DataId="317"/>

</Sensor>

<Sensor SensorId="3" Name="SBox" Active="true">

<OutputDataElement DataId="300"/>

</Sensor>

<Sensor SensorId="4" Name="VDC" Active="true">

<OutputDataElement DataId="318"/>

</Sensor>

<Sensor SensorId="5" Name="LWS" Active="true">

<OutputDataElement DataId="319"/>

</Sensor>

<Sensor SensorId="6" Name="GPS1" Active="true">

<OutputDataElement DataId="325"/>

</Sensor>

<Sensor SensorId="7" Name="Compass" Active="true">

<OutputDataElement DataId="302"/>

</Sensor>

<Sensor SensorId="8" Name="MapDVD" Active="true">

<OutputDataElement DataId="324"/>

</Sensor>

<Actuator ActuatorId="10" Name="TurnSignalIndicator" Active="true">

<InputDataElement DataId="322"/>

</Actuator>

<Actuator ActuatorId="11" Name="Speaker" Active="true">

<InputDataElement DataId="321"/>

</Actuator>

<Actuator ActuatorId="12" Name="Display" Active="true">

<InputDataElement DataId="323"/>

</Actuator>

<DataElement DataId="300" Name="YawRate" isLocal="false">
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<requirements>

<requirement rId="0">111</requirement>

</requirements>

</DataElement>

<DataElement DataId="301" Name="GroundSpeed" isLocal="false">

<requirements>

<requirement rId="0">80</requirement>

</requirements>

</DataElement>

<DataElement DataId="302" Name="CurrentDirection" isLocal="false">

<requirements>

<requirement rId="0">104</requirement>

</requirements>

</DataElement>

<DataElement DataId="303" Name="MapData" isLocal="false">

<requirements>

<requirement rId="0">95</requirement>

</requirements>

</DataElement>

<DataElement DataId="304" Name="CurrentLocation" isLocal="false">

<requirements>

<requirement rId="0">96</requirement>

</requirements>

</DataElement>

<DataElement DataId="305" Name="ErrorEstimate" isLocal="false">

<requirements>

<requirement rId="0">93</requirement>

</requirements>

</DataElement>

<DataElement DataId="306" Name="Path" isLocal="false">

<requirements>

<requirement rId="0">96</requirement>

</requirements>

</DataElement>

<DataElement DataId="307" Name="TurnInfo" isLocal="false">

<requirements>

<requirement rId="0">84</requirement>

</requirements>

</DataElement>

<DataElement DataId="308" Name="UpdateMapRequest" isLocal="false">

<requirements>

<requirement rId="0">99</requirement>
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</requirements>

</DataElement>

<DataElement DataId="309" Name="TurnInfoText" isLocal="true">

<requirements>

<requirement rId="0">114</requirement>

</requirements>

</DataElement>

<DataElement DataId="310" Name="TurnInfoAudio" isLocal="true">

<requirements>

<requirement rId="0">114</requirement>

</requirements>

</DataElement>

<DataElement DataId="311" Name="MapAsImage" isLocal="true">

<requirements>

<requirement rId="0">97</requirement>

</requirements>

</DataElement>

<DataElement DataId="312" Name="MapAsStroke" isLocal="true">

<requirements>

<requirement rId="0">104</requirement>

</requirements>

</DataElement>

<DataElement DataId="313" Name="Destination" isLocal="false">

<requirements>

<requirement rId="0">117</requirement>

</requirements>

</DataElement>

<DataElement DataId="314" Name="ThrottleAngle" isLocal="false">

<requirements>

<requirement rId="0">103</requirement>

</requirements>

</DataElement>

<DataElement DataId="315" Name="EngineSpeed" isLocal="false">

<requirements>

<requirement rId="0">114</requirement>

</requirements>

</DataElement>

<DataElement DataId="316" Name="EngineTemp" isLocal="false">

<requirements>

<requirement rId="0">100</requirement>

</requirements>

</DataElement>

<DataElement DataId="317" Name="Acceleration" isLocal="false">

<requirements>

<requirement rId="0">106</requirement>
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</requirements>

</DataElement>

<DataElement DataId="318" Name="AverageWheelSpeed" isLocal="false">

<requirements>

<requirement rId="0">79</requirement>

</requirements>

</DataElement>

<DataElement DataId="319" Name="SteeringAngle" isLocal="false">

<requirements>

<requirement rId="0">83</requirement>

</requirements>

</DataElement>

<DataElement DataId="320" Name="ClockTime" isLocal="false">

<requirements>

<requirement rId="0">80</requirement>

</requirements>

</DataElement>

<DataElement DataId="321" Name="TurnInfoSound" isLocal="true">

<requirements>

<requirement rId="0">94</requirement>

</requirements>

</DataElement>

<DataElement DataId="322" Name="TurnDirection" isLocal="false">

<requirements>

<requirement rId="0">89</requirement>

</requirements>

</DataElement>

<DataElement DataId="323" Name="DisplayMap" isLocal="false">

<requirements>

<requirement rId="0">86</requirement>

</requirements>

</DataElement>

<DataElement DataId="324" Name="MapDVD" isLocal="false">

<requirements>

<requirement rId="0">95</requirement>

</requirements>

</DataElement>

<DataElement DataId="325" Name="GPSPosition" isLocal="false">

<requirements>

<requirement rId="0">95</requirement>

</requirements>

</DataElement>

<Adapter AdapterId="100" Name="ConvertWheelSpeed">
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<requirements>

<requirement rId="0">235</requirement>

<requirement rId="1">50</requirement>

</requirements>

<InputDataElement DataId="318"/>

<OutputDataElement DataId="301"/>

</Adapter>

<Adapter AdapterId="101" Name="YawGenerator">

<requirements>

<requirement rId="0">200</requirement>

<requirement rId="1">60</requirement>

</requirements>

<InputDataElement DataId="319"/>

<OutputDataElement DataId="300"/>

</Adapter>

<Adapter AdapterId="102" Name="SpeedIntegrator2">

<requirements>

<requirement rId="0">190</requirement>

<requirement rId="1">40</requirement>

</requirements>

<InputDataElement DataId="314"/>

<OutputDataElement DataId="301"/>

</Adapter>

<Adapter AdapterId="103" Name="SpeedIntegrator1">

<requirements>

<requirement rId="0">400</requirement>

<requirement rId="1">200</requirement>

</requirements>

<InputDataElement DataId="317"/>

<OutputDataElement DataId="301"/>

</Adapter>

<Adapter AdapterId="104" Name="DirectionIntegrator">

<requirements>

<requirement rId="0">280</requirement>

<requirement rId="1">70</requirement>

</requirements>

<InputDataElement DataId="300"/>

<OutputDataElement DataId="302"/>

</Adapter>

<Adapter AdapterId="109" Name="RenderMap">

<requirements>

<requirement rId="0">2000</requirement>

<requirement rId="1">200</requirement>

</requirements>

<InputDataElement DataId="303"/>
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<OutputDataElement DataId="311"/>

</Adapter>

<Adapter AdapterId="110" Name="RenderMap2">

<requirements>

<requirement rId="0">600</requirement>

<requirement rId="1">200</requirement>

</requirements>

<InputDataElement DataId="303"/>

<OutputDataElement DataId="312"/>

</Adapter>

<Adapter AdapterId="111" Name="PathPlanner">

<requirements>

<requirement rId="0">2000</requirement>

<requirement rId="1">700</requirement>

</requirements>

<InputDataElement DataId="304"/>

<InputDataElement DataId="313"/>

<InputDataElement DataId="303"/>

<OutputDataElement DataId="306"/>

</Adapter>

<Adapter AdapterId="112" Name="LocationSentry">

<requirements>

<requirement rId="0">200</requirement>

<requirement rId="1">20</requirement>

</requirements>

<InputDataElement DataId="304"/>

<OutputDataElement DataId="308"/>

</Adapter>

<Adapter AdapterId="113" Name="TurnInfoGenerator1">

<requirements>

<requirement rId="0">2000</requirement>

<requirement rId="1">150</requirement>

</requirements>

<InputDataElement DataId="304"/>

<InputDataElement DataId="306"/>

<OutputDataElement DataId="307"/>

</Adapter>

<Adapter AdapterId="114" Name="TurnInfoGenerator2">

<requirements>

<requirement rId="0">2200</requirement>

<requirement rId="1">180</requirement>

</requirements>

<InputDataElement DataId="304"/>

<InputDataElement DataId="306"/>
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<OutputDataElement DataId="307"/>

</Adapter>

<Adapter AdapterId="115" Name="TurnInfoGenerator3">

<requirements>

<requirement rId="0">1800</requirement>

<requirement rId="1">400</requirement>

</requirements>

<InputDataElement DataId="304"/>

<InputDataElement DataId="306"/>

<OutputDataElement DataId="307"/>

</Adapter>

<Adapter AdapterId="116" Name="TurnInfoGenerator4">

<requirements>

<requirement rId="0">2300</requirement>

<requirement rId="1">500</requirement>

</requirements>

<InputDataElement DataId="304"/>

<InputDataElement DataId="306"/>

<OutputDataElement DataId="307"/>

</Adapter>

<Adapter AdapterId="117" Name="TurnInfoConverter">

<requirements>

<requirement rId="0">500</requirement>

<requirement rId="1">100</requirement>

</requirements>

<InputDataElement DataId="307"/>

<OutputDataElement DataId="309"/>

</Adapter>

<Adapter AdapterId="118" Name="SpeechSynthesis">

<requirements>

<requirement rId="0">500</requirement>

<requirement rId="1">900</requirement>

</requirements>

<InputDataElement DataId="309"/>

<OutputDataElement DataId="310"/>

</Adapter>

<Adapter AdapterId="119" Name="SimpleSpeechSynthesis">

<requirements>

<requirement rId="0">1200</requirement>

<requirement rId="1">800</requirement>

</requirements>

<InputDataElement DataId="307"/>

<OutputDataElement DataId="310"/>

</Adapter>
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<Adapter AdapterId="120" Name="TurnInfoConverter2">

<requirements>

<requirement rId="0">1400</requirement>

<requirement rId="1">400</requirement>

</requirements>

<InputDataElement DataId="307"/>

<OutputDataElement DataId="310"/>

</Adapter>

<Adapter AdapterId="121" Name="MapDataServer">

<requirements>

<requirement rId="0">4000</requirement>

<requirement rId="1">2000</requirement>

</requirements>

<InputDataElement DataId="308"/>

<InputDataElement DataId="324"/>

<OutputDataElement DataId="303"/>

</Adapter>

<Hardware>

<ProcessingElement Id="1" Name="EngineControlUnit">

<Sensor sensorId="0"/>

<Sensor sensorId="1"/>

<Sensor sensorId="2"/>

<Sensor sensorId="3"/>

<Sensor sensorId="4"/>

<Sensor sensorId="5"/>

<Sensor sensorId="6"/>

<resources>

<resource rId="0">7000</resource>

<resource rId="1">1100</resource>

</resources>

</ProcessingElement>

<ProcessingElement Id="2" Name="UserInterface">

<Actuator actuatorId="10"/>

<Actuator actuatorId="11"/>

<Actuator actuatorId="12"/>

<Sensor sensorId="7"/>

<resources>

<resource rId="0">3000</resource>

<resource rId="1">1200</resource>

</resources>

</ProcessingElement>

<ProcessingElement Id="3" Name="MapServer">

<Sensor sensorId="8"/>

<resources>
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<resource rId="0">7000</resource>

<resource rId="1">2500</resource>

</resources>

</ProcessingElement>

<Network netId="0">

<resources>

<resource rId="0">275</resource>

</resources>

</Network>

</Hardware>

<Feature FeatureId="105" Name="SimpleDeadReckoner"

FeatureClass="502" Utility="68">

<requirements>

<requirement rId="0">120</requirement>

<requirement rId="1">40</requirement>

</requirements>

<InputDataElement DataId="301"/>

<InputDataElement DataId="302"/>

<OutputDataElement DataId="304"/>

</Feature>

<Feature FeatureId="106" Name="GoodDeadReckoner"

FeatureClass="502" Utility="82">

<requirements>

<requirement rId="0">250</requirement>

<requirement rId="1">80</requirement>

</requirements>

<InputDataElement DataId="301"/>

<InputDataElement DataId="302"/>

<OutputDataElement DataId="304"/>

<OutputDataElement DataId="305"/>

</Feature>

<Feature FeatureId="107" Name="BetterDeadReckoner"

FeatureClass="502" Utility="91">

<requirements>

<requirement rId="0">1250</requirement>

<requirement rId="1">120</requirement>

</requirements>

<InputDataElement DataId="301"/>

<InputDataElement DataId="302"/>

<OutputDataElement DataId="304"/>

<OutputDataElement DataId="305"/>

</Feature>

<Feature FeatureId="108" Name="BestDeadReckoner"

FeatureClass="502" Utility="96">
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<requirements>

<requirement rId="0">2200</requirement>

<requirement rId="1">800</requirement>

</requirements>

<InputDataElement DataId="301"/>

<InputDataElement DataId="302"/>

<InputDataElement DataId="303"/>

<OutputDataElement DataId="304"/>

<OutputDataElement DataId="305"/>

</Feature>

<Feature FeatureId="199" Name="GPSNullReckoner"

FeatureClass="502" Utility="100">

<requirements>

<requirement rId="0">0</requirement>

<requirement rId="1">0</requirement>

</requirements>

<InputDataElement DataId="325"/>

<OutputDataElement DataId="304"/>

<OutputDataElement DataId="305"/>

</Feature>

<Feature FeatureId="200" Name="Turn1"

FeatureClass="500" Utility="12">

<requirements>

<requirement rId="0">200</requirement>

<requirement rId="1">10</requirement>

</requirements>

<InputDataElement DataId="307"/>

<OutputDataElement DataId="322"/>

</Feature>

<Feature FeatureId="201" Name="Turn2"

FeatureClass="500" Utility="19">

<requirements>

<requirement rId="0">400</requirement>

<requirement rId="1">40</requirement>

</requirements>

<InputDataElement DataId="310"/>

<OutputDataElement DataId="321"/>

</Feature>

<Feature FeatureId="203" Name="Map1"

FeatureClass="501" Utility="60">

<requirements>

<requirement rId="0">1200</requirement>

<requirement rId="1">100</requirement>

</requirements>
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<InputDataElement DataId="311"/>

<InputDataElement DataId="304"/>

<OutputDataElement DataId="323"/>

</Feature>

<Feature FeatureId="204" Name="Map2"

FeatureClass="501" Utility="81">

<requirements>

<requirement rId="0">1400</requirement>

<requirement rId="1">120</requirement>

</requirements>

<InputDataElement DataId="311"/>

<InputDataElement DataId="304"/>

<OutputDataElement DataId="323"/>

</Feature>

<Feature FeatureId="205" Name="Map3"

FeatureClass="501" Utility="95">

<requirements>

<requirement rId="0">1800</requirement>

<requirement rId="1">140</requirement>

</requirements>

<InputDataElement DataId="311"/>

<InputDataElement DataId="304"/>

<InputDataElement DataId="306"/>

<OutputDataElement DataId="323"/>

</Feature>

<Feature FeatureId="206" Name="Map4"

FeatureClass="501" Utility="100">

<requirements>

<requirement rId="0">2400</requirement>

<requirement rId="1">210</requirement>

</requirements>

<InputDataElement DataId="311"/>

<InputDataElement DataId="304"/>

<InputDataElement DataId="305"/>

<InputDataElement DataId="306"/>

<OutputDataElement DataId="323"/>

</Feature>

<Feature FeatureId="207" Name="Map5"

FeatureClass="501" Utility="47">

<requirements>

<requirement rId="0">1300</requirement>

<requirement rId="1">80</requirement>

</requirements>

<InputDataElement DataId="312"/>
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<InputDataElement DataId="304"/>

<OutputDataElement DataId="323"/>

</Feature>

<Feature FeatureId="208" Name="Map6"

FeatureClass="501" Utility="71">

<requirements>

<requirement rId="0">1500</requirement>

<requirement rId="1">90</requirement>

</requirements>

<InputDataElement DataId="312"/>

<InputDataElement DataId="304"/>

<OutputDataElement DataId="323"/>

</Feature>

<Feature FeatureId="209" Name="Map7"

FeatureClass="501" Utility="89">

<requirements>

<requirement rId="0">1900</requirement>

<requirement rId="1">100</requirement>

</requirements>

<InputDataElement DataId="312"/>

<InputDataElement DataId="304"/>

<InputDataElement DataId="306"/>

<OutputDataElement DataId="323"/>

</Feature>

<Feature FeatureId="210" Name="Map8"

FeatureClass="501" Utility="98">

<requirements>

<requirement rId="0">2300</requirement>

<requirement rId="1">200</requirement>

</requirements>

<InputDataElement DataId="312"/>

<InputDataElement DataId="304"/>

<InputDataElement DataId="305"/>

<InputDataElement DataId="306"/>

<OutputDataElement DataId="323"/>

</Feature>

<FeatureClass ClassId="500" isCritical="false"/>

<FeatureClass ClassId="501" isCritical="true"/>

<FeatureClass ClassId="502" isCritical="false"/>

</systemDescription>
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Appendix C

ASCII Chart

Because every technical book should have one

Hex 0 1 2 3 4 5 6 7
Dec 0+ 16+ 32+ 48+ 64+ 80+ 96+ 112+

0 0 NUL DLE SPACE 0 @ P ‘ p
1 1 SOH DC1 ! 1 A Q a q
2 2 STX DC2 ” 2 B R b r
3 3 ETX DC3 # 3 C S c s
4 4 EOT DC4 $ 4 D T d t
5 5 ENQ NAK % 5 E U e u
6 6 ACK SYN & 6 F V f v
7 7 BEL ETB ’ 7 G W g w
8 8 BS CAN ( 8 H X h x
9 9 HT EM ) 9 I Y i y
A 10 LF SUB * : J Z j z
B 11 VT ESC + ; K [ k {
C 12 FF FS , < L \ l |
D 13 CR GS - = M ] m }
E 14 SO RS . > N ˆ n ˜
F 15 SI US / ? O p
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