
Better Robustness Testing for Autonomy Systems

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Milda Zizyte

B.S., Computer Engineering, University of Washington
B.S., Mathematics, University of Washington

M.S., Electrical and Computer Engineering, Carnegie
Mellon University

Carnegie Mellon University
Pittsburgh, PA

May 2020

c©Milda Zizyte 2020

All Rights Reserved

Abstract
Successfully testing autonomy systems is important to decrease the likelihood

that these systems will cause damage to people, themselves, or the environment.
Historically, robustness testing has been successful at finding failures in traditional
system software. Robustness testing uses a chosen test value input generation tech-
nique to exercise the system under test with potentially exceptional inputs and eval-
uate how the system performs. However, assessing coverage for a given input gen-
eration technique, especially in black box testing, is tricky. Past work has justified
new input generation techniques on the basis that they find a non-zero number of
failures, or find more failures than other methods. Simply measuring the efficacy of
these techniques in this way does not consider the complexity or uniqueness of these
failures. No strongly justified metrics of comparison or systematic ways to combine
test value input generation techniques have been introduced.

In this dissertation, we explore two main robustness testing input generation
techniques: fuzzing and dictionary-based testing. These techniques represent two
different ways of sampling the possible input space for a given parameter. Fuzzing
can theoretically generate any value, but may generate wasteful test cases due to
the size of the sample space. Conversely, dictionary-based testing may closer match
the distribution of failure-triggering inputs, but is restricted in scope by the pre-
determined values in the dictionary. By introducing metrics to compare these tech-
niques, we can highlight how these tradeoffs manifest on actual systems.

To perform this comparison, we have created an approach to test autonomy sys-
tems and apply both test input generation techniques to an assortment of systems.
We introduce the comparison metrics of efficiency and effectiveness, and show that
both test methods have areas of strength, weakness, and similar performance. By
delving deeper into the reason for these differences and similarities, we justify com-
bining the test input generation techniques in a hybridized way. We propose various
hybrid testing methods and evaluate them according to our metrics of comparison.

We find that dictionary-based testing, followed by fuzzing, performs the best ac-
cording to our metrics. We show that this happens because of a path dependency in
testing, that is, deeper bugs cannot be found until fragile fields are eliminated from
testing. We discuss how both of our metrics were necessary to reach this insight. We
also include general insights from testing autonomy systems, such as low dimen-
sionality of failure-triggering inputs. Our recommendations of testing frameworks,
test input generation techniques, test case selection strategies for a hybrid testing
method, and metrics of evaluation can be used to test robotics software effectively
and efficiently in the future, which is a step toward safer autonomy systems.

iii

iv

Acknowledgments
This work would not have been completed without the help and support of many

people. I would like to thank Phil Koopman, my advisor, for providing me with
many opportunities for growth. Thanks also goes to my dissertation committee,
namely, Lujo Bauer, Claire Le Goues, and Dan Siewiorek, for their guidance. Addi-
tional thanks to Nathan Snizaski, who was always available for help navigating the
specifics of the degree requirements.

Some would say that the true Ph.D. treasure is the friends gained along the
way. Special thanks to Henry Baba-Weiss, Casidhe Hutchison, and Thom Popovici.
Thank you to Henry for maintaining a strong friendship over all these years and
2,500 miles of distance. Thank you to Cas for offering strong professional and emo-
tional support since the first day of graduate school. And, thank you to Thom for all
of the beer and concert breaks, and for always being a good listener. Further thanks
goes to everyone else I met in graduate school, whether in the shared office space
(John Filleau, Aaron Kane, Peter Klemperer, Anuva Kulkarni, Joe Melber, Malcolm
Taylor, Richard Veras, and Zhipeng Zhao); as the biggest guys in the gym (Eric
Gottlieb, Max Li, Zach McDargh, Mary Story, and Erik Trainer); or through various
groups and activities (Ben Cowley, Kirstin Early, Susan Grunewald, Harlin Lee, Erin
McCormick, Vince Monardo, Ben Niewenhuis, Rony Patel, and Nicole Rafidi).

Thanks also goes out to the great team at the National Robotics Engineering
Center (NREC). Thanks again to Cas Hutchison for her help, and to Bill Drozd, Dave
Guttendorf, Anne Harris, Deby Katz, Pat Lanigan, Adi Nemlakar, Zach Pezzementi,
Eric Sample, Matt Schnur, Steve Stawarz, Trenton Tabor, Angela Wagner, Mike
Wagner, and Mollie Wild. The knowledge and opportunities I gained at NREC were
truly valuable.

Finally, I would like to acknowledge the sponsorships and grants that enabled
my research. This dissertation was written with funding from the Robustness Inside
Out Testing (RIOT) project. NAVAIR Public Release 2020-301. Distribution State-
ment A – Approved for public release; distribution is unlimited. RIOT is funded
by the Test Resource Management Center (TRMC) and Test Evaluation/Science &
Technology (T&E/S&T) Program and/or the U.S. Army Contracting Command Or-
lando (ACC-ORL-OPB) under contract W900KK-16-C-0006. The National Sci-
ence Foundation Graduate Research Fellowship supported me for the first half of
my degree. This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship Program under Grant No. DGE-125252.
Finally, some work was done under the Automated Stress Testing for Autonomy
Architectures (ASTAA) project. ASTAA was supported by the Test Resource Man-
agement Center (TRMC) Test and Evaluation/Science & Technology (T&E/S&T)
Program through the U.S. Army Program Executive Office for Simulation, Training
and Instrumentation (PEO STRI) under Contract No. W900KK-11-C-0025, “Stress
Testing for Autonomy Architectures (STAA)”.

v

vi

Contents

1 Introduction 1
1.1 Problem and scope . 2

1.1.1 Systems under test . 3
1.1.2 Testing framework and input selection 4
1.1.3 Modes of comparison . 5
1.1.4 Assumptions . 5

1.2 Summary of terms . 6
1.3 Overview of approach . 7
1.4 Contributions . 8

2 Background 11
2.1 Software testing . 11
2.2 Black box testing . 12
2.3 Robustness and input parameter stress testing 13

2.3.1 Fuzz testing and variations . 13
2.3.2 Dictionary-based testing . 14
2.3.3 Combination testing . 14
2.3.4 Testing interfaces . 15
2.3.5 Other approaches . 15

2.4 Fault classification . 16
2.5 Test Coverage . 16
2.6 Testing comparison and evaluation techniques 18

2.6.1 Software reliability . 19
2.7 Test input reduction . 19
2.8 Cause versus symptom of bugs . 20
2.9 Hybridized testing techniques . 20
2.10 Autonomy Systems . 21

2.10.1 Autonomy system safety . 21
2.10.2 Testing autonomy systems . 21

2.11 Summary . 22

3 Framework for Testing 23
3.1 Challenges and motivation . 23
3.2 Our Testing Architecture . 27

vii

3.2.1 Black-box testing . 28
3.2.2 Testing tool procedure . 28

3.3 Input Generation . 31
3.3.1 Dictionary Testing . 31
3.3.2 Fuzz Testing . 32
3.3.3 Other input methods . 33

3.4 ROS-based systems . 34
3.4.1 Overview or ROS architecture . 35
3.4.2 Simulation and Gazebo . 36

3.5 Systems under test . 37
3.5.1 Fetch and Freight . 37
3.5.2 Ardupilot . 38
3.5.3 Turtlebot . 39
3.5.4 Other systems . 40

3.6 Invariants . 40
3.7 Framework Scope and Summary . 41

3.7.1 Simplifications made in baseline testing 41
3.7.2 Conclusion . 43

4 Metrics of Analysis and Procedure 45
4.1 Metrics of comparison . 45

4.1.1 Efficiency . 46
4.1.2 Effectiveness . 47
4.1.3 Efficiency and Effectiveness as complementary methods 50
4.1.4 Advanced applications . 51

4.2 Testing experiment procedure . 51
4.3 Application of metrics . 52
4.4 Conclusion . 53

5 Comparison of Test Input Generation 55
5.1 Experimental setup details . 55
5.2 Results . 57

5.2.1 Efficiency and use case scenario effectiveness 57
5.2.2 Invariant Effectiveness . 59
5.2.3 Diagnosis and field effectiveness . 61
5.2.4 Discussion of exploratory results . 62

5.3 Follow-up: Input value efficiency . 62
5.3.1 Procedure . 62
5.3.2 Bugs that require an input that can be described as a class 64
5.3.3 Bugs that require an input that can be described as an edge case 69
5.3.4 Bugs that can be triggered by a small set of inputs 72
5.3.5 Bugs that require a combination of inputs from the above categories . . . 72
5.3.6 Takeaway from input value set analysis 72

5.4 Discussion . 73

viii

6 Hybrid models 75
6.1 Research questions . 75
6.2 Experimental setup . 76
6.3 Cumulative model . 79

6.3.1 Discussion of budget . 82
6.3.2 Cumulative average model and large campaign analysis 84

6.4 50/50 random hybrid strategy . 84
6.5 Weighted random hybrid strategy . 88
6.6 Fuzz-first and dictionary-first strategies . 90

6.6.1 Why dictionary-first is better . 93
6.6.2 Dictionary-first takeaway . 99

6.7 Other methods . 99
6.8 Discussion . 100

7 Additional test input generation methods 101
7.1 Guiding Questions . 101
7.2 Nominal Input Replacement Percentage . 102
7.3 Smaller dictionary size . 104
7.4 Nominal input mutation . 106

7.4.1 Mutating strings . 107
7.5 Mutating dictionary values . 107
7.6 Semantically-specialized dictionaries . 108

7.6.1 Discrete values . 108
7.6.2 Robotics Physics Values . 109
7.6.3 Strings . 109

7.7 Exploitation versus Exploration in a hybrid method 110
7.7.1 ε-greedy approach . 111
7.7.2 More approaches . 111

7.8 Conclusions . 111

8 Lessons Learned and Recommendations 113
8.1 General recommendations for testing autonomy systems 113

8.1.1 Actual testing cost and optimizations 116
8.2 General Recommendations for having testable autonomy systems 119
8.3 General recommendations for writing robust autonomy systems 121

9 Conclusion 123
9.1 Summary . 123
9.2 Research contributions . 124

9.2.1 An approach to metrics for comparing robustness testing techniques . . . 124
9.2.2 Robustness testing results for three open source autonomy systems using

dictionary-based testing, fuzzing and certain variations 124
9.2.3 A hybrid testing technique for each of the three open source autonomy

systems, shown to outperform each of the basic testing methods 125

ix

9.2.4 A recommendation of heuristics for hybrid testing techniques and a list
of lessons learned to inform testing autonomy systems in the future . . . 125

9.3 Future work . 126

Appendices 129

A Effectiveness tables 131

B Hybrid strategy performance by scenario 135

C Replacement percentage efficiency 143

Bibliography 149

x

List of Figures

1.1 Traditional software robustness testing approach 3
1.2 Changes to approach for autonomy systems . 7

3.1 A simplified architecture of the ASTAA system [59] 27
3.2 Our testing procedure . 29
3.3 ROS communication example with Pose message 35

4.1 The relationship between effectiveness, overlap, and exclusiveness for two test
methods, M1 and M2. In this diagram, M1 has effectiveness 6 and exclusiveness
3, M2 has effectiveness 7 and exclusiveness 4, and the overlap between M1 and
M2 is 3. 50

5.1 Efficiency comparison for fuzz and dictionary-based input selection. 58
5.2 Efficiency comparison for fuzz and dictionary-based input selection, broken down

by invariant type. 60
5.3 Input set comparison for max velocity scaling factor 65
5.4 Input set comparison for twist.linear.x 67
5.5 Input set comparison for local.pose.orientation.z 70

6.1 Cumulative graph for Ardu, with iterative failure-triggering field exclusion 81
6.2 Cumulative graph for Fetch, with iterative failure-triggering field exclusion . . . 82
6.3 Cumulative graph for Turtlebot, with iterative failure-triggering field exclusion . 83
6.4 Cumulative graph for Ardu with 50/50 random hybrid strategy 85
6.5 Cumulative graph for Fetch with 50/50 random hybrid strategy 86
6.6 Cumulative graph for Turtlebot with 50/50 random hybrid strategy 87
6.7 Weighted random strategy for Ardu (the first number is the percentage proba-

bility of selecting a dictionary test case, that is, 30/70 means a 30% chance of
dictionary vs. a 70% chance of fuzzing) . 88

6.8 Weighted random strategy for Fetch. 89
6.9 Weighted random strategy for Turtlebot . 89
6.10 Comparison of fuzz-first and dictionary-first strategies for Ardu 90
6.11 Comparison of fuzz-first and dictionary-first strategies for Fetch 91
6.12 Comparison of fuzz-first and dictionary-first strategies for Turtle 92
6.13 Comparison of dictionary-first and fuzz-first strategies for the nav goal scenario

(Turtlebot system) . 93

xi

6.14 Comparison of dictionary-first and fuzz-first strategies for the nav scan scenario
(Turtlebot system) . 94

6.15 Comparison of dictionary-first and fuzz-first strategies for the teleop vel sce-
nario (Turtlebot system) . 95

6.16 Comparison of dictionary-first and fuzz-first strategies for the setpoint raw sce-
nario (Ardu system) . 97

6.17 Comparison of dictionary-first and fuzz-first strategies for the wave scenario
(Fetch system) . 98

6.18 Comparison of additional hybrid methods on the Fetch system 100

7.1 Efficiency comparison for replacement percentage using dictionary-based testing
on the Ardu system. 103

7.2 Efficiency comparison for fuzz, dictionary-based, and smaller dictionary. 105
7.3 Definition of the mavinterface/MISetMode message 108

8.1 Channel rerouting instrumentation needed for a true interceptor 114

B.1 Comparison of dictionary-first and fuzz-first strategies for the cmd vel scenario
(Ardu system) . 136

B.2 Comparison of dictionary-first and fuzz-first strategies for the fence mission
scenario (Ardu system) . 137

B.3 Comparison of dictionary-first and fuzz-first strategies for the fence vel scenario
(Ardu system) . 138

B.4 Comparison of dictionary-first and fuzz-first strategies for the modes scenario
(Ardu system) . 139

B.5 Comparison of dictionary-first and fuzz-first strategies for the pos then accel
scenario (Ardu system) . 140

B.6 Comparison of dictionary-first and fuzz-first strategies for the setpoint pos sce-
nario (Ardu system) . 141

B.7 Comparison of dictionary-first and fuzz-first strategies for the disco scenario
(Fetch system) . 142

C.1 Efficiency comparison for replacement percentage using dictionary-based testing
on the Ardu system. 144

C.2 Efficiency comparison for replacement percentage using dictionary-based testing
on the Fetch system. 145

C.3 Efficiency comparison for replacement percentage using fuzz-based testing on
the Fetch system. 146

C.4 Efficiency comparison for replacement percentage using dictionary-based testing
on the Turtlebot system. 147

C.5 Efficiency comparison for replacement percentage using fuzz-based testing on
the Turtlebot system. 148

xii

List of Tables

3.1 Summary of test input generation methods . 34

5.1 Number of failure-triggering fields per scenario, by test method 61

6.1 Field effectiveness of test methods, before and after iterated exclusion 80
6.2 Average field effectiveness and number of tests to reach effectiveness plateau . . 80

A.1 Fault-triggering fields per scenario, by test method, for the Ardu system 132
A.2 Fault-triggering fields per scenario, by test method, for the Fetch system 133
A.3 Fault-triggering fields per scenario, by test method, for the Turtlebot system . . . 133

xiii

xiv

Chapter 1

Introduction

Effectively testing autonomy software is important to decrease the likelihood that these systems

will cause damage to people, themselves, or the environment when the systems are released. A

software fault, or a bug, is a section of code that, when executed, can result in erroneous behav-

ior [96]. Robustness testing exercises systems using unexpected inputs to uncover some software

faults, and has historically been successful at finding some software faults in traditional software

systems [72]. While functional testing checks whether the implementation of software conforms

to its promised requirements, robustness testing is mostly concerned with finding whether the

software exhibits unexpected behavior in general. In this dissertation, we introduce some chal-

lenges to robustness testing in general, and discuss how these challenges are made even more

difficult while testing autonomy systems. These challenges lead to several research questions,

which motivate the contributions for this dissertation.

For even moderately-sized software projects, developers cannot guarantee bug-free code [15].

A methodical software development process can help reduce bug creation, but developers also

rely on testing to validate some degree of functionality and robustness in their products. However,

a long testing process in the development cycle limits profitability because it delays a product

going to market [90]. This is why project managers impose testing budgets and why testers seek

efficient testing techniques, i.e. those that uncover the most high-priority faults in a fixed amount

1

of time. Put otherwise, tests that do not find faults are costly to the development cycle, and

undiscovered faults are costly to the market success of the product. Even safety-critical systems,

which have a high development budget, benefit from efficient testing. A testing approach that

can provide efficient fault coverage provides a degree of assurance that the system is less likely

to malfunction.

The inherent problem with robustness testing is that, even with small sets of input parame-

ters, it is impossible to exhaustively test the input space. The success of a test method is often

measured by the number of bugs it has found, but because it is impossible to fully know the

number of bugs that the test method did not find, this measure is mostly valuable relative to other

test methods. By comparing multiple input selection techniques, and explaining the differences

and similarities in the bugs they find, we form a better approximation of how well each input

selection technique performs. This can be used as a metric of relative bug coverage for each

test method. Furthermore, a deeper understanding of why the test methods perform differently

can inform a hybrid test method that outperforms either method. To do these comparisons and

evaluate the strengths of proposed hybrid methods, we define metrics of comparison that reflect

the goals of a software team testing effort to find as many unique bugs in a system as possible

for a given test budget.

1.1 Problem and scope
This dissertation addresses the problem of making robustness testing recommendations for

autonomy systems. The research questions are:

1. What are useful metrics for comparing robustness testing techniques?

2. What are the tradeoffs between using fuzz testing and dictionary-based testing on auton-

omy systems, as evaluated by these metrics?

3. What modifications to the testing techniques and testing parameters are relevant to the

autonomy systems under test?

2

Figure 1.1: Traditional software robustness testing approach

4. How can we combine testing approaches into a portfolio of tests to achieve better testing

outcomes than using any single testing approach alone?

5. What general recommendations can be made for testing and writing autonomy systems

based on our testing results?

1.1.1 Systems under test

Traditional software robustness testing provides unexpected inputs to a system under test,

usually by calling functions in the system’s interface with test values as the parameters. This

traditional approach therefore usually deals with APIs, where a test case is a single function

call with a limited number of parameters (see fig. 1.1). The result of a test depends on whether

the function call crashes or hangs, or the system has a catastrophic failure. This application

space of robustness testing already has several challenges, as stated above and in Chapter 2.

Furthermore, when the software in question does not match the simple model of a function call,

testing becomes even more challenging.

3

We focus on autonomy systems, due to the increasing focus on robotic safety, and because

the large input space, temporal requirements, and cyber-physical limitations pose novel questions

for testing research [54]. We note that even systems that are not formally classified as “safety

critical” have safety requirements, such as speed limits or prevention of self-collision, because

these systems exist in the physical world. In this dissertation, our testing framework is primarily

applied to three Robot Operating System (ROS)-based autonomy systems in simulation. While

we do not claim that our robustness testing results will scale exactly to other systems, the goal

is to demonstrate different testing technique outcomes and how they can be used in conjunction

with each other for a better overall test campaign. We describe the use case scenarios for the

systems under test and identify the interfaces for testing as well as safety invariant requirements

to determine if the systems exhibit bugs.

1.1.2 Testing framework and input selection

Our testing framework builds on previous work in traditional software robustness testing and

testing of autonomy systems. We delve deeper into the framework in Chapter 3, and note that,

while the previous work in autonomy systems describes the mechanics of a testing framework,

it does not perform an in-depth analysis of the test input generation methods. This dissertation

performs this analysis by applying different test generation methods to autonomy systems using

this framework and empirically evaluating them.

Justifying the selection of inputs for robustness testing given a testing budget has inherent

trade-offs in terms of input space coverage versus failure-triggering parameter coverage. Choos-

ing from too broad of a pool of inputs means that, in some cases, lots of tests will be wasted not

finding any bugs. Drawing from too narrow of a pool carries the risk of missing a bug entirely.

In both extremes, testers miss an ideal combination of tests that will uncover the most failures at

the least cost. However, because the distribution of bugs that activate in a system is unknown and

likely to differ from system to system, there is no universal optimal answer for this ideal com-

bination. By comparing input stress testing methods, this work describes how various ways of

4

achieving input space coverage translate to fault coverage for a given system. Understanding the

specific effects of input generation methods allows us to justify the use of a hybrid test strategy

that draws on the strengths of several test methods.

1.1.3 Modes of comparison

Intuitively, a testing technique is better if it finds more bugs, faster. However, simply mea-

suring the number of bugs a test method finds unfairly rewards test methods that consistently

trigger the same underlying failure, or even the same symptoms of a failure, while a test method

that can eventually trigger many unique failures is useless if it cannot do so within a given test

budget. It is therefore valuable to distinguish between different symptoms of bugs, as a crude

measure of underlying bugs. In this dissertation, we define two main metrics of comparison for

test input generation methods that encompass these two goals of testing. Because determining

whether two inputs truly trigger the same or different underlying bug is impossible in principle

in black box testing, we include a discussion on how to approximate this measurement.

We illustrate how the metrics can be used to provide insight into the utility of test input

generation methods. We also use these metrics to empirically justify the use of a hybrid testing

technique that can provide more testing utility than a single test input generation method when

applied to an autonomy system.

1.1.4 Assumptions

In this dissertation we deal with modifying an existing testing framework to expand the capa-

bilities of the robustness testing method. We apply this framework to several existing autonomy

systems under simulation. We assume that the test framework implementation is sufficiently cor-

rect (i.e. the framework successfully automates the act of setting up a robot simulation). In cases

where we have encountered limitations of this framework, we have modified it to suit our needs.

We also assume that the systems under test have valid documentation and accurate simulation as

provided. We are using the software of the systems under test as-is and have not modified any of

5

the code.

1.2 Summary of terms

The following terms are defined in detail in the subsequent chapters, but, for reference, we

provide a summary of them here:

A use case scenario is a behavior of a robotic system defined by the documentation of the

system, that can be autonomously run. For example, a robot planning and following a path

through a pre-determined set of goal points is a use case scenario.

A nominal input is an input provided to the system that, when played on the robot system,

causes the robot to perform a given use case scenario. For the path planning example above, such

an input would be the set of goal points and a start command.

A test input generation technique is a function that, given the data type of a parameter,

outputs a test value. For fuzz testing, this would be a random value of that data type, while for

dictionary-based testing, the value would be drawn from a pre-determined dictionary.

A perturbed input, or test input, is a nominal input that has been perturbed by some sort of

test input generation technique, by replacing a fraction of values in the nominal input by values

generated by the test input generation technique.

A test case is a single run of a robotic system with a perturbed input as the input.

A test campaign is a set of test cases for testing the robot. It may include testing several use

case scenarios and using several different test input generation techniques to generate perturbed

inputs.

An invariant is some property of the state of a robot that must always be true in order for

a robot to be operating safely. A speed limit is an example of a simple invariant. An invariant

violation results when this property is violated.

A test case finds a bug or triggers a failure if running the test case results in an invariant

violation.

6

Figure 1.2: Changes to approach for autonomy systems

Test campaign efficiency is the reciprocal of the expected number of tests to first failure for

a test campaign. Efficiency essentially represents the speed at which bugs are found.

Test campaign effectiveness is an approximation of the unique bugs found in a test campaign.

In Chapter 4, we discuss several different ways to measure effectiveness, for example, the number

of unique use case scenarios in which a bug is found.

1.3 Overview of approach
In this work, we explain how the properties of autonomy systems lead to the need for a mod-

ified robustness testing approach (see fig. 1.2). Contrasted with traditional robustness testing,

this method uses messages passed between components as the interface to the system, uses mes-

sage value substitution to preserve the complex state and timing requirements of an autonomy

system, and detects invariant violations to check if the system has become unsafe. Using this

testing framework, we apply existing test input generation techniques to autonomy systems, and

7

evaluate them using our defined metrics. Because these generation techniques have parameters

of their own, and leave ample room for customization, even a single generation technique may

have many variations. In this dissertation, we explore how changing these parameters affects the

efficiency and effectiveness of a test campaign. Exploring different testing parameters expands

the knowledge of what sorts of approaches may work for autonomy systems.

We show that the initial comparison between test input generation techniques highlights the

tradeoffs between dictionary-based testing and fuzzing. This motivates devising a hybrid test

strategy that results in an overall efficient and effective test campaign. We conclude with recom-

mendations for developing and testing autonomy systems based on the lessons we learned while

doing this work.

1.4 Contributions
This dissertation makes the following contributions:

1. An approach to metrics for comparing robustness testing techniques

2. Robustness testing results for three open source autonomy systems using dictionary-based

testing, fuzzing, and certain variations.

3. A hybrid testing technique for each of the three open source autonomy systems, shown to

outperform each of the basic testing methods.

4. A recommendation of heuristics for hybrid testing techniques and a list of lessons learned

to inform testing autonomy systems in the future.

The rest of this dissertation is organized to present these contributions. Chapter 2 summa-

rizes background and existing work. Chapter 3 presents our testing framework, and Chapter 4

introduces our metrics and experimental procedure. Chapter 5 performs an initial comparison

of test input generation methods. We analyze various combinations of these methods when we

empirically compare different hybrid test case selection strategies in Chapter 6. Additional in-

put generation approaches are explored in Chapter 7. Finally, Chapter 8 gives some anecdotal

8

recommendations for writing and testing autonomy systems, gleaned from our experience in this

work, and Chapter 9 concludes.

9

10

Chapter 2

Background

This chapter gives some background on software testing in general, with special focus on black-

box robustness testing. We discuss existing methods of evaluating how well testing performs,

especially in the context of coverage. We also explain how the field of autonomy system testing

has opportunities for more research, such as the work presented in this dissertation.

2.1 Software testing
The field of software testing is vast. In this dissertation, we focus on black-box testing [21]

using system input parameters. The majority of the works cited in subsequent sections of this

chapter relate to this scope. However, for context, we begin with a broad overview of software

testing.

Bertolino defines software testing as consisting of “observing a sample of executions, and

giving a verdict over them” [25]. She outlines several key achievements that fit this definition

and advance the field of software testing, including the introduction of systematic testing pro-

cesses, component-based testing, and reliability testing. She names having a uniform theory of

testing, i.e. one that “ties a statement of the goal for testing with the most effective technique,

or combination of techniques, to adopt,” as a “longstanding dream of software engineering re-

search.”

11

Further overviews of branches of the field of testing are given in Ammann and Offutt [15],

Myers et al. [90], and Kaner et al. [63]. Namely, these books describe testing as a way to exercise

assumptions about the execution of a program. They also discuss aspects and measurements of

the testing process, such as coverage, the problem of test oracles, and the test execution process.

Distinctions are made between automated and human-created test cases, testing at different lev-

els of software abstraction, and testing for different steps of the software development process

(functional testing, acceptance testing, regression testing, usability testing). In this dissertation,

we are concerned with black box, system-level robustness testing with inputs injected at an

interface.

We contrast software testing with static program checking tools, which have been effective

at identifying defects, but do not involve dynamic execution of a program [55].

All of the sources in this section mention that testing can only show the presence of software

faults, and not prove their absence. Metrics of coverage (see Section 2.5) can help approximate

tester confidence, but this remains an inherent problem with testing, and one that this dissertation

grapples with.

2.2 Black box testing
Nidhra and Dondeti give a survey of black box and white box testing techniques [91]. In

summary, black box testing, or functional testing, “designs test cases based on the information

from the specification,” that is, with no view of the source code. Given a set of formal require-

ments of a system, black box testing can exercise the software interface to see if the requirements

hold. Conversely, white box testing “designs test cases based on the information derived from

the source code.” In white box testing, knowledge of the flow of the program can inform test

cases and their expected results. One advantage is that white box testing allows access to more

comprehensive coverage techniques. Gray box testing is a middle road between the two, using

the compiled binary of the source code as another basis for designing test cases [65]. For goals of

our testing, we may be dealing with cases where the source code is unavailable due to contracted

12

confidentiality, or trying to find cases where the implementation does not match the specification

of the system [45]. We therefore focus our dissertation on black box testing.

2.3 Robustness and input parameter stress testing
In this dissertation, we use the IEEE definition of robustness, which is “the degree to which

a system or component can function correctly in the presence of invalid inputs or stressful en-

vironmental conditions” [60]. Robustness testing sends invalid inputs to a software system or

component and observes the result. We also use the term “input parameter stress testing” to

describe the broader idea of testing using potentially unexpected or exceptional values on some

interface. In this section, we explain how to generate such unexpected values.

2.3.1 Fuzz testing and variations

Pioneering work in input parameter stress testing is fuzz testing, or fuzzing, by Miller et al.,

which generates inputs randomly, according to a uniform sampling of the space of possible in-

puts [85]. For example, to fuzz a 32-bit integer parameter, each of the 232 values is equally likely

to be selected. Fuzzing has been applied in many domains, including operating systems [86, 87],

mobile applications [77, 79], and general security applications [37, 50]. In practice, implemen-

tations of fuzz testing are not purely generational, due to the constraints of complex systems

under test [26]. All three of popular fuzzer products PeachFuzz [11], open source security fuzzer

American Fuzzy LOP [1], and Google’s OSS Fuzz [10] support features such as seed selection,

coverage criteria, special value dictionaries, and test case reduction. Several of these approaches

apply white box testing techniques in combination with fuzzing. Some of these additional fea-

tures turn these fuzzers into what this dissertation would consider hybridized approaches. To our

knowledge, however, the past work has not systematically derived and empirically evaluated the

hybridization.

Fuzz testing efficiency has been improved by constraining the input space, or by introduc-

ing statefulness [102]. Statefulness has been introduced using model-based testing, which at-

13

tempts to generate tests based on the functionality requirements of a model [38, 100]. Dalal et

al. note that models of requirements make it easier to generate test cases that wouldn’t other-

wise be created, but that the selection of model is open-ended and has a large impact on the

effectiveness of their tests, sometimes hindering automation [38]. Further work confirms these

tradeoffs [40, 105]. The SAGE project replays program traces to discover input constraints that

guide fuzzing [50].

2.3.2 Dictionary-based testing

A different approach to input generation is dictionary-based testing. Ballista was a project

to robustness test software systems, using an approach where each parameter type had a pre-set

dictionary of suspected exceptional values intended to trigger edge case behavior, such as NaNs

for floating point parameters and powers of two for integers [72]. Main takeaways from the

Ballista project are that failure-causing test cases generally have a low dimensionality (one or

two parameters are sufficient for triggering a failure), well-formed values are necessary in the

dictionary to get past any existing validity checks, and that even mature software specifically

developed to be robust has robustness vulnerabilities [70].

2.3.3 Combination testing

Dictionary-based testing can be thought of as narrowing the large input space of a function

by predicting that certain inputs can trigger boundary conditions in the code. Another way to

approach the testing problem is by systematically creating combinations of input parameters.

This is known as combination testing [52]. Work in this area involves either selecting inputs

that are far away from each other by using approaches such as antirandom testing [80], or by

generating disjoint subsets of combinations of input parameters, such as t-wise coverage. These

approaches can be used to evaluate test input coverage, but generally do not scale well to the

number of input parameters of our work.

14

2.3.4 Testing interfaces
Fuzzing, dictionary-based testing, and related methods test at the API level by calling func-

tions with various inputs and evaluating their results. Testing may also be performed at other in-

terface levels. Fault injection inserts software or hardware faults into a system under a workload

and observes how the system performs [56]. Man-in-the-middle attacks, in which a malicious

intermediate agent is placed on a channel between two nodes, are common ways to test net-

works [35]. Protocol fuzzing makes use of protocol specification to make well-structured inputs

with test values for more complex interfaces [104].

2.3.5 Other approaches
Partition testing attempts narrow the input data space, by splitting the input space into disjoint

subsets, within each of which the software is assumed to exhibit similar behavior [41, 107].

Partitions can be created in many different ways, whether by path coverage criteria, data flow

semantics of the inputs, or according to responses to program mutants. Category partition testing

outlines a process by which the requirements specification for a piece of software is used to

create a set of equivalence classes for testing [93]. Related to partition testing is boundary value

analysis, which focuses on the boundaries of the partitions [98].

Statistical software testing assigns probabilistic distributions to the input space [108]. RID-

DLE is a tool to generate random inputs that conform to a specified input grammar that was used

to robustness test Windows NT [48]. Metaheuristic techniques describe a large field of related

test input generation techniques, some of which are informed by the source code or program

binary [83].

Mutational fuzzing constrains the input space by taking a well-formed input and randomly

mutates sections of it, from bytes to whole fields in a data structure [102, 111]. There has

been previous work on selecting how to mutate the inputs [31], and can range from modifying

single bits, to bytes within a word, to adding random noise to inputs. Mutational fuzzing and

generational testing have been compared in the past by Miller et al., who note that mutational

15

fuzzing has the potential to create more meaningful test cases because it starts with well-formed

inputs, but concludes that for an initial data set that does not have a diverse set of well-formed

inputs, generational fuzzing fares better by introducing diversity into the input space [88].

2.4 Fault classification
Test case evaluation is another field of study. Ballista used the CRASH scale to evaluate

tests based on catastrophic, restart, abort, silent, and hindering failures [72]. The first three

are easily detectable using exception handling and give a notion of the robustness of a system.

Other test oracles have been proposed, and are surveyed in Barr et al. [19]. These oracles fall

in four broad categories: specified test oracles, derived test oracles, implicit test oracles, and

handling the lack of test oracles. Specified oracles can be defined using formal languages, while

derived test oracles involve usage of things such as documentation, n-version comparisons, or

mutants. Of particular interest to this dissertation are invariants, which are discussed in more

detail below (Section 2.10.1). Implicit test oracles can be the crashes and hangs detected by fuzz

or dictionary-based testing, but also involve techniques such as anomaly detection and memory

leak detection [32]. The goal of this dissertation is to provide an automated and widely adapt-

able testing tool, so we deal with oracles that detect software crashes, as well as some safety

invariants.

2.5 Test Coverage
White box testing and black box testing use code and requirements coverage, respectively,

to help assess the completeness of a testing method, with the argument that a testing method

that exercises more of the implementation or requirements will find more bugs. However, these

coverage metrics are used only to determine if the existing code or requirements are implemented

correctly, and might not reveal missing code or requirements. Efforts to identify such gaps are

referred to as negative, rather than positive, test case generation [92]. A coverage approach based

on interface input data motivates a test method that exercises enough of the input space to check

16

for safety violations that stem from an incomplete implementation. However, the large size of

the input space necessitates a more complex input selection coverage metric than “percentage of

input space tested.”

For context, white box testing, which considers the source code, typically uses branch, condi-

tion, or path coverage to assess the completeness of a test campaign. Branch coverage measures

whether all branches of a particular piece of software have been exercised, and path coverage

measures whether all paths, or sequences of branches, have been exercised. Another approach to

white box coverage is data flow coverage, which measures whether all declared uses of variables,

such as initializations, allocations, and deallocations, have been exercised [57]. Because full data

coverage is intractable, this work constraints the data coverage problem to “feasible data flow,”

or testing that exercises only reachable data definitions [44]. A subset of this work compares

and contrasts branch and data coverage and finds that, for most of their sample programs, data

coverage testing was able to uncover more errors [43]. The underlying idea behind all of these

metrics is that if all feasible logical combinations of a program are exercised, the tests are less

likely to miss bugs stemming from faulty implementation. However, branch coverage cannot

account for all possible execution paths, such as arbitrary iterations of a loop [24] or branches

that are missing from the code [81].

Black box testing does not require access to source code, and thus does not rely on knowledge

of branch or data path logic to measure completeness. Combination testing informs several

data set coverage metrics [52] (see Section 2.3.3). One approach for black box testing is to

measure requirement coverage, which means writing test cases for all documented functional

requirements. There are also gray box coverage metrics, which involve exercising branches in

the compiled binary of a piece of software [28].

More complex coverage criteria, such as MC/DC (modified condition/decision criteria) can

also be used to create partitions of testing data [113]. Chockler et al. discuss how formal verifi-

cation of software, in particular, benefits from the use of several different coverage criteria [34].

17

For our purposes, it is important not to not judge the value of a test campaign solely on these

criteria. They can be considered secondary criteria to judge if some testing goals are being met,

but the end goal of testing is to find defects as efficiently and effectively as possible.

2.6 Testing comparison and evaluation techniques
Johansson et al. compare fuzz testing, Ballista-style testing, and input parameter bit flip fault

injections for operating systems [61]. The four comparison criteria they define are error prop-

agation, error impact, implementation complexity, and experiment execution time. Using these

metrics, they find several tradeoffs between the error models in terms of severity and number

of errors found with respect to execution time, and ultimately propose a hybrid model for their

system. Winter et al. follow up on this work by refining the metrics to use relative coverage,

experiment efficiency, execution time, and implementation complexity [110]. They compare bit

flips, Ballista-style testing, fuzzing, and single-event upsets on the Windows CE kernel and de-

scribe several tradeoffs between the testing methods based on cost of testing. Their approach

creates a good starting framework for comparing testing techniques and uses both efficiency and

service coverage (similar to what we would call “service effectiveness,” as in Section 4.1.2) to

analyze the performance of the test methods. However, as we show in Chapters 5 and 6, a more

granular notion of effectiveness, such as type effectiveness, would provide deeper insight into the

tradeoffs between the test methods and allow for a possible recommendation of a hybrid metric.

Hamlet does initial work comparing partition testing to random testing, and concludes that par-

tition testing is not much better [53], while Loo et al. [75] argue that the performance of random

testing depends on the software being tested. This indicates that more comparison, especially

with dictionary-style testing in place of partition testing, is necessary.

Mayer et al. note that directed automated testing generates efficiency metrics when dynam-

ically choosing test cases, and use these metrics to compare the efficiency of directed testing

techniques [82]. Other papers compare testing techniques other than input parameter stress test-

ing [20].

18

Robustness interface testing attempts to achieve input coverage by selecting from an input

space that is suspected to trigger failures. Past work that presents techniques to automatically test

systems for robustness tend to circumvent the impossibility of precisely measuring bug coverage

by presenting the challenges of testing the system, and showing some novel bugs that were

discovered by their result [16]. Sometimes, they favorably compare their results to some other

testing method, typically fuzz testing [49, 97]. However, these papers look at the number of

failures triggered per system or component, and do not necessarily discuss the relative uniqueness

or depth of the bugs found by their method versus fuzz testing. It might even be the case that

a system would benefit from being tested using two different test input selection techniques in

combination to find different types of bugs, but if a paper is only concerned with presenting one

testing method, this potential improvement is missed.

2.6.1 Software reliability

Software reliability prediction models use existing testing data to predict the temporal distri-

bution of future errors when continuing the testing effort. These models allow project managers

to decide whether the current testing method will yield significant results over time, which is an

important consideration given finite testing budgets. While these models can give an indication

of how well a certain testing method is performing, the smoothness of the models may mask

interesting features of raw testing data or force asymptotes that do not actually exist. There have

been papers that compare the accuracy of popular software reliability models [66] and which

match attributes of testing data to the most relevant model [51, 112].

2.7 Test input reduction
Once a failure-causing test case is found, it is helpful to identify the specific parts of the

test input that is relevant to triggering the failure. Statistical debugging compares correct and

incorrect runs of a program to localize faults [74]. Delta debugging is an automated technique

for iteratively trying smaller and smaller portions of the original test input until an irreducible

19

part is found [115]. Hierarchical product set learning identifies the fields within an input that are

relevant to the bug [106].

2.8 Cause versus symptom of bugs
At its core, black-box software testing only finds bug symptoms, rather than underlying

causes. Test input reduction may help more specifically describe these symptoms, but further

analysis is needed to determine the root cause of the bug. Reversible debugging is a technique

that allows for program execution to step forward and backward to “step out” from the source

of a bug to the cause [42]. An approach by Zeller, et al. uses delta debugging to isolate code

changes that introduced a bug [114]. These approaches use white-box techniques to analyze code

and point to underlying causes of bugs. In black box testing, bug symptoms can be classified us-

ing their inputs (as above), their severity [84], and information gained from human-written bug

reports [116]. While this classification does not definitely determine a root cause, distinct classes

of bug symptoms can be indicative of distinct bug causes.

“Fuzz taming” can estimate the number of unique bugs by defining a distance function be-

tween test cases [33]. This approach requires distinguishing metrics between bugs, and, in fact,

one approach is to use the distance between minimal delta-debugged test inputs as that distinc-

tion [95].

2.9 Hybridized testing techniques
Work in bolstering input parameter stress testing usually involves adding some sort of state-

based mechanism to the testing process. For example, Cotroneo et al. create a state model

of an operating system execution and apply dictionary-based testing to every state they tra-

verse [36]. Pak et al. use symbolic execution to explore program paths before fuzzing nodes

on this path [94]. However, this approach requires engineering a more complex test harness,

while our work improves input parameter stress testing results by intelligently selecting the input

space.

20

2.10 Autonomy Systems
Autonomy systems, or robotics systems, are systems that interact with their environments

and perform some or all functions without human control [22]. This may mean that, given a map

and a goal, they plan a path, or, given camera input and an articulating arm, they compute a way

to move the arm to avoid hitting any obstacles. Autonomy systems are becoming increasingly

popular and have applications in medical, military, manufacturing, and transportation domains.

2.10.1 Autonomy system safety

Testing autonomy systems is important precisely because these systems interact with the

physical world and therefore have special safety considerations, even when they are not officially

considered “safety-critical.” There are many challenges in the field of autonomy safety [69],

including novel sets of inputs and high safety requirements.

One way to evaluate autonomy system safety is by the use of formal specification and safety

invariants. Invariants are properties of a system, defined by a formal logic, that must always be

true for the system to be safe [27, 76]. Run-time monitoring of system safety has been extended

to the use of invariants [58, 62].

2.10.2 Testing autonomy systems

Autonomy system software differs from traditional desktop software because it is distributed,

very stateful, temporal, and cyber-physical. This means that these systems interact very closely

with their environment and present challenges to test beyond traditional software system. Recent

autonomy systems amplify the testing challenge because they internally tend to pass hundreds

of messages per minute, and each message can contain complex data types such as arrays of

doubles representing laser scan data.

Work in testing autonomy systems is limited in the literature, possibly because many of these

systems are developed under proprietary licenses rather than as academic work. Open source

software presents an opportunity, and Timperley et al. analyze bug reports in the ArduPilot

21

software to gain knowledge of autonomy bugs in simulation [103]. General work about the

development of autonomy systems cites the typical software engineering methods, such as unit

testing; as well as methods more uniquely suited to cyber-physical systems, such as runtime

monitoring [39]. Exhaustive testing of any system interface is intractable, and even more so for

the message passing interface of a distributed autonomy system due to large sensor datasets and

system complexity [54].

The framework in our work builds upon the Automated Stress Testing for Autonomy Archi-

tectures (ASTAA) project [59]. This work introduced a framework for robustness testing au-

tonomy systems, based on key differences between autonomy systems and traditional software

systems. Chapter 3 describes this framework in detail, and how our implementation differs.

2.11 Summary
We have presented an overview of previous work in software testing approaches, including

test input generation, test case evaluation, and the metrics of how well various test methods per-

form. Our work builds on this body of research to develop and evaluate a black-box robustness

testing tool for autonomy systems. We use dictionary-based testing and fuzzing as our input

generation techniques. We also use invariant checking and test input reduction to evaluate and

classify our tests. Because existing metrics of comparison of test methods, and especially hy-

bridized methods, do not exactly encompass the goals of this dissertation, we introduced new

metrics that inform a more systemic way of evaluating hybrid test methods.

22

Chapter 3

Framework for Testing

In this chapter, we present a framework for testing autonomy systems. We begin with the dif-

ferences between autonomy systems and desktop software systems that necessitate a different

approach to testing than for existing software robustness testing approaches. We discuss progress

that has been made in this field, including previous work at the National Robotics Engineering

Center (NREC), and then explain how we instrumented our tool for gathering the results in this

dissertation.

3.1 Challenges and motivation
As discussed in Chapter 2, desktop software robustness testing has been studied and the

literature forms a solid basis for thinking about robustness testing frameworks and input methods.

For traditional desktop software, a robustness testing tool makes a function call to a defined API

(such as POSIX) and detects whether the result was a catastrophic system failure, a process crash,

or a process hang. However, these techniques do not directly transfer to autonomy systems.

Testing autonomy systems is challenging because they differ from traditional software systems

in several ways. In the Automated Stress Testing for Autonomy Architectures (ASTAA) project,

we identified four main differences between autonomy systems and traditional desktop software

systems that create special considerations for testing [59]:

23

• Distributed: autonomy systems are made up of components (e.g. sensors, actuators,

CPUs) that communicate with each other over a bus to share data and complete their tasks.

While traditional software systems may or may not be distributed, autonomy systems as a

whole are different because they are typically distributed by nature to accommodate all of

their components. Ideally, testing a distributed system would encapsulate the communica-

tion between nodes rather than relying on a single external API.

• Temporal: traditional software systems are typically transactional and take in an input to

produce an output. In contrast, a robotic algorithm is essentially a list of tasks to perform,

and the robot will keep doing these tasks until some termination or change of protocol

criterion is reached. A framework that tests temporal systems would need to be able to

verify robustness at all steps of the checklist, rather than simply checking the outcome.

• Stateful: behavior for a given autonomy system depends on what mode the robot is in,

which is in determined by the input the system receives. A robot’s mode transition rules

can often be described using a state chart, and the robot will behave according to different

algorithms according to the mode it is in. For example, if a robot detects an obstacle,

it might go into an obstacle avoidance mode rather than continue its previous behavior.

In contrast, many traditional systems have state that is only incidental, such as copies of

variables stored in memory. To test such behavior, the testing tool must be able to ensure

that the robot is in a non-trivial, testable mode, and ideally test the robot in a variety of

modes.

• Cyber-physical: unlike traditional software systems, which are generally devoid of feed-

back from the real world, robots are made to interact with the environment around them.

This means that they must obey timing constraints and control loops, deal with a wide

variety of input, and obey safety requirements. A tool that tests a cyber-physical system

must be cognizant of these constraints, which presents a difficulty in automating tests.

These key differences motivated three concrete questions that allowed ASTAA to define the

24

difference between testing autonomy systems and traditional software:

What is the interface to an autonomy system? Traditional software systems have an API,

where a robustness test case can be a function call to that API with certain parameters. In contrast,

autonomy systems do not expose an API in the traditional sense. The closest analogue is the

command and control interface to a robot. However, if a robot is fully autonomous, the external

interface might be as limited to the commands “start,” “stop,” “reset,” and “emergency stop.” A

more accurate model of the inputs to a robot is the sensor information that the robot receives from

the world, but simulating the real world is complicated and expensive [68, 78, 101]. Furthermore,

because a robot is a distributed system, simply passing world data to a robot will not test the

messages passed between components to a robot. Therefore, it makes sense to use the message-

passing mechanism itself as the testing interface to a robot. By injecting spurious values on

this bus, we can emulate several fault models. Namely, this method encapsulates node failure,

brownout, or malfunction, as well as channel failure and even faulty or unexpected sensor data.

Any of these issues are relevant to a robot, because if a node malfunctions for any reason, the

robot must still be able to maintain its safety properties.

How do we maintain the complexity of an autonomy system while automating testing? A

robot is distributed and stateful, and has timing requirements and message-passing assumptions.

Rather than just passing a single message as a test, an automated testing framework needs to

accommodate this complexity in order to get the robot into non-trivial states before injecting

values. One way to do this is do this by taking live runs of the system and injecting on them

using a man in the middle [29] model. Interception testing takes messages sent from Node A

to Node B in a live run, and mutates them, by either injecting new messages, modifying the

entire message, or changing just some of the fields of the message [59]. This is done according

to timing rules, such that the robot has the chance to enter a certain state before injecting values.

Unfortunately, automated interception is costly. For example, for a Robot Operating System

(ROS) system, it is necessary to emulate a star topology of all the nodes in order to intercept.

25

Therefore, some shortcuts can be taken. One approach is log replay: for nodes that do not have

control loops and do not need real-time feedback, we can take a log of some input messages to

a node or system, modify messages in the log, and replay the messages on the system, checking

for erroneous or safety property violating behavior.

How do we enforce the safety properties of an autonomy system? In traditional software,

it can be sufficient to check for system and process crashes and hangs. However, for a robot, it

is not enough that the system or node does not simply crash or hang. The system must also obey

its safety requirements, such as speed limits, at all times. To enforce this in automated testing,

we can use invariant monitoring. An invariant is a mathematical expression of some property

that must always be true during the run of a system. A safety invariant is an invariant that must

always be true in order for the robot to be safe. The outputs of the autonomy system can be

checked for invariant violations by implementing an automated checker. Invariants are defined

according to the safety requirements of a system: for example, if a robot claims a speed limit of

2 m/s, we write an invariant to check that all velocity outputs do not exceed 2 m/s. Invariants

can also be stateful or more complex. For example, a common safety invariant is that a robot

must stop within a certain time once the emergency brake has been engaged. A stateful invariant

monitor can check for the emergency brake engagement input, and then check that all velocity

outputs after the indicated time period are 0. Thus, the complex safety properties of autonomy

systems can be formally defined and monitored for within the testing framework. Any invariant

violation is logged and recorded as a safety violation.

The ASTAA architecture is presented in fig. 3.1. It implements the answers to the three

questions above to address the distributed, temporal, stateful, and cyber-physical properties of

an autonomy system. The ASTAA project had much success finding faults in autonomy systems

and provides a solid conceptual basis for our robustness testing work [59].

26

Figure 3.1: A simplified architecture of the ASTAA system [59]

3.2 Our Testing Architecture

While similar in fundamentals, the testing architecture for this dissertation builds on the

original ASTAA architecture in several ways. Our method simplifies the traditional ASTAA

approach by forgoing interception testing in favor of log replay with value substitution and by

monitoring for invariant violations offline. This significantly cuts down on the overhead of the

testing, as, for example, we do not need to emulate the communication bus for the system or

infer the states of the robot to monitor for invariant violations. We also forgo the use of protocol

buffers for instrumenting generic robotics systems in favor of working entirely with ROS for

speed and reduced implementation complexity, but our tool can be modified in the future to

support other systems. While this somewhat limits the systems we tested in this dissertation to

ROS-based ones, the prevalence of ROS-based systems and the ability for our tool to make data

assumptions when substituting on logs and analyzing results justified this choice. Finally, we

perform invariant monitoring offline, by analyzing system logs after the test has run in simulation.

This still detects safety violations, but does not add overhead to the tool itself.

27

3.2.1 Black-box testing

Our tool uses black-box testing. This means that the tool does not access the written code for

a given system, and instead tests at the interface level. Even though the systems we test in this

dissertation are open source, many of the systems we have encountered in the past have not been.

Having a black-box testing tool hence allows flexibility, such as when testing is outsourced to a

different team along with just the compiled system software. Furthermore, because the goal of

our tool is robustness testing, exposing some interface is sufficient in providing a system with

“unexpected inputs.” White box techniques are useful for ensuring that each branch of code

is exercised in testing, but do not necessarily account for missing branches made due to data

assumptions. For example, if the code branches on a comparison that breaks with NaN, but only

well-formed test values are provided to make the comparison true or false to test the branching,

white box techniques are not sufficient to find this failure. Finally, because autonomy systems are

distributed, stateful, and temporal, fully exercising every branch of code may require a complex

coordination of all of the system nodes. The complexity of this problem is beyond the scope of

this dissertation.

3.2.2 Testing tool procedure

Figure 3.2 illustrates an overview of our testing procedure. For a given system under test and

use case, our tool takes the following inputs:

• A simulated representation of the system under test. This is an environment loaded with

all the necessary software to emulate an instance of the autonomy system.

• A script to start the system up and run a use case scenario. This script initializes the system

to log any core dumps, launches the system into a defined initial state, and plays the test

input on the system. It is also responsible for shutting down the system and gathering any

log files into a pre-specified directory. We wrote all of the scripts used in this dissertation

based on the use case scenario tutorials provided in the documentation of each system.

28

Figure 3.2: Our testing procedure

• A log of inputs from a nominal run of the use case scenario under test. This is a pre-

recorded log of system messages that are inputs to various components or nodes of the

system. The test script is written to correspond to the behavior of these inputs. For ex-

ample, if the inputs contain arm articulation messages, the script should start up the arm

node(s) of the system. When re-played on the system, this nominal input does not cause

an invariant violation. This nominal input will be perturbed to perform a test case.

• Any additional configurations or constraints to testing. By default, there are no constraints

and the testing tool may perturb all fields of the nominal log. The user may choose to ex-

clude messages or fields from testing, or to specify a nominal input replacement percentage

or other rule.

• A means of selecting or generating test case inputs. For the purposes of this chapter, this

is either an exceptional value input dictionary, or a fuzzer that generates random values.

Different test case input techniques are explored in Chapter 7.

• One or more invariant checkers. An invariant checker is able to parse the system logs to

check for any violations to the rule it implements. A simple invariant checker that can be

used for most systems is one that checks for the presence of core files to detect a crash.

29

Given these inputs, the test procedure is illustrated in fig. 3.2. We describe it in detail here:

1. Replace values in the nominal input set with spurious inputs according to any constraints.

By default, we replace 20% of values, as it allows for a fairly large rate of message substi-

tution while still leaving most of the data assumptions of the system. Historically, ASTAA

had success finding bugs using this percentage. We leave time and duration fields un-

touched by default. All fields of an array are replaced, up to a maximum. This creates a

test input.

2. Copy the test input and use case scenario test script to the simulator environment. We em-

ploy the Docker [3] framework to do this, which ensures a sandboxed emulated computing

environment.

3. Run the simulation script provided on the system, with the test input. The core dumps

and system logs that the script has enabled are stored in a directory on the computing

environment.

4. When the script concludes playing the input log, copy any system logs to a working ma-

chine for analysis. Invariant checkers are run at this point, and any bugs that are found can

be diagnosed.

Because nominal input values are pseudorandomly replaced according to the replacement

rules, by repeating the process with different random selections, we can generate a campaign of

many test cases for a use case scenario. In the rest of this dissertation, when we write that we

“ran N test cases,” N refers to the number of different random test cases generated according to

this method.

Because our testing framework takes a nominal run of the system and modifies the values

by replacing them with test values, we have to define some rules for replacement. It is possible

to replace all fields and messages with the test values, but this might lead to a robot that never

enters a meaningful state because it shuts down or does safety mitigation in the presence of over-

whelming exceptional input. Therefore, we replace only some of the messages of the system.

30

By default, we randomly replace 20% of the fields with test values. Chapter 7 explores different

replacement paradigms to see if we can find more or deeper bugs using different replacement

percentages. Our previous work in autonomy testing also allowed us to replace messages ac-

cording to more complex rules, for example only after a robot has run for a specific amount of

time and has entered a certain non-trivial state, to test the robot’s behavior in that state. However,

this introduced an additional level of human input in testing, which hinders automation. In the

implementation described in this dissertation, the system startup scripts, which are written once

per use case scenario, ensure this initialization for the systems under test. There are no hard and

fast rules for how input should be replaced, and the technique we use comes from past experience

at NREC.

3.3 Input Generation
We describe our approaches to input generation methods here. A summary of these methods

for various input types appears below, in table 3.1.

3.3.1 Dictionary Testing

Exceptional value testing involves selecting input values from a preset dictionary of suspected

exceptional values for each parameter type. These values are selected according to developer

experience. Suspected exceptional values include values such as NaN, ±INF, ±0.0, and denor-

malized values for floating point types; and maximum and minimum values as well as powers

of two for integer types. The idea of the exceptional value dictionaries is to describe values that

might trigger edge case conditions that developers have not accounted for. This approach is a

response to the naivety of fuzz testing: searching an input space by randomly selected inputs is

probabilistically unlikely to result in selecting edge case values that might trigger these kinds of

errors. However, since these dictionaries are human-made, albeit based on years of tester and

developer experience, the risk is that they left something out. Because we do not have an ora-

cle of how many bugs actually exist in a piece of software, we do not know if the exceptional

31

value approach will simply never trigger certain errors because the error-triggering input is not

in the exceptional value dictionary. This is in contrast with fuzz testing, which can theoretically

hit all error-triggering inputs if given enough time (this is intractable in practice, especially if

the number of messages one can send is limited by the timing restraints of the bus). In prac-

tice, a dictionary-based approach has shown results in crashing many types of systems, including

autonomy systems.

3.3.2 Fuzz Testing

Fuzz testing inputs are provided to the testing architecture at the same step in the implemen-

tation as dictionary-based test cases, except that they are randomly generated rather than selected

from a dictionary. The fuzz inputter can return inputs for every primitive data type supported by

ROS, including signed and unsigned integers of various lengths, booleans, ASCII, floating point

and double precision numbers, and variations thereof. The integer values are chosen uniformly

from a range defined by the size of the field being generated. For example, int16 t would

be from the range -32768 to 32767, whereas uint8 t values would be from the range 0 to

255. Derivative data types that can be statically cast to integer types, such as char and byte,

are generated the same way. Floating point numbers are selected uniformly from the space of

binary representations of the number. For example, a 32-bit float value would be generated by

randomly generating a 3- bit value. Unit tests on these generators were run to verify that the

generation was done correctly. For floats in particular, this unit testing checked that the ratio of

NaNs selected from the pool was similar to the actual number of bitwise representations of NaN

and ±INF, that every power of two was equally represented, and that denormalized values are

converted correctly. String generation is done character-by-character, where each character was

chosen from the ASCII space 0-255. The string would terminate when a null character (ASCII

0) was generated. This is the way the original fuzzing work generated strings [85].

32

3.3.3 Other input methods

We also implemented several other input selection methods, which we primarily use in Chap-

ter 7:

Nominal input mutation: Instead of replacing nominal values with values generated from a

dictionary or from fuzzing, we attempt to mutate existing values. For numerical values selected

by the test mutation percentage (mutating strings is a special case and is discussed below), we

randomly choose to perform a mutation to the value, such as adding, subtracting, and multiplying

small numbers. For fields that are determined to be mask-type fields, we may also flip a bit in

the value.

String mutation: We created a special mutator to deal with string-type fields. We observed

that the nominal input logs had strings with values of forms similar to “left joint 3.” In

our mutator, we truncate strings, we replace digits with larger or smaller values, and we swap

instances of the substrings “left” and “right.”

Dictionary entry mutation: Instead of mutating nominal input values to change the test

input, we mutate the values in the dictionary to create a bigger dictionary. We do this to determine

if the dictionary can be expanded in simple ways – for example, if a dictionary depends on

boundary values, subtracting or adding 1 to a suspected boundary value such as a power of two

may result in another interesting value.

Semantically-specialized dictionaries: Previous work has found that a dictionary-based ap-

proach is improved when the dictionary includes values specially constructed with the semantic

meaning of the fields in mind [70]. For example, POSIX functions such as mlockall and

open take an integer argument that represents some flags that are set, based on the bits of the

input value. Rather than simply using the generic int dictionary to test these fields, the authors

defined specialized dictionaries that correspond to interesting flags being set. In our work, by

examining the fields in the nominal input logs, we explore whether adding such semantically-

specialized dictionaries provides any benefit for testing autonomy systems. To determine seman-

33

Table 3.1: Summary of test input generation methods

Data type Dictionary Examples Fuzz generation rule

Integer (uint, int,

char, etc.)

-1, 0, MAXINT Uniform distribution on range

Float (double,

float, etc.)

NaN, ±INF, Denormalized

values

Uniform distribution w.r.t bit-

wise representation

String Empty string, ‘a’, ‘left joint’ Each character randomly uni-

formly generated until ‘\0’

tically special fields, we examined the nominal input log for the scenarios we tested. These are

discussed in depth in Section 7.6.

3.3.3.1 Test input summary and open questions

To summarize dictionary and fuzz testing for the data types used on our systems, we provide

table 3.1.

In our description of dictionary testing and fuzzing, we made several assumptions about how

inputs should be treated. We also did not deeply consider how the nature of autonomy system

input may affect test input selection. In particular, autonomy systems take in and process large

amounts of data from the physical world, and make ample use of floating point arithmetic and

large inputs such as point clouds. The scope of this chapter introduces basic test input selection

methods, but questions about tailoring test inputs to autonomy systems are explored in Chapter 7.

3.4 ROS-based systems

To explain the specifics of our framework, we give a broad overview of the ROS architecture,

which is the platform on which all of the systems we tested are built.

34

Figure 3.3: ROS communication example with Pose message

3.4.1 Overview or ROS architecture

ROS is a widely-used system that provides a distributed message-passing framework to im-

plement the software for the components of an autonomy system. An overview of the ROS

communication concepts is given in fig. 3.3. At a high level, a ROS system is comprised of ROS

nodes, which are standalone components that can communicate with one another. Example ROS

nodes within a system might be a laser scanner node, a move base node, and several nodes for

articulating a robotic arm. The ROS nodes communicate using ROS messages and ROS ser-

vices. ROS services are calls to a specific ROS node that return a response. A ROS message

is a data structure that is made up of one or more fields. ROS provides some default ROS mes-

sages common in robotics applications, or developers can create their own. The ROS message

structure of the Pose message, intended to define a position in 3-space, is given in fig. 3.3. ROS

messages use channels called ROS topics, and a given ROS node can subscribe or publish to a

given topic. For example, a laser scanner node can publish scan data messages to the topic /scan,

35

which is subscribed to by the move base. In fig. 3.3, Node B is subscribing to a topic that Node

A is publishing to. ROS messages expose an interface to a robot built on ROS. By manipulating

these messages in the ways described in Section 3.3, we can test these interfaces.

Logs of a run of a ROS system can be recorded in a ROS bag. A ROS bag is simply an

ordered collection of ROS messages. It can be replayed on a ROS system, meaning that all of the

messages in the bag will be published as-is on the same topics that they were originally published

on, with roughly the same timing. By filtering only the input messages from a bag, and booting

up a robotics system, we can simulate the real inputs to a system at any time. Because we use

ROS in testing, we use the term nominal bag to define a nominal input log in the form of a

ROS bag. The ROS API allows us to take a bag and modify the fields of the messages within a

bag, which means we can change fields to fuzzed or exceptional values before replaying the bag.

Because of timing issues, this playback is non-deterministic. We account for this by re-playing

any invariant-violating bag to make sure we can reproduce the violation.

3.4.2 Simulation and Gazebo

We test our robots in simulation, because we do not have physical access to the robots we

tested and because setting up a simulation and running many tests in parallel is much more fea-

sible than with physical robots. While simulation has some limitations, such as possible timing

differences or physics engine mis-calibration, past work in ASTAA has shown that bugs found

in simulation can be reproduced on physical robots [30]. Furthermore, because the software run

in simulation is the actual software on the robots, the bugs we found represent real failures to

correctly handle all input and are symptomatic of problems with the software.

ROS has several mechanisms by which to simulate robots. In particular, ROS interfaces

with the Gazebo simulation platform. Gazebo is a popular robot simulator that has extensive

integration with ROS [6, 12]. Gazebo can simulate world inputs, such as an environment that

contains walls, paths, and obstacles. If a ROS node takes in laser scan input, for example, Gazebo

can emulate this laser data and pass it to that node.

36

3.5 Systems under test
All of the systems we tested run on ROS Indigo1 and have tutorials for simulating particular

use case scenarios under Gazebo. We give an overview of these systems, as well as the scenarios

we tested, here.

3.5.1 Fetch and Freight

Fetch is a company that develops robots to assist people in a warehouse setting [5]. In par-

ticular, the Fetch robot is made up of a base that can move around autonomously, a perception

system, and an arm that can grasp objects. Fetch has path planning code, and can build a map of

its environment and then navigate to a goal according to the map. Fetch is built on ROS and ex-

poses several interfaces using common ROS semantics. Fetch has nodes such as move group

and basic grasping perception. To test Fetch, we used the tutorials available on the

Fetch simulation tutorial. The functionality we tested was:

• pick place: in this scenario, the robot goes through a basic grasping and placing sequence.

It picks up an object in simulation and uses planning and obstacle avoidance to move

itself and the arm to put the object down. The input messages to this scenario are various

goal points for the grasping, move base, and head controllers, as well as collision objects

(entities that describe bounding boxes that the robot should not intersect with) and goals

for picking up and placing objects. Unfortunately, two nominal runs of this system (out of

100) resulted in invariant violations with no test inputs provided. While we include this

scenario, with caveats, in our exploratory analysis in Chapter 5, we exclude it from the

more advanced analysis in Chapter 6.

• wave and disco: The robot goes through some dance motions, based on preset points that

the arm must articulate through. Both scenarios have goal point inputs and collision object

inputs. wave goes through 160 goalpoints while disco goes through 7. Additionally,

1http://wiki.ros.org/indigo

37

http://wiki.ros.org/indigo

disco has a single “cancel” input to stop the motion.

We also checked the teleoperation functionality of the robot, but did not detect any faults.

Freight is an armless robot built on the same platform as Fetch, and any simulation can be

run with the Freight parameter to test the Freight robot. In practice, we have found that testing

using the Freight parameter does not yield any additional results, because Freight only makes

use of nodes that are also used in Fetch, and therefore the software tested is Fetch is a superset

of the software in Freight.

3.5.2 Ardupilot

Ardupilot is a popular autopilot software for autonomy applications such as drones, rovers,

and hobby planes [2]. While the software itself is not developed specifically for the ROS plat-

form, it exposes an interface that can be controlled using ROS messages and a ROS layer for

facilitating this communication [17]. The specific protocol used is MAVLink [8], which was de-

veloped for communication with small unarmed vehicles. The open-source MAVROS package

serves as an intermediate layer to interface ROS systems with MAVLink [99]. Because this par-

ticular system uses ROS servers to set parameters, and because ROS servers are not interceptible

in the way that ROS messages are, we also wrote a communication layer to directly translate

ROS messages into ROS server calls. Ardupilot is able to process many commands for control-

ling a vehicle, including takeoff/land, modes to circle in place, waypoint and mission planning

capabilities, mapping, and multi-vehicle control. For our testing, we focused on an Arducopter

drone in simulation. The functionality we tested was the following:

• cmd vel: The drone is commanded to move at a certain velocity. The only input here is

the velocity message.

• mission: The drone is put in the “mission” mode and flies through several waypoints. The

inputs to this test case are the messages that specify several waypoints, defaulted from a

configuration file provided in the software package.

38

• fence then mission and fence then vel: The drone goes through the scenarios above,

but with a virtual fence that sets the boundary in which it flies. The inputs are the same

as for the corresponding cmd vel and mission scenarios, with added messages to set the

fence boundary.

• modes: The drone cycles through several modes, including takeoff, land, and arming. The

inputs are the commands to set the modes.

• setpoint pos and setpoint raw: the drone’s pose is commanded using either using raw

MAVLink inputs or a pose message that abstracts these raw inputs to a human-readable

format.

• pos then accel: The pose of the drone is set, and then the node is commanded to accel-

erate. The inputs are the pose messages (same as in setpoint pos) and the acceleration

message.

3.5.3 Turtlebot

Turtlebot is a small, configurable robot platform designed for robotics hobbyists [13]. It has

a small footprint with wheels and is able to drive around and spin, and process scan or camera

data. The simulation allows for some configuration of the robot platform (for example, whether

it is in the “burger” or “waffle” form factor, and whether sensors are present on the robot). The

functionality we tested was the following:

• follow route: The robot is given a route to follow and must plan a path and navigate the

route. The inputs to this scenario are the goal points of the route.

• move base: The robot is given goals for its move base and moves accordingly.

• map scan: The robot scans its surroundings and builds a map of its environment. The

input to this scenario is the raw laser scan data.

• teleop vel: The robot is commanded via a tele-operation node, which translates keyboard

input to velocity commands. We record these velocity commands and use them as an input

39

to the robot.

• nav goal and nav scan: The robot is given a goal for moving and, in the nav scan

scenario, a laser scan of its surroundings. It must navigate to the goal.

3.5.4 Other systems

We also tested basic functionality on OP3 [9], Innok Heros [7], Erle [4], and PR2 [46].

We were not able to immediately find bugs in these systems or were not able to follow the

documentation to set up enough functioning use case scenarios. This does not mean that bugs do

not exist in these systems, but may mean that we were not able to expose the correct interfaces

for testing. In fact, for some of these systems, the documentation was limited and we were only

able to bring up the teleoperation scenarios, which limited the scope of testing.

The three systems we do test encompass a wide breadth of applications (hobby, warehouse,

research and development) and use different layers of the software stack (flight middleware, full

robot control, configurable platform). We therefore believe that finding bugs in these systems

shows potentially wide applicability of our tool and methods.

3.6 Invariants
To evaluate a test case, we say a test has triggered a failure if it has violated some invariant.

A software crash, such as when a ROS node stops unexpectedly and outputs a core dump, can

be framed as a special invariant (“a node shall never output a core dump”) that is checked by

looking for the presence of a core dump file. When we mention “crashes” or “crash invariants”

in subsequent chapters, we mean software crashes, rather than a robot physically crashing into

something.

In addition to the crash invariant, we also check for speed limit violations in each of the

systems under test, according to the specified datasheet documentation of each system [2, 5, 13].

These limits are as follows:

Ardu linear speed shall not exceed 5.0m/s in the x− or y− directions. Note that, in the use

40

case scenarios provided by Ardu, a velocity with both x− and y− components had magnitude

that sometimes exceeded 5.0m/s as a vector value, so we check each direction separately rather

than computing the magnitude.

Fetch linear speed shall not exceed 1.6m/s in any x − y plane direction (we compute the

velocity by taking the magnitude of the (x, y) velocity vector).

Turtlebot linear speed shall not exceed 0.65m/s in any x − y plane direction, and angular

speed shall not exceed 180◦/s.

All of the systems published their velocities on the /odom (in the case of Ardu,

/mavros/local position/odom) topic, and our invariant checker parsed the test output to make

sure the relevant values did not exceed the limits.

3.7 Framework Scope and Summary
In this chapter, we described challenges to testing autonomy systems, our approach to meet-

ing these challenges, our methods of input selections, and an overview of the systems we tested.

Because robots are stateful, distributed, temporal, and cyber-physical, we use a testing tool that

uses the message-passing channels between nodes of the system and intercepts on nominal data.

Instead of simply detecting crashes or hangs, we also detect speed limit invariant violations to

enforce safety properties on a system.

3.7.1 Simplifications made in baseline testing

In our testing tool, we make several assumptions. Some of these are explored further in

Chapters 5 to 7, and some are left as assumptions that are based on previous success in testing

robots.

• We exclude time and sequence messages by default because, in practice, we have found

that they are particularly fragile and prevent testing from finding deeper bugs. We do not

exclude any other fields from testing in Chapter 5, but Chapter 6 explores how fragile fields

can affect testing outcomes and how they can be detected.

41

• Our default nominal input percentage value of 20% has worked well to find bugs in the

past, but a higher or lower percentage may be beneficial. Because we randomly perturb

fields in a nominal bag, a replacement percentage that is too small might mean that we

need to run more experiments to find a pertinent field or might miss multi-dimensional

test cases altogether. Conversely, replacement percentage that is too high might mean that

we are simply replacing too many of the data and timing assumptions that the autonomy

system is making and prevent the automated tool from getting the robot into a non-trivial

testable state. Chapter 7 explores how changing this percentage affects the tool.

• We rely on a startup script to get the robot into a testable state, and then provide a perturbed

input. This may prevent the robot from getting into deeper testable states, but to mitigate

this risk, we test several different use case scenarios. This means that we do not need to

include a means of delaying test input mutation in the tool.

• We test the system as a whole, instead of testing inputs to each individual node. For the

scope of this dissertation, we are concerned with how interfaces to a robot system may

affect the entire system, and we find enough bugs to perform an analysis of our test input

methods.

• We limit our tool to test ROS-based systems. While this prevents us from testing robots

that are implemented without using ROS, most autonomy systems are written as a dis-

tributed system with channels of communication [59]. Therefore, the justification for the

log message value substitution aspect of our tool can still hold for non-ROS-based systems.

It also may be the case that our tests may find bugs in underlying ROS functionality, rather

in than the systems under test themselves. However, this is still relevant to evaluating au-

tomy systems. Because the systems under test encompass a wide variety of applications,

there is limited overlap in the ROS functionality tested across systems.

Section 8.1 further discusses the tradeoffs between ease of implementation and testing out-

come for some of these simplifications. The speculation on future work in Section 9.3 describes

42

how these simplifications may be removed

3.7.2 Conclusion

This chapter lays the groundwork for the testing described in Chapter 4, which leads to the

results we discuss in Chapters 5 to 7. We have outlined the basic challenges to testing autonomy

systems, but the remainder of this dissertation takes a deeper look at test case input selection step

of the process, in order to improve the efficiency and effectiveness of the testing tool.

43

44

Chapter 4

Metrics of Analysis and Procedure

We use this chapter to define metrics of comparison between test methods, which will form the

backbone of the analysis in the remaining chapters. We discuss how the two metrics complement

each other to give a richer analysis, and also provide some related definitions that explicitly

encode a comparison between test methods. These metrics form the basis for comparing a set

of test input generation methods. In the following chapters, we show how the metrics can be

used for a deeper assessment of the merits of a given test method and can even be used to guide

improvements to an existing method. We conclude this chapter by outlining our procedure for

experimentation and analysis, which includes deriving efficiency values given an already-run

suite of tests.

4.1 Metrics of comparison
At first glance, it may seem that it is enough to simply define a metric that favors a test

method that triggers invariant violations with the least number of test cases possible. This metric

is important in the sense that an efficient use of testing budget minimizes the number of test

cases that do not trigger invariant violations. However, this metric can favor a test method that

can trigger the same underlying bug over and over using different but similar data values. A

complementary metric would count the number of unique bugs triggered. However, black box

45

testing inherently does not allow access to source code. Furthermore, the root cause of errors

found using black box testing is unknown. All we can know is the set of inputs that triggered

the error. Therefore, given two errors triggered by black box testing, it is difficult to determine

whether they are due to distinct underlying issues in the source code. In other words, black box

testing doesn’t tell us if two separate invariant violations correspond to different bugs. This is a

difficulty in assessing the efficacy of a black box testing method, because it is possible that one

method triggers errors more quickly than another, but might be “shallow” in the sense that all of

those errors are due to the same bug in the code, whereas the second method might trigger fewer

errors, but they might be distinct bugs in the code. For this reason, it is necessary to evaluate

black box testing on metrics other than “number of errors triggered per number of test cases.”

To encompass both speed and breadth of testing, we define our two metrics of efficiency and

effectiveness.

4.1.1 Efficiency

Given a use case scenario, the efficiency of a given test input selection method is the recip-

rocal of the average number of test cases to first invariant violation (colloquially in this section,

“number of tests to first failure”). “Average” is respective to the randomness inherent in generat-

ing a test, because the nominal inputs are replaced at random according to a percentage and the

inputs are chosen randomly from a dictionary or randomly generated. In Section 4.3 below, we

discuss how to derive the average number of tests to first failure given a test suite. Because we

use the inverse of the number of tests to first failure, we define an efficiency of 0 for methods that

have not uncovered any invariant violations for the given test budget.

Our main definition of efficiency is with respect to a use case scenario, but the measurement

can be applied in other ways. For example, the average efficiency across components for a system

can give a single number for the test input selection method efficiency for a system, and, as shown

in Chapter 6, can be used incrementally within a scenario to visualize a marginal efficiency as

failure-triggering fields are progressively removed from testing.

46

At first glance, a high efficiency is beneficial because it means less of the testing budget

is spent on tests that do not find bugs. However, a test method with high efficiency may just

be uncovering the same easy-to-trigger bug over and over. Efficiency therefore favors shallow,

easy-to-trigger bugs, and we need a second metric, effectiveness, to differentiate between bugs

found.

4.1.2 Effectiveness
The purpose of this metric is to estimate the number of unique bugs found, by diagnostically

differentiating bug symptoms. Given a test method, and a system under test, we define effec-

tiveness to be the number of unique symptoms found by a test method, given a symptom class.

“Symptom class” is purposely broad, because it tries to predict whether two different found

symptoms have different underlying causes, which is impossible to definitively determine in a

black-box environment. However, we present heuristics that can provide guidance. For example,

use case-wise effectiveness measures the total number of use cases with at least one invariant vi-

olation within a system. In Section 2.8, we reference fuzz tamers. In the language of that work,

a distance function for two test cases can be defined as 0 if the symptoms for a given symptom

class are the same, and 1 otherwise [33]. We give some examples of ways to describe symptom

classes that likely distinguish underlying cases of bugs, while also addressing the risk that they

do not:

• Use case scenarios crashed: errors in two separate use case scenarios are more likely to

be due to different underlying bugs, because separate scenarios are more likely to have

separate implementation. There is still a risk that the underlying bugs are the same, for

example, if the bug exists in a common library referenced by both scenarios. However, if

one testing method finds an issue in a scenario that another testing method cannot, the first

method has exposed a vulnerability in the scenario that was missed by the second method.

• Types of invariant violations: errors that are classified as different invariant violations

within a test suite (e.g. a speed limit violation vs an obstacle collision violation) might

47

come from different underlying causes because they correspond to different behavioral re-

quirements for an autonomy system and might therefore be implemented separately. There

is a risk that the components are not distinct, for example, if both the speed limit violation

and object collision violations happen because the robot is provided an input that overrides

its stopping capacity. However, different invariants often have different implied severity

levels, and a test case that causes the robot to crash and cause harm to itself will arguably

be prioritized over a test case that simply causes the robot to move too fast, and if one

method finds more severe invariant violations, it may be more useful to developers.

• Crashes in different nodes of a system: This is a special case of the invariant violation

above. In our work, we have found that a crash invariant does not mean that the entire

system was brought down, but rather typically means that a certain node malfunctioned.

For example, a crash in move base is likely distinct in implementation than a crash in

the laser scanner. Again, the caveat is that both nodes may reference the same underlying

library. However, as in the use case argument, if one testing method finds an issue in a

node that another testing method has not, it has exposed a vulnerability in that node that

the other method has not.

• Number of types of invariant violations within a single test case: if a test case violates two

different invariants, it probably triggers a different underlying bug than a test case that only

violates one. If one testing method is able to generate more test cases that violate different

invariants, it is likely finding more unique bugs. In addition, the bugs are arguably deeper

or more significant, since these sorts of test cases are rare.

• Types of messages or fields within a message activating an error: a test activated on one

type of field or message might be distinct from an error activated by another type of field

or message. This is because these inputs can be, at the interface level, separately handled

in the code. Here, the risk is that, according to the data path assumptions of the imple-

mentation, the two data types can potentially be related and lead to activation of the same

48

underlying bug. However, if one testing method uncovers errors using a field type that

another testing method does not, this testing method has an exposed a vulnerability in that

field type.

• Number of messages in an error-causing input: similar to the types of fields or messages

above, if one error is activated using just a one-message input while another error is ac-

tivated using a multiple-message input, the inputs handled by the code are different and

therefore might be due to distinct bugs. In particular, the single-message input can be

thought of as more “shallow,” since it does not require a complex sequence of messages to

be triggered. There is a risk that the same underlying bug might be triggered by a very par-

ticular one-message input but also in conjunction with another input (for example, if one

message is a “gatekeeper,” that is, a check on the first message lets some values through

but also forces a check on the second message later). However, again, if a testing method

exposes a longer sequence of messages that work together to trigger an error, there is value

in that testing method.

Analyzing along these axes can be thought of analyzing effectiveness in more or less granular

ways. We show concrete measurements for some of these metrics in Chapter 5. In particular, we

describe how field effectiveness was measured in Section 5.1.

4.1.2.1 Overlap and exclusiveness

Two test methods may have similar exclusiveness, but still find different symptoms within a

class. Because of this, we need the notion of overlap. Given two test methods and a symptom

class, the overlap between test methods is defined as the number of shared unique symptoms

across all invariant violations found by each test method. For example, use case-wise overlap

would count the use cases in which both test methods found at least one invariant violation.

Conversely, the exclusiveness of a test method T1 in with respect to the test method T2 is the

number of unique symptoms on which T1 found at least one invariant violation and T2 did not.

Note that the effectiveness of T1 is therefore the sum of the overlap between T1 and T2 and the

49

Figure 4.1: The relationship between effectiveness, overlap, and exclusiveness for two test meth-

ods, M1 and M2. In this diagram, M1 has effectiveness 6 and exclusiveness 3, M2 has effective-

ness 7 and exclusiveness 4, and the overlap between M1 and M2 is 3.

exclusiveness of T1 with respect to T2. A component with higher exclusiveness has found more

estimated unique bugs with respect to a symptom class and therefore likely has higher utility as

a test method.

For cases where one failure is fairly difficult to trigger, it is possible that a test method cannot

trigger it within the constraint of the budgeted tests. For example, if given infinite time, fuzzing

would be able to trigger all bugs that can be activated at a given interface. For this reason, overlap

and relative complement are metrics that depend on the given test budget.

The relationship between effectiveness, overlap, and exclusiveness is given in fig. 4.1.

4.1.3 Efficiency and Effectiveness as complementary methods

As mentioned above, effectiveness is necessary to define because a test method with high

efficiency may just be finding the same shallow bug using slightly different inputs and therefore

has less utility as a test method. However, a test method with a theoretically high effectiveness

given a high enough test budget has little practical use if it is not efficient enough to find those

50

bugs within a given test budget.

Because efficiency and effectiveness optimize for different notions, it is necessary to consider

both when evaluating a test method. There are, however, some situations in which the metrics are

partially correlated. Extremely low efficiency might imply low effectiveness, because it describes

the case where a test method has trouble finding any bugs at all. Similarly, high effectiveness for

a reasonable test budget implies high efficiency, because high effectiveness means a high total

number of bugs found and therefore a low expected number of tests to first failure. In Chapter 6,

we show how a focus on both efficiency and effectiveness helps us determine which test method

finds a diverse set of failures within a reasonable number of tests.

4.1.4 Advanced applications

The initial motivation of defining metrics of comparison is to discuss whether fuzz testing

or dictionary testing fares better for a specific use case scenario on a given autonomy system.

However, as we will show in Chapter 7, these metrics can be applied to any test input selection

method and can even be used to compare three or more test input selection methods at once.

More compellingly, we can also apply the metrics when exploring hybrid testing strategies. For

example, as in Chapter 6, we can compare the total effectiveness and average efficiency across

use cases of a system when fault-causing fields are iteratively removed from testing to give a

progressive measure of efficiency. This may allow us to evaluate how efficiency changes as

fragile fields are eliminated to allow the test method to find deeper bugs. We can even measure the

efficiency and effectiveness of a hybrid strategy, for example, one in which a test input selection

method is randomly decided according to a fixed probability before generating each test case. In

Chapter 6, we explore these alternate strategies and use our metrics to explain their merits.

4.2 Testing experiment procedure
To compare the use of fuzz testing and exceptional value testing in autonomy systems, we

tested the scenarios defined in Section 3.4. We created and executed 100 test cases for each of

51

these use cases according to the method in Section 3.2.2, and evaluated the robots for crashes

and invariant violations. For any test inputs that triggered failures, we identified the relevant

messages and fields to trigger the failure, and, in the case of crash invariants, evaluated which

nodes were crashed.

Reproducibility of the results is assessed by replaying the failure-triggering input log on

the system and checking for the same invariant violation. We checked reproducibility on all

failure-triggering input logs of the system. We start with a fresh launch of the system for each

test (by way of Docker containerization), and therefore do not need to account for previous

tests contaminating system state and affecting the results of subsequent tests. This overcomes

limitations addressed in previous robustness testing work, e.g. Ballista needing to run a suite of

tests again in reverse to verify that side effects of a given test case did not affect subsequent test

cases [70]. For quality control, we also ran nominal test cases (unmodified input logs of use case

scenarios) to verify that they did not violate any invariants.

This methodology gives us a suite of 100 test cases for each test method. We can then

calculate the efficiency and effectiveness of the test methods for the give use cases. In practice,

we have encountered a high enough efficiency that we deem this number of tests to be sufficient.

Section 6.3.2 explores running a larger test suite.

4.3 Application of metrics
Given a test suite of N test cases for a use case scenario under test, effectiveness is relatively

easy to compute. Differentiating by symptom classes such as unique types of invariants violated

is simple, as we can simply run the invariant checker and bin the failures by invariant type. Even

more granular measurements, such as names of failure-triggering fields, can be done by first

running the necessary diagnosis and then binning according to the metric.

Efficiency takes slightly more work, because it is the reciprocal of the average number of

tests to first failure, rather than an absolute number. To compute this metric, we would have to

run a number of test suites, count the number of tests to first failure, and average them. However,

52

instead of running many separate test suites, we can randomly shuffle our existing test suite and

average number of tests to first failure from this set of random shuffles. This assumes that the test

suite is a representative random sample of the test method for that test case. Instead of doing this

shuffle experimentally, we can rely on the negative hypergeometric distribution [18] to compute

this average, which describes the probability of having to drawing a certain number of failures

before achieving m successes from a fixed set of successes and failures without replacement. If

the size of the test suite isN and it containsK invariant-violating test cases, with the terminology

in Balakrishnan and Nevzorov [18], we have the number of “successes” (invariant violations) in

the set r = K, number of successes drawn before stopping as m = 1, and number of “non-

successes” (non-violations) in the set as b = N − K. The value for the expected number of

tests to first violation is thus the expected number of non-successful draws (as given by (10.9) in

Balakrishnan and Nevzorov [18]) plus 1 for the successful draw, and the calculated efficiency of

this set is the reciprocal:

efficiency =
1

mb
r+1

+ 1
=

1
N−K
K+1

+ K+1
K+1

=
K + 1

N + 1
. (4.1)

4.4 Conclusion
In this chapter, we introduced our metrics for comparing test methods, and we discussed

various caveats and tradeoffs between the metrics. We also explained the testing procedure by

which efficiency and effectiveness are calculated for the analysis in Chapter 5. The discussion of

these metrics lays the groundwork for the analysis in Chapter 6, where our metrics are used to

analyze how well different hybrid testing strategies work and to make a recommendation towards

one.

53

54

Chapter 5

Comparison of Test Input Generation

We have introduced our testing framework and two main test input generation techniques. In

the previous chapters, we discussed the theoretical tradeoffs between dictionary-based testing

and fuzzing. Namely, fuzzing does not eliminate any value from the pool of possible values but

therefore risks oversampling; while dictionary-based testing may better estimate the distribution

of failure-activating inputs but may risk undersampling by missing a value in the dictionary.

In this chapter, we explore whether fuzzing or dictionary-based testing is more efficient and

effective for our given systems.

5.1 Experimental setup details
We would like to provide an initial comparison of test input techniques for a system under

test. To do so, we test each use case scenario of each system using dictionary-based testing and

fuzzing, using the default replacement percentage of 20% and the setup described in Section 4.2.

We then plot the efficiency of each input generation technique for each scenario under test.

From this data, we can directly measure use case scenario effectiveness, by counting the num-

ber of scenarios that have at least one failure-triggering test case. As discussed in Section 4.1.2,

measuring effectiveness using different symptom classes gives various approximations of fault

coverage, because effectiveness is a way of distinguishing faults by distinguishing the ways in

55

which they are triggered. Use case scenario effectiveness gives a broad notion of coverage before

any deep diagnosis. Invariant effectiveness gives a secondary measure. However, when we diag-

nose the bugs found and identify the relevant fields in a failure-triggering input, we can measure

field effectiveness. This gives a better estimation of the number of unique bugs each test method

found. This is based on the assumption that different combinations of failure-triggering fields

are more likely to correspond to underlying bugs in the code.

In order to do this deeper exploration, we applied the following diagnosis steps to each

failure-triggering input we found:

1. Delta debug the failure-triggering input log in order to find the smallest sequence of mes-

sages that will trigger that failure. Our delta debugger is based on the Zeller work [115],

and first splits the failure-triggering log into two subsets of roughly equal sizes. These

subsets are replayed on the system, and if one causes an invariant violation, the algorithm

has found a smaller failure-triggering input and begins anew on this subset. Otherwise, the

large input is split into three chunks, and every sequential combination of these chunks is

replayed (for example, if the three chunks are A, B, and C, this step would play six input

logs, corresponding to messages represented by A, B, C, AB, AC, and BC). If this yields a

smaller failure-triggering input, the algorithm begins anew with that input, and otherwise

the algorithm splits the large input into more and more chunks, until the number of sequen-

tial combinations of the chunks exceeds the number of messages in the large input. At this

point, the algorithm switches to a linear mode, where messages are eliminated one-by-one.

The output at this step can give a measure of message effectiveness (the number of unique

failure-triggering messages found by a test method).

2. Find the minimal set of relevant fields within the delta-debugged input that will trigger that

failure. This is done using the delta debug algorithm, except by systematically changing

the input field values back to the ones found in the nominal input log. This method makes

the assumption that only perturbed fields contribute to a bug. In the case that two different

56

fields are necessary to trigger a bug but one needs the nominal value, this method will miss

the field with the nominal value. This is contrasted with the HPSL method in Vernaza et

al. [106], but is significantly computationally faster.

3. Classify bugs according to their minimal input log and relevant fields. That is, if two

failure-triggering inputs have the same sequence of messages in their delta debugged input

logs and the same set of relevant fields, they are highly suspected to trigger the same bug

and both increase field effectiveness.

Because a distinct set of failure-triggering input fields likely corresponds to a distinct bug,

field effectiveness is a more granular and arguably more accurate measure of fault coverage than

use case scenario effectiveness.

This process above describes ways to measure the performance of test methods compared to

each other. If one method has high efficiency and high exclusiveness with respect to the other

method, we can conclude that it performs better on the system under test. If each method has

cases where it outperforms the other, deeper analysis is necessary to determine why.

5.2 Results

5.2.1 Efficiency and use case scenario effectiveness

We plot the efficiency (inverse of average number of tests to first failure) for both test methods

on each use case scenario in fig. 5.1. A higher efficiency is potentially better, because it means a

test method takes fewer tests to uncover the first failure. Note that a bar of height 0 means that

the test method found no faults for the duration of the test campaign. The graph also shows use

case scenario effectiveness: any bar with a height above 0 means that the test method uncovered

a fault in the scenario, which adds to the effectiveness.

As a caveat to these results, recall from Section 3.5 that the pick place scenario in Fetch

had a violation in the nominal input. Using delta debugging, we diagnosed this to an input

of a /move group/goal message and a /pickup/goal message. Because none of the

57

Figure 5.1: Efficiency comparison for fuzz and dictionary-based input selection.

58

dictionary and fuzz inputs had this combination of two messages as their minimal input log, we

are confident that fuzzing and dictionary actually uncovered new bugs in this system. However,

this scenario is excluded from analysis in Chapter 6 because the analysis relies heavily on field

diagnosis and we cannot say for certain that the fields we examine were not contributing to the

nominal failure.

One interesting result is that testing in some use case scenarios has an efficiency close to 1,

which means only about one test on average is necessary to trigger a failure in that scenario. In

Chapter 6, we discuss how this may be a symptom of masking, i.e., that a fragile field might

always trigger an early crash in the scenario and prevent the test method from reaching deeper

bugs. For now, we consider the exploratory results as-is, without accounting for masking, to give

an overall assessment of the test methods.

From the graph, there is no clear winner between the test methods in terms of either efficiency

or effectiveness. In the Turtlebot system, dictionary-based testing was able to find faults in a

scenario where fuzz found no faults, but the opposite happened in the Ardu system. Furthermore,

in some scenarios, fuzzing was more efficient at uncovering faults, whereas in others, dictionary-

based testing was better. This suggests that testing autonomy systems would benefit from a

combination of testing methods. To more concretely describe the strengths and weaknesses of

the testing methods, we use the rest of this chapter to take a closer look at the test methods.

5.2.2 Invariant Effectiveness

Another way to measure effectiveness is by using the number of invariant types that are

triggered using a specific test method. We plot the results of our efficiency calculations, broken

down by invariant type, in fig. 5.2.

In this case, no use case scenario had two different invariant types violated in testing. How-

ever, as we will see in Chapter 7, measuring using invariant effectiveness allows us to make

distinctions between the effectiveness of more complex test input generation techniques.

59

Figure 5.2: Efficiency comparison for fuzz and dictionary-based input selection, broken down

by invariant type.

60

Table 5.1: Number of failure-triggering fields per scenario, by test method

Scenario Dictionary only Fuzzing only Both

Ardu: cmd vel 0 0 2

Ardu: fence mission 1 0 1

Ardu: fence vel 0 0 2

Ardu: modes 0 1 0

Ardu:pos then accel 0 1 1

Ardu: setpoint pos 0 0 2

Ardu: setpoint raw 1 1 2

Fetch: disco 1 0 1

Fetch: pick place 0 0 2

Fetch: wave 0 0 3

Turtlebot: nav goal 1 0 0

Turtlebot: nav scan 0 0 1

Turtlebot: teleop vel 0 0 2

5.2.3 Diagnosis and field effectiveness

We provide an overview of the fields that trigger a failure in each use case scenario in ta-

ble 5.1. This table counts the total number of fields discovered to trigger failures by each method.

For example, if some test value provided to a velocity field caused a scenario to exhibit a core

dump, and some test value to goal position field in another test case caused that scenario to also

exhibit a core dump, the field effectiveness of the test method on that use case scenario would

be 2. Appendix A gives the actual names of the fields for this result. The numbers in each cell

of the “Dictionary” and “Fuzz” columns represent the exclusiveness of the dictionary and fuzz

methods, respectively, while the numbers in the “Both” column represent overlap.

61

In the Fetch system, dictionary-based testing exhibited non-zero exclusiveness with respect

to fuzzing, while fuzzing did not find any failure-triggering fields that dictionary did not find. In

the other two systems, each method was able to discover a failure-triggering field that the other

did not.

Another observation is that the use case scenarios that exhibited the highest efficiency in

Section 5.2.1 do not always have the highest field effectiveness. This provides further evidence

to the idea that the scenarios where the test methods had high efficiency may be particularly

fragile, and that the test methods are always finding the same shallow bug(s) in those scenarios.

5.2.4 Discussion of exploratory results

In each of Sections 5.2.1 to 5.2.3, we showed that both fuzzing and dictionary-based testing

have instances of higher efficiency or effectiveness. In fact, each method was able to find failure-

triggering fields that that the other did not. The main conclusion of these exploratory results is

that there is no clear winner between the two test methods. This motivates Chapter 6, which

proposes and evaluates several hybrid testing methods.

5.3 Follow-up: Input value efficiency
The exploratory testing in this chapter found a high incidence of field overlap between testing

results. We follow up by asking whether, given cases of overlap, one method is still more efficient

than the other. That is, even if both methods can find the same thing, is one faster than the other

and therefore worth favoring? We answer this by measuring the efficiency of the input value sets

themselves, for a given failure-triggering field.

5.3.1 Procedure

We classified failures using their relevant triggering fields in Section 5.2.3. For each failure-

triggering test case, this yields a minimal input bag and a list of failure-triggering fields. By

resetting all values in the minimal bag to the ones in the nominal input, and then manipulating the

62

values of only failure-triggering field(s), we can discover which input values trigger the failure.

For example, it may be that negative values sent to a velocity field trigger a speed limit violation

for a given use case scenario. For a given input, we systematically try all values in the exceptional

value dictionary for that field, and record which values trigger a failure and which do not. We

repeat this with fuzzed values, such that the number of fuzzed values tried is equal to the number

of dictionary values tried for a given input. We do this over all distinct sets of failure-triggering

fields for each use case scenario.

We find that fuzzing and dictionary-based testing can each perform better than the other

method because of the nature of the bug-triggering input sets. We discuss the following cases of

bugs:

• Bugs that require an input that can be described as a class with many members, for exam-

ple, floating point values from 0 to 1. In general, fuzzing is more likely to generate values

from this set.

• Bugs that require an input that can be described as an edge case, i.e. the input is a specific

edge case value, such as INF or a single bad number.

• Bugs that can be triggered by a small set of inputs, such as integers that represent an

ENUM-like object, or bitmasks.

• Bugs that require a combination of inputs from the above categories.

We provide illustrative examples of these categories of bug-triggering input sets to show that

they occur in real systems and to illustrate cases where one testing method performs better than

another. The inputs that were tried are plotted as a histogram. Values are plotted according

to their distribution of the machine representation of the numbers (i.e. floats are plotted loga-

rithmically because of the exponent bits, and integers are plotted linearly). We present the sets

generated by fuzzing and the sets of the exceptional value dictionary as separate graphs, with red

bars denoting the number of invariant violations from values in a specific bin.

63

5.3.2 Bugs that require an input that can be described as a class

• Field max velocity scaling factor in Fetch: This field triggered bugs in both the

disco and wave scenarios. That is, when this field was given a value from the red bars in

fig. 5.3, it caused the system to exhibit a core dump in the move group Robot Operating

System (ROS) node. This field is a 64-bit float. Figure 5.3 illustrates the inputs that

triggered this bug, for both exceptional values and fuzzing, plotted on a log scale.

With our randomly generated set of fuzz values, the proportion that triggered an invariant

violation was 0.243. With the exceptional value dictionary, the proportion was 0.012.

Note that all of the values that trigger an invariant violation are between the values 0 and

1. The theoretical probability of generating such a value (i.e. with sign 1 and biased

exponent between 0 and 1023) is 0.25. This example illustrates why fuzzing can be a more

efficient test method to uncover certain kinds of bugs: while it is possible to skew the

input dictionary to more proportionally include values between 0 and 1 to more efficiently

trigger this bug, this bloats the dictionary and as a whole makes it less efficient at using

edge case values to trigger bugs. On the other hand, it is an easy target to hit with random

fuzz inputs. As shown in the cases in this subsection, fuzzing performs well for bugs of

this variety, for various classes of input values. In the subsequent sections, we discuss how

a dictionary approach is best used to discover other classes of bugs. This motivates using

both methods together to create higher-efficiency test campaigns.

• Field twist.linear.x in Ardu: Interestingly, we also found bugs that were triggered

in fuzzing by almost the complement of the set above. For the cmd vel scenario, we

found that values outside of the range 0 to 1 were likely to trigger an invariant violation (in

the form of a core dump in the arducopter ROS node of the system), as illustrated in

fig. 5.4.

Note that, for the dictionary values, even the majority of values outside of the range 0 to

1 failed to trigger a violation. This indicates that we cannot categorically say that a value

64

Figure 5.3: Input set comparison for max velocity scaling factor (cont.)

65

Figure 5.3: Input set comparison for max velocity scaling factor

66

Figure 5.4: Input set comparison for twist.linear.x (cont.)

67

Figure 5.4: Input set comparison for twist.linear.x

68

outside of the range 0 to 1 will trigger a violation for this specific bug. For example, the

very small value 6.7e10−181 triggered no invariant violation, while other positive values

above and below it did.

• Field local.pose.orientation.z in Ardu: Some bug-triggering input sets are less

intuitive to describe. For example, fig. 5.5 illustrates the inputs that trigger an invariant

violation (in the form of a core dump in the arducopter ROS node) in the pos then -

accel scenario.

There seems to be a piecewise distribution of failure-triggering values for this field. It may

be that different ranges of values trigger different underlying bugs, or that the underlying

computation is complicated and only succeeds on specific sets of inputs. However, we do

not classify this as an “edge case” input, because the proportion of inputs that triggered this

failure using fuzzing was 0.489 (compared to 0.035 for exceptional dictionary testing).

5.3.3 Bugs that require an input that can be described as an edge case
We have not found bugs of this class in the systems and scenarios we tested. Intuitively, this

would be a single edge case value that can cause a computation error. These bugs do exist in

robotics systems, as the previous testing efforts of the Automated Stress Testing for Autonomy

Architectures (ASTAA) project have found bugs that are triggered by the value 0, presumably

used as a divisor [59]. These values are almost impossible to generate using fuzzing (probability

of 1/264 to generate a 0 for a 64-bit integer) and therefore justify their inclusion in an exceptional

value dictionary. Hence, while the above section makes it seem that a dictionary is less efficient

at triggering certain kinds of bugs, a dictionary with a small set of edge case values can be

beneficial in increasing the effectiveness of a test campaign by uncovering bugs that fuzzing is

highly unlikely to find.

Note that NaN does not strictly qualify as an edge case, because fuzzing will generate it

2−8 − 2−31 ≈ .39% of the time for a 32-bit float. However, including it in the exceptional

value dictionary of any size below 28 (256) will make it more likely than fuzzing to be used as a

69

Figure 5.5: Input set comparison for local.pose.orientation.z (cont.)

70

Figure 5.5: Input set comparison for local.pose.orientation.z

71

perturbed value. Because NaN has triggered bugs in robots in the ASTAA project in the past, we

recommend including NaN in the dictionary.

5.3.4 Bugs that can be triggered by a small set of inputs

local.coordinate frame: We have not found bugs that are triggered by a standalone

set of inputs from this class, but one of the parameters for the input set discussed in Section 5.3.5

below is an 8-bit unsigned integer that triggers the most invariant violations when it is set to

a value from the set {8,9}. On examination, this parameter is interpreted as a bit mask. The

probability of generating these values for fuzzing is 2/28. Because the specific parameter will

not be perturbed for every test case, the probability of triggering this bug using fuzzing is much

lower than with a dictionary that includes a set of small integer values.

5.3.5 Bugs that require a combination of inputs from the above categories

local.coordinate frame and one of {local.velocity.∗, local.position.∗,

yaw, yaw rate, type mask}: by sampling pairs of values for this combination of fields, we

found that this bug performed best when the coordinate frame value was drawn from a dictionary

and either the type mask value was generated using the dictionary or the velocity, position, yaw,

or yaw rate value was generated using fuzzing. In this case, we suspect this is because, in com-

bination, coordinate frame and type mask are triggered by small sets of inputs and benefit from

dictionary-based testing, and the other fields is triggered by a class of inputs. This suggests that

some testing may benefit from type-aware input generation, such as fuzzing for floating point

values and a dictionary for 8-bit or 16-bit unsigned integer values.

5.3.6 Takeaway from input value set analysis

We have shown examples of bugs that are more efficiently discovered using fuzzing, and

bugs that are more efficiently discovered using dictionary testing. Some of the results suggest

that dictionary testing would benefit from a small dictionary that focuses on edge case values.

72

We evaluate this claim later, in Section 7.3. We also explore ways to tailor the dictionary to

robotics systems in Section 7.6.

5.4 Discussion
In this chapter, we compared dictionary-based testing and fuzzing on the autonomy systems

under test. We found that there are tradeoffs in efficiency and effectiveness between the two

methods, and performed some diagnoses to better understand these tradeoffs. Ultimately, we

found that the strength of fuzz testing lies in its generalized approach that can efficiently discover

bugs that can be triggered by broad ranges of input values, whereas the strength of dictionary

testing lies in its specialized use of edge case values. We also noted number of scenarios where

the test methods exhibited a high efficiency, which may be an indication that deeper bugs may

be masked by these fields.

We conclude that fuzzing and dictionary-based testing have significant enough differences in

efficiency, use case scenario effectiveness, and field effectiveness to warrant a hybrid approach.

Even in the cases where the methods exhibit field overlap, one method can be more efficient than

the other, based on the underlying data assumptions of the field. In the next chapter, we use these

observations to motivate and evaluate a hybrid testing approach that uses the advantages of both

testing methods.

73

74

Chapter 6

Hybrid models

From the previous chapter, we have some evidence that fuzz testing and dictionary-based testing

have different strengths. For example, we found that dictionary-based is more efficient at discov-

ering vulnerabilities in fields that use an enum-like semantic to encode state. At a higher level,

we saw that both fuzzing and dictionary-based testing each exhibit non-zero exclusiveness, that

is, they each find things that the other method misses. Furthermore, a high efficiency in some use

case scenarios under test does not necessarily correlate with a high field effectiveness and causes

us to suspect that some deeper bugs may be masked by fragile fields. This chapter explores

whether a hybrid model that iteratively excludes fields from testing and uses both test methods

together performs better than a purely fuzz- or purely dictionary-based strategy.

6.1 Research questions
The exploratory study of Chapter 5 motivated the following questions:

1. Are bugs masked, that is, does eliminating failure-triggering fields from testing lead to an

increased overall field effectiveness?

2. Does a basic strategy that chooses randomly between fuzzing and dictionary-based test-

ing at each step of testing perform better than a standalone fuzz-only or dictionary-only

strategy?

75

3. Does weighting the random strategy from question 2 towards one method consistently

perform better than a basic 50/50 weighted model?

4. Does a sequential strategy, that is, one that performs fuzzing first followed by dictionary-

based testing (or vice versa) perform better than the optimal (if any) weighted strategy?

Question 1 is necessary because it may affect the way we determine the field effectiveness

of a test method and therefore affects the way we answer subsequent questions. This question

is answered in Section 6.3. Questions 2-4 explore various hybrid methods and are explored in

Sections 6.4 to 6.6, respectively. The previous chapter leads us to hypothesize that the answers to

questions 1 and 2 are “yes.” This leads naturally to question 4 – performing testing sequentially

may allow one method to more efficiently eliminate fragile fields and allow the other method to

find deeper bugs.

If we are able to determine one hybrid strategy that is better than the others, a natural next

step is to examine the failure-triggering fields uncovered by each strategy to determine why the

strategy is better, and if it can be improved further. We explore this in Sections 6.6.1 and 6.7.

6.2 Experimental setup
To answer question 1, we run additional tests using each test method, where previously dis-

covered failure-triggering fields are excluded from testing. We iterate on this process, running

campaigns until no more failures are found within a fixed number of consecutive tests. For ex-

ample, if the initial campaign of fuzz tests from Section 5.2.1 found velocity and position

to be failure-triggering fields, we run a new campaign of fuzz tests with velocity and po-

sition excluded from the test value substitution step of testing (as described in Section 3.2.2).

That is, the velocity and position fields in the nominal input bag are left as-is, while the

remainder of the fields may be replaced by fuzzed values. If this new campaign of tests finds

joint state to also be a failure-triggering field, we run a new campaign of tests with the

velocity, position, and joint state fields excluded from testing. We iterate on this

76

process and keep track of the total number of failure-triggering fields discovered, until a test

campaign is run with no violations found. If this number is higher than the original effectiveness

of the method, we say that a masking effect is indeed present.

To answer the subsequent questions, we expand on the iterative field elimination to create an

average model of testing a system:

1. Begin with a data set that, for each use case scenario, contains tests for a given input

selection method and list of excluded fields. Each configuration of {fuzz, dictionary} and

failure-triggering fields found in testing has 50 completed experiments. In subsequent

steps, the particular subset in use will depend on the results of the previous steps that were

modeled. A full data set like this is required for comprehensive modeling.

2. At each step of the model, we choose a random use case scenario to advance, according to

its modeled state in a test-diagnose-exclude cycle:

a. Test: randomly select a test case based on the current list of excluded fields for the

use case scenario and particular test strategy. For example, if the model has excluded

the velocity field for the scenario and is performing a 50/50 random strategy, it

would randomly choose between fuzzing and dictionary and then randomly select a

test case from the corresponding set that has the velocity field excluded.

b. Diagnose: if the selected test case resulted in an invariant violation, take note of the

corresponding failure-triggering field(s) and increase the cumulative field effective-

ness of the model by 1.

c. Exclude: Add the failure-triggering field(s) to the list of the excluded fields for that

scenario.

3. When a given use case scenario reaches 100 consecutive test cases with no invariant vio-

lations, remove the use case scenario from consideration by the model.

4. Repeat steps 1-3 until no use case scenarios are left to model.

77

5. Repeat steps 1-4 200 times. Graphically speaking, each run of steps 1-4 gives a step func-

tion, where the x-axis is the number of test cases run and the y-axis is the cumulative field

effectiveness. Each step up of the step function happens when the test-diagnose-exclude

cycle in step 2 finds a failure-triggering test case and adds to the cumulative field effective-

ness. Averaging the cumulative effectiveness at each step of testing (that is, averaging the

200 step functions generated by 200 runs of steps 1-4) and plotting the result gives a curve

where the maximum y-value is the expected cumulative effectiveness of the test strategy

and the slope at any point of the curve represents the expected marginal efficiency.

It is important to distinguish the variables in these steps. When we say runs of the model,

we mean the number of times we modeled steps 1-4 to generate the average result (in this case,

we use 200). When we say consecutive tests without violation, we mean a set threshold of

consecutive number of tests cases without violations that, when seen, causes one run of the

model to terminate.

This graph is motivated by a simple testing and triage workflow within the software devel-

opment process. Namely, we consider the behavior where a bug is found, diagnosed to the fields

that are used to trigger the bug, and then logged into a bug database. Because testing and debug-

ging may be handled by different personnel on a software project, the tester might have to wait

for the bug to be fixed to continue testing. However, as to not waste time and to find different

bugs or different ways to trigger the same bug, the tester may simply remove the relevant fields

from the next round of testing and proceed with testing before the bug is fixed. Intuitively, the

graphs described by our process show the number of unique sets of relevant fields (i.e. the unique

entries in a bug database) found given a certain number of tests using this sort of workflow.

If the answer to question 1 is “yes,” the subsequent questions are answered using the cumu-

lative average model with failure-triggering fields excluded as they are discovered.

To answer question 2, we apply the cumulative average model where the strategy in step

2a. is a 50/50 random strategy, that is, a fuzz test case or a dictionary-based test case is chosen

78

with equal probability. If the average model achieves greater cumulative effectiveness than a

fuzz-only or dictionary-only strategy, we consider the 50/50 random strategy to be better.

Answering question 3 is similar, by changing the probability of choosing a fuzzing versus a

dictionary-based testing test cases from 0.5 to values between 0.1 and 0.9.

For question 4, we model the fuzz-first strategy by always choosing a fuzzing test case at

step 2a, until the model shows that no invariant-violating test cases were found for 100 consec-

utive tests. The model then always chooses a dictionary-based test case for that scenario for

the remainder of the calculation. The dictionary-first strategy is the same, but with fuzzing and

dictionary-based testing switched. If the average model achieves greater cumulative effectiveness

than the optimally weighted random choice strategy, we consider it to be better.

6.3 Cumulative model
Table 6.1 shows the results of the iterative exclusion strategy described above, as compared

to the initial field effectiveness results (from Section 5.2.3) for both fuzzing and dictionary-based

testing. The entries in the table correspond to field effectiveness, that is, the number of unique

fields found by each method. The bold entries in the table show where iteratively excluding fields

showed an increase in field effectiveness, that is, excluding fields from testing discovered new

fields.

Because it is possible that this increase effectiveness was due to the increased size of the

campaign of tests, we report the average maximum field effectiveness after 200 runs with the

average model, and the average number of tests it took to plateau, for the bolded entries from

table 6.1 in table 6.2. That is, if a single run of the model reached a maximum field effectiveness

of 3, and then found no violations for the remainder of the run, we save the number of tests it

took to reach the field effectiveness of 3. We average this number across runs to get an estimate

of how many tests it takes to plateau on finding unique failure-triggering fields. We use this

calculation because not all runs of the model reach the same maximum field effectiveness. Runs

with certain subsets of excluded fields do not find faults that other subsets do, whether due to

79

Table 6.1: Field effectiveness of test methods, before and after iterated exclusion

Scenario Dictionary -excluded Fuzzing -excluded

Ardu: cmd vel 2 2 2 2

Ardu: fence mission 2 2 1 1

Ardu: fence vel 2 4 2 2

Ardu: modes 0 0 1 1

Ardu:pos then accel 1 2 2 2

Ardu: setpoint pos 2 2 2 2

Ardu: setpoint raw 3 5 3 5

Fetch: disco 2 3 1 2

Fetch: wave 3 4 3 3

Turtlebot: nav goal 1 1 0 0

Turtlebot: nav scan 1 1 1 1

Turtlebot: teleop vel 2 2 2 2

Table 6.2: Average field effectiveness and number of tests to reach effectiveness plateau

Scenario and test method average field effectiveness Tests to reach effectiveness plateau

fence vel, dictionary 4.00 55.8

pos then accel, dictionary 2.00 3.73

setpoint raw, dictionary 2.51 29.98

setpoint raw, fuzzing 3.08 31.02

disco, dictionary 2.50 32.22

disco, fuzzing 2.21 18.59

wave, dictionary 2.03 5.59

80

Figure 6.1: Cumulative graph for Ardu, with iterative failure-triggering field exclusion

masking effects or due to a small campaign size.

The reason that the setpoint raw dictionary entry is lower than in table 6.1 is because finding

some of the fields has very low efficiency, such that they were not discovered in some of the test

campaigns. The number of tests in in the rightmost column is consistently lower 100, which was

original test campaign size in Section 5.2.3.

We display the iterative field elimination average model graphically for both fuzzing and

dictionary-based testing, in figs. 6.1 to 6.3. This shows how many tests are, on average, necessary

to reach a given expected effectiveness. The results of this section show that, indeed, a cumulative

average model is justified because shallow bugs mask deeper bugs.

81

Figure 6.2: Cumulative graph for Fetch, with iterative failure-triggering field exclusion

6.3.1 Discussion of budget

One question that arises from these graphs is whether additional testing is worth the extra

tests. For example, if one were to test well beyond 100 tests on the Turtlebot system (as in

fig. 6.3), they would not see a gain in field effectiveness. However, it takes almost 500 tests to

find one more failure-triggering field using dictionary-based testing. The y-value of each curve

for a given x-value can give the expected field effectiveness of each test method with the test

budget of the given x-value, but the real merit of this visualization is in observing a what y-

value the curves level off. If one test method is able to reach a higher maximum expected field

effectiveness, that means it triggered failures in fields that the other method did not. As per the

discussion in Section 4.1.2, this means that that test method may have found a larger number of

unique bugs. If the Turtlebot system had only been tested and debugged using fuzzing before

being deployed, it would likely have the remaining vulnerability. This may pose a safety or at

least monetary risk to the project. Hence, when examining the hybrid strategy graphs below, it is

82

Figure 6.3: Cumulative graph for Turtlebot, with iterative failure-triggering field exclusion

83

important to view gaps between the maximum y-values of each curve as possible undiscovered

bugs. A method that is not efficient enough to find the maximum number of relevant fields for a

given test budget or not effective enough to find them at all with any reasonable budget will not

achieve proper bug coverage.

6.3.2 Cumulative average model and large campaign analysis

By applying iterative field exclusion, we were able to reach a point where each use case

scenario was tested with a campaign of test cases that yielded no more invariant violations for a

fixed set of consecutive tests. This created the opportunity to verify that our initial testing budget

was reasonable. We ran 300 tests on each scenario with all fields excluded, and found no new

failures. This indicates that our initial test campaigns were sufficient for testing the systems.

6.4 50/50 random hybrid strategy
We plot the results for all three of the systems under test in figs. 6.4 to 6.6. The main ob-

servation is that, in all systems, the 50/50 random strategy outperforms either base method in

terms of effectiveness. Note how, in the Ardu system, the random strategy illustrates the tradeoff

between efficiency and effectiveness – because the fully fuzz strategy is generally less efficient,

the random strategy efficiency is less than the dictionary efficiency. However, the fuzz strategy

finds a relevant field that the dictionary strategy does not, so using 50/50 random leads to a higher

effectiveness. In general, this result confirms our hypothesis that even a naive hybrid strategy can

outperform either standalone test method.

84

Figure 6.4: Cumulative graph for Ardu with 50/50 random hybrid strategy

85

Figure 6.5: Cumulative graph for Fetch with 50/50 random hybrid strategy

86

Figure 6.6: Cumulative graph for Turtlebot with 50/50 random hybrid strategy

87

Figure 6.7: Weighted random strategy for Ardu (the first number is the percentage probability

of selecting a dictionary test case, that is, 30/70 means a 30% chance of dictionary vs. a 70%

chance of fuzzing)

6.5 Weighted random hybrid strategy
We plot the results for question 3 in figs. 6.7 to 6.9. In all cases, the 50/50 random strategy

performs better than or within the error bounds of the best random strategy for the system under

test, and is therefore used as a baseline for comparison below. The main takeaway is that any

naive random hybrid strategy is beneficial, but the test methods perform well enough individually

that tuned weighting does not largely matter.

88

Figure 6.8: Weighted random strategy for Fetch.

Figure 6.9: Weighted random strategy for Turtlebot

89

Figure 6.10: Comparison of fuzz-first and dictionary-first strategies for Ardu

6.6 Fuzz-first and dictionary-first strategies

We plot the results for question 4 in figs. 6.10 to 6.12.

Note that for all the systems, the first part of the fuzz-first strategy curve matches the fuzz-

only strategy line, and the first part of the dictionary-first strategy line matches the dictionary-

only strategy curve. This is consistent with the behavior of the strategies.

For all systems, the dictionary-first strategy outperforms the 50/50 random strategy and

the fuzz-first strategy. We can conclude that dictionary-based testing systematically eliminates

failures-triggering fields for each test and reduces masking effects faster. In theory, a 50/50

random strategy, if given enough time and a large enough threshold for consecutive non-failure-

triggering test cases, would eventually reach the same maximum effectiveness, but on average it

is less efficient.

90

Figure 6.11: Comparison of fuzz-first and dictionary-first strategies for Fetch

91

Figure 6.12: Comparison of fuzz-first and dictionary-first strategies for Turtle

92

Figure 6.13: Comparison of dictionary-first and fuzz-first strategies for the nav goal scenario

(Turtlebot system)

6.6.1 Why dictionary-first is better

To answer why the dictionary-first strategy performs the best in all systems, we examine the

performance of the strategies by use case scenario. We begin by displaying all of the graphs for

the Turtlebot system as an illustrative example, and then only provide the relevant graphs for

Ardu and Fetch. The remainder of the per-component graphs can be found in Appendix B. In

most of these scenarios, all of the strategies performed about the same. In each of the cases of

fence mission, fence vel, and modes (Ardu system), either the dictionary or fuzz method had

zero exclusiveness with respect to the other, and hence the other method (and its corresponding

“-first” strategy) performed better.

93

Figure 6.14: Comparison of dictionary-first and fuzz-first strategies for the nav scan scenario

(Turtlebot system)

94

Figure 6.15: Comparison of dictionary-first and fuzz-first strategies for the teleop vel scenario

(Turtlebot system)

95

6.6.1.1 Dictionary-first in Turtlebot

For Turtlebot, the scenarios in which we found invariant violations are nav goal, nav scan,

and teleop vel. We plot the individual cumulative effectiveness graphs in figs. 6.13 to 6.15. We

see that the nav goal scenario is responsible for the differences in performances of the strategies.

Upon further examination, we see that the covariance field only triggers a failure in

dictionary-based testing. The position field triggers a failure in fuzz-based testing, but only

when covariance is excluded. Fuzzing is able to find some failures in extremely fragile fields,

but needs covariance to be excluded to find failures in other fields. This likely means that

covariance is a field that is robust to fuzzing and will ignore faulty inputs, which contributes

to masking.

We verified that the system ignores faulty inputs by replaying the test inputs and observing the

system in simulation. First, we note that the covariance field appears in every entry of a large

array within the nominal input, and so a 20% nominal input replacement percentage ensures that

multiple instances of this field are very likely to be perturbed within every test case. We indeed

verified that, for every test case generated, at least one covariance field was perturbed using

a test value. The nominal behavior of the system is to receive a navigation goal and begin to

move to that goal. In the cases where dictionary-based testing causes the system to exhibit a core

dump, the robot did start moving in simulation before the node (and thus the simulation) crashed.

In all fuzz cases that we sampled for replay, the robot did not move at all. This is evidence that

the system was indeed rejecting these inputs.

6.6.1.2 Dictionary-first in Ardu

In Ardu, the setpoint raw scenario contributes to the dictionary-first strategy performing

best, as illustrated in fig. 6.16. In this case, the type mask field found only by dictionary

masked the discovery of the yaw rate field found by fuzzing.

96

Figure 6.16: Comparison of dictionary-first and fuzz-first strategies for the setpoint raw sce-

nario (Ardu system)

97

Figure 6.17: Comparison of dictionary-first and fuzz-first strategies for the wave scenario (Fetch

system)

98

6.6.1.3 Dictionary-first in Fetch

Finally, in Fetch, the scenario in which the dictionary-first strategy performs the best is wave.

This is plotted in fig. 6.17. Here, we find that the operation field, which only triggers a failure

in dictionary-based testing, is required to be excluded for fuzzing to find failures in other fields.

Similarly to Turtlebot, this likely means that operation is a field that causes the system to

ignore most inputs if data assumptions on the field are not met. However, when operation is

excluded from testing, fuzzing can uncover failures in other fields.

6.6.2 Dictionary-first takeaway

In all three of the systems we tested, we encountered scenarios in which the dictionary-first

strategy performed better than any other strategy. In all of these cases, we discovered specific

fields that had data assumptions that rejected fuzzed inputs and did not allow the system to be

exercised in a deep way. However, these fields were vulnerable to dictionary-based testing, and

once found using the dictionary technique, could be eliminated to find other bugs using fuzzing.

6.7 Other methods
The results of Section 6.3 as well as the high input set efficiency of fuzzing as demonstrated in

Section 5.3 suggest that there might be some benefit to a strategy that fuzzes briefly first to sweep

any very fragile fields, and then switches to a dictionary strategy followed by a fuzz strategy.

Another strategy is to use weights at both stages of testing. For example, select dictionary-based

test cases with a 90% probability versus fuzz, and, when no more invariant violations are found,

switch to a scheme where fuzz test cases are selected with 90% probability versus dictionary.

We attempt this and plot an example in fig. 6.18. Note that in this figure, “90% D - 10%

F” corresponds to the strategy just described, where dictionary test cases are selected with a

probability of 90%. The strategy then switches to 90% bias towards fuzz test cases. “80% D

- 20% F” follows the same convention, but with an initial weight of 80% towards fuzz. Ardu

and Turtlebot, not pictured, had similar results as Fetch. We find that biasing towards fuzzing

99

Figure 6.18: Comparison of additional hybrid methods on the Fetch system

in the first step, whether by performing fuzz initially or by weighting a small amount of test

cases towards fuzzing, does not help. This is likely because dictionary-based testing, while less

efficient for some inputs, can still find them.

6.8 Discussion
By comparing weighted random strategies against fuzz-first and dictionary-first strategies,

we found that the dictionary-first strategy performs better than the 50/50 random and fuzz-first

strategy in all systems. By performing deeper analysis, we found that this is because dictionary-

based testing is able to find two specific fields in these systems that are masked by fuzz testing.

We have shown how our modeling and analysis approach can lead us to this insight. We have

observed this phenomenon in two separate use case scenarios in three separate systems, and

suspect that this sort of masking will occur in other autonomy systems. We conclude that it is

advantageous to use the dictionary-first strategy when testing.

100

Chapter 7

Additional test input generation methods

In previous chapters, we examined only dictionary-based testing and fuzzing as test input gen-

eration methods. While we showed that a dictionary-first hybrid approach yields the best results

according to our metrics, we did not explore any other modifications to the test methods them-

selves. In this chapter, we show that our metrics can be applied to evaluate several other methods,

including ones that were motivated by results in Chapters 5 and 6.

7.1 Guiding Questions
To outline this chapter, we ask several questions to guide our exploration:

1. How does testing efficiency change when the nominal input replacement percentage is

changed, for both fuzzing and dictionary-based testing?

2. Does a smaller dictionary yield higher efficiency?

3. Does mutating the fields of a given nominal input result in a better testing efficiency/effectiveness

when compared to replacing the field with a fuzzed or dictionary value?

4. Can mutating the values in the dictionary, as an attempt to systematically expand the dic-

tionary, improve efficiency or effectiveness of the dictionary approach? Can we use these

results to improve the dictionary?

101

5. Are there gains in efficiency/effectiveness when dictionary values take into consideration

the semantics of a field (for example, discrete-value fields such as enumerator-style values

or bitmasks)?

Question 1 is explored in Section 7.2. Section 7.3 answers question 2. Questions 3-5 are

explored in Sections 7.4 to 7.6, respectively.

7.2 Nominal Input Replacement Percentage
As described in Chapter 3, the default replacement percentage used in our tool is 20%. The

results presented thus far use this percentage. This percentage was chosen because it was histor-

ically effective at triggering failures in systems tested. Here, in order to explore how to optimize

the test methods we use in our work, we measure how changing the replacement percentage af-

fects the efficiency and effectiveness of each method. Intuitively, a replacement percentage that

is too small will have a low probability of perturbing a relevant field or combination of relevant

fields, while a replacement percentage that is too large might be rejected by the robot for being

malformed and thus will not test any deep functionality. However, for a very fragile system, a

high replacement percentage may more efficiently detect failures that allow the tester to eliminate

fragile fields from testing, which would facilitate finding deeper bugs.

For scenarios that we found failures using dictionary or fuzz testing in, we ran exceptional

dictionary and fuzz experiments with replacement percentages ranging from 10 to 100 in incre-

ments of 10. As a representative example, fig. 7.1 shows the effect of replacement percentage

when using dictionary-based testing on the Ardu system. The remainder of the results are in

Appendix C.

The main takeaway of these results is that efficiency does indeed vary by replacement per-

centage, and that several patterns jump out. Notably:

• Some test scenarios are “fragile,” that is, for any replacement percentage, the testing effi-

ciency will be very high. The next step in testing these scenarios should be to diagnose for

102

Figure 7.1: Efficiency comparison for replacement percentage using dictionary-based testing on

the Ardu system.

103

the failure-triggering fields and discard those fields from subsequent testing to find deeper

bugs.

• Some test scenarios can be eventually crashed using any replacement percentage, but show

a clear peak in efficiency for a certain percentage.

• Some test scenarios need a high input replacement percentage to crash. We refer to these

scenarios as “stubborn.” In these cases, replacement percentage affects the effectiveness

of a scenario, because a low replacement percentage may not discover any bugs at all.

These results suggest that replacement percentage can be changed during testing to find more

bugs. In particular, if a test method has stopped finding bugs using one replacement percentage,

it may be beneficial to increase the percentage. Detailed exploration of this is left to future work.

Furthermore, we mention cases below where a higher nominal input replacement percentage can

be used in conjunction with the other input generation methods, such as mutation.

7.3 Smaller dictionary size
Results in Section 5.3 suggested that a large dictionary may decrease the efficiency of testing.

To see if dictionary efficiency could be improved, we reduced the dictionary entries for each field

type to a very small set (about 10% of the original size) of suspected edge case values. We plot

the results in fig. 7.2.

In some cases, this new approach outperformed the default dictionary, but the benefit is not

consistent across systems and scenarios. This suggests that testing may benefit from a tiered

dictionary approach, where the size of the dictionary is progressively expanded as testing goes

on, but this is left to future work.

We hypothesized that a smaller dictionary combined with a higher nominal input replacement

percentage may have a better efficiency and effectiveness, because the nominal input values are

somewhat analogous to the well-formed values we removed from the dictionary. In the modes

scenario for Ardu, we found that a small dictionary combined with a nominal input replacement

104

Figure 7.2: Efficiency comparison for fuzz, dictionary-based, and smaller dictionary.

105

percentage of 80% was able to trigger a failure using a field that was previously only found

using fuzzing. While true that this does not improve effectiveness for the system when used in a

hybrid technique that includes fuzzing, it is promising when compared to a basic dictionary-only

technique.

7.4 Nominal input mutation
This section, as well as Sections 7.5 and 7.6, deal with methods that did not consistently

show the same results for all systems. Instead, we present specific cases where these approaches

managed to succeed at uncovering failures, and explain why this was the case.

We applied nominal input mutation, as described in Section 3.3.3 to all the systems under

test. In summary, this involved adding or multiplying the original values by small numbers. We

saw interesting results in two different cases:

• In the Ardu system, mutation violated the speed limit violation in several scenarios when

applied to the velocity field. Recall from Section 5.2.2 that neither fuzzing nor dictio-

nary triggered speed limit violations in this system. Interestingly, the velocity field was

the one contributing to the high software crash efficiency for fuzzing and dictionary-based

testing on this system. Therefore, we suspect that mutation changes the values by a small

enough amount to only trigger the speed limit violation rather than a core dump, while

dictionary and fuzzing are more heavy-handed.

• In the Fetch system, both nominal input mutation and dictionary mutation (discussed in

Section 7.5) found failures in the operation field. While dictionary-based testing was

able to find this failure eventually when enough fields were iteratively eliminated from

testing, the mutational approach found it more efficiently without the need for iterative

elimination. However, this may again be due to a masking effect – because mutation only

found failures on this field and not on other fields, it behaved essentially as if the other

fields had been excluded from testing already.

106

• In the Turtlebot system, mutation combined with an 80% nominal input replacement (that

is, mutating 80% of nominal fields) found a previously undiscovered (by dictionary or

fuzzing) set of failure-triggering fields: range max, range min, and an entry in the

ranges array. The names of these fields indicate that they are semantically tied, and

it may be the case that nominal input mutation is able to better exploit data assumptions

because it only changes the values by a small but significant amount rather than replacing

them.

7.4.1 Mutating strings

Because arithmetic mutations cannot be applied to strings, we also tested a special string

mutation. This method did not improve the efficiency or effectiveness of the testing approach.

For all of the systems we tested, only one string field (group name in Fetch) was found to

trigger failures, and it was sensitive to many fuzz and dictionary inputs.

7.5 Mutating dictionary values
Mutating the dictionary attempts to broaden the dictionary in a systematic way. When we

initially ran these tests, we found that the efficiency of this method was comparable to the orig-

inal dictionary-based testing. However, we suspected that this was because the mutations often

duplicated values in the dictionary (for example, 1 added to 0 yields 1, which is already in the

dictionary). We then changed the dictionary mutation to only create new values. That is, if mu-

tation resulted in a value already in the dictionary, our testing tool kept mutating until a novel

value was created.

One of the intended benefits of this method is to generate dictionary values that might have

been left out of the dictionary. In practice, we found that this method actually performs the best

for fields that Section 5.3.5 classifies as “categorical” fields – because this method expands the

dictionary, it starts behaving more like fuzzing.

The specific cases where this method performed well were:

107

Figure 7.3: Definition of the mavinterface/MISetMode message

• In the fence mission scenario on the Ardu system, this method triggered a failure in

the waypoints field. This was a field that neither dictionary nor fuzzing were able to

generate failure-triggering values for.

• In the disco scenario on Fetch, this method had higher efficiency than dictionary testing

in finding “categorical” fields. It also found the operation field before dictionary did,

similar to nominal input mutation.

7.6 Semantically-specialized dictionaries
Upon examining the nominal input bags, we noticed several opportunities for defining special

dictionary entries. We describe them here.

7.6.1 Discrete values

This category encompasses enumerator-type and bitmask-type fields. The notable thing fea-

ture of fields is that they are often defined in a Robot Operating System (ROS) message descrip-

tion, which is an interface that is externally visible to the tester. Special values are defined as

constants in the message itself. For example, in the Ardu message mavinterface/MISetMode,

several special values are defined, such as MAV MODE AUTO ARMED=220 (see fig. 7.3). These

values often seem arbitrary and might not exist in the exceptional value dictionary. We tested

108

the benefits of automatically detecting these values (which can be automated with a script by

parsing the message definition for an “=” character) and using them for the dictionary entries

for their corresponding fields. For a field in Ardu called coordinate frame, we found that this

specialized method had almost double the efficiency for triggering the failure than a basic dic-

tionary approach. Even though effectiveness was not changed because both methods were able

to trigger this bug, the increased efficiency indicates that this approach can be lucrative for this

type of field.

7.6.2 Robotics Physics Values

In our examination of the nominal input bags, we determined several fields that represent

values such as angles and rotational quaternions. We found a testing efficiency of near 1 when

special quaternion values were used to test the pose.orientation.z field in some messages

used by the Ardu system, while testing on angle-type fields on all systems yielded no gains in

efficiency or effectiveness. This semantically-specialized approach is more time-consuming for

the tester to set up, because it requires identifying special fields using manual inspection and

coming up with special values, but may be worthwhile in a “long tail” debugging endeavor.

7.6.3 Strings

We observe that strings in the nominal bags represented things such as physical robot compo-

nent names (“shoulder lift joint”) and mode-determining variables (“camera depth -

frame”). We hypothesized that adding these values to the dictionary would cause the robots to

act in modes that they were not expecting. We tested whether adding these values to the dictio-

nary could result in testing improvements, but we found no gains in efficiency or effectiveness

using this method. The only string-type relevant fields that we uncovered in our testing required

simple values such as the empty string to trigger a failure, and did not need anything complicated.

109

7.7 Exploitation versus Exploration in a hybrid method

In this chapter, we have shown several specific cases where a more advanced testing approach

may have been beneficial to use. However, we did not find consistent enough results to recom-

mend an advanced approach over our hybridized dictionary and fuzzing strategy. We do have

enough anecdotes that, even if a test method has not been fruitful for the systems we tested, it

may prove beneficial in given use case scenario in a new system. In this case, it may be beneficial

for the testing strategy to change in real time to reflect this. The general problem of dealing with

unknown rewards is known as exploitation versus exploration [109], which has been studied in

the context of reinforcement learning. Particularly, we reference a k-armed, otherwise known as

multi-armed, bandit [23]. This problem is described using the metaphor of a slot machine player

who can choose any of k arms and is trying to maximize their reward. The player has a model of

the reward probability for each of the arms, and the model for a given arm may be improved by

pulling the lever more times and observing the reward. The player has to balance “exploitation,”

or pulling the arm they believe to be optimal, with “exploration,” or pulling an arm in order to

gain more information about its reward probability.

Concretely, in the case of devising an optimal testing strategy, each arm represents a different

choice of test method for a test case, and the reward is a potential invariant violation in that test

case. Furthermore, because we eliminate fields from testing (as motivated in Section 6.3), we are

discussing a “non-stationary” or “restless” bandit problem [71], where the reward probabilities

change over time (i.e. when a failure is found, we eliminate the relevant fields from testing, and

so the testing result probabilities change). At each step of this online testing strategy, we would

like to exploit the method that would yield the most invariant violations, but we do not know

which method this is. We can build up a model using exploration, by choosing a method and

seeing if it yields results. We also may have a prior model of the reward functions, for example,

based on results of other use case scenarios in the system.

110

7.7.1 ε-greedy approach

A common approach to the k-armed bandit problem is the ε-greedy algorithm [73], where

the lever that is believed to be optimal is chosen with a probability 1 − ε for a fixed ε, and at

random from the other levers with a probability ε. Usually ε is chosen to be small, for example

0.1, such that exploitation is favored over exploration. While this method does not expressly

address the non-stationary problem, given enough use case scenarios, this strategy can build up

a model for how well the test methods work. Some initial exploration in applying this approach

for our work yielded fruitful results that outperformed the 50/50 random strategy described in

Section 6.4. However, because the number of combinations of replacement percentages, input

generation methods, and eliminated fields is so vast, modeling this strategy comprehensively was

infeasible for this dissertation. Application of the ε-greedy algorithm in selecting test cases that

may involve advanced input selection techniques is recommended as promising future work.

7.7.2 More approaches

Other approaches include variations of ε-based greedy methods [73], algorithms based on

UCB (upper confidence bound) [73], and Thompson sampling [14]. Woo et al. have applied

various k-armed bandit policies to bit-flip mutational fuzzing, and have found good result with

weighted random, round robin, and EXP3.S.1 strategies [111]. As research into k-armed bandits,

and in particular restless bandits, advances, testers will be able to choose an advanced exploration

vs. exploitation strategy to effectively and efficiently test systems in real time. The general

observations we have made in this chapter about various test methods and their variations can be

used as prior beliefs for any of these strategies.

7.8 Conclusions
In this chapter, we presented several ways to tweak the basic testing methods from Chap-

ter 5 and explored whether these tweaks resulted in gains in testing efficiency and effectiveness.

111

The benefits of the approaches were not consistent across systems, and sometimes involved ed-

ucated guesses at effective combinations (such as mutation combined with high nominal input

replacement percentage). Nonetheless, we found several examples where these approaches may

be promising on future systems. We concluded with a discussion on exploitation versus explo-

ration problems, which encompasses the challenge of applying advanced strategies when their

payoffs may be unknown.

112

Chapter 8

Lessons Learned and Recommendations

In Chapters 5 to 7, we presented empirical analysis of different test input generation methods

and test case selection schemes. The recommendations that came out of this analysis pertain

specifically to input parameter generation, but, along the way, we have discovered some general

recommendations and lessons learned about autonomy software. This chapter summarizes these

findings, in several categories:

1. Testing autonomy systems

2. Writing testable autonomy systems

3. Writing safe autonomy systems.

8.1 General recommendations for testing autonomy systems
One of the goals of this dissertation is to show how past testing experiences can concretely

inform future directions. For example, if overflow bugs are common for one type of system, test-

ing tools should be expanded to exploit overflow vulnerabilities for future systems of that type.

Starting with the Automated Stress Testing for Autonomy Architectures (ASTAA) project at the

National Robotics Engineering Center (NREC), we have had the opportunity to learn from many

autonomy system bugs, as well as from the process of designing a testing framework for auton-

113

Figure 8.1: Channel rerouting instrumentation needed for a true interceptor

omy systems. Apart from input selection, we have several recommendations for architecting a

testing project, as a whole.

• Interception testing vs. log replay: the original ASTAA project featured interception test-

ing, which allowed for high-fidelity preservation of system state and timing requirements.

However, simulating the network topology in order to allow for a man-in-the-middle in

every communication channel creates a large overhead to create the testing infrastructure.

For Robot Operating System (ROS) systems, to simulate communication between nodes,

we would need to instrument our own star topology of ROS nodes, re-routing every chan-

nel we intercept on. Figure 8.1 illustrates this. The left side is an abstraction of the system

as-is, with each colored arrow representing a different channel. The right side shows the

same channels renamed and routed through an interceptor node. In this dissertation, we

have shown that perturbing and replaying nominal input bags finds a non-trivial set of bugs,

with less complexity. Interception would have allowed us to inject messages into control

loops, as subsequent inputs to a control loop change based on behavior (e.g. laser scan data

that causes the robot to change its laser sensor position, which affects what laser scan data

is seen next). Instead, we had to be careful to find interfaces with minimal feedback, such

as command velocity and goal points. Because we were able to find non-trivial results with

log replay, we believe that it is practical to use log replay as a first step, before moving on

to interception if time and budget allow.

114

• Extracting interfaces: a test is only non-trivial if the interface it tests is meaningful. In

this dissertation, we relied on online documentation of open source autonomy systems to

extract interfaces. We found that a basic knowledge of robotics is helpful: at first glance,

a ROS node diagram may be confusing, and it may not be apparent which ROS topics are

relevant inputs for testing. We have devised a few tricks in testing interfaces. For example,

the teleoperation interface to a robot is usually not so interesting, as, in our experience,

it is pretty robust to unexpected characters/keyboard commands. However, this interface

abstracts the command velocity interface to a robot, and by recording the command mes-

sages output by the teleoperation node, we can gather nominal data to command the robot.

Furthermore, some robots are commanded by interfaces that are not easily interceptible

(i.e. ROS services), and it may be necessary to write a small amount of middleware to be

able to access these interfaces using automated robustness testing and test the robots in a

meaningful way.

• Decreasing testing infrastructure bottlenecks: as mentioned in Section 8.1.1, simulation is

very costly. To test autonomy systems efficiently, it helps to test the smallest component

possible. The Robustness Inside Out Testing (RIOT) [64] project focuses on testing single

nodes and abstracting to the external controls, using robustness testing techniques. We

suspect that the hybrid approach outlined in this dissertation can also be beneficial for

testing at the component level.

• Measuring dimensionality: while we found that most bugs have one or two relevant fields,

with possibly a handful of startup messages, it is difficult to exploit low dimensionality in

testing. If the assumption is that most failures are triggered by just one parameter in a tra-

ditional software API call, 1-wise coverage of the input dictionary suffices [52]. However,

in a robotics system, an input may have a hundred or more messages with many fields per

message. We indirectly exploit low dimensionality by using a comparatively low nominal

input replacement percentage of 20%. As far as we can tell, random perturbation of a

115

nominal input bag is an effective way to exploit autonomy systems, but using a hypothesis

of low-dimensionality bugs to improve testing is left as future work.

8.1.1 Actual testing cost and optimizations

Until this point, we have discussed efficiency and effectiveness in terms of the number of

tests, and not the time it takes to run a test. Furthermore, in the sections above, we have not

incorporated the cost of diagnosing the relevant fields needed to trigger a failure. We present our

observations of the real time cost of testing systems and suggest some optimizations.

8.1.1.1 Time to test

In our experience, the cost of a single test case for an autonomy system is much, much

greater than the cost of a single robustness test API system call. This is because a robot must

be initialized to a testable state, in simulation. To ensure more accurate results, we run our

simulations in real time. In practice, we have found that it takes about 60-300 seconds to run

each test. This testing time cannot be easily reduced by providing a smaller input bag, because

most of the overhead comes in setting up and tearing down the simulation and getting the robot

into a testable state. Because testing a robot is so costly, optimizing for testing efficiency becomes

important, since a test budget is usually decided based on time and not number of tests, and a

longer average test case time means fewer total test cases in the budget.

8.1.1.2 Time to diagnose

Once a failure is found, it must be diagnosed. So far in this dissertation, we have not been

considering the cost of diagnosis. This is because diagnosis must happen in order to triage the

bug, so the cost incurred by diagnosis is unavoidable, as opposed to the cost incurred by a test

case that yields no invariant violation. However, this cost is fairly substantial. For example, for

every invariant violation, we verify that the result is reproducible by replaying the test input,

which doubles the testing time for that test case. We then delta debug the input, which reduces

a bag of 9-253 messages down to a small set of messages. At best, delta debugging runs 2 ×

116

log2(input size) tests, which is a substantial amount of time, especially given how long a test

case runs. After delta debugging, these minimal messages must be reduced to their relevant

fields, which is also costly, on the order of reducing 5-34 fields to 1-2. Again, this algorithm runs

2 × log2(perturbed fields) tests, at best. The costly diagnosis time motivates parallelization of

testing, which we discuss below.

8.1.1.3 Optimizations

As robotic simulation becomes more advanced, and as simulation time is accurately able to be

run faster than real time, the cost of testing overhead will decrease. However, care must be taken

to ensure that a sped-up simulation does not introduce inaccuracies into the test results. However,

the scope of this dissertation is for real-time simulation, so we discuss other optimizations here.

• Parallelization: Parallelization can be highly beneficial for testing. Because our tests are

independent up to the diagnosis step, doubling the number of computers used for testing

doubles the number of test cases run. For advanced strategies in a k-armed bandit problem

(as discussed in Section 7.7), parallelization of test cases can be used for parallel solu-

tions [47]. Furthermore, instead of using a “number of tests without invariant violations”

heuristic to decide when to switch testing to another use case scenario, scenarios can be

tested in parallel.

Parallelization gives even more gains in the diagnosis step. Delta debugging is a fairly

parallelizable algorithm, in that at least two independent test cases are run at each step of

the algorithm. While the number of concurrent test cases can vary at every step of the

algorithm, optimizations can make use of the extra computers by removing chunks of the

input bag at random. Because diagnosis is costly but necessary, having multiple machines

to run this step can greatly improve the usage of the testing budget.

• Nominal input size: As stated above, nominal input size does not have a big effect on test

time, but directly factors into the time it takes to diagnose a found bug. For this reason,

it is beneficial for the nominal input size to be small. However, if a nominal input is too

117

small, it may not encompass all of the functionality of a use case scenario and may reduce

test method effectiveness.

We experimentally verified if truncating the nominal input bag at intervals of 20% has an

effect on testing. For some systems, truncating at even 80% did reduce the efficiency of

the test campaign, or even caused scenarios to exhibit no failures under test. We suspect

that this is because the system was not exercised enough to expose the functionality where

the failures lie. We conclude that, even though it may be tempting to truncate a nominal

input to reduce diagnosis time, it is important to verify that the truncation still allows for a

full execution of the functionality under test.

• Not relying on fixed delays for system startup: Our initial system startup scripts in-

cluded a delay (in the form of a sleep command) between every step of startup, based

on observations for how long the systems took to start up. For example, between launch-

ing roscore (the ROS master node) and the simulator, we would include a delay of 5

seconds to allow roscore to initialize. In our experience, when we instead parsed for

key phrases in the log files that indicated that the software component has been initialized,

we noticed an improvement in both running time of the tests and the reproducibility of the

test case result. While a timeout is a simple way to get a system running, in practice, it is

fragile and not recommended for testing at-scale.

• Diagnosis by inference: Instead of finding a minimal input bag and set of relevant fields

algorithmically, we ran a large set of test cases and then examined the intersections of the

sets of perturbed fields. In some cases, we were able to hypothesize that a certain input field

triggered a bug because it was perturbed in very many failure-triggering input bags. If the

diagnosis for a single test case is particularly costly, or if many tests have already been run

and need to be diagnosed, this is a feasible method for making an educated guess about the

relevant fields to trigger a failure. However, this method is not precise and requires a bug

that can be found with high efficiency to produce enough test cases to make an inference.

118

Also, as nominal input replacement percentage rises, this method becomes less effective,

because the set of perturbed fields approaches the entire space of inputs.

As robotics simulation gets better, and as developers learn to write test-friendly code, the time

required for testing and diagnosis might decrease. However, because robots are cyber-physical

systems that require startup time and resources for simulation and logging, actual testing time

will remain greater than for simple API call-based desktop software testing. Because of this, this

dissertation uses tests to first failure as our metric for efficiency, and focuses on making recom-

mendations about test case generation itself. Optimization of test case runtime and diagnosis is

left to future work. At a given point in time for a given system, the duration of a test case will

remain roughly the same regardless of test input selection method, but a campaign of tests can

be made more efficient and effective by choosing the inputs in a strategic manner.

8.2 General Recommendations for having testable autonomy

systems
Apart from testing autonomy systems efficiently and effectively, the developers of autonomy

systems can take a few steps towards better testability for their robots. Most of the recommen-

dations we make here are specific to the autonomy domain, or are at least particularly applicable

to the autonomy domain versus traditional software domains.

• Good logging: system logs that are accurate, replayable, and parsable are invaluable in

both detecting and diagnosing problems. For instance, invariant detection would not be

possible without accurate and parsable system output. Furthermore, replayable system

logs allow us to instrument tests by replaying system state, and to verify that found bugs

are reproducible. This is especially important because autonomy system outputs exhibit

significant non-determinism, and replayable logs allow testers and developers to determine

what behavior is a side effect of this noise.

• Graceful failure: system nodes should not exhibit a silent failure, because other nodes de-

119

pend on their operation and can propagate a hang or crash failure through the entire system.

A node failure should not create an unsafe state of the system: safety-critical nodes should

have redundant safety shutoffs that stop the system gracefully. Watchdogs are one way to

detect node failure [67], and if a watchdog outputs a message with a guaranteed frequency,

it is easy to write an invariant to detect node failure. Nodes should also not malfunction

silently – some sort of checking should be done on the data of the node, especially if the

data is going to propagate through several nodes. This ties in to the importance of checking

for data assumptions at multiple levels. For example, NaNs propagate [89], so checking

float variables for NaN values should be done at all critical junctures. Detectable failures

not only help keep the system safe, but are invaluable for testing: the faster a node failure

or malfunction is caught, the easier automated failure detection is in terms of testing.

• Write safety invariants, or at the very least, safety requirements: in our previous work, we

stated that several of the systems we tested did not have safety requirements and therefore

could not be monitored for invariant violations. We showed that, for the systems that

had safety requirements, the majority of issues found were invariant violations. For this

dissertation, we had to deduce the safety requirements from documentation and write our

own invariants. This means we might have missed several key safety properties and did

not test for them. A clear, formal safety specification would have alleviated this issue.

• Expose interfaces at appropriate levels: robots are distributed systems that communicate

via messages, so the interfaces to a robot are largely dictated by this architecture. However,

in our testing experience, interfaces can be exposed better by providing a clear architecture

diagram of message passing, and show how input messages to one node translate to output

messages to another node.

• Provide nominal scenarios and examples: getting the robot to a testable state is a big bot-

tleneck in setting up a testing infrastructure for a robot. By providing nominal scenarios

that test all the message-passing interfaces of a robot, developers give testers the necessary

120

infrastructure by which to get the robot in a testable state and provide templates of these

interfaces. Nominal scenarios should include completion of all the basic intended func-

tionality of the robot. For example, if the robot has a path planner, a provided nominal

scenario should include a way to provide the relevant inputs to the path planning nodes of

the system.

• Ensure system portability: we were not able to test some systems because they required

a specific system set-up that was not compatible with our testing framework. Installation

scripts, in particular, quickly become of little use as outside package dependencies may

change their configuration. Instead of providing the system as a special virtual machine,

distribute the system as a package in the ROS ecosystem. If the system has other software

package requirements, provide installation instructions rather than, or alongside with, a

system-specific install script.

8.3 General recommendations for writing robust autonomy

systems
One of the goals of robustness testing is to catch bugs and fix bugs in a controlled environment

so that they do not manifest when the robot is operating in the real world. Testing a lot of

autonomy systems and analyzing the results can also reveal patterns that persist across systems.

These patterns can be a valuable lesson in common programming pitfalls that should be avoided

in order to write more robust systems.

• Speed limits: we have found at least one bug that we believe is an improper test of speed

limit. A simple comparison of the form !(speed > limit) does not suffice, because speed

may be a NaN or may be negative, which results in a false negative in the comparison as

written.

• Floats: Using floats in iterators is dangerous because floating point error can accumulate

and produce a completely unexpected result. Furthermore, comparisons with NaN always

121

return false (except in the statement NaN != NaN), and so every inequality involving a

floating point number should check for NaN.

• Mask values/enumerator values: Some bugs we found exploited discrete-valued fields (e.g.

mode numbers) in the nominal inputs. It is important to verify all assumptions made, such

as if the robot does not expect to be commanded to a non-zero velocity in a stop mode.

• Simple bounds checking: for each of the systems tested, we encountered a failure that was

triggered by either very large or very small values. If values for physical computations

are expected to fall within a reasonable range, this expectation should be coded into the

software to avoid violations. Furthermore, be cautious with values signifying “replan at-

tempts,” as we found that large inputs caused robot nodes to crash, likely from running out

of memory in computation.

122

Chapter 9

Conclusion

9.1 Summary

In this work, we addressed the challenge of test input generation and hybrid test case selection

methods for autonomy systems. To address the challenges of autonomy systems needing to be

safe and having large inputs without a centralized interface, we presented a test framework that

uses nominal input mutation at the communication layer and checks for faults using an invariant

monitor. We applied several test input generation techniques to three autonomy systems and

showed how these techniques exhibit tradeoffs. We used metrics of comparison between test

input generation techniques to show how to empirically evaluate test case selection strategies to

make a recommendation for a more efficient and effective test campaign.

In the end, we found that no single test generation strategy is as good as a hybrid strategy.

While even a simple 50/50 random strategy that chooses between fuzzing and dictionary-based

testing outperforms either method, there are further gains in testing efficiency and effectiveness

when we allow for strategies such as nominal input mutation and high nominal input replacement

percentage, especially later in testing. Ultimately, the strategy that consistently outperformed

the others for the systems tested was dictionary-first. This was due to fault masking: certain

fields were robust to fuzzing and were only detected as failure-triggering by dictionary-based

123

testing. Once these fields were eliminated from testing, fuzzing was able to discover other failure-

triggering fields.

9.2 Research contributions
This dissertation claims the following contributions, with their locations in the text noted:

9.2.1 An approach to metrics for comparing robustness testing techniques

We provide this in Chapter 4, Section 4.1 (“Metrics of comparison”), and Chapter 6, Sec-

tion 6.3 (“Cumulative model”). We found that two main metrics capture the tension between

seeking to find many bugs versus wanting those bugs to be unique. Our main metrics are effi-

ciency (the reciprocal of the average number of test cases to first invariant violation) and effec-

tiveness (the number of unique classes of a bug given a way to describe the bug, with a detailed

discussion of these classes in Section 4.1.2), along with the complementary notions of overlap

and exclusiveness

9.2.2 Robustness testing results for three open source autonomy systems

using dictionary-based testing, fuzzing and certain variations

We provide this in Chapter 5, Section 5.2.1 (“Efficiency and use case scenario effectiveness”),

Section 5.2.2 (“Invariant Effectiveness”), and Section 5.2.3 (“Diagnosis and field effectiveness”).

The variations are explored in Chapter 7. We not only apply fuzzing and dictionary-based testing

to the systems under test, but also explore nominal input mutation, changes to the dictionary

(namely, mutating dictionary values, lowering the size of the dictionary, and using semantically-

aware values), and replacement percentage. We find that both dictionary and fuzzing outperform

the other method in multiple instances, when measured in terms of efficiency and component and

field effectiveness. Among the variations to input generation techniques, we highlight several

cases where testing may benefit from more fine-tuned approaches.

124

9.2.3 A hybrid testing technique for each of the three open source auton-

omy systems, shown to outperform each of the basic testing methods

We provide this in Chapter 6, Section 6.6 (“Fuzz-first and dictionary-first strategies”) and

explore it further in Section 6.6.1 (“Why dictionary-first is better”). We find that even a simple

50/50 random strategy outperforms each of the basic testing methods in terms of efficiency and

effectiveness. We show that even more complex strategies can provide further gains, by evalu-

ating fuzz-first and dictionary-first strategies and showing that dictionary-first outperforms the

other strategies for the systems tested. Using our metrics and an investigation into the failure-

triggering inputs found by this strategy, we explain that this is due to a masking effect. That

is, fields that are robust to fuzzing prevent the system from exercising the full system state, and

finding and eliminating these fields using dictionary-based testing allows us to find deeper bugs.

9.2.4 A recommendation of heuristics for hybrid testing techniques and

a list of lessons learned to inform testing autonomy systems in the

future

We provide this in Chapter 6, Section 6.6.1 (“Why dictionary-first is better”) and touch upon

more advanced techniques in Chapter 7, Section 7.7 (“Exploitation versus Exploration in a hy-

brid method”). Most of this contribution comes from the entirety of Chapter 8. We evaluated

the benefits of our wining dictionary-first strategy empirically, but there were some recommen-

dations for testing and writing autonomy systems that we arrived at anecdotally from years of

experience working on these problems. These are summarized as lessons learned in Chapter 8.

Taken as a whole, we hope that all of these recommendations can be used to more efficiently

and effectively test autonomy systems, and inform how robotics software is written, leading to a

safer future in autonomy software.

125

9.3 Future work
Future work in the input generation for autonomy systems space can build upon the work

in this dissertation. Our work focused on testing at the system level, but a comparison of input

techniques can be done at the unit level to compare what inputs can generalize to the system

interface, as in the Robustness Inside Out Testing (RIOT) project [64]. Testing at the unit level

can also allow for the introduction of white-box techniques, as branch coverage on an individual

node is easier to achieve than coordinating branching over a distributed system of nodes.

While this dissertation focused on log replay rather than interception, applying the different

test input generation techniques using an interceptor may pay off, by exploiting the control loops

of an autonomy system.

It would also be interesting to incorporate repair into the process, rather than eliminating

fields from testing. This would give a more accurate measure of the unique failures discovered

in testing.

Some optimizations to testing may be possible, such as verifying if sped up simulation pre-

serves the test results run in a real-time simulation, or more parallelism to diagnosis algorithms

such as delta debugging. Furthermore, because we saw that most faults are triggered by a small

number of relevant fields, it may be possible to apply combination testing techniques that are

meant for large inputs and perform 1-wise or 2-wise parameter coverage.

Chapter 7 leaves several avenues for further exploration. Work on nominal input replacement

percentage and autonomy-specialized dictionary entries showed that these approaches would

benefit from more investigation. For example, using a higher replacement percentage after frag-

ile fields have been eliminated from testing may reveal more failures, especially when combined

with techniques such as dictionary entry mutation. The input generation itself may be improved

with a deeper investigation into semantically-specific entries, or with a tiered dictionary approach

that begins with a very small dictionary for efficiency and adds on more values if the testing bud-

get allows. We also suspect that a hybrid model that takes a mixed approach within a single

126

test case, for example, dictionary values for ENUM-style fields and fuzzing for continuous value

floats such as speed, would perform well. In addition, our examination was limited to two invari-

ants (software crashes and speed limits), but showed that invariant-specific exploitation, such as

NaNs and negative values for speed limits, is a promising space. Finally, the exploration versus

exploitation problem, as discussed in Section 7.7, may be fruitful for determining if an advanced

test input strategy should be used.

127

128

Appendices

129

Appendix A

Effectiveness tables

131

Table A.1: Fault-triggering fields per scenario, by test method, for the Ardu system

Scenario Dictionary Fuzzing Both

cmd vel twist.linear.∗,

twist.angular.∗

fence mission value.real value.integer

fence vel twist.linear.∗,

twist.angular.∗

modes altitude

pos then ac-

cel

pose.orientation.∗ pose.position.∗

setpoint pos pose.orientation.∗,

pose.position.∗

setpoint rawa type mask yaw position.∗,

velocity.∗

a Each field in the setpoint raw entries is implicitly paired with the coordinate frame

field, which appeared in every failure-triggering input

132

Table A.2: Fault-triggering fields per scenario, by test method, for the Fetch system

Scenario Dictionary Fuzzing Both

disco num planning at-

tempts

max velocity scal-

ing factor

pick place goal.possible -

grasps, goal.group -

name

wave num planning at-

tempts, max veloc-

ity scaling factor,

replan attempts

Table A.3: Fault-triggering fields per scenario, by test method, for the Turtlebot system

Scenario Dictionary Fuzzing Both

nav goal pose.covariance

nav scan time increment

teleop vel twist.linear,

twist.angular

133

134

Appendix B

Hybrid strategy performance by scenario

135

Figure B.1: Comparison of dictionary-first and fuzz-first strategies for the cmd vel scenario

(Ardu system)

136

Figure B.2: Comparison of dictionary-first and fuzz-first strategies for the fence mission sce-

nario (Ardu system)

137

Figure B.3: Comparison of dictionary-first and fuzz-first strategies for the fence vel scenario

(Ardu system)

138

Figure B.4: Comparison of dictionary-first and fuzz-first strategies for the modes scenario (Ardu

system)

139

Figure B.5: Comparison of dictionary-first and fuzz-first strategies for the pos then accel sce-

nario (Ardu system)

140

Figure B.6: Comparison of dictionary-first and fuzz-first strategies for the setpoint pos scenario

(Ardu system)

141

Figure B.7: Comparison of dictionary-first and fuzz-first strategies for the disco scenario (Fetch

system)

142

Appendix C

Replacement percentage efficiency

143

Figure C.1: Efficiency comparison for replacement percentage using dictionary-based testing on

the Ardu system.

144

Figure C.2: Efficiency comparison for replacement percentage using dictionary-based testing on

the Fetch system.

145

Figure C.3: Efficiency comparison for replacement percentage using fuzz-based testing on the

Fetch system.

146

Figure C.4: Efficiency comparison for replacement percentage using dictionary-based testing on

the Turtlebot system.

147

Figure C.5: Efficiency comparison for replacement percentage using fuzz-based testing on the

Turtlebot system.

148

Bibliography

[1] american fuzzy lop [Online]. http://lcamtuf.coredump.cx/afl//. Accessed:

2019-11-18. 2.3.1

[2] Open source drone software. Trusted, versatile, open. ArduPilot [online]. http://

ardupilot.org. Accessed: 2019-09-13. 3.5.2, 3.6

[3] Docker: Enterprise container platform [Online]. http://docker.com. Accessed:

2019-09-30. 2.

[4] Web archive: erlerobotics.com [Online]. http://web.archive.org/web/

20161101000000*/http://erlerobotics.com. Defunct. Accessed via

web.archive.org on 2019-09-13. 3.5.4

[5] Autonomous mobile robots that improve productivity — Fetch Robotics [Online]. http:

//fetchrobotics.com. Accessed: 2019-09-13. 3.5.1, 3.6

[6] Gazebo [Online]. http://gazebosim.org/. Accessed: 2019-09-13. 3.4.2

[7] Innok Heros [Online]. http://innok-robotics.de/en/products/heros.

Accessed: 2019-09-13. 3.5.4

[8] Introduction - MAVLink developer guide [Online]. http://mavlink.io. Accessed:

2019-09-13. 3.5.2

[9] ROBOTIS – OP3 [Online]. http://robotis.us. Accessed: 2019-09-13. 3.5.4

[10] GitHub: google/oss-fuzz [Online]. http://github.com/google/oss-fuzz.

149

http://lcamtuf.coredump.cx/afl//
http://ardupilot.org
http://ardupilot.org
http://docker.com
http://web.archive.org/web/20161101000000*/http://erlerobotics.com
http://web.archive.org/web/20161101000000*/http://erlerobotics.com
http://fetchrobotics.com
http://fetchrobotics.com
http://gazebosim.org/
http://innok-robotics.de/en/products/heros
http://mavlink.io
http://robotis.us
http://github.com/google/oss-fuzz

Accessed: 2019-11-18. 2.3.1

[11] Peach fuzzer: Discover unknown vulnerabilities [Online]. http://peach.tech/.

Accessed: 2019-11-18. 2.3.1

[12] ROS.org [Online]. http://ros.org. Accessed: 2019-09-13. 3.4.2

[13] TurtleBot [Online]. http://turtlebot.com. Accessed: 2019-09-13. 3.5.3, 3.6

[14] Shipra Agrawal and Navin Goyal. Analysis of Thompson sampling for the multi-armed

bandit problem. In Conference on Learning Theory, pages 39–1, 2012. 7.7.2

[15] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge University

Press, 2016. 1, 2.1

[16] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen, Wolf-

gang Grieskamp, Mark Harman, Mary Jean Harrold, Phil Mcminn, Antonia Bertolino,

et al. An orchestrated survey of methodologies for automated software test case genera-

tion. Journal of Systems and Software, 86(8):1978–2001, 2013. 2.6

[17] Ardupilot. ROS - dev documentation [Online]. http://ardupilot.org/dev/

docs/ros.html. Accessed: 2019-09-13. 3.5.2

[18] Narayanaswamy Balakrishnan and Valery B Nevzorov. A primer on statistical distribu-

tions. John Wiley & Sons, 2004. 4.3

[19] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. The oracle

problem in software testing: A survey. IEEE transactions on software engineering, 41(5):

507–525, 2014. 2.4

[20] Victor R Basili and Richard W Selby. Comparing the effectiveness of software testing

strategies. IEEE transactions on software engineering, (12):1278–1296, 1987. 2.6

[21] Boris Beizer. Black-box testing: techniques for functional testing of software and systems.

John Wiley & Sons, Inc., 1995. 2.1

150

http://peach.tech/
http://ros.org
http://turtlebot.com
http://ardupilot.org/dev/docs/ros.html
http://ardupilot.org/dev/docs/ros.html

[22] George A Bekey. Autonomous robots: from biological inspiration to implementation and

control. MIT press, 2005. 2.10

[23] Donald A Berry and Bert Fristedt. Bandit problems: sequential allocation of experiments

(monographs on statistics and applied probability). London: Chapman and Hall, 5:71–87,

1985. 7.7

[24] Antonia Bertolino. Software testing research and practice. In International Workshop on

Abstract State Machines, pages 1–21. Springer, 2003. 2.5

[25] Antonia Bertolino. Software testing research: Achievements, challenges, dreams. In 2007

Future of Software Engineering, pages 85–103. IEEE Computer Society, 2007. 2.1

[26] Ella Bounimova, Patrice Godefroid, and David Molnar. Billions and billions of con-

straints: Whitebox fuzz testing in production. In Proceedings of the 2013 International

Conference on Software Engineering, pages 122–131. IEEE Press, 2013. 2.3.1

[27] Jonathan Bowen and Victoria Stavridou. Safety-critical systems, formal methods and

standards. Software Engineering Journal, 8(4):189–209, 1993. 2.10.1

[28] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In OSDI, volume 8,

pages 209–224, 2008. 2.5

[29] CAPEC. Capec-94: Man in the middle attack [Online]. http://capec.mitre.

org/data/definitions/94.html. Accessed: 2019-11-30. 3.1

[30] National Robotics Engineering Center. Stress Testing for Autonomous Sys-

tems [Online]. http://www.cmu.edu/nrec/solutions/defense/

stress-testing-autonomous-systems.html. Accessed: 2019-09-13.

3.4.2

[31] Sang Kil Cha, Maverick Woo, and David Brumley. Program-adaptive mutational fuzzing.

In 2015 IEEE Symposium on Security and Privacy, pages 725–741. IEEE, 2015. 2.3.5

151

http://capec.mitre.org/data/definitions/94.html
http://capec.mitre.org/data/definitions/94.html
http://www.cmu.edu/nrec/solutions/defense/stress-testing-autonomous-systems.html
http://www.cmu.edu/nrec/solutions/defense/stress-testing-autonomous-systems.html

[32] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.

ACM computing surveys (CSUR), 41(3):15, 2009. 2.4

[33] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric Eide,

and John Regehr. Taming compiler fuzzers. In Proceedings of the 34th ACM SIGPLAN

conference on Programming language design and implementation, pages 197–208, 2013.

2.8, 4.1.2

[34] Hana Chockler, Orna Kupferman, and Moshe Y Vardi. Coverage metrics for formal ver-

ification. In Advanced Research Working Conference on Correct Hardware Design and

Verification Methods, pages 111–125. Springer, 2003. 2.5

[35] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. A survey of man in the middle attacks.

IEEE Communications Surveys & Tutorials, 18(3):2027–2051, 2016. 2.3.4

[36] Domenico Cotroneo, Domenico Di Leo, Roberto Natella, and Roberto Pietrantuono. A

case study on state-based robustness testing of an operating system for the avionic domain.

In International Conference on Computer Safety, Reliability, and Security, pages 213–227.

Springer, 2011. 2.9

[37] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beattie,

Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stackguard: Automatic

adaptive detection and prevention of buffer-overflow attacks. In USENIX Security Sympo-

sium, volume 98, pages 63–78. San Antonio, TX, 1998. 2.3.1

[38] Siddhartha R Dalal, Ashish Jain, Nachimuthu Karunanithi, JM Leaton, Christopher M

Lott, Gardner C Patton, and Bruce M Horowitz. Model-based testing in practice. In

Proceedings of the 1999 International Conference on Software Engineering (IEEE Cat.

No. 99CB37002), pages 285–294. IEEE, 1999. 2.3.1

[39] Rogério De Lemos, Holger Giese, Hausi A Müller, Mary Shaw, Jesper Andersson, Marin

Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M Villegas, Thomas Vogel, et al. Soft-

152

ware engineering for self-adaptive systems: A second research roadmap. In Software

Engineering for Self-Adaptive Systems II, pages 1–32. Springer, 2013. 2.10.2

[40] Arilo C Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H Travassos. A

survey on model-based testing approaches: a systematic review. In Proceedings of the 1st

ACM international workshop on Empirical assessment of software engineering languages

and technologies: held in conjunction with the 22nd IEEE/ACM International Conference

on Automated Software Engineering (ASE) 2007, pages 31–36. ACM, 2007. 2.3.1

[41] Joe W Duran and Simeon C Ntafos. An evaluation of random testing. IEEE transactions

on software engineering, (4):438–444, 1984. 2.3.5

[42] Stuart I Feldman and Channing B Brown. Igor: A system for program debugging via

reversible execution. In Proceedings of the 1988 ACM SIGPLAN and SIGOPS workshop

on Parallel and distributed debugging, pages 112–123, 1988. 2.8

[43] Phyllis G Frankl and Stewart N Weiss. An experimental comparison of the effectiveness

of branch testing and data flow testing. IEEE Transactions on Software Engineering, 19

(8):774–787, 1993. 2.5

[44] Phyllis G. Frankl and Elaine J. Weyuker. An applicable family of data flow testing criteria.

IEEE Transactions on Software Engineering, 14(10):1483–1498, 1988. 2.5

[45] Jerry Gao, H-SJ Tsao, and Ye Wu. Testing and quality assurance for component-based

software. Artech House, 2003. 2.2

[46] Willow Garage. PR2 overview — Willow Garage. http://www.willowgarage.

com/pages/pr2/overview. Accessed: 2019-09-13. 3.5.4

[47] Sylvain Gelly, Jean-Baptiste Hoock, Arpad Rimmel, Olivier Teytaud, and Yann Kalemkar-

ian. On the parallelization of Monte-Carlo planning. In ICINCO, 2008. 8.1.1.3

[48] Anup K Ghosh, Matthew Schmid, and Viren Shah. Testing the robustness of Windows

NT software. In Proceedings Ninth International Symposium on Software Reliability En-

153

http://www.willowgarage.com/pages/pr2/overview
http://www.willowgarage.com/pages/pr2/overview

gineering (Cat. No. 98TB100257), pages 231–235. IEEE, 1998. 2.3.5

[49] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. Grammar-based whitebox

fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 206–215, 2008. 2.6

[50] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated whitebox fuzz

testing. In NDSS, volume 8, pages 151–166, 2008. 2.3.1

[51] Amrit L Goel. Software reliability models: Assumptions, limitations, and applicability.

Software Engineering, IEEE Transactions on, (12):1411–1423, 1985. 2.6.1

[52] Mats Grindal, Jeff Offutt, and Sten F Andler. Combination testing strategies: a survey.

Software Testing, Verification and Reliability, 15(3):167–199, 2005. 2.3.3, 2.5, 8.1

[53] Richard Hamlet. Random testing. Encyclopedia of software Engineering, 2002. 2.6

[54] Philipp Helle, Wladimir Schamai, and Carsten Strobel. Testing of autonomous systems–

challenges and current state-of-the-art. In INCOSE International Symposium, volume 26,

pages 571–584. Wiley Online Library, 2016. 1.1.1, 2.10.2

[55] David Hovemeyer and William Pugh. Finding bugs is easy. ACM SIGPLAN notices, 39

(12):92–106, 2004. 2.1

[56] Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K Iyer. Fault injection techniques

and tools. Computer, 30(4):75–82, 1997. 2.3.4

[57] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Experiments of the

effectiveness of dataflow-and controlflow-based test adequacy criteria. In Proceedings of

the 16th international conference on Software engineering, pages 191–200. IEEE Com-

puter Society Press, 1994. 2.5

[58] Casidhe Hutchison. Lightweight formalizations of system safety using runtime monitoring

of safety proof assumptions. Master’s thesis, Carnegie Mellon University Pittsburgh, PA,

2016. 2.10.1

154

[59] Casidhe Hutchison, Milda Zizyte, Patrick E Lanigan, David Guttendorf, Michael Wag-

ner, Claire Le Goues, and Philip Koopman. Robustness testing of autonomy software.

In Proceedings of the 40th International Conference on Software Engineering: Software

Engineering in Practice, pages 276–285. ACM, 2018. (document), 2.10.2, 3.1, 3.1, 3.7.1,

5.3.3

[60] IEEE Computer Society. IEEE standard classification for software anomalies. IEEE Std,

1044, 1993. 2.3

[61] Andréas Johansson, Neeraj Suri, and Brendan Murphy. On the selection of error model(s)

for OS robustness evaluation. In 37th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN’07), pages 502–511. IEEE, 2007. 2.6

[62] Aaron Kane. Runtime monitoring for safety-critical embedded systems. PhD thesis,

Carnegie Mellon University Pittsburgh, PA, 2015. 2.10.1

[63] Cem Kaner, Jack Falk, and Hung Q Nguyen. Testing computer software. John Wiley &

Sons, 1999. 2.1

[64] Deborah Katz, Zizyte Milda, Casidhe Hutchison, David Guttendorf, Patrick Lanigan, Eric

Sample, Philip Koopman, Michael Wagner, and Claire Le Goues. Robustness Inside-Out

Testing (RIOT) Project. In 50th Annual IEEE/IFIP International Conference on Depend-

able Systems and Networks (DSN’20), 2020. Conference paper accepted and to be pre-

sented. 8.1, 9.3

[65] Mohd Ehmer Khan, Farmeena Khan, et al. A comparative study of white box, black box

and grey box testing techniques. Int. J. Adv. Comput. Sci. Appl, 3(6), 2012. 2.2

[66] Taghi M Khoshgoftaar and Timothy G Woodcock. Software reliability model selection: a

cast study. In Proceedings. 1991 International Symposium on Software Reliability Engi-

neering, pages 183–191. IEEE, 1991. 2.6.1

[67] Philip Koopman. Better embedded system software. Drumnadrochit Education, 2010. 8.2

155

[68] Philip Koopman and Michael Wagner. Challenges in autonomous vehicle testing and

validation. SAE International Journal of Transportation Safety, 4(1):15–24, 2016. 3.1

[69] Philip Koopman and Michael Wagner. Autonomous vehicle safety: An interdisciplinary

challenge. IEEE Intelligent Transportation Systems Magazine, 9(1):90–96, 2017. 2.10.1

[70] Philip Koopman, Kobey DeVale, and John DeVale. Interface robustness testing: Expe-

rience and lessons learned from the Ballista project. Dependability Benchmarking for

Computer Systems, 72:201, 2008. 2.3.2, 3.3.3, 4.2

[71] Dimitris E Koulouriotis and A Xanthopoulos. Reinforcement learning and evolutionary

algorithms for non-stationary multi-armed bandit problems. Applied Mathematics and

Computation, 196(2):913–922, 2008. 7.7

[72] Nathan P Kropp, Philip J Koopman, and Daniel P Siewiorek. Automated robustness test-

ing of off-the-shelf software components. In Digest of Papers. Twenty-Eighth Annual In-

ternational Symposium on Fault-Tolerant Computing (Cat. No. 98CB36224), pages 230–

239. IEEE, 1998. 1, 2.3.2, 2.4

[73] Volodymyr Kuleshov and Doina Precup. Algorithms for multi-armed bandit problems.

arXiv preprint arXiv:1402.6028, 2014. 7.7.1, 7.7.2

[74] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and Samuel P Midkiff. Statistical debug-

ging: A hypothesis testing-based approach. IEEE Transactions on software engineering,

32(10):831–848, 2006. 2.7

[75] PS Loo and WK Tsai. Random testing revisited. Information and Software Technology,

30(7):402–417, 1988. 2.6

[76] Robyn R Lutz. Software engineering for safety: a roadmap. In Proceedings of the Con-

ference on the Future of Software Engineering, pages 213–226. ACM, 2000. 2.10.1

[77] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input generation

system for Android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations of

156

Software Engineering, pages 224–234. ACM, 2013. 2.3.1

[78] Alexis C Madrigal. Inside Waymo’s secret world for training self-driving cars. The At-

lantic, 23, 2017. 3.1

[79] Riyadh Mahmood, Naeem Esfahani, Thabet Kacem, Nariman Mirzaei, Sam Malek, and

Angelos Stavrou. A whitebox approach for automated security testing of Android ap-

plications on the cloud. In Automation of Software Test (AST), 2012 7th International

Workshop on, pages 22–28. IEEE, 2012. 2.3.1

[80] Yashwant K Malaiya. Antirandom testing: Getting the most out of black-box testing.

In Proceedings of Sixth International Symposium on Software Reliability Engineering.

ISSRE’95, pages 86–95. IEEE, 1995. 2.3.3

[81] Brian Marick et al. How to misuse code coverage. In Proceedings of the 16th International

Conference on Testing Computer Software, pages 16–18, 1999. 2.5

[82] Johannes Mayer and Christoph Schneckenburger. An empirical analysis and compari-

son of random testing techniques. In Proceedings of the 2006 ACM/IEEE international

symposium on Empirical software engineering, pages 105–114. ACM, 2006. 2.6

[83] Phil McMinn. Search-based software test data generation: a survey. Software testing,

Verification and reliability, 14(2):105–156, 2004. 2.3.5

[84] Tim Menzies and Andrian Marcus. Automated severity assessment of software defect

reports. In 2008 IEEE International Conference on Software Maintenance, pages 346–

355. IEEE, 2008. 2.8

[85] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the reliability of

UNIX utilities. Commun. ACM, 33(12):32–44, December 1990. ISSN 0001-0782. doi: 10.

1145/96267.96279. URL http://doi.acm.org/10.1145/96267.96279. 2.3.1,

3.3.2

[86] Barton P Miller, David Koski, Cjin Pheow Lee, Vivekananda Maganty, Ravi Murthy,

157

http://doi.acm.org/10.1145/96267.96279

Ajitkumar Natarajan, and Jeff Steidl. Fuzz revisited: A re-examination of the reliabil-

ity of UNIX utilities and services. Technical report, Technical Report CS-TR-1995-1268,

University of Wisconsin, 1995. 2.3.1

[87] Barton P Miller, Gregory Cooksey, and Fredrick Moore. An empirical study of the robust-

ness of MacOS applications using random testing. In Proceedings of the 1st international

workshop on Random testing, pages 46–54. ACM, 2006. 2.3.1

[88] Charlie Miller, Zachary NJ Peterson, et al. Analysis of mutation and generation-based

fuzzing. Technical report, 2007. 2.3.5

[89] David Monniaux. The pitfalls of verifying floating-point computations. ACM Transactions

on Programming Languages and Systems (TOPLAS), 30(3):12, 2008. 8.2

[90] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing. John

Wiley & Sons, 2011. 1, 2.1

[91] Srinivas Nidhra and Jagruthi Dondeti. Black box and white box testing techniques-a liter-

ature review. International Journal of Embedded Systems and Applications (IJESA), 2(2):

29–50, 2012. 2.2

[92] Peter Oehlert. Violating assumptions with fuzzing. IEEE Security & Privacy, 3(2):58–62,

2005. 2.5

[93] Thomas J. Ostrand and Marc J. Balcer. The category-partition method for specifying and

generating functional tests. Communications of the ACM, 31(6):676–686, 1988. 2.3.5

[94] Brian S Pak. Hybrid fuzz testing: Discovering software bugs via fuzzing and symbolic

execution. PhD thesis, Carnegie Mellon University Pittsburgh, PA, 2012. 2.9

[95] Yuanli Pei, Arpit Christi, Xiaoli Fern, Alex Groce, and Weng-Keen Wong. Taming a

fuzzer using delta debugging trails. In 2014 IEEE International Conference on Data

Mining Workshop, pages 840–843. IEEE, 2014. 2.8

[96] Jane Radatz, Anne Geraci, and Freny Katki. IEEE standard glossary of software engineer-

158

ing terminology. IEEE Std, 610121990(121990):3, 1990. 1

[97] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and Her-

bert Bos. Vuzzer: Application-aware evolutionary fuzzing. In NDSS, volume 17, pages

1–14, 2017. 2.6

[98] Stuart C Reid. An empirical analysis of equivalence partitioning, boundary value analysis

and random testing. In Proceedings Fourth International Software Metrics Symposium,

pages 64–73. IEEE, 1997. 2.3.5

[99] ROS.org. mavros - ROS wiki [Online]. http://http://wiki.ros.org/mavros.

Accessed: 2019-09-13. 3.5.2

[100] Fares Saad-Khorchef, Antoine Rollet, and Richard Castanet. A framework and a tool for

robustness testing of communicating software. In Proceedings of the 2007 ACM sympo-

sium on Applied computing, pages 1461–1466. ACM, 2007. 2.3.1

[101] Robert G Sargent. Verification and validation of simulation models. In Proceedings of the

2010 Winter Simulation Conference, pages 166–183. IEEE, 2010. 3.1

[102] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force vulnerability

discovery. Pearson Education, 2007. 2.3.1, 2.3.5

[103] Christopher Steven Timperley, Afsoon Afzal, Deborah S Katz, Jam Marcos Hernandez,

and Claire Le Goues. Crashing simulated planes is cheap: Can simulation detect robotics

bugs early? In 2018 IEEE 11th International Conference on Software Testing, Verification

and Validation (ICST), pages 331–342. IEEE, 2018. 2.10.2

[104] Petar Tsankov, Mohammad Torabi Dashti, and David Basin. Secfuzz: Fuzz-testing secu-

rity protocols. In Automation of Software Test (AST), 2012 7th International Workshop

on, pages 1–7. IEEE, 2012. 2.3.4

[105] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based

testing approaches. Software Testing, Verification and Reliability, 22(5):297–312, 2012.

159

http://http://wiki.ros.org/mavros

2.3.1

[106] Paul Vernaza, David Guttendorf, Michael Wagner, and Philip Koopman. Learning product

set models of fault triggers in high-dimensional software interfaces. In 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 3506–3511.

IEEE, 2015. 2.7, 2.

[107] Elaine J. Weyuker and Bingchiang Jeng. Analyzing partition testing strategies. IEEE

transactions on software engineering, 17(7):703–711, 1991. 2.3.5

[108] James A Whittaker and Michael G Thomason. A Markov chain model for statistical

software testing. IEEE Transactions on Software engineering, 20(10):812–824, 1994.

2.3.5

[109] Marco Wiering and Martijn Van Otterlo. Reinforcement learning. Adaptation, learning,

and optimization, 12:3, 2012. 7.7

[110] Stefan Winter, Constantin Sârbu, Neeraj Suri, and Brendan Murphy. The impact of fault

models on software robustness evaluations. In 2011 33rd international conference on

software engineering (ICSE), pages 51–60. IEEE, 2011. 2.6

[111] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. Scheduling black-

box mutational fuzzing. In Proceedings of the 2013 ACM SIGSAC conference on Com-

puter & communications security, pages 511–522. ACM, 2013. 2.3.5, 7.7.2

[112] Alan Wood. Predicting software reliability. Computer, 29(11):69–77, 1996. 2.6.1

[113] Yuen Tak Yu and Man Fai Lau. A comparison of MC/DC, MUMCUT and several other

coverage criteria for logical decisions. Journal of Systems and Software, 79(5):577–590,

2006. 2.5

[114] Andreas Zeller. Automated debugging: Are we close? Computer, 34(11):26–31, 2001.

2.8

[115] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input.

160

IEEE Transactions on Software Engineering, 28(2):183–200, 2002. 2.7, 1.

[116] Yu Zhou, Yanxiang Tong, Ruihang Gu, and Harald Gall. Combining text mining and data

mining for bug report classification. Journal of Software: Evolution and Process, 28(3):

150–176, 2016. 2.8

161

	1 Introduction
	1.1 Problem and scope
	1.1.1 Systems under test
	1.1.2 Testing framework and input selection
	1.1.3 Modes of comparison
	1.1.4 Assumptions

	1.2 Summary of terms
	1.3 Overview of approach
	1.4 Contributions

	2 Background
	2.1 Software testing
	2.2 Black box testing
	2.3 Robustness and input parameter stress testing
	2.3.1 Fuzz testing and variations
	2.3.2 Dictionary-based testing
	2.3.3 Combination testing
	2.3.4 Testing interfaces
	2.3.5 Other approaches

	2.4 Fault classification
	2.5 Test Coverage
	2.6 Testing comparison and evaluation techniques
	2.6.1 Software reliability

	2.7 Test input reduction
	2.8 Cause versus symptom of bugs
	2.9 Hybridized testing techniques
	2.10 Autonomy Systems
	2.10.1 Autonomy system safety
	2.10.2 Testing autonomy systems

	2.11 Summary

	3 Framework for Testing
	3.1 Challenges and motivation
	3.2 Our Testing Architecture
	3.2.1 Black-box testing
	3.2.2 Testing tool procedure

	3.3 Input Generation
	3.3.1 Dictionary Testing
	3.3.2 Fuzz Testing
	3.3.3 Other input methods

	3.4 ROS-based systems
	3.4.1 Overview or ROS architecture
	3.4.2 Simulation and Gazebo

	3.5 Systems under test
	3.5.1 Fetch and Freight
	3.5.2 Ardupilot
	3.5.3 Turtlebot
	3.5.4 Other systems

	3.6 Invariants
	3.7 Framework Scope and Summary
	3.7.1 Simplifications made in baseline testing
	3.7.2 Conclusion

	4 Metrics of Analysis and Procedure
	4.1 Metrics of comparison
	4.1.1 Efficiency
	4.1.2 Effectiveness
	4.1.3 Efficiency and Effectiveness as complementary methods
	4.1.4 Advanced applications

	4.2 Testing experiment procedure
	4.3 Application of metrics
	4.4 Conclusion

	5 Comparison of Test Input Generation
	5.1 Experimental setup details
	5.2 Results
	5.2.1 Efficiency and use case scenario effectiveness
	5.2.2 Invariant Effectiveness
	5.2.3 Diagnosis and field effectiveness
	5.2.4 Discussion of exploratory results

	5.3 Follow-up: Input value efficiency
	5.3.1 Procedure
	5.3.2 Bugs that require an input that can be described as a class
	5.3.3 Bugs that require an input that can be described as an edge case
	5.3.4 Bugs that can be triggered by a small set of inputs
	5.3.5 Bugs that require a combination of inputs from the above categories
	5.3.6 Takeaway from input value set analysis

	5.4 Discussion

	6 Hybrid models
	6.1 Research questions
	6.2 Experimental setup
	6.3 Cumulative model
	6.3.1 Discussion of budget
	6.3.2 Cumulative average model and large campaign analysis

	6.4 50/50 random hybrid strategy
	6.5 Weighted random hybrid strategy
	6.6 Fuzz-first and dictionary-first strategies
	6.6.1 Why dictionary-first is better
	6.6.2 Dictionary-first takeaway

	6.7 Other methods
	6.8 Discussion

	7 Additional test input generation methods
	7.1 Guiding Questions
	7.2 Nominal Input Replacement Percentage
	7.3 Smaller dictionary size
	7.4 Nominal input mutation
	7.4.1 Mutating strings

	7.5 Mutating dictionary values
	7.6 Semantically-specialized dictionaries
	7.6.1 Discrete values
	7.6.2 Robotics Physics Values
	7.6.3 Strings

	7.7 Exploitation versus Exploration in a hybrid method
	7.7.1 -greedy approach
	7.7.2 More approaches

	7.8 Conclusions

	8 Lessons Learned and Recommendations
	8.1 General recommendations for testing autonomy systems
	8.1.1 Actual testing cost and optimizations

	8.2 General Recommendations for having testable autonomy systems
	8.3 General recommendations for writing robust autonomy systems

	9 Conclusion
	9.1 Summary
	9.2 Research contributions
	9.2.1 An approach to metrics for comparing robustness testing techniques
	9.2.2 Robustness testing results for three open source autonomy systems using dictionary-based testing, fuzzing and certain variations
	9.2.3 A hybrid testing technique for each of the three open source autonomy systems, shown to outperform each of the basic testing methods
	9.2.4 A recommendation of heuristics for hybrid testing techniques and a list of lessons learned to inform testing autonomy systems in the future

	9.3 Future work

	Appendices
	A Effectiveness tables
	B Hybrid strategy performance by scenario
	C Replacement percentage efficiency
	Bibliography

