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Abstract

Distributed fault tolerance algorithms are used for many ultra-reliable systems. For ex-

ample, aviation fly-by-wire and automotive drive-by-wire network protocols need to re-

liably deliver data despite the presence of faults. Careful design is required, since ultra-

reliable systems permit a failure rate on the order of just 10−9 failures per hour. Unfortu-

nately, investing more effort at the design stage does not assure a more reliable product if

no objective measurement technique is used at this stage.

The key idea of this dissertation is to estimate the reliability of a service by measur-

ing the probability that the algorithm’s maximum fault assumption will be violated. An

algorithm’s maximum fault assumption states the number of active faults that can be toler-

ated. The service (and the system) may fail if this assumption is violated. The maximum

fault assumption can be tested at design time, before costly design commitments have been

made.

This dissertation defines a methodology to measure the reliability of a service’s maxi-

mum fault assumption. The methodology is applied to clock synchronization and group

membership services from three safety-critical protocols — the FlexRay Consortium’s

FlexRay protocol, TTTech’s Time Triggered Protocol Class C (TTP/C), and NASA Lan-

gley’s Scalable Processor Independent Design for Electromagnetic Resilience (SPIDER).

First, I compose an extensive, reusable physical fault model for the aviation and automotive

domains. Next, I show how to map this physical fault model to the hybrid fault models in

the specifications. For each protocol, I define a Markov model template consisting of an ex-

tensible set of states and transitions. Over twenty thousand models are then generated and

solved using the NASA Langley Semi-markov Unreliability Range Estimator tool suite.

The methodology identifies the type of fault expected to cause the most failures, and

locates trade-off points in the design space where a different fault type becomes dominant.

Armed with this information, a designer can target improvements to create and validate

a more reliable service. For FlexRay clock synchronization, the Welch and Lynch and
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the Strictly Omissive formally proven services are compared. For TTP/C and SPIDER

membership, customizing the fault diagnosis algorithms to handle transient faults improves

the overall estimated reliability.
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1 Introduction

Ultra-reliable systems are difficult to design, and even more difficult to test. Safety-

critical aviation and automotive systems allow a failure rate of only 10−9 failures per hour

[76], [90]. This presents a significant validation challenge. Exhaustive testing is infeasible

for ultra-reliable systems, since approximately a billion hours of testing would be needed

to demonstrate a 10−9 failure rate [15]. It is especially challenging to predict system relia-

bility at design time, when changes are easier to make. X-by-Wire network protocols are

an emerging safety-critical technology slated for deployment in production aviation and

automotive systems. The X stands for a safety-critical function such as braking or steering,

which would be accomplished through a set of local sensors and local actuators commu-

nicating over a network. The goal is to eventually create a fully electronic system with

no mechanical backup. X-by-Wire systems are expected to ultimately be safer and more

cost efficient than current mechanical systems. For example, without some of the restric-

tions from mechanical components (especially the steering column), the layout of a vehicle

could be changed for better crash performance. However, the reliability requirements are

greater than the requirements for currently deployed automotive networks which only pro-

vide braking and steering assistance. For aviation, manufacturers plan to use X-by-Wire

protocols for high-reliability applications such as jet engine control. These networks are

also being considered for Unmanned Aerial Vehicles, which may require a low number of

failures per hour due to longer missions (since reliability is the probability of providing

functionality for the duration of the mission).

Distributed fault tolerance algorithms are used for many services that require high lev-

els of reliability, where a centralized component might present a single point of failure.

These algorithms tolerate faults through a combination of redundancy, diagnosis and fault

removal. Each service includes a maximum fault assumption - the maximum number of

faults that can be present. The goal of the fault tolerance algorithm is to keep the number of

active faults within the maximum fault assumption bound. If the maximum fault assump-
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tion is violated, the guarantees provided by the service may not hold and the system may

fail.

The key idea of this dissertation is to estimate the reliability of a service by measuring

the probability that the service’s maximum fault assumption will be violated. Essentially,

the methodology measures the ability of the service to provide the guarantees it claims to

provide. This work focuses on the clock synchronization service of the FlexRay protocol

and the membership services of the TTP/C and SPIDER protocols. The FlexRay protocol

was created by a consortium of automotive and electronics manufacturers, and is geared to-

wards production automotive systems. The Time Triggered Protocol Class C (TTP/C) was

designed by Hermann Kopetz at the Vienna University of Technology and is now managed

by TTTech Computertechnik AG. The NASA Langley Scalable Processor Independent De-

sign for Electromagnetic Resilience (SPIDER) protocol suite was created as a case study

of reliable protocol design for the US Federal Aviation Administration. The contributions

of this dissertation are:

• A methodology for evaluating the reliability of agreement services for X-by-Wire

protocols, with respect to a realistic fault model

• Predicted reliability of three protocol services (FlexRay clock synchronization, TTP/C

group membership, and SPIDER group membership)

I define a methodology for measuring the failure rate of a service’s maximum fault as-

sumption, starting with a realistic physical fault model. I introduce four categories of

physical faults and provide a reusable set of fault arrival rates for the aviation and auto-

motive domains, based on industry standards and field data. Next, I show how to map

these physical faults to the hybrid fault model used in the specification. For each protocol,

I give a Markov reliability model template which includes an extensible set of states and

transitions. Fault arrival rates are often uncertain at the design stage. This methodology

handles the uncertainty by testing a large number of combinations of fault arrival rates.
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Over twenty thousand models are created from the physical fault rate scripts and reliabil-

ity model templates and then solved, using the NASA Langley Semi-markov Unreliability

Range Evaluator (SURE) tool suite. The designer can explore a wide range of design space

with a very reasonable amount of work.

To demonstrate the value of this methodology, I study two types of design decisions. One

way to try to improve an algorithm is to refine the algorithm’s maximum fault assumption,

by subdividing one of the classes of faults into easier-to-tolerate fault classes. For clock

synchronization, I compare the Welch and Lynch algorithm versus the Strictly Omissive

Asymmetric algorithm by Azadmanesh and Kieckhafer. Another important design decision

is choosing an appropriate conviction strategy for a fault tolerant membership service. The

conviction strategy dictates the conditions required to declare a node faulty and remove it

from the group. However, removing too many nodes can also cause the maximum fault

assumption to be violated, especially if there are many transient faults. For the TTP/C

and SPIDER membership services, I examine three different fault conviction strategies. I

show that the standard strategy of removing a node after a single faulty frame is brittle

when the system needs to tolerate transient faults. In some cases, failing to use metrics

during the design process can lead to a less reliable service. By utilizing this measurement

methodology, I show that a superior conviction strategy can be constructed.

The results also show that it is important to include transient faults in the physical fault

model. For an early SPIDER study, a simple fail-silent permanent only fault model under-

estimated the assumption failure rate by a factor of 1010 compared to a more comprehensive

fault model including transient faults. A more detailed permanent only fault model still un-

derestimated the assumption failure rate by a factor of 105. All three protocols were more

sensitive to the transient fault arrival rates than the permanent fault arrival rates. Finally,

I demonstrate how to use this methodology to identify trade-off points in the design space

and use these trade-off points to choose system enhancements. Typically, out of the many

fault types, there is one dominant fault type that is most likely to violate the maximum
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fault assumption. The dominant fault type may change at different points throughout the

design space. By identifying these trade-off points, a designer can target enhancements

appropriately.

Two common enhancements are adding more redundant components, and using higher

quality components. In some cases, adding redundant components can actually increase

the assumption failure rate, since there are more components that may become faulty (as

Powell noted in [91]). This methodology can show whether adding nodes is expected to

improve the reliability of a configuration. Using higher quality components can reduce the

fault arrival rate of one or more types of physical faults. Sensitivity analysis examines the

change in the assumption failure rate due to changes in fault arrival rates, and can iden-

tify which fault arrival rate should be reduced. This methodology also paves the way for

adaptive fault diagnosis strategies. For example, since the membership services studied

guarantee agreement on the number of nodes in the group, a fault diagnosis strategy could

be more lenient when there are few nodes in the current group and be more aggressive when

there are many spare redundant nodes in the group. Chapter 2 covers related work, Chap-

ter 3 introduces the methodology, Chapter 4 summarizes results, and Chapter 5 contains

conclusions.
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2 Related Work

This methodology for assumption reliability measurement draws on a number of dif-

ferent research areas. Assumption reliability measurement complements other design and

testing activities. First, this chapter talks about how the idea of assumption reliability came

about, and how one might use this methodology in conjunction with other techniques. This

methodology is placed in the context of the V-model, which outlines the set of system de-

velopment and testing steps. Also, the protocol services are described in relation to the

Open Systems Interconnect model. Markov models have been used for many years as a re-

liability measurement tool, with roots in fault tree analysis which is used to identify single

points of failure in a system. More detail is given about the tools used and other tools that

are available.

The protocol specification is one input to the methodology, which includes a hybrid fault

model that specifies classes of faults with respect to the set of receivers in the system. The

hybrid fault model chosen depends on what the algorithm is trying to guarantee. This chap-

ter reviews important developments in guaranteeing agreement and approximate agree-

ment. Each protocol specification also includes information on how frames are scheduled

and transmitted on the network, and how fault diagnosis and fault removal are performed.

One contribution of my work is a reusable survey of physical fault data. Physical fault

rate data is another input to the methodology. It is common to see in-depth studies of

one type of physical fault, but it is difficult to find discussions that include multiple types of

physical faults. Also, at the specification stage it may not be possible to get a precise failure

rate estimation. I define four categories of physical faults for the aviation and automotive

domains, and summarize the important points in each of these categories. There are two

benefits here. The fault rate numbers themselves are useful, and can be reused within

a domain since most of the faults depend on the environment or the typical component

5



quality. Second, the survey provides a good starting point for a designer who wishes to

learn more about a particular category.

2.1 Scope of This Technique

This section discusses assumption reliability as it relates to other system testing tech-

niques. Assumption reliability measurement allows the system to be tested (to some extent)

while the specification is still being designed. Testing maximum fault assumption reliabil-

ity can complement fault injection techniques well. The Markov modeling techniques used

are an outgrowth of hazard analysis techniques for safety-critical systems. Assumption re-

liability testing can be used to reduce risk in a system by assessing the probability of being

in a hazardous state. The tools used to evaluate the Markov models are reviewed, as well

as other modeling tools that are useful for reliability measurement.

2.1.1 Relationship to Assumption Coverage and Fault Injection

Assumption reliability is a complementary, orthogonal idea to assumption coverage. Pow-

ell defines assumption coverage as “The failure mode assumption coverage (px) is defined

as the probability that the assertion X defining the assumed behavior of a component proves

to be true in practice conditioned on the fact that the component has failed: px = PrX =

true|component failed” [91]. Bauer, Kopetz, and Puschner discuss assumption coverage in

the Time-Triggered architecture, stating that “In general, every fault-tolerant system relies

on the existence of a minimum number of correct components. Thus, even an optimal sys-

tem architecture, which has 100% assumption coverage with respect to the tolerated failure

modes, can never have 100% assumption coverage with respect to the number of coinci-

dent faults” [8]. Per Powell’s definition, assumption reliability is the ability of the system

to withstand faults when all faults are covered (detected through value or timing checks),

but coincident faults may exceed the maximum fault assumption.

It is helpful to define the scope of this work with respect to the protocol services pro-
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vided by the specifications. The Open System Interconnect (OSI) reference model defines

seven layers of services for protocols (from highest to lowest): Application, Presentation,

Session, Transport, Network, Data Link, and Physical [129]. This model was developed

in 1984 by the International Organization for Standardization (ISO), and updated in 1994

[55]. The idea is to separate tasks according to layers so that a layer does not need to know

the implementation details for tasks in other layers. (In practice, the OSI reference model

serves as a guideline, and layer boundaries are not so strict.) Tasks for the lower four layers

are often done in hardware or firmware, and tasks for the upper three layers are often done

in software.

The protocol specifications studied describe the functions of the protocol at Data Link

and Physical layers. The clock synchronization and group membership services are at the

Data Link layer, and require only a few constraints on the physical layer (for example, once

the bandwidth is chosen then clocks will have a certain maximum drift rate to support this

bandwidth). Current embedded network protocols also mainly support tasks at the Data

Link and Physical layers (for example, the Controller Area Network, currently deployed in

automotive systems and factory automation applications [93]).

The Data Link and Physical layers are defined as follows:

Data Link Layer: “The purpose of the Data link Layer is to provide the functional

and procedural means to establish, maintain, and release data links between network

entities” [129].

Physical Layer: “The Physical Layer provides mechanical, electrical, functional, and

procedural characteristics to establish, maintain, and release physical connections

(e.g., data circuits) between data link entities” [129].

The methodology I present is a form of specification validation. The goal of the method-

ology is to measure how well a specification provides the guarantees it claims to provide,

when subjected to a realistic fault model. Verification and Validation (V & V), as stated
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Figure 1. V-model, from [108]

by Boehm, ask two questions [107]: “Validation: Are we building the right product?”,

and “Verification: Are we building the product right?” [107]. Sommerville states that

“Verification involves checking that the program conforms to its specification. Validation

involves checking that the program as implemented meets the expectations of the software

customer” [107]. There are many design choices that need to be made at the specification

level. For example, what fault diagnosis and removal strategy should be used? My method-

ology can measure how each proposed fault diagnosis and removal strategy performs under

a proposed set of real-world faults.

The V-model is one way to describe the relationship between software development ac-

tivities and software verification and validation activities. The V-model was developed by

IABG for the Federal Republic of Germany [50], and is pictured in Figure 1 from [108].

Software development activities are pictured on the left hand side, with arrows pointing

to the right to the corresponding verification and validation activities. Looped arrows on

the left between the software development activities indicate possible revisions of previous

stages based on the progress of subsequent stages.

One major advantage is that the methodology I present can evaluate the outcome of de-

sign changes early, just from information in the specification. This methodology fits in at
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the Specification -> System Testing stage. The methodology presents a way to test if the

specification will provide the claims it says it will provide. Are the specification’s guar-

antees reliable? Typically, testing cannot be done until much later in the design cycle.

Early systems developed in a manner similar to the V-model (Requirements through Cod-

ing) would be evaluated after the Coding phase was completed, going up the right side of

the V (Unit Testing through Acceptance Testing). Problems discovered in later tests could

require a large amount of rework.

This methodology meshes well with other verification and validation activities. For

Requirements -> Acceptance Testing, the designer needs to decide which guarantees are

needed, and what level of reliability should be provided. Ultimately, the methodology I

have developed cannot tell the designer which guarantees the system should have. The

methodology can only measure the reliability of a guarantee that the system claims to pro-

vide. Also, which guarantees are needed will depend on the applications using the protocol.

The protocols here are being developed to work with a broad range of current and future

applications, so the exact application suite is unknown at the time the protocol is designed.

For example, this is one reason the FlexRay consortium has argued that a group memeber-

ship service (if provided) should be provided at the application level.

Guidelines are available to help the designer choose an appropriate reliability level, espe-

cially for safety-critical systems and for systems that go through a certification process by

an outside certification authority. The amount of risk that can be tolerated determines the

reliability goal (and level of assurance needed) for the system. Risk is a measure of both the

severity and probability of a hazard, where a hazard is “a situation in which there is actual

or potential danger to people and the environment” [112]. Aviation certification standards

classify risk according to five levels (in order of increasing risk): No Safety Effect, Minor,

Major, Hazardous, and Catastrophic [90]. The maximum acceptable probability of occur-

rence is also stated: none specified for No Safety Effect, Minor < 1*10−3 per flight hour,

Major < 1*10−5 per flight hour, Hazardous < 1*10−7 per flight hour, and Catastrophic <
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1*10−9.

The guidelines for automotive systems are similar. The Motor Industry Software Re-

liability Association defines five Safety Integrity Levels, according to the ability of the

vehicle occupants to control the effects of the failures and the severity of the outcome of

the failure [76]. The Safety Integrity levels (from lowest to highest) are: Nuisance Only

(Level 0), Distracting (Level 1), Debilitating (Level 2), Difficult to Control (Level 3), and

Uncontrollable (Level 4). The corresponding probabilities are Reasonably Possible (Level

0), Unlikely (Level 1), Remote (Level 2), Very Remote (Level 3), and Extremely Improb-

able (Level 4) [76]. While exact numerical probabilities are not given, similar probability

names are used for the five safety criticality levels in the aviation domain [90].

Next in the V-model in Figure 1 are the Architectural Design -> Integration Testing phase

and Detailed Design -> Unit Testing phase. For protocols, this often involves developing

a static schedule that can fit all frames and ensures that all frames meet their deadlines.

Techniques such as Rate Monotonic analysis might be used at this stage, where frames

are ordered according to their data message latencies and periods in such a way that all

frames can be proveably scheduled [70]. This might also involve a bus analysis tool (for

example, CANalayzer is used for Controller Area Network systems). Protocol controller

software and hardware would be developed and tested at these stages, using tools such as

MATLAB or Simulink. Although the specifications do state limits on certain properties

(for example, the acceptable time deviation for a slot window), the specifications try to

impose as few limitations as possible and try not to state how to implement the protocol.

The last development stage is the Coding stage. There is a lot of interest in ultimately

moving to automatic code generation. Since certification costs can be a large portion of

the cost of a system (especially aviation systems), the hope is that the code generator could

be certified, which would reduce the certification burden for generated code. For example,

Esterel Technologies is working on adapting their code generator to the Time Triggered

Architecture of the Time Triggered Protocol, Class C [16].
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The design time reliability analysis I perform complements existing work in the area of

fault injection. In particular, fault injection is well suited to coverage testing, where cover-

age entails some measure of the percentage and type of faults successfully detected. Fault

injection studies are usually performed on a specific implementation (either hardware or

software). For example, Fuchs surveys software implemented fault injection (SWIFI) tech-

niques in [38]. Some direct dependability calculations may be possible through simulation.

Clark and Pradhan summarize a number of fault injection experiments, and give an exam-

ple where faults were simulated to enable calculation of a statistically significant mean time

between failures [21]. Simulations of up to 200 simulated hours were accomplished in that

work. Since exhaustive physical testing is infeasible for ultra-reliable systems [15], fault

injection techniques for ultra-reliable systems use accelerated time. White investigates a

method for finding the pattern of faults that leads to the greatest system unreliability, called

‘Worst Pattern Analysis’ [124]. This is used to assess the ramifications of mis-classifying a

fault when different fault handling strategies are used (i.e., faults can be treated as other than

Byzantine). The methodology I present includes some provisions for misclassification.

Coverage testing through fault injection can be used to verify that the implementation

fulfils its requirements (i.e., faults within the maximum fault assumption do not cause un-

acceptable errors). This would be the Requirements -> Acceptance testing step on the

V-model if the complete system is subjected to fault injection. Subsystems could be tested

using fault injection as well, which would map to previous testing phases in the V-model.

Ademaj, Sivencrona, Bauer, and Torin investigate propagated faults in the TTP/C-C1 ver-

sion of the TTP/C communication controller [1]. Through software fault injection and

heavy-ion fault injection into the instruction memory, register file, hardware registers, and

Communication Network Interface, that work reported the percentages of different types

of observed errors (slightly off specification, reintegration, asymmetric, and babbling idiot)

[1]. The study uncovered a protocol flaw, which was corrected and successfully tested.

More detailed information can be found in Sivencrona’s dissertation [105].
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Fault injection has also been used to test dependability under conditions not covered

by the maximum fault assumption. Herout, Racek, and Hlavička tested a C-based refer-

ence model of the TTP/C protocol coupled with a set of generic and automotive applica-

tions [46]. Part of that work investigated robustness to burst faults that did not conform to

TTP/C’s maximum fault assumption (the single fault hypothesis) [46]. Ultimately, if there

are too many faults outside the maximum fault assumption, then either the maximum fault

assumption needs to be revised, an alternative metric needs to be used (for example, avail-

ability, if short guarantee lapses are acceptable), or an additional level of services needs to

be considered (for example, application level services). Generally, protocols incorporate

some additional worst-case fault tolerance mechanisms (for example, blackout detection in

TTP/C [118]). The methodology I present estimates the probability of multiple simultane-

ous faults exceeding the maximum fault assumption, for cases where each individual fault

is covered.

Some data exists on the population of faults expected, and possible protocol improve-

ments. Fault and error injection experiments can provide insight into the expected nature

and rate of faults that might occur in a deployed system. One strength of fault and error

injection is coverage analysis - are all observed errors handled? Results can suggest im-

provements for error detection and correction mechanisms. Data from fault and error injec-

tion experiments can guide choice of parameters in the assumption reliability models. For

example, TTP/C prototype fault injection experiments measured a 0.4% percentage asym-

metric faults out of all faults observed [1], [16]. The ability to handle transient node faults

has also been studied. Rushby proposes a group membership service with a ‘probation’

state for suspected transient faulty processors and channels in [15]. The service proposed

employs majority voting of channel values, which is not done in all group membership

algorithms since majority voting requires at three or more channels to mask a single faulty

channel. A two channel configuration using majority voting could detect, but not mask, a

single faulty channel.
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2.1.2 Relationship to Hazard Analysis Techniques: FMEA, FTA

Markov reliability analysis techniques share much in common with hazard analysis tech-

niques originally designed to measure hardware reliability. One requirement of many

safety-critical systems is that there cannot be a single point of failure. In other words, if

one component fails, this failure cannot cause system failure. Markov analysis overcomes

some of the shortcomings of traditional fault tree analysis. The methodology I present

uses Markov analysis to be able to model a large range of design space, since many pa-

rameter values are uncertain. If the failure rates are precise and fairly certain, traditional

techniques can compose these failure rates according to specified rules and produce an esti-

mate of the system reliability. However, for novel designs and systems with transient faults,

the expected fault arrival rate range for a particular fault can span two or three orders of

magnitude. My methodology adapts to this uncertainty by testing a large number of con-

figurations. This section reviews traditional hazard analysis techniques, and describes the

differences between Markov reliability analysis and fault tree analysis.

There are a number of hazard analysis techniques. Storey defines a hazard as “a situation

in which there is actual or potential danger to people and the environment” [112]. The goal

of hazard analysis is to identify hazards, and then identify ways to prevent those hazards.

A general guideline for safety-critical systems is that there should be no single fault that

can cause a hazard. This is usually achieved through some sort of redundancy. Some types

of hazard analysis also try to estimate the probability of a hazard by estimating the failure

rates of components. Both bottom-up and top-down techniques are used, usually in com-

bination. Bottom-up techniques start with the individual component faults and postulate

possible hazards. Top-down techniques start with a hazard, and postulate sets of faults that

could cause this hazard. While these techniques were designed for hardware failure modes,

applications of these techniques to software failure modes are also mentioned.

Two important hazard analysis techniques are Failure Modes and Effects Analysis (FMEA)

and Fault Tree Analysis (FTA) [112]. Failure Modes and Effects Analysis (FMEA) is a
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bottom-up technique that “considers the failure of any component within a system and

tracks the effects of this failure to determine its ultimate consequences” [112]. The goal is

to identify hazardous situations that may arise from component failures. Since this tech-

nique considers failures of all of the (hardware) components in the system, it can entail a

large amount of work for complex systems. Also, FMEA usually does not consider multi-

ple simultaneous faults [112]. A related technique, Failure Modes, Effects, and Criticality

Analysis (FMECA) prioritizes the component failures to study [112]. High frequency and

high consequence failures receive the most attention.

Failure Modes and Effects Analysis has also been applied to software faults, called Soft-

ware Failure Modes and Effects Analysis. One approach to analyzing software failure

modes proposed by Goddard treats the software variables (especially input variables) as

“components” [42]. The analyst generates a matrix of incorrect variable values and their

consequences for each routine being analyzed. Goddard gives an example for a software

controlled parking brake in [43], using a Petri Net to model software variables and their val-

ues. Since there can be a very large number of software variables in the code, the amount of

time required to perform a complete SFMEA for all software variables can be prohibitive,

especially if done by hand. One way to address this issue is to perform the FMEA at a

higher level. Goddard defines a reusable list of possible system-level failures, which focus

on software functions and methods instead of individual variables within those methods

[44].

Fault Tree Analysis (FTA) is a top-down technique that “starts with all possible hazards

and works backwards to determine their possible causes [112]. Fault trees are a graphical

representation depicting the identified hazard and a series of logical operations (AND and

OR) that combine events. Fault Tree Analysis starts with the hazard (highest level event)

and iteratively defines lower-level events, until the basic individual component failures

are identified. Some fault trees also measure the probability of events occurring. If the

component failure rates are known, then the event probabilities can be calculated. As an
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example, Ortmeier and Reif study parameterized probabilities in fault tree analysis for a

safety-critical application [84]. Unfortunately, there can be a lot of uncertainty about these

failure probabilities, which is difficult to represent in fault tree format. However, fault

trees are still useful for describing the relationship between lower-level events and the top-

level hazard. The Markov-based reliability analysis techniques are closest in nature to

Fault Tree Analysis, but can model a number of additional behaviors. Butler and Johnson

list the limitations of fault trees in [14]. Fault trees can be used to model a system with

only permanent faults, no reconfiguration, no time or sequence failure dependencies, and

no state-dependent behavior such as state-dependent failure rates [14]. However, Markov

models are generally more complex to generate than fault trees, and can be difficult to

portray graphically since models for realistic systems can have many states and transitions.

For example, some of the models in my work had over a hundred thousand states and over

two million transitions.

2.1.3 Assumption Reliability Testing as Risk Mitigation

Assumption reliability measures the ability of a service to provide the guarantees it claims

to provide. Assumption reliability is one piece of the total system reliability. Leveson states

that “Reliability is the probability that a piece of equipment or component will perform its

intended function satisfactorily for a prescribed time and under stipulated environmental

conditions” (italics per original) [69]. Assumption reliability is a conservative measure of

system reliability in two ways. First, there may be cases where the maximum fault as-

sumption is violated, but the service is still able to provide its guarantees. Second, there

may be cases where the guarantees are not provided, but the applications that rely on the

guarantees still perform their intended functions. The total system reliability will also de-

pend on the applications themselves and the physical sensors and actuators. For example, a

brake-by-wire system might involve electronic stability control and antilock braking appli-

cations, speed and acceleration sensors, and would use an electromagnetic braking actuator
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at each wheel. Applications use the protocol to transmit data and commands, and physical

sensors and actuators collect the data and carry out the commands. If the applications are

unreliable, or the sensors and actuators are unreliable, the system will be unreliable even if

the protocol works perfectly.

It is helpful to relate assumption reliability to the concept of risk, since the ultimate

goal of a safety-critical system designer is to reduce risk. Leveson defines risk as, “Risk

is the hazard level combined with (1) the likelihood of the hazard leading to an accident

(sometimes called danger) and (2) hazard exposure or duration (sometimes called latency)”

(italics per original) [69]. Leveson defines a hazard as “A hazard is a state or set of con-

ditions of a system (or object) that, together with other conditions in the environment of

the system (or object), will lead inevitably to an accident (loss event)” (italics per origi-

nal) [69]. For my methodology, the hazard is the violation of the service’s maximum fault

assumption.

To assess risk, the designer must know the hazard levels, the likelihood of the hazard

leading to an accident, and the hazard duration. Acceptable hazard levels are defined by

(for example) the Federal Aviation Administration for aviation and the Motor Industry

Software Reliability Association for automotive, and are reviewed in section 2.1.1. The

likelihood of maximum fault assumption violation leading to an accident depends on two

issues. First, if the maximum fault assumption is violated, in what situations will the guar-

antee not be provided? Second, if the guarantee is not provided, in what situations will the

system fail? Once the maximum fault assumption is violated, the duration of this violation

depends on the protocol, and may be difficult to determine. The shortest hazard duration

would be the time it takes to reach consensus (on a clock value within some error for clock

synchronization, or on group members for membership). The time to reach consensus is

usually a function of communication rounds. For example, the TTP/C best-case time to

reach consensus is one round and worst-case two rounds, where a round is usually ten mil-

liseconds long or so. The longest hazard duration is theoretically infinity, since even if
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consensus is reached quickly, the system can lose consensus again if the underlying prob-

lem is not corrected. Alternatively, a system could restart, but might end up in an infinite

cycle of restarts.

Calculating risk directly is difficult, since many different applications can use a protocol,

including future applications not yet developed. Network protocols are typically reused

by a large number of systems and may be used with diverse applications. For example,

the Controller Area Network (CAN) protocol is used in about eighty million production

vehicles annually [101]. CAN is also one of the leading networks in factory automation (in

conjunction with the DeviceNet upper protocol layers), and is used for a variety of other

devices from routers to hospital equipment [101]. X-by-Wire protocols will likely be used

in many future applications as vehicles and aircraft evolve.

The goal of assumption reliability testing is to reduce risk by reducing the probability

of the hazard occurring (violating the maximum fault assumption). Since calculating risk

directly is difficult, safety-critical system design techniques often focus on eliminating or

reducing the probability of hazards (as in section 2.1.2 on hazard analysis techniques). In-

vesting effort in reducing the probability of hazards at the protocol level should have great

benefit, because protocols are reused heavily, and because the variety of applications ex-

ercising the protocol makes it more likely that the hazard will cause an accident in one

or more of the applications. Another way to think about the problem is that the protocol

designer does not have control over an application’s behavior. The best a protocol designer

can do is to control hazards within the protocol’s scope. There will be some design deci-

sions such as whether to offer a guarantee at the protocol level or the application level, but

once these are made the protocol’s scope is fairly well defined.

2.1.4 Tools

Three Markov analysis tools were used to compute the expected number of assumption vi-

olations for the set of configurations studied. The ASSIST program inputs a parameterized
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text specification and generates the corresponding Markov or semi-Markov model. Then,

either the STEM (Scaled Taylor Exponential Matrix) or SURE (Semi-markov Unreliability

Range Evaluator) solves the model. The tools require a specification listing state space

items, types of transitions, and death state conditions. For our models, only exponential

transition rates were used, although the SURE tool allows other types of transition rates if

conditional probabilities are specified instead of automatically calculated. The modeling

tools generate the complete state space, including all possible death states, which were ag-

gregated according to the assumption violated for our calculations. Output is the expected

probability of violating each assumption during the specified mission time. For computa-

tional efficiency, a separate model was created and solved for each parameter combination.

Butler and Johnson describe the underlying mathematics and give fault tolerance examples

in [6]. A detailed example of Markov model creation for the NASA Scalable Processor

Independent Design for Electromagnetic Resilience protocol suite is given in [11]. The

differential equations used to solve the Markov reliability models are derived by White in

[123].

Some techniques use an easier-to-understand graphical model as a front end for the user,

then transparently translate this graphical model into a Markov model and solve the Markov

model. One approach is to use a graphical fault tree front-end coupled with a back-end

Markov solver. This allows a user to augment fault trees in interesting ways without having

to learn the intricacies of Markov models. For example, the Galileo tool described by

Sullivan, Bechta Dugan and Coppit allows users to model dynamic fault trees, which extend

static fault trees to allow failure modes that depend upon the ordering of components, such

as a cascading failure [113]. The fault trees are solved using a combination of binary

decision diagrams and Markov methods [113].

Petri Nets are another class of graphical models that sometimes use Markov solution

techniques as a back-end. For example, with the Stochastic Petri Net Package a user creates

a Petri Net model of the system which is translated into a Markov model by the tool [20].
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A Petri Net is specified as a set of places, tokens, and transitions, where each token can

occupy one place at a time, and the initial marking specifies the initial placement of tokens.

Transitions move a token from one place to another, and may create or consume tokens.

The advantage is that the user does not have to specify all possible combinations of tokens

(i.e. the complete set of states in the Markov model). For example, the Stochastic Petri Net

Package can automatically generate all possible states of the system [20]. Some multipur-

pose tools such as the Symbolic Hierarchical Automated Reliability Predictor (SHARPE)

tool allow the user to create and solve a variety of models, such as fault trees, Petri Nets,

and Markov models [45]. An application of SHARPE to software reliability estimation is

discussed by Gokhale, Wong, Trivedi, and Horgan in [45]. Petri Nets have also been used

to study fault tolerance and fault repair strategies, as in [58].

Each of the protocols studied also incorporates some formal techniques at the specifica-

tion level. Theorem proving gives the strongest assurance of correctness, but also involves

the most effort. Proofs could be done by hand (as in the Welch and Lynch clock synchro-

nization work [120]), but modern proofs are often done with the assistance of an auto-

mated theorem prover such as the Prototype Verification System (PVS) [95]. Rushby and

Stringer-Calvert state that “Formal verification can accomplish what massive simulation

and testing cannot: examination of the behaviors of these designs under all circumstances”

(italics per original) [95]. PVS was used to develop the NASA SPIDER proofs. A formally

proven service is assured to provide its guarantees under all conditions, except when one of

the assumptions are violated. PVS encapsulates and automates common theorem proving

strategies, so the designer can concentrate on the design instead of the mechanical applica-

tion of logic rules. For example, a fault diagnosis algorithm may have to be revised many

times before the desired maximum fault assumption can be proven to be true. Alternatively,

the maximum fault assumption may need to be revised.

Model checking is another area of formal techniques that can be used to investigate fault

tolerance algorithms. Model checkers are adept at finding counterexamples to a condition.
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For example, model checkers can be used to show properties such as a safety property

(show that some undesirable behavior X never happens) or a liveness property (show that

some desirable behavior Y eventually happens). Model checkers are less powerful than

theorem provers, but also typically require less effort. For example, Steiner, Rushby, Sorea,

and Pfeifer use the Symbolic Analysis Laboratory (SAL) model checker to analyze the

startup algorithm of the Time Triggered Architecture with respect to different degrees of

faults. However, they state that “. . . even with exhaustive fault simulation, a model checker

still requires us explicitly to model each fault within the fault hypothesis” [109]. Their

future work plans to integrate model checking with PVS proofs [109]. The Symbolic Model

Verifier (SMV) is another popular tool, with Burch, Clarke and McMillan discussing the

principles behind symbolic model checking in [12]. The SPIN model checker has also

been used to check properties of distributed systems, with the distributed leader election

example discussed by Holzmann in [47].

Markov techniques are also used in a type of model checking called probabilistic model

checking. Instead of proving that a system always satisfies some guarantee, probabilistic

model checking can show that a guarantee holds with some probability P. As an example

of a general-purpose probabilistic model checking tool, the Probabilistic Model Checker

supports probabilistic assurance of properties, including properties modeled with discrete

space Markov chains [65].

Finally, there are different kinds of Markov models, including four classes of discrete

space Markov chains [97].. If a model satisfies the Markov property (also called the mem-

oryless property), then the “. . . state at time step k depends only on its state at the previous

time-step k-1 . . . ” [97]. Discrete-time Markov chains only permit probabilistic choice, and

Markov decision processes add nondeterministic choice to discrete time Markov chains

[97]. Continuous-time Markov chains model continuous time plus probabilistic choice, and

probabilistic timed automata allow continuous time, probabilistic choice and nondetermin-

istic choice [97]. The methodology I propose uses continuous-time Markov chains. Some
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models also allow rewards (or costs) to be associated with model states. Also, steady-state

computation is possible for some models, although for the reliability estimates I propose I

use a specific mission time since traditionally reliability is measured as the probability of

successfully completing a mission.

2.2 Hybrid Fault Models and Guarantees

Safety-critical systems may require distributed algorithms due to the high reliability level

and the constraint that there can be no single point of failure. The failure rate of any one

component is usually estimated to be about 10−6. Safety-critical systems may require a

failure rate on the order of 10−9. Therefore, a centralized solution may be inadequate.

However, distributed systems introduce new classes of problems. It is difficult to assure

agreement across a group of nodes for some value (such as a data value, the set of members

of the group or the current time). Designing an agreement algorithm that can also tolerate

faults is even more difficult. The specific guarantee influences the nature of the solution,

and subtle differences can require important changes to the algorithm and assumptions.

This section will discuss some milestones in the history of agreement algorithms, then

review different fault tolerance bounds that have been developed over time. Next, this

section will explore some of the differences among guarantees, especially exact agreement

and approximate agreement.

The Interactive Consistency problem defines the essential challenges in achieving agree-

ment in a distributed fashion. The idea of Interactive Consistency was proposed by Pease,

Shostak and Lamport [87]. The Interactive Consistency problem is defined for a set of

n isolated processors, where each processor p has some private value of information Vp,

and each processor keeps a vector of values for each of the n processors. An Interactive

Consistency protocol assures that for each nonfaulty processor p, “1) the nonfaulty proces-

sors compute exactly the same vector”, and “2) the element of this vector corresponding

to a given nonfaulty processor is the private value of that processor” [87]. The SPIDER
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proofs restate Interactive Consistency as providing two guarantees, validity and agreement

[75]. Validity is defined as “Every good node receives the value sent by a good node”,

and Agreement is defined as “All good nodes agree in the value sent” [75]. Achieving

Interactive Consistency is also called the consensus problem [36].

Unfortunately, Interactive Consistency is not achievable for certain types of systems

(namely, asynchronous systems) in the presence of just a single fault. An asynchronous

system makes “no assumptions about the relative speeds of processes or about the delay

time in delivering a message” [36]. Fischer, Lynch and Paterson proved that deterministic

consensus is impossible in an asynchronous system in the presence of a single faulty pro-

cess [36]. The problem is that since there are no bounds on processing time or delay time,

receivers cannot tell if a sender is faulty or just slow.

Fortunately, fault-tolerant Interactive Consistency is possible if some synchrony assump-

tions are introduced. Dolev, Dwork and Stockmeyer [28] proved that the (non-trivial) con-

sensus problem requires both a “fixed upper bound ∆ on the time for messages to be deliv-

ered” and a “fixed upper bound Ω on the rate at which one processor’s clock can run faster

than another’s” [31]. Dwork, Lynch and Stockmeyer additionally proved that the bounds

do not have to be known priori, and that it is acceptable if the bounds only hold starting

at some unknown time T [31]. In that case, the system is called partially synchronous. A

Time Division Multiple Access (TDMA) system conforms to both synchrony assumptions,

since there is a fixed upped bound on the time for messages to be delivered (the slot win-

dow) and there is a fixed upper bound on the clock rate difference (defined in the clock

synchronization algorithm).

Since its inception, there have been hundreds of papers published on variations of the

Interactive Consistency problem, and there are a few surveys available on work in this area.

Chockler, Keidar and Vitenberg review a number of implemented group communication

systems in [19]. Galleni and Powell review a number of consensus and membership al-

gorithms, dicsussing the assumptions of each algorithm, advantages, and drawbacks [39].
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There are also a number of interesting impossibility proofs that have been developed over

the years for group communication systems. Two surveys of impossibility results include

the 1989 survey by Lynch [72] and the 2003 survey by Fich and Ruppert [34].

2.2.1 Byzantine Fault Model and Hybrid Fault Models

One of the motivations for distributed agreement algorithms is to be able to tolerate any

single arbitrary faulty node, for any possible behavior of that node. This problem is called

the Byzantine Generals problem, named after the seminal paper by Lamport, Shostak and

Pease [66]. A system that can tolerate an arbitrary faulty node is called Byzantine fault

tolerant, and is said to be able to handle a Byzantine fault model. Byzantine fault tolerance

is expensive (in terms of the number of nodes required), so various hybrid fault models

have been introduced. A hybrid fault model refines the Byzantine fault model to include

additional categories for easier-to-tolerate faults. For example, a fail-silent node can be

easier to tolerate than a node that transmits arbitrary frames. This section reviews the

Byzantine fault model, talks about Byzantine faults in practice, and then reviews some

hybrid fault models that are used in the network protocols studied.

The Byzantine fault model by Lamport, Shostak and Pease introduced the idea of clas-

sifying faulty nodes according to fault severity with respect to a group of observers [66].

The original Byzantine fault model placed no restrictions on the behavior of a faulty node,

thereby covering all possible faulty behaviors. That work proved that Interactive Consis-

tency requires 3 f + 1 processors to tolerate f faulty processors [66]. The 3 f + 1 bound is

proveably tight; i.e., if the total number of processors is less than this then there exists at

least one case where agreement is violated. This bound refers to the Oral Messages solution

where no restrictions are placed on the message contents. In the Signed Messages solution,

where an intermediate messenger cannot alter the contents of a message in an undetectable

way, only 2 f + 1 processors are required to tolerate f faulty processors [66]. Network pro-

tocols do not assume perfect messengers since the network (the messenger) can alter the
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message in a potentially undetectable manner. A digital signature might be a way around

this problem, but current embedded systems are too resource and time constrained to per-

form the computation required for a sufficiently strong digital signature. Byzantine faults

are also referred to as ‘asymmetric’ faults, since observers in the group may have different

perceptions of a message due to a single fault. Early implementations of distributed fault

tolerance were developed in the late 1970s and in the 1980s. The Software Implemented

Fault Tolerance (SIFT) system included an early form of agreement and some fault diagno-

sis in 1976 [122]. The Multicomputer Architecture for Fault-Tolerance (MAFT) approach

in 1988 included a form of Byzantine agreement [60].

A related bound concerns the number of rounds that may experience asymmetric faults.

Fischer and Lynch demonstrated that no algorithm can solve the consensus problem in

fewer than f + 1 rounds if there are f Byzantine failures present [35]. There were many

variations on this result, using different system constructions and different types of faults,

summarized in [72]. This becomes important since both TTP/C and SPIDER use two

rounds in their diagnosis procedures (although a TTP/C round is slightly different from

a SPIDER round), so two asymmetric faults within these rounds can lead to cases where

consensus cannot be assured.

Byzantine faults are more than just a theoretical category - they can and do occur in

practice, and can be caused by natural phenomena. Driscoll, Hall, Sivencrona, and Zum-

steg give examples of real-world Byzantine fault scenarios, including a digital signal stuck

at 1/2 (which can propagate despite certain fault containment procedures) and a Cyclic Re-

dundancy Code transmitted with weak voltage which receivers could interpret differently

[30]. That paper also includes observed examples of Byzantine faults in practice. The au-

thors argue that reducing the probability of a Byzantine fault to some unknown probability

is not a strong argument [30]. Kull, Feser, and Köhler describe an automotive example,

where a noise pulse occurs on one of the in-vehicle networks when the headlights are

switched on [63]. Different voltage levels were measured at a node near the disturbance
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compared to a node far away from the disturbance.

Another example of a Byzantine fault is a Slightly-Off-Specification (SOS) fault. “In a

distributed system where the individual nodes use local hardware to determine about the

correctness or incorrectness of the transmission, there is always a ‘grey area’ of parameters

(e.g. bit timing, voltage level, etc.) which will be accepted by some nodes but rejected by

others” [118, p. 29]. SOS faults can occur in the time domain and the voltage domain.

Active star couplers can reduce the chance of SOS propagation, as shown by Ademaj,

Sivencrona, Bauer, and Torin, where some Byzantine faults were observed in a bus topol-

ogy, but none were observed in a star topology where a central guardian utilized active

frame reshaping [1]. However, absence of Byzantine faults in testing does not mean they

are absent in the final system.

While a Byzantine model covers worst-case fault behavior, the Byzantine model can be

very conservative. Hybrid fault models partition faults into categories according to sever-

ity. Meyer and Pradhan differentiated between Benign (self-evident) and Arbitrary (all

other) faults [74]. Thambidurai and Park introduced a three category fault model includ-

ing Non-malicious, (Malicious) Symmetric and (Malicious) Asymmetric faults [115]. A

Non-malicious fault “. . . is detected by every non-faulty receiver of the message” [115].

A Symmetric fault “. . . refers to the case when all receivers obtain exactly the same mes-

sage” [115]. An Asymmetric (Byzantine) fault “. . . refers to the case when a message is not

received identically by all non-faulty receivers of that message” [115]. Azadmanesh and

Kieckhafer introduce strictly omissive symmetric and strictly omissive asymmetric faults,

defined below [6]. Powell sorts these categories into Value Error assertions and Timing

Error assertions, and presents a hierarchy of fault models in [92]. Strictly omissive asym-

metric faults are particularly interesting, because they map well to the behavior of a net-

work protocol with fairly good error detection. In the network protocols studied here, error

detection codes transmitted in a frame detect most bit and burst value errors. For timing

errors, frames are required to arrive within a local timeslot so frames that are too early or
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too late are easy to detect. The arrival time of a frame is calculated with respect to the local

clock. This avoids some of the problems that might occur if explicit timestamp values were

transmitted but corrupted during transmission.

Since the terminology used in each of these papers is slightly different, I use the defini-

tions from the NASA Langley Scalable Processor Independent Design for Electromagnetic

Resilience (SPIDER) protocols [75] and from Azadmanesh and Kieckhafer [6]. The SPI-

DER definitions are based most closely on the Thambidurai and Park model. SPIDER is

working on including the omissive category.

• Good (G) “Each good node behaves according to specification; that is, it always

sends valid messages” [75].

• Benign (B) “Each benign faulty node either sends detectably incorrect messages to

every receiver, or sends valid messages to every receiver” [75].

• Symmetric (S) “A symmetric faulty node may send arbitrary messages, but each re-

ceiver receives the same message” [75].

• Asymmetric (A) “An asymmetric (Byzantine) faulty node may send arbitrary mes-

sages that may differ for the various receivers” [75].

• Strictly Omissive Asymmetric (A) “A Strictly Omissive Asymmetric fault can send a

single correct value to some processes and no value to all other processes” [6]. A

fault can “garble a message in transit, but not in an undetectable manner” [6].

2.2.2 Group Communication Services and Agreement

A group communication service can play a vital role in the dependability of a network pro-

tocol. One type of group communication service is a group membership service. “The task

of a membership service is to maintain a list of currently active and connected processes in a

group”, as stated by Chockler, Keidar, and Vitenberg in their recent Group Communication

Specification survey paper [19].
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For X-by-Wire protocols as currently designed, there is a single active group. Nodes

may reintegrate, but the protocols do not allow for merging of groups (for example, there

is no fault tolerance for network partitions). Since the number of nodes physically present

in an automobile or airplane is relatively static (except for system upgrades) and is known

a priori, having a single active group is a reasonable design. The time to reach consensus

on group members is often stated with respect to the number of rounds.

Group membership algorithms are usually designed to withstand node crashes, send

faults, and receive faults. Algorithms handle both permanent and transient faults, typi-

cally with restrictions on fault interarrival rates [61]. Group membership algorithms cannot

compensate for loss of network connectivity or semantically incorrect data that is syntac-

tically correct. Group membership requires at least four nodes to tolerate one Byzantine

faulty node [88]. Faulty nodes that lose membership may reintegrate into the system, after

the group has reached consensus on its members. However, formally proven reintegration

algorithms are not available for these protocols yet. If a fault occurs in the group, additional

faults are not tolerated while nodes in the group have inconsistent views of membership,

although better fault tolerance is possible for some faults if a slightly longer time is allowed

[61].

The TTP/C and SPIDER agreement guarantees are slightly different. TTP/C guarantees

agreement on just the membership of the group. SPIDER additionally guarantees agree-

ment on frame contents. FlexRay does not guarantee agreement on group members or data

values, treating group membership as an optional application level service.

SPIDER’s membership service is defined as follows, where PE stands for Processing

Element:

Message broadcast: Every scheduled message sent by a PE is delivered to all

of the properly working PEs. Irrespective of the status of the source PE, all

of the properly working PEs will agree on the content of the message. If the

source is working properly, all of its messages will be received exactly as they
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are sent. [117, p. 2]

TTP/C’s membership service is defined in the specification as:

Consistent Membership Service: The TTP/C controller informs its host com-

puter about the state of every other computer in the cluster with a latency of

less than two TDMA rounds. The membership service employs a distributed

agreement algorithm to determine, in case of a failure, whether the outgoing

link of the sender or the incoming link of the receiver has failed. [118, p. 6-7]

2.2.3 Clock Synchronization and Approximate Agreement

For some problems, exact agreement on an identical value is not needed or is not feasible

— instead, nodes might need to agree on values that are close to one another. This ver-

sion of agreement is called Approximate Agreement, and is used in clock synchronization.

Dolev et. al. state that an approximate agreement algorithm must satisfy the following two

conditions [29]:

“Agreement: All nonfaulty processes eventually halt with output values that are within ε of

each other” [29].

“Validity: The value output by each nonfaulty process must be in the range of initial values

of the nonfaulty processes” [29].

The goal of clock synchronization is to keep all of the good nodes’ local clocks within

some error ε of each other. There are two types of tasks in clock synchronization: rate and

offset correction, and approximate agreement on the correction values. Proofs for clock

synchronization will generally address both types of tasks. Clock synchronization requires

both rate correction and offset correction. For two clocks c f ast and cslow, the faster clock’s

value will eventually diverge from the slower clock’s value, even if both start out at the

same initial time value. Rate correction handles this issue. Also, clocks might not start out

at the same exact initial time, or might decide on slightly different time values, even if the

rates are the same. Offset correction reduces this fixed difference.
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This methodology concentrates on the approximate agreement portion. Each node col-

lects a set of clock values from the other nodes. In these statically scheduled networks,

explicit timestamps are not used. Instead, the clock value is computed with respect to the

receiver’s local clock as the time when a frame arrives within the receiver’s slot window.

From these clock values, the receiver computes its own local rate and offset correction

parameters.

Descriptions of the clock synchronization services for each of the protocols are given

below. For each protocol, a minimum precision is also specified, and the precision is often

related to other parameters such as the bandwidth, the number of frames supported and the

physical layer properties.

FlexRay: “The primary task of the clock synchronization function is to ensure that the

time differences between the nodes of a cluster stay within the precision” [33, p. 158].

TTP/C Fault-Tolerant Global Time Base: “The TTP/C controllers process a fault-tolerant

clock synchronization that establishes a sparse global time base without relying on a central

time server. The time base with a precision in the microsecond range is provided to all host

computers” [118, p. 6].

SPIDER: “ROBUS-2 provides an accurate and precise time reference to the PEs, which

they can use to coordinate their actions” [117, p. 2]. A PE is a Processing Element, and

ROBUS stands for Reliable Optical Bus (although the proofs are valid for any communi-

cation medium).

2.3 Network Protocols

Time Division Multiple Access (TDMA) networks provide a statically-scheduled method

of transmitting data on a broadcast bus. A frame is the basic unit of transmission, and in-

cludes a data payload plus overhead fields such as a Cyclic Redundancy Code for error

detection and various header and status bits. A TDMA network contains one slot (per

channel) for each frame to be transmitted. Slots are defined according to their order in
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a round. Each node typically has at least one slot per round [7]. Rounds are assembled

into a cluster cycle [118]. Typically a dual-redundant bus (or star) is used, and safety-

critical frames are replicated on all channels. Some protocols allow different frames to be

transmitted on each channel as a performance optimization for non-critical frames. Three

safety-critical network protocols are studied: FlexRay, the Time Triggered Protocol Class

C (TTP/C), and the NASA Scalable Processor Independent Design for Electromagnetic

Resilience (SPIDER) family of protocols.

Each studied protocol uses a TDMA media access scheme. The unique characteristic

of a TDMA scheme is that access to the communication bus is statically scheduled. Each

sending node receives a time slot, and bus guardians ensure that only the correct sender is

allowed to send in a particular slot. The main motivation for using a TDMA strategy is

to prevent a ‘babbling idiot’ fault, where a single faulty node monopolizes the bus. In a

TDMA scheme, at least two faults are required in order for a babbling idiot node to mo-

nopolize the bus. Both the node and the bus guardian must fail. In priority-based schemes,

any node could be the next sender, so designing a bus guardian would not be feasible with-

out additional knowledge. The Controller Area Network (CAN) network currently used in

automobiles is priority-based. Although messages are statically scheduled on top of CAN,

FlexRay is being designed as the successor to CAN to eliminate the babbling idiot failure

mode. This section describes properties of TDMA protocols in more detail, then reviews

each of the three protocols studied and the supporting formal proofs for each protocol.

2.3.1 General TDMA Concepts

All three of these protocols use a Time Division Multiple Access (TDMA) scheme to broad-

cast data on the communication medium. In a TDMA scheme, each node is statically as-

signed some number of frame sending slots within a round. One or more rounds form a

communication cycle, which is continuously repeated. Bus guardians protect against ‘bab-

bling idiot’ faults, where a node attempts to transmit outside of its slot. Constructing a
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Figure 2. TDMA Round, from TTP/C Specification [118]

Figure 3. FlexRay Round, from FlexRay Specification [33]

bus guardian without a static schedule would be infeasible, since the bus guardian could

not predict which node is supposed to send next. This is a key advantage over currently

deployed priority-based bit dominance protocols (such as the Controller Area Network),

where a single babbling idiot node might monopolize the network. TDMA networks can

also achieve higher data transfer rates than the Controller Area Network since there is no

need for arbitration for control of the network.

Figure 2, from version 1.4.3 of the TTP/C specification, illustrates the concept of slots,

nodes, and cycles in a TDMA scheme [118]. The set of possible senders is known at

design time. The SPIDER protocol also uses a sending scheme similar to Figure 2. The

FlexRay communication protocol allows an optional Dynamic segment (permitted setups

are completely Static, Static followed by Dynamic, and completely Dynamic). Figure 3

from version 2.0 of the FlexRay specification illustrates static and dynamic segments, plus

some time slots reserved for other purposes. Safety-critical information would be sent in

the Static segment of a FlexRay sending scheme.
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Since one faulty channel could be a single point of failure, multiple channels are used.

FlexRay and TTP/C employ a dual, redundant channel design where any well-formed frame

is accepted. SPIDER uses a slightly different topology with three channels, as SPIDER ad-

ditionally guarantees agreement on the frame contents which requires voting at the receiver

to tolerate Byzantine faults. A well-formed frame must contain a valid Cyclic Redundancy

Code check, must be within a certain time window, and must pass any additional error

checks (for example, a matching membership view) [118]. For FlexRay and TTP/C, the

channel may be a passive bus or frames may be broadcast via an intermediate star cou-

pler. SPIDER broadcasts frames via Redundancy Management Units. The FlexRay clock

synchronization service and the TTP/C membership service treat only nodes as first-class

entities. The SPIDER membership service has two classes of nodes - Bus Interface Units

(similar to the nodes in FlexRay and TTP/C) and Redundancy Management Units (similar

to star couplers in FlexRay and TTP/C).

Many variations in topologies are possible, and are based on either a bus configuration

or a star configuration. A topology may also be a combination of the two. All nodes

are assumed to be fully connected, and all communication is broadcast. In general these

protocols are not designed to handle network partitions (other than with a mechanism such

as restart). The SPIDER topology is slightly different, and is covered in the NASA SPIDER

section. Figure 4 from the TTP/C specification illustrates a bus topology and a star topology

[118].

Other researchers have also evaluated safety-critical network protocols. In his detailed

comparison of TTP/C, the NASA SPIDER protocols, the Honeywell SAFEbus network,

and FlexRay, Rushby argues that “Any fault-tolerant system must be designed and eval-

uated against a specific fault hypothesis that describes the number, type, and arrival rate

of the faults it is intended to tolerate” [96]. Kopetz discusses the fault tolerance abilities

of TTP/C vs. Flexray in [62], and the PALBUS project reviews a number of data buses

including an early version of TTP/C [106].
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Figure 4. Bus Topology and Star Topology, from TTP/C Specification [118]

2.3.2 FlexRay

FlexRay is a next-generation automotive protocol intended for safety-critical automotive

applications such as brake-by-wire, where electronic connections will replace the mechan-

ical linkages between the brake pedal and the braking actuators [33]. The FlexRay protocol

guarantees distributed clock synchronization among member nodes. FlexRay is being de-

veloped by a consortium of industry members.

FlexRay was designed as an alternative to TTP/C for the automotive arena, and has two

main differences. In addition to the traditional TDMA statically scheduled round, FlexRay

features an optional ‘dynamic segment’ where nodes may choose to send additional infor-

mation. The name “FlexRay” stems from this flexible scheduling. However, safety-critical

information will still be transmitted using the static segment. Besides support of event-

based messages, one of the reasons for including a dynamic segment was that FlexRay

could then support the byteflight protocol format. byteflight (intentionally lowercase) was

developed by Motorola, BMW, and a few additional companies for use in BMW vehicles.

The second main difference is the FlexRay perspective on group membership. The FlexRay

view is that group membership, if implemented, should be implemented at the application

level. FlexRay provides only clock synchronization at the protocol level.

The FlexRay clock synchronization algorithm is based on the formally proven algorithm

33



from Welch and Lynch [120], involving rate and offset correction. Rate correction compen-

sates for clocks running at slightly different speeds, while offset correction corrects fixed

discrepancies in local clocks. Recently, an improved bound was developed for a family of

clock synchronization algorithms. The Welch and Lynch clock synchronization algorithm

belongs to a broader class of algorithms called Mean-Subsequence-Reduced (MSR) that

operate on local sets of values [6].

2.3.3 Time Triggered Protocol, Class C (TTP/C)

The Time Triggered Protocol, class C is a protocol designed to meet “the requirements

for safety critical distributed real-time systems in several application domains . . . ” [118,

pg. 1]. TTP/C was originally developed at the Vienna University of Technology by Her-

mann Kopetz, and is now owned by TTTech Computertechnik AG. The class C portion of

the name refers to the Society of Automotive Engineers (SAE) class C requirements for

fault-tolerant real-time automotive networks. There are other TTP variants for less criti-

cal applications, namely TTP/A for SAE class A applications. Kopetz also developed the

Time Triggered Architecture (TTA), which states architectural principles independent of a

particular protocol specification [62].

TTP/C’s fault tolerance is based in part on a formally proven membership service. The

TTP/C protocol specification also employs some “Never Give Up” mechanisms for severe

fault situations such as network blackout [118]. Reintegration strategies are also under

development. However, reintegration and last resort mechanisms are still evolving and

are not formally proven. Therefore, the reliability analysis does not investigate how any

additional mechanisms might alter the system reliability. Strictly speaking, it is possible

that reintegration or a “Never Give Up” mechanism might actually interfere with normal

operation, unless proven otherwise. Some reintegration problems (and possible solutions)

are discussed by Bauer, Kopetz, and Steiner [9]; namely, a faulty node could transmit faulty

system state information which a reintegrating node may think is correct.
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The TTP/C protocol offers an integrated membership service with low overhead per

frame. As stated in the specification, the membership service “. . . informs all nodes of a

cluster about the operational state of a node within a latency of about one TDMA round”

[118, p. 67]. In the TTP/C membership service, each node keeps a local membership vec-

tor consisting of one bit per node in the system (system size is usually in the tens of nodes).

Each sender incorporates its vector into the frames it sends. If the received vector does not

match the local vector, the formally proven Clique Avoidance and Implicit Acknowledge-

ment algorithms ensure that only the majority clique survives (with tiebreaker rules) and

that consensus is reached within two rounds [88], [7]. Nodes are immediately removed if

suspected. A sender will lose membership if not enough other nodes receive the sender’s

frame correctly [88]. If an asymmetric (Byzantine) fault occurs, there is no guarantee that

the asymmetric faulty node will be removed, since it may or may not belong to the minority

clique. When an asymmetric fault occurs, at least one node and at most half of the nodes

in the current group will lose membership, if the Single Fault Hypothesis is not violated.

TTP/C’s membership service relies on the TTP/C Single Fault Hypothesis. The TTP/C

specification states, “TTP/C is based on the fault-hypothesis that any single component in

the system can fail in an arbitrary failure mode. This assumption is based on the fact that

the likelihood of two concurrent independent component failures is remote enough to be

considered a rare event that can be handled by an appropriate never-give-up (NGU) strat-

egy” (italics per original) [118, p. 27]. Specifically, if one fault occurs, and an additional

fault occurs before the group has reached consensus on its members, it is possible that the

group will never achieve consensus on its members. Proofs by Bouajjani and Merceron

and by Pfeifer verify that after a fault, it will take at least one communication round and at

most two communication rounds for the group to achieve consensus on its members if all

nodes transmit a frame exactly once per round, and there are at least four nodes in the orig-

inal group [11], [88]. If faults occur in a manner that violates the Single Fault Hypothesis,

agreement may not hold and the system may fail.
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TTP/C can save on bandwidth by including the membership vector implicitly in the er-

ror checking Cyclic Redundancy Code (CRC) calculation. TTP/C identifies improperly

formatted frames using a CRC value included with every frame to detect corrupted data,

and by comparing local membership vectors to detect mismatch. The CRC polynomial

must have a Hamming distance of 6 [118, p. 43], which at minimum ensures detection of

up to five single bit errors. Also, burst errors up to the length of the CRC are detected (usu-

ally 24 bits). Each frame includes the sender’s local membership vector, either explicitly

or implicitly. An explicit membership vector is transmitted as part of a frame’s contents.

For an implicit membership vector, the sending node calculates the CRC over the trans-

mitted frame contents and its local membership vector, but does not transmit a copy of its

local membership vector. A receiving node will check the CRC using the received frame

plus the receiver’s local membership vector (which should match the sender’s if no faults

have occurred.) If a replicated frame has an incorrect CRC for all channels, that frame is

considered ‘invalid’ and cannot be used for a positive agreement [118, p. 41-42]. Note that

TTP/C does not guarantee that the contents of a frame will match at all receivers, since

it is possible that two different well-formed frames could arrive at a receiver. Also, some

explicit membership vectors must be transmitted if nodes are permitted to reintegrate.

In TTP/C membership, only nodes can be members — link faults are mapped back to one

or more nodes. Since TTP/C uses the CRC to determine the validity of a frame, network

noise that corrupts the frame will result in a failed CRC and an invalid frame. If an invalid

frame is received on all channels, the sending node is perceived as faulty by all other nodes

(if the link fault is symmetric) or by some other nodes (if the link fault is asymmetric).

TTP/C’s membership assumptions therefore apply to network faults as well. Note that

the membership service assumptions are stated with respect to units of one frame. A single

noise fault on the network may create multiple erroneous frames, if the fault overlaps frame

boundaries.
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Figure 5. SPIDER Topology, from [117]

2.3.4 NASA SPIDER

The Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) is

a family of general-purpose fault-tolerant architectures being designed at NASA Langley

Research Center to support laboratory investigations into various recovery strategies from

transient failures caused by electromagnetic effects [40]. At the heart of SPIDER is the

Reliable Optical Bus (ROBUS), which processing elements use to reliably transmit data in

a fully-connected, broadcast manner. Formal proofs define the fault tolerance abilities of

the ROBUS. The proofs are valid for all transmission media. The ROBUS has two types

of components: Bus Interface Units (BIUs) and Redundancy Management Units (RMUs).

The BIUs are fully connected to all RMUs, and vice-versa. Each BIU has a one-to-one

connection to a corresponding Processing Element (PE). A Processing Element cannot

exhibit asymmetric (“Byzantine”) faulty behavior, since there is only one direct consumer

of its data. The SPIDER voting algorithms are based on work by Davies and Wakerly [24],

and the hybrid fault model is based on the Thambidurai and Park model [115].

Asymmetric BIU or RMU faults are handled internally by the ROBUS, freeing the ap-

plication designer from this concern, as long as the proof assumptions hold. Figure 5 from

Torres-Pomales, Malekpour and Miner illustrates the SPIDER architecture [117].

The SPIDER Interactive Consistency algorithm and Diagnosis algorithm provide four
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guarantees [117]:

“Validity: Every good node receives the value sent by a good node” [117].

“Agreement: All good nodes agree in the value sent” [117].

“Conviction Agreement: All good nodes agree on convictions” [117].

“Correctness: No good node is ever convicted” [117].

Validity and conviction agreement are provided by both SPIDER and TTP/C, while only

SPIDER guarantees agreement on the data values. Protocol designers can choose to guar-

antee correctness, completeness, or neither. Geser and Miner state, “In the presence of

arbitrary asymmetric failures, it is impossible to guarantee both correctness and complete-

ness, where completeness means that “all faulty nodes are eventually convicted” [40]. The

correctness property is also called accuracy by some membership services [18]. By pre-

serving correctness instead of completeness, SPIDER can accumulate evidence against a

node as an alternative to immediate conviction. In comparison, guaranteeing completeness

could require conviction of transiently faulty nodes, which can significantly decrease as-

sumption reliability (as the results show). A main disadvantage to correctness is that it is

not possible to convict faulty nodes in some cases.

2.4 Physical Fault Rate Data

This section surveys major types of physical faults that can affect embedded wired net-

works. I use observed fault data from experiments and real-world measurements to obtain

parameters for the reliability models. I place faults into one of four categories according

to the physical cause: permanent hardware and link faults (from normal use), single event

effects (from radiation), bit error rate (uncorrelated network corruptions), and electromag-

netic interference (bursts of noise on the network). Predictive rate models are outside the

scope of this paper, but do exist, if more precision is desired. This survey is not intended

to be used as a complete fault list, as each system will have its own unique set of faults.

However, this survey should be helpful and reusable as a more comprehensive benchmark
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for assumption reliability testing.

2.4.1 Permanent Hardware Faults

Faults in this category are generally fail-silent, and may affect both nodes and links. Due

to reasons such as wear-out or other physical damage, hardware may cease to function

at all, becoming an inert component that neither generates nor receives messages. These

permanent faults last indefinitely (or until component repair or replacement). The fault rate

for a fault containment region will be a function of component fault rates within that region.

Fault containment regions imply that no common-mode failures exist between two regions

(otherwise, the components would belong to one fault containment region). Therefore,

these faults are modeled as independent. For permanent hardware faults, the reliability

models assume that components are in their useful life stage, with a constant fault arrival

rate.

Extensive data is available for failure rates of electronic components. For example, MIL-

HDBK-217 (Reliability Prediction of Electronic Equipment) describes the failure rates of

hundreds of types of electronic components and connectors [119]. At the protocol design

stage, order of magnitude approximations are appropriate. The failure rate of a bus, star

coupler, or SPIDER RMU node is modeled as 10−6 failures/hour, which is in line with the

military handbook data. FlexRay and TTP/C nodes and SPIDER BIU nodes have a larger

fault containment region (including both the transmitter and a possibly complex processing

element), so this failure rate is modeled as 10−5 failures/hour. The probability of a link

or connector fault depends on many characteristics, including the type of link, the type

of connector, the temperature and the thickness of the link. Base failure rates for a pair

of connectors range from approximately 10−7 to 10−10 in MIL-HDBK-217F [119], before

accounting for environmental and usage factors. Failure rates for the links themselves are

quoted by Hyle in a 1992 study as approximately 4.35-5.26 * 10−6 for fiber and 1.15-1.81

* 10−6 for copper [49]. The reliability models use a range of 10−8 to 10−6, which is slightly
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pessimistic compared to [119] and slightly optimistic compared to [49]. Care must be taken

when researching cable failure rates, as a major source of link faults in wide area networks

is unintentional cable dig-ups, which would not apply to embedded networks.

2.4.2 Single Event Effects

Single event effects (SEEs) arise from particle collisions that deposit energy which causes

an inappropriate electric field or potential somewhere in the circuit. SEEs are classified

both by the effects produced and the dominant particle source. The chance of a particle

causing a particular effect depends on many parameters of the integrated circuit design,

including voltage, transistor and feature size, and radiation hardening. The total number of

observed effects also depends on the particle flux, which varies with altitude, latitude, and

manufacturing materials (in the case of alpha particles). Since this research addresses broad

design-time concerns, single event effects rates will be analyzed at order-of-magnitude

granularity. No system implementation details are assumed. However, detailed single event

effects arrival rate models and measurements for production integrated circuits are available

if more is known about the implementation and environment [82]. First, the neutron and

alpha particle sources of SEEs are discussed. Next, both non-destructive (transient) and

destructive (permanent) effects are summarized.

Particles

Single event effects are caused by particles striking the integrated circuits and interfering

with its operation. Four categories of particles are examined: heavy ions (defined as any

particle with atomic number greater than or equal to two [27]), neutrons, protons, and alpha

particles. The two primary methods by which particles interact with an integrated circuit

are direct ionization (most common for heavy ions) or indirect ionization (most common for

neutrons, protons, and alpha particles). “Direct ionization occurs when a charged particle

passes through a circuit and becomes lodged in the semiconductor material, after losing

all of its energy” [27]. Indirect ionization occurs when energy is deposited by colliding
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Figure 6. Neutron Flux vs. Atmospheric Depth, from [79]

particles, but the particles themselves do not remain lodged in the circuit [27]. The expected

SEE arrival rate depends both on the circuit construction and the operating environment.

Data is available on particle concentrations in various environments (both terrestrial and

higher in the atmosphere), for example, as in [79]. Testing results are available for a large

number of commercial components, for example, as in [82].

Atmospheric neutrons and alpha particles are the main contributors to SEE for the sys-

tems considered in this research. At elevated altitudes, atmospheric neutrons are the main

cause of SEEs [79]. Neutron flux and proton flux are not uniform throughout the atmo-

sphere, and therefore the number of SEEs experienced will depend on a circuit’s operating

environment. As shown in Figure 6 from [79], the amount of neutron flux increases up

to an altitude of about 60 thousand feet before leveling off; proton flux also peaks at this

height [79]. Neutron flux also depends on latitude, with higher flux at the poles and lower

flux at the equator [79]. Proton flux is higher at the equator that the poles [79]. Figure 6

from [79] shows that neutron flux is the dominant cause of upset for aircraft, as changes

in the in-flight upset rate follow changes in the atmospheric neutron flux (this is true for

changes in atmospheric neutron flux due to latitude too [79]). In Figure 6, the solid line is
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(a) Alpha Particle Contribution to Soft Error
Rate, from [83]

(b) Single Event Rate for Two CMOS SRAM
Generations, from [22]

Figure 7. Alpha Particle Contribution to Single Event Upset, from [83],[22]

the 1*10−10 MeV atmospheric neutron flux and the dotted line is the Single Event Upset

rate in upsets/bit-day, multiplied by 1*107.

While neutrons are currently the main contributor to SEEs at higher altitudes, alpha

particle radiation may become an increasing concern in the future. For alpha particles,

the method of manufacturing and the circuit geometry influence the rate of bombardment

and susceptibility. Alpha particles are emitted by radioactive decay of trace elements in

the chip packaging [83]. To determine the alpha particle contribution to the Single Event

Rate (SER), O’Gorman studied the SER of chips placed at four different heights (including

200 m underground, where no atmospheric particle flux would be present). Figure 7(a)

from [83] illustrates the alpha particle contribution to SER over time (since alpha particle

radiation will decrease with time due to decay), and shows that for the 288 KB DRAM chip

tested, alpha particles were not the dominant cause of SER at higher altitudes. O’Gorman

also found that chips from two separate sample sets had different amounts of alpha particle

radiation, due to a change in the manufacturing process [83]. The danger posed by alpha

particles increases as integrated circuit geometries decrease. Constantinescu depicts this

increase in Figure 7(b) [22] for CMOS SRAM technology. For the 0.25 µm technology,
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the neutron induced Single Event Rate (SER) was higher than the alpha particle induced

SER. However, the situation is reversed for 0.18 µm technology, with the alpha particle

induced SER dominating. While the susceptibility to alpha particles is different for different

semiconductor technologies, overall, smaller cell capacities and lower supply voltages will

increase the probability of Single Event Effects.

Non-Destructive Single Event Effects

Non-destructive single event effects refer to effects that do not cause physical damage

to the circuit, although some may be permanent if not detected and corrected. In memory

devices (DRAMs and SRAMs), single event upset (SEU) is the most prevalent type of

single event effect. SEU refers to the change of a bit from one stable binary state to another,

although the physics of the actual upset are different for DRAMs and SRAMs and the

effects of the particle strike depend on the strike location and amount of energy [27]. A

single event multiple bit upset (MBU) occurs when a single particle is responsible for the

corruption of multiple bits. MBUs may become more prevalent as more bits are stored in

smaller areas [27]. An integrated circuit (IC) may also experience single event functional

interrupts, where a particle strike “triggers an IC test mode, a reset mode, or some other

mode that causes the IC to temporarily lose functionality” [27]. In logic, particle strikes

may cause combinational soft faults (SF), where an error event is said to occur if outcome

of the logic circuit is altered because of the fault [27]. Mitigation techniques include error

detection and correction, physical device hardening and insulation, and redundancy [27].

Neutron flux models continue to be a good predictor of SEU rate. Table 1 from [79] lists

measured in-flight SEU rates compared to rates calculated from either the Burst Generation

Rate (BGR) method or neutron-cross section method using neutron flux data for a variety

of SRAMs. Note that all of the predictions were within an order of magnitude of the

measured rates, and most were much closer. Experiments in a neutron beam test chamber

at the Weapons Neutron Research facility corroborate with these results. SEU upset rates

(upsets/bit-hr.) for ARINC 429 receivers were in the range of 1.1*10−9 to less than 5*10−10
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Table 1. Measured In-Flight Occurrences of Avionics Single-Event Upset,
from [79]

Flight Path Altitude
(K feet)

Operating Voltage Measured Rate
upsets/ bit-hr.

Calculated Rate
upset bit/hr.

Seattle 29 2.5 V standby 5*10−9 4.4-8*10−9

N. California 65 2.5 V standby 1*10−8 1-2*10−9

Norway 65 2.5 V standby 2.3*10−8 2-4*10−8

Norway 65 2.5 V standby 4.6*10−9 8-14*10−9

Europe Area 1 29 5 V 2.3*10−9 1.8-4.7*10−9

Europe Area 2 29 5 V 1.6*10−9 1.3-2.7*10−9

Out of Seattle 29 5 V 1.6*10−9 1.3-2.7*10−9

Transatlantic 35 5 V 2*10−9 1*10−9

Worldwide 25 5 V 3.3*10−10 5*10−10

Worldwide 33 5 V 4.1*10−10 5*10−10

for a simulated neutron flux of 40,000 feet [81]. As noted in Figure 7(a), alpha particle

contribution to SEU may be significant at sea level or where atmospheric particles are

limited (such as underground) [83].

On a per-device basis, the number of device upsets/hour can be quite high. To get the

expected device upsets/hour, the bit upsets/hour rate is multiplied by the number of bits that

could be affected in the circuit. This computation is valid as the reverse process is typically

used to calculate the upset bits/hour SEU rate, especially for memory circuits. The total

number of observed faults in an experiment is divided by the total number of bits that could

be affected.

Destructive Single Event Effects

Single event effects (SEEs) that may cause permanent hardware damage are called de-

structive single event effects. Sexton classifies destructive SEEs into four categories, de-

pending on the effect produced and the susceptible devices [99]. Single event latchup is the

primary destructive single event effect considered in the reliability models.

Latchup, where energy deposited by an incident particle creates a low resistance path is

created between power supply and ground, may occur in devices with a four-layer pnpn

structure such as the CMOS family of integrated circuits [99]. Latchup is characterized by
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a high current draw that persists until power is removed or the device fails [99]. Similar to

latchup, Single Event Snap back (SES, also called transistor latchup) is characterized by a

high current condition. Snap back requires sufficient current from an external circuit to be

sustained, but does not require a four-layer pnpn structure. The chance of SES occurring

also depends on the SES threshold versus the Single Event Upset (SEU) threshold, a non-

destructive single event effect. Usually, SEU will occur before SES can, although SES

has been shown to be a concern in ICs that are intentionally hardened against upset using

feedback resistors and Silicon On Insulator technologies [99].

Single Event Burnout (SEB or SEBO) and Single Event Gate Rupture (SEGR) affect

powered bipolar transistors and power MOSFETs. In single event burnout, energy de-

posited by a particle initiates a large source-drain current, which leads to destructive burnout

[79]. In single event gate rupture, the gate dielectric that isolates the gate and channel re-

gions fails [99]. Burnout has been induced by protons, neutrons, and heavy ions, whereas

gate rupture has only been shown to be induced by heavy ions [79].

Overall, latchup is a greater concern than SEB and SEGR for avionics devices since

most devices use low power, a trend that will continue in the future. SEB and SEGR

become less important considerations as the power rating of devices drops. Devices with

higher voltage ratings show a higher susceptibility to SEB and SEGR. In one study of

power MOSFETs subjected to energetic protons, SEB events were observed in 200-V rated

parts but not in 100-V rated parts [79]. In tests involving MOSFETs bombarded with a

neutron beam, no SEB events were observed in devices rated 300 V or less [79]. Normand

states that “Since in current avionics applications these parts are operated at voltages lower

than 300 V, however, it appears that SEBO is not a real issue for current avionics” [79].

For SEGR, the operating voltages for current technologies should be below the minimum

voltage required for SEGR to occur. Maximum operating voltages are typically around 5.5

V and 3.6 V [99]. In contrast, the minimum holding voltage for latchup is about 1.0 V [99].

A single event latchup range of 10−8 to 10−6 is tested in the reliability models. Worst-
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Table 2. Latchup Rates in Gate Arrays in WNR Beam Tests, from [81]
Part Test Year Equivalent Hours at 40000 Feet Latchups Latchups/Hr.

LCA100K 1994 5.56*106 1 1.8*10−7

LCA100K 1992 2.46*107 19 7.9*10−7

LCA200K 1994 2.6*107 1 3.9*10−8

LCA200K 1992 5.6*106 7 1.21*10−7

case latchup rates due to neutrons and protons are estimated to be in the range of 10−6 to

10−7 latch-ups/device-h [79]. Table 2 lists measured average rates from neutron beam tests

at the Weapons Neutron Research (WNR) facility, showing a range of 1.2*10−7 to 3.9*10−8

latchups/flight hour, for a beam strength range similar to upper atmosphere levels [81].

2.4.3 Bit Error Rate

A Bit Error Rate (BER), or bit error ratio, is a measure of a communication link’s perfor-

mance, stated as “. . . the ratio of the number of bits received in error to the total number

of bits transmitted” [85]. The value of a bit is determined by the value(s) of the incoming

signal sampled by the receiver at a particular point or points in time. However, due to noise

and timing deviations, the received bit value might not equal the bit value that was intended

to be sent. A logic 1 might be perceived as a logic 0, and vice-versa. This constitutes a bit

error. The probability of a bit error occurring is a property of the sender, the receiver, and

the communication link between them. This section examines bit errors from independent

sampling events, so the faults modeled will be spatially and temporally independent. The

bit error rate is also assumed to be constant for a given sender-receiver-link set. Bursts

of noise that might cause a number of samples to be corrupted for a period of time are

discussed under Electromagnetic Interference.

The window of time where the receiver is expected to obtain a correct bit value can be

described with an eye diagram. “An eye diagram is a composite of all the bit periods of

the captured bits superimposed on each other relative to a bit clock (recovered or available

from the source). We call the area within the eye the eye opening” [85]. Figure 8(a), from
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(a) Idealized Eye Diagram, from [3] (b) Eye Diagram With Jitter, from [3]

Figure 8. Eye Diagrams, Bit Error Rate

[3], shows an idealized eye diagram for a transmission scheme with a low value logic 0 and

a high value logic 1 (other encoding schemes are possible). The sampling point represents

the point in time least likely to result in a bit error, with values below the threshold classified

as logic 0 and values above classified as logic 1 [3]. A signal that crosses the eye opening

is violating the specification [85]. Generally, a larger eye opening corresponds to a lower

BER. Timing deviations (modeled as jitter) and poor signal strength can affect both the

horizontal width and vertical height of the eye opening. In most cases, careful design

should lead to a low bit error rate. The next sections discuss the impact of jitter and signal

strength on the BER.

Jitter

“Jitter is the deviation of a signal’s timing event from its intended (ideal) occurrence

in time . . . ” [85]. Both random and deterministic sources of jitter exist, and are usually

modeled separately. Sources of random jitter include thermal noise, shot noise (electron

and hole noise in a semiconductor), and flicker (pink) noise [3]. Random jitter is assumed

to follow a Gaussian distribution, and is therefore unbounded, since the tails of a Gaussian

distribution are infinite [110]. Deterministic jitter is mainly caused by “. . . electromagnetic

interference, crosstalk, signal reflection, driver slew rate, skin effects, and dielectric loss”

[85]. Certain forms of jitter are data-dependent, including intersymbol interference and

effects that depend on the frequency of the transmission, such as attenuation due to skin

47



effect and dielectric loss (both worse at higher frequencies) [85]. Unlike random jitter,

deterministic jitter is bounded, since it reaches maximum and minimum deviation values

within a bounded period of time [3]. The total jitter is the sum of the random jitter and

deterministic jitter (or, if described as a probability density function, the total jitter PDF is

equal to the convolution of the random jitter and determinisitic jitter components’ PDFs)

[85]. A narrower eye opening can be seen in the Figure 8(b) eye diagram from [3], from a

signal experiencing jitter. In general, direct BER measurement is possible using a Bit Error

Rate Tester scan down to at least a BER of 10−12 [110], so systems considered here should

have measurable BERs. For extremely low BERs, extrapolating the tails of the scan may

not be accurate [110].

Signal Strength and Noise

In addition to jitter, amplitude disturbances can have a significant impact on the BER.

A signal must have adequate power for the receiver to distinguish the signal from noise.

Designers often use the highest acceptable BER to determine the sensitivity needed for

the receiver. “Sensitivity is a measure of how weak a signal can get before the bit-error

ratio (BER) exceeds some specified number” [73]. Sensitivity is often expressed as the

average power at which the maximum (worst allowable) BER can be sustained [73]. The

amount of noise present in a system relative to the signal strength is often expressed as a

signal-to-noise ratio (SNR), where a high SNR means that the signal is strong relative to

the noise present. At a low signal-to-noise ratio, there is a greater chance of the receiver

interpreting noise as a valid value. Shake et al. give an example of the relationship between

signal-to-noise ratio and BER, shown in Figure 9(a) [100]. The upper set of diagrams

shows the original system with a high signal-to-noise ratio, with a low standard deviation

amplitude and a fairly clean signal sampling space in the eye diagram. In the lower set

of diagrams, noise was injected via an optical amplifier, resulting in a lower signal-to-

noise ratio. The amplitude histogram shows increased standard deviation, and the signal

sampling window in the eye diagram is less clean [100]. This particular example tested
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(a) Influence of Noise on BER, Optical Example, from
[100]

(b) BER and Standard
Deviation of Random
Noise, from [73]

Figure 9. Noise and Bit Error Rate

a 10-Gb/s non-return-to-zero (NRZ) optical signal. Signal strength generally attenuates

proportional to the distance the signal travels, so the power of the source signal must be

chosen with respect to the most distant receiver. There are many causes of amplitude

distortion, and the type of noise experienced depends on the medium. Dispersion, where the

original pulses broaden as they travel through the medium, is one cause of signal distortion

[125]. Electromagnetic interference can affect the links, sending devices and receiving

devices. Copper wire can also be a source of electromagnetic radiation. Similar studies

have been performed for copper; for example, Stephens et al. measured the BER of twisted

pair copper cable connections of approximately 100-200 meters in a feasibility study for

SONET/ATM frames over copper [111]. As the amount of injected noise increased, the

SNR decreased and the BER increased.

BER Data

One way to design a system is to set a maximum allowable worst-case BER first, and

design the system to meet that goal. For random noise, a 7σ separation between sampling

point (in time) and sampling threshold (in value) is recommended to achieve a BER of
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10−12, for an interval of 14σ total [3], [73]. σ is the standard deviation of the (Gaussian)

random noise distribution. If the left and right (and/or upper and lower) distributions are

different, an average or approximate σ may be needed [3]. Figure 9(b) from [73] shows

the 7σ separation for amplitude distrubances. Sources of deterministic noise need to be de-

termined separately, and their noise contributions added to the random noise contributions.

However, identification is usually more challenging than designing the tolerance strategy,

since deterministic noise is bounded. Higher BERs are expected in harsher environments,

for longer cable lengths, and for higher bandwidth connections (since there will be less

energy per bit sent). Since the BER is influenced by many parameters, a wide range of

BERs is possible, and research often optimizes the BER given some fixed parameters, or

optimizes another parameter given a fixed BER.

Designs may be required to meet a BER specified in a standard. Generally, optical

network standards mandate a lower BER than standards for copper wire. Also, more in-

formation on optical standards is available. Table 3 summarizes BER requirements from

some common standards. The Boeing ARINC 636 standard and Fiber Distributed Data

Interface (FDDI) standard both stipulate a maximum BER of 2.5 * 10−10 [17]. Gigabit Eth-

ernet requires a maximum BER of 10−12, and some of the Synchronous Optical Network

(SONET) configurations require a maximum BER of 10−10 [73]. The 10 Gigabit Ether-

net specification includes a set of stressed eye receiver sensitivity tests, to ensure that a

receiver can operate at a 10−12 BER or better [110]. For copper, the draft IEEE802.3ah

standard specifies requirements for copper Ethernet networks aimed at connecting individ-

ual homes and businesses to higher-speed networks (“Ethernet in the First Mile”). This

standard states that one of the objectives for 2BASE-TL/2PASS-TL and 10PASS-TS is “To

provide a communication channel with a mean bit error rate of less than one part in 107 with

a 6dB noise margin . . . ” [51]. For electric railway equipment, the Train Communication

Network (TCN) conformance tests specify that no more than 3 frame errors are allowed in

3 * 106 frames. For small frame sizes expected (frames are usually tens of bits long), this

50



Table 3. Bit Error Rate in Standards
Standard Medium Max BER Ref.

Boeing ARINC 636 Optical 2.5 * 10−10 [17]
FDDI Optical 2.5 * 10−10 [17]

Gigabit Ethernet Optical 10−12 [73], [110]
SONET Optical 10−10 [73]

IEEE802.3ah Draft Copper 10−7 [51]
Train Communication Network Copper, Optical 10−6 to 10−7 [53]

would correspond to a BER of about 1*10−6 to about 1*10−7 if the chance of each bit being

corrupted is independent, since the chance of two corrupted bits in one frame would also

be small. An Allen-Bradley installation of the copper Controller Area Network (CAN) for

a robotic welding application had an average measured BER of 3.84 * 10−7, although the

CAN standard does not specifically state a maximum BER.

2.4.4 Electromagnetic Interference

Electromagnetic interference (EMI) refers to internal and external disruptions that can af-

fect a node’s ability to operate or corrupt messages on a network. Electromagnetic interfer-

ence generally causes correlated errors, either in space or in time. This work concentrates

on disturbances induced by lightning. The United States Federal Aviation Administration

estimates the frequency of lightning strikes for commercial airplanes to be one strike per

2500 operating hours [32]. The nature of electromagnetic interference from lightning is

described in the RTCA DO-160D Environmental Conditions and Test Procedures for Air-

borne Equipment [94]. For example, Figure 10 from [10] shows pulse 5 from the RTCA

DO-160D lightning tests.

Electromagnetic Compatibility (EMC) standards are the most common source of infor-

mation on burst faults. Both aviation and automotive have burst testing standards. For

aviation, RTCA DO-160D is the standard required by the Federal Aviation Administration

(it includes other aircraft testing procedures as well) [94]. The ISO-7637 family and the

IEC 61000-4-4 standards both describe electromagnetic test pulses for automotive compo-
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Figure 10. Waveform 5 from RTCA DO-160D Lightning Tests [10]

nents [54], [52]. Suppliers may have their own internal testing criteria, which are often

based off of a standard but may include extra or slightly different tests. For example, Ford

Motor Company requires its suppliers to meet a custom standard [37].

With respect to this methodology, one of the most important properties of a transient

burst fault is the burst duration. The burst duration indicates approximately how many

network messages would be lost, which determines the impact on the group membership

service. Long duration bursts might even affect frames for an entire round. Bursts of 10ms

duration are not uncommon - the IEC 61000-4-4 tests have some bursts with 15ms duration

[64], and one of the Ford EMC test pulses represents a 150ms power interruption [37].

Lightning is modeled here as having a burst duration of 5ms, or half of a round. This

value is in between the single stroke and multiple stroke test durations. The RTCA DO-

160D standard specifies three different types of tests: single stroke, multiple stroke, and

multiple burst. There are five different single stroke lightning waveforms in RTCA DO-

160D applicable to cable bundle tests [10]. The single stroke waveforms are designed to

stress the system with a high voltage or high current pulse with a short rise time. Each

waveform has five voltage or current levels. The longest duration single stroke waveform

would take about 0.5ms to decay down to 1 Volt at the lowest voltage level and about 1ms
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at the highest voltage level [10]. The multiple stroke test has a duration of 10ms to 200ms,

with a primary stroke followed by thirteen secondary strokes within this timeframe [71],

[10]. Finally, the multiple burst test has three bursts of up to 1ms within a 30m to 300ms

timeframe [10].
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3 Methodology

This chapter presents the assumption reliability measurement methodology. There are

four main activities in the methodology. For each activity, a certain amount of reuse is

possible. The four activities are listed below:

1. Define physical fault model (once per domain)

2. Map physical fault model to hybrid fault model (once per protocol/domain combina-

tion)

3. Define states and transitions for reliability model (once per protocol/domain/design

combination)

4. Generate and solve reliability models for entire design space (once per configuration)

For the physical fault model, a domain is the environment in which a system (here, the

network protocol) will be used. A domain may include certain quality factors regarding

the components. For example, in the aviation domain a protocol will be deployed on air-

craft and will be subjected to physical faults arising from atmospheric disturbances. As an

example of a quality factor, optical fiber typically has a lower Bit Error Rate than copper.

Optical fiber is less susceptible to electromagnetic disturbances than copper wire; however,

optical fiber is more expensive. Once a physical fault model is defined for a domain, it can

be reused to test other specification assumptions for systems in the same domain. Also,

one contribution of this dissertation is grouping physical faults according to four main cat-

egories. While the physical fault sources may change for different domains, each of these

four categories is likely to be represented.

Each protocol defines a hybrid fault model, which the formal proof (if used) is based

upon. For the clock synchronization and group membership guarantees studied, the hybrid

fault model describes faults in terms of a group of observers. Each physical fault type needs

to mapped to at least one of the hybrid fault types. For example, the group membership
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hybrid fault models define three categories of faults: asymmetric, symmetric and benign.

Each physical fault is assigned to one or more of these categories, and is either a permanent

fault or a transient fault (with more detailed definitions discussed later).

Once this is done, the states and transitions for the reliability model can be specified,

which may involve specifying additional system parameters and design decisions. System

parameters include items such as the network bandwidth, chip sizes (for faults measured in

errors/bit instead of errors/device), number of nodes and number of channels. For design

decisions, this work focuses on fault diagnosis and fault tolerance strategies. The fault di-

agnosis strategy will have some probability of making the wrong diagnosis under various

circumstances, and will take a certain length of time to diagnose a faulty node. A script

defining the states and transitions is written for the NASA ASSIST tool, which will gen-

erate the complete Markov model state space from the script and variable fault rates and

system parameters. While the exact script will be unique to each protocol/domain/design

set, there is a lot of opportunity for reuse across design decisions and domains. For exam-

ple, the membership models reused about half of the states and transitions from the clock

synchronization models. The states and transitions can be reused if the physical fault rates

change but the physical fault types and mappings stay the same.

Step four has the least reuse, but can be automated to a large extent. Once the ASSIST

script with the states and transitions is defined, shell scripts can automate model generation

and execution for each combination of fault rates and variable system parameters (e.g., the

number of nodes). Here, the models were solved using the NASA Semi-markov Unrelia-

bility Range Evaluator (SURE) tool. As with any Markov modeling tool, the designer will

need to take some care to limit the state space size. The Markov models are solved more

quickly if the designer specifies pruning information, although the tools will try to auto-

matically tune this parameter. However, for a large batch of models manual specification

of some pruning may be required so that the total solution time is feasible. Also, there

are cases where the NASA SURE tool cannot produce a solution, such as if the model is
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pruned too severely from pruning parameters that are too aggressive, or in cases with high

fault arrival rates that create paths with a large number of loops.

First, this section reviews some assumptions of the methodology itself. Next, the physi-

cal fault model terms and hybrid fault model terms are introduced. The modeling process

is described next, with a small example. Then, the model templates for each of the three

protocols are introduced and discussed.

3.1 Methodology Assumptions

Like any methodology, the methodology I present makes some assumptions about the

faults, the construction of the system, and the response of the system to faults. This section

reviews those assumptions, and the reasons why these assumptions are made. It is important

to note that for the most part, these assumptions come from the domain or from theoretical

bounds — they were not put in place to make modeling ‘easy’. The main exception is

that some of the burst faults are difficult to represent with this methodology, since a burst

fault could immediately violate the maximum fault assumption. In these cases, a reliability

metric will be bound by the fault arrival rate of that burst fault, and an availability metric

would be more appropriate. A reliability metric still can be helpful to investigate how long

of a duration a burst fault can be before having extremely negative effects on the system,

since the system designer has some control over the duration of the diagnosis rounds and

could customize this parameter to the burst fault length.

A Time Division Multiple Access schedule allows the designer to make many useful

assumptions. The motivation for using a static TDMA schedules is to enable implementa-

tion of a bus guardian to protect against ‘babbling idiot’ faults, where a node attempts to

broadcast on the bus all the time. In priority-based sending schemes, such as the Controller

Area Network, a high-priority babbling idiot node could be a single point of failure since

the highest priority node always wins control of the bus. Having a static schedule also

makes it more tractable to ensure that all messages will arrive by their deadlines, especially
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for systems with short periodic messages that have short deadlines (for example, 10ms or

so). TDMA schemes can also support higher bandwidth, since there is no arbitration over

which node controls the bus.

Synchrony. A TDMA schedule satisfies both synchrony requirements - there is an up-

per bound on the message transmission time (due to the slot window) and an upper bound

on the amount of time to send a message (since each node typically sends once per round).

Both upper bounds are known at design time. Since the system conforms to the synchrony

assumptions, it is possible to construct deterministic fault-tolerant membership services.

Removing the synchrony assumption could make it infeasible to develop a practical mem-

bership service. It is impossible to guarantee agreement using a deterministic algorithm for

asynchronous systems in the presence of faults [36].

Signed Messages Solution Not Applicable. With regards to theoretical results, the

membership services for these protocols cannot be assumed to have unforgeable messages,

so the signed messages solution of the Byzantine Generals problem cannot be used [66]. In

TTP/C, nodes exchange local membership vectors which reflect the status of other nodes

in the system. A node might change its membership vector in any manner. For example,

the vector might be changed so that it appears that another node did not successfully send

a frame even though it did. In SPIDER, the Redundancy Management Units can generate

a new frame instead of passing on the frame from the Bus Interface Unit sender. A service

that does conform to the signed messages solution might have better assumption reliability

since it can tolerate more faults with fewer components.

Lower Bound on Rounds for Interactive Consistency. While the exact assumptions

differ slightly, the membership services are also influenced by the fround + 1 to tolerate f

Byzantine faulty rounds from [35]. TTP/C and SPIDER both essentially have two rounds.

In TTP/C the diagnosis service is based on TDMA rounds, and in SPIDER the BIU to RMU

frame transmissions form the first round and the RMU to BIU frame transmissions form

the second round. A service that has more rounds might have better assumption reliability
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since it could tolerate more faulty rounds.

Reintegration Not Considered. At this time, reintegration is not considered, although

this methodology could help guide a reintegration strategy. The goal of the methodology

is to point out problems areas (for example, too many convicted transient faulty nodes),

which the designer can address through the fault tolerance strategy or the reintegration

strategy. Each of the protocols is developing a reintegration strategy, but full formal proofs

are not available yet. One complication is that reintegrating a faulty node could decrease the

reliability of the system. There is a relationship between fault diagnosis and reintegration

— the reintegration strategy will be determined somewhat by the accuracy of the fault

diagnosis, and the aggressiveness of fault removal will be determined somewhat by the

ease of reintegration. For example, an aggressive fault diagnosis and removal strategy

paired with a quick reintegration strategy might have similar reliability to a lenient fault

diagnosis and removal strategy (if transient faults are present) and a slow reintegration

strategy.

Set of Participants Known, No Partitions. A number of assumptions are made about

the nodes in the system and their communication patterns. Since the schedule is statically

determined ahead of time, the set of all possible participants is known. (Some of the proto-

cols support schedule changes during operation, with schedule propagation algorithms, but

even then there would be the same set of physical nodes connected to the network). The

protocols do not allow two networks to merge, and do not handle network partitions (ex-

cept with worst-case strategies such as system restart). Also, since dual redundant network

cables are used, the system will still operate correctly if one network cable is partitioned.

All frames are broadcast to all receivers on the network.

Limited Fault Correlations. Faults are assumed to be uncorrelated except for faults

due to electromagnetic interference (lightning). The other fault categories - Permanent

Hardware Faults, Single Event Effects, and Bit Error Rate - conform fairly well to this

assumption. However, for any fault type there is always the possibility of fault correlation.
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Designers attempt to detect and remove as many correlated faults as possible (often called

‘common mode faults’ or ‘common mode failures’). For example, a power supply can

easily become a common mode fault source if the same power supply supports components

in two separate fault containment regions. Design rules are put in place to prevent this from

happening, for example by requiring redundant power supplies. There are also techniques

for managing both temporal and spatial correlation. For example, TTP/C allows a sender

to broadcast a frame on channel A at one time slot and on channel B in another time slot

(both time slots are within the same round). For spatial correlation, redundant components

can be located in different areas of the system. The methodology can represent some types

of fault correlation (as long as the maximum fault assumption is not violated immediately),

so more types of correlated faults could be modeled. While the modeling tools are best

suited for exponential rates, the SURE tool does have limited support for other types of

distributions.

Constant Fault Arrival Rates. Fault arrival rates are assumed to be constant through-

out the mission. However, this may not be true in practice. For example, the Single Event

Latchup and Single Event Upset rates are a property of atmospheric depth which changes

during an airplane flight. The lightning rate might also change, for example if an aircraft

flies into a storm. The wide range of fault rates studied helps compensate for this some-

what. If the fault rate varies in practice, but is still within the fault rate range tested, then

at least the range of the assumption reliability is known. Or, a designer could model the

system using conservative worst-case fault rates. If the models are not sensitive to that par-

ticular fault, this may be a non-issue. Usually one or two of the fault types are dominant,

with the models insensitive to changes in the other fault rates. Phased models could also be

used, which are discussed further in the Extensibility section.
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3.2 Physical Fault Model

I study four sources of physical faults: permanent hardware faults, single event effects,

bit error rate, and electromagnetic interference. This section presents a short synopsis of

the more detailed coverage of the physical fault model in the Related Work chapter. This

physical fault model is a significant improvement over the traditional fail-silent model, as I

discuss in the Results chapter. The fault rate data studied is primarily from the aviation do-

main, but these physical fault sources are common to other wired embedded systems such

as automotive systems. The primary differences between automotive systems and aviation

systems are that automotive systems have a higher bit error rate (since automotive systems

use less expensive copper cable) and have a lower incidence rate of single event effects and

lightning (since radiation levels and lightning strike rates are lower on the ground than in

the atmosphere). Also, it is important to subject configurations to multiple physical faults

at the same time, since the total failure rate can be worse than linear product of each of

the individual physical fault occurrence rates. While this physical fault model covers many

faults, there may be additional faults that a system designer wishes to protect against.

The physical fault types and rates are summarized in Table 4. For permanent hardware

faults, I use a fault rate of 10−5/hr for a node (larger fault containment region) and 10−6 for

a star coupler or bus (smaller fault containment region) [119]. The tested link fault range is

10−8/hr to 10−6/hr, which is slightly conservative compared to [119] but slightly optimistic

compared to [49]. These permanent fault rates apply to both the aviation and automotive

domains.

The data reported in the Results section uses the fault rates for the aviation domain.

The single event effects class includes radiation faults due to particle collisions. Single

Event Latchup (SEL) is the dominant permanent effect [99], with observed SEL rates from

about 10−8 to 10−6 latchups/device-hr [79]. Single Event Upset (SEU) is the most prevalent

transient effect [27], with measured SEU rates ranging from 1*10−8 to 4*10−10 upsets/bit-

hr [79]. The bit error rate class includes faults caused by jitter and amplitude disturbances
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on the network. Three optical standards give worst-case BERs ranging from 10−12 to 10−10

[17], [73], [110]; this work studies a less pessimistic range of 10−13 to 10−11. The fourth

class, electromagnetic interference, includes correlated burst errors [94], [52], [54]. This

work focuses lightning strikes, estimated at one strike per 2500 flight hours [32].

For the automotive domain, the same fault classes apply, but some of the fault rates will

be different. In automotive systems, the Bit Error Rate is higher since copper cable is

typically used instead of optical fiber. Some copper standards stipulate maximum BERs

of 10−7 (copper Ethernet) and about 10−6 to 10−7 (Train Communication Network) [51],

[53]. Observed BER data for a Controller Area Network installation in a robotic welding

application cites a BER of 3.84 * 10−7 [2].

Radiation levels due to neutron flux are lower on the ground than in the upper atmo-

sphere. However, radiation due to alpha particles from contamination of the circuit pack-

aging will remain the same. Right now, neutron cosmic ray effects still dominate alpha

particle effects even at ground level [83], but faults due to alpha particles may increase as

circuit geometries shrink [22]. O’Gorman states that “. . . even at sea level, cosmic rays

were responsible for a significant fraction of the observed error rate . . . [83]”. Normand

reports measured average ground level SEU rates in the range of 2.1*10−12 to 3.1*10−13

upsets/bit hr, which correspond well with neutron beam testing rates [80]. The SEU range

of 10−12 to 10−13 is used in Table 4 for automotive. This SEU rate range is about three

times lower than the range for aviation (10−8 to 10−10) upsets/bit hr. Since Single Event

Latchup arises from the same radiation sources, for automotive a rate range of 10−10 to

10−11 latchups/device hr is used (compared to 10−6 to 10−8 latchups/device hr for aviation).

While there is some data for the lightning strike rate for airplanes, there is not as much

data available for the automotive domain. However, there is data available on the number

of people struck by lightning every year. The chance of a person being struck by lightning

is about 1 in 700,000 per year, based on reported injuries and fatalities [126]. This gives

a rate of about 1.6*10−10 per hour. For automotive, the rate will probably be higher since
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Table 4. Physical Faults and Rates
Physical Fault Type Rates, Aviation Profile Rates, Automotive Profile
Perm. Node [119] 10−5 faults/hr

Perm. Bus/Star [119] 10−6 faults/hr
Perm. Link [119], [49] 10−8, 10−7, 10−6 faults/hr

SEL [79], [80] 10−8, 10−7, 10−6

latchups/device-hr
10−11, 10−12

latchups/device-hr
SEU [79], [27], [80] 10−10, 10−9, 10−8 upsets/bit-hr 10−13, 10−12 upsets/bit-hr

BER [17], [73], [110] 10−13, 10−12, 10−11 err/bit 10−8,10−7, 10−6 err/bit
Lightning [32], [126] 4*10−4 strikes/hr 1*10−9 strikes/hr

people use automobiles in adverse weather more often than people stand outside in adverse

weather, and lightning strikes may be underreported. Table 4 uses a rate of 1*10−9 for

automotive. There is also data on lightning flash density (the number of lightning flashes

per area per year). Huffines and Orville show a range of between almost zero flashes / km2

year to 11 flashes / km2 year [48] for the United States, depending on geographic location.

The chance of lightning striking a vehicle could be estimated from the flash density and

the area around the vehicle that lightning would need to strike in order for the car to be

affected.

3.3 Hybrid Fault Model

A hybrid fault model classifies faulty nodes according to fault severity with respect to

a group of observers. The maximum fault assumption for a service is stated in terms of

the fault types in the hybrid fault model. The original Byzantine fault model placed no

restrictions on the behavior of a faulty node, thereby covering all possible faulty behaviors

and requiring 3n + 1 processors to tolerate n faulty processors [66]. However, many less

severe faults are provably easier to tolerate. Meyer and Pradhan divide faults into two cate-

gories, Non-Malicious (faults that are self-evident to all receivers) and Malicious (all other

faults, including Byzantine) [74], [6]. Thambidurai and Park introduced a three category

fault model including Byzantine (also called asymmetric), symmetric, and benign faults
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[115]. Azadmanesh and Kieckhafer introduced the strictly omissive fault category, includ-

ing strictly omissive symmetric and strictly omissive asymmetric [6]. Since definitions

vary, I use the definitions from the NASA Langley Scalable Processor Independent Design

for Electromagnetic Resilience (SPIDER) protocols, a set of formally proven safety-critical

network protocols [75]. The strictly omissive asymmetric category is from Azadmanesh

and Kieckhafer [6].

• Good (G) “Each good node behaves according to specification; that is, it always

sends valid messages” [75].

• Benign (B) “Each benign faulty node either sends detectably incorrect messages to

every receiver, or sends valid messages to every receiver” [75].

• Symmetric (S) “A symmetric faulty node may send arbitrary messages, but each re-

ceiver receives the same message” [75].

• Asymmetric (A) “An asymmetric (Byzantine) faulty node may send arbitrary mes-

sages that may differ for the various receivers” [75].

• Strictly Omissive Asymmetric (A) “A Strictly Omissive Asymmetric fault can send a

single correct value to some processes and no value to all other processes” [6]. A

fault can “garble a message in transit, but not in an undetectable manner” [6].

To measure the reliability of a configuration, a Markov model is created with states given

in terms of the hybrid fault model. The number and type of states depend on the physical

fault model and the fault tolerance strategy of the specification. The designer needs to iden-

tify different components in the system and how faults might apply to those components.

Transitions between states are specified with an exponential transition rate (which assumes

uncorrelated fault arrivals and recoveries). An exponential transition rate is specified in the

form e−λt where λ is the transition rate per unit time, and t is time (here, in hours). A single

transition may change the state of one or more nodes or channels. Correlated faults (such

63



as lightning) are modeled as transitions that alter the state of multiple nodes or channels.

With the ASSIST tool, the designer only needs to specify how a transition applies to a

single component (or set of components, for correlated faults). The ASSIST tool will then

generate the complete state space and transition set. Detailed descriptions of the state space

and transitions are given later for each protocol. Types of transitions generally include fault

arrivals, fault expiration (for transient faults), diagnosis and conviction of faulty nodes, con-

viction of good nodes (TTP/C), the influence of faulty components on other components

(FlexRay, TTP/C), and the arrival of faults that are unable to be diagnosed (SPIDER). The

next section presents an example.

3.4 Modeling Process

This section provides an overview of the modeling process, and gives a graphical ex-

ample of a simple six state reliability model. Later sections will describe more details of

the reliability models for each of the three services. Most of the reliability models had

hundreds of states and thousands (or even millions) of transitions, so a graphical represen-

tation would be infeasible. Even the smallest models had about one hundred states and one

thousand transitions, since many types of physical faults were represented.

The goal is to measure the probability that the maximum fault assumption will be vi-

olated before the end of the mission (here, an hour mission). Avizienis, Laprie, Randell,

and Landwehr define the concepts of fault, error, and failure, and the relationships between

these concepts [5]. A fault is “The adjudged or hypothesized cause of an error...” [5]. An

error occurs when “at least one (or more) external state of the system deviates from the

correct service state” [5]. A failure is “an event that occurs when the delivered service

deviates from the correct service” [5].

In this methodology, a fault is the arrival of a physical fault. Each fault is covered

and will cause an error, represented as the transition from a good component to a faulty

component. In theory, a Byzantine fault model will cover all possible single errors. The set
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Table 5. SPIDER Maximum Fault Assumption [75]

SPIDER MFA.1. 2|G ∩ ERMU | > |ERMU\B| for all RMUs RMU, and
SPIDER MFA.2. 2|G ∩ EBIU | > |EBIU\B| for all BIUs BIU, and
SPIDER MFA.3. |A ∩ ERMU | = 0 for all RMUs RMU, or |A ∩ EBIU | = 0 for all BIUs BIU.

of errors includes only errors within the scope of the protocol’s fault tolerance ability. For

example, a physical fault may cause an erroneous data value to be transmitted in a frame,

but as long as the frame is correctly formatted this will be OK for the protocol since the

protocol does not know what the data value means to the application. A failure occurs

when the maximum fault assumption is violated. This is a conservative approximation of

the system failure rate, since in some cases the guarantee is still provided even though the

maximum fault assumption has been violated. However, for each of these protocols there

are provable cases where violating the maximum fault assumption results in the guarantee

not being provided.

The example presents a simple version of the SPIDER protocol. SPIDER has two types

of components, Bus Interface Units (BIUs) and Redundancy Management Units (RMUs).

The SPIDER maximum fault assumption (MFA) is stated in terms of the sets G, B, S , and

A, which denote the sets of good, benign, symmetric, and asymmetric nodes respectively

[75]. EBIU and ERMU refer to the sets of eligible voters for BIUs and RMUs, respectively.

Table 5 lists the SPIDER maximum fault assumption. Figure 2 illustrates the Markov model

for the example system configuration. This particular example is quite compact — most of

the models have hundreds of states and thousands of transitions.

A designer would like to know how often the SPIDER maximum fault assumption will

be violated. In the simple example, each BIU may be either good or faulty, and each RMU

may be either good or faulty. Here, only transient faults are modeled, so all faults will

expire after some duration. The faulty component will revert to being a good component.
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3.4.1 Software Tools: ASSIST, SURE, STEM

Three Markov analysis tools developed at NASA Langley Research Center were used to

construct the reliability models and to estimate the probability that each part of the maxi-

mum fault assumption would not hold. First, the designer specifies the states, transitions,

and fault rate parameters in a text specification (usually under five pages). The ASSIST pro-

gram translates the parameterized text specifications (in the ASSIST language) into Markov

models. Then, either the STEM tool (Scaled Taylor Exponential Matrix) or the SURE tool

(Semi-markov Unreliability Range Evaluator) is used to solve the Markov model. STEM

provides an exact solution and is limited to pure Markov models. SURE provides upper

and lower bounds on reliability, usually within five percent of each other [13], and can han-

dle other classes of transitions besides exponential transitions. Butler and Johnson explain

the underlying mathematics of these tools and give numerous fault-tolerance examples in

[14]. Our models involved only exponential transitions, so either tool could be used. Note

that another Markov solver could potentially be used — the approach is not limited to these

three software tools. ASSIST, STEM, and SURE can be obtained from NASA Langley at:

http://shemesh.larc.nasa.gov/fm/ftp/sure/sure.html

These modeling tools allow a designer to investigate a large range of possible fault ar-

rival rates with a manageable amount of work. Since the NASA tools were developed

specifically to model fault tolerant systems, they can handle ‘stiff’ models that have a set

of slow transitions (here, fault arrival rates) and a set of fast transitions (here, fault expira-

tion/recovery and conviction). Since the NASA tools use algebraic methods (exact solution

for STEM and algebraic bounding methods for SURE), they can handle small probabilities

well. For example, an assumption failure rate of 10−8 failures/hr or less is not uncommon.

Tools that use iterative solution methods can experience problems with small probabilities

since it may take a long time for the iterative solution to converge. Once an ASSIST script

is specified, model generation and execution can be automated to a substantial extent. The

designer may still need to manually adjust pruning guidelines if the model execution time
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is too long. Also, there are cases where SURE cannot converge on an answer (and STEM

takes an unacceptable amount of time to find an exact answer), so the ASSIST script may

need to be modified. More details on modeling tools can be found in the Related Work

chapter.

3.4.2 State Space

A variety of configurations can be modeled with reasonable effort. The designer first speci-

fies the possible component state space items. The two types of nodes, Bus Interface Units

(BIUs) and Redundancy Management Units (RMUs), are not interchangeable. Link faults

get mapped onto a BIU or an RMU, since links are not a first class entity. In this example,

a node may be good or transiently faulty.

The example in Figure 11 shows transient fault arrivals and recovery only (there are no

permanent faults and no convictions), so there are (2 component types) * (2 fault manifesta-

tions, good/faulty) = four items in the state space that the designer must specify. The ovals

represent possible system states. For this example, the system state space S is given by the

tuple {Good RMUs, Faulty RMUs, Good BIUs, Faulty BIUs}where Σ (Good RMUs, Faulty

RMUs) equals the total number of RMUs and Σ (Good BIUs, Faulty BIUs) equals the to-

tal number of BIUs (i.e., components are neither created nor destroyed). Since redundant

components are present, the system can tolerate some combinations of faulty components.

The current system state is given inside each oval, listing the number of working and faulty

components.

The example system in Figure 11 has three RMUs and four BIUs. In the start state at

the top, all nodes are working, so that state space is (3, 0, 4, 0). Combinations of faulty

nodes are listed in other ovals, for example, the state space (3, 0, 3, 1) represents three good

RMUs, three good BIUs, and one faulty BIU and the state space (2, 1, 4, 0) represents two

good RMUs, one faulty RMU and four good BIUs. There are a total of six states and eight

transitions in this model. States that fail to satisfy the maximum fault assumption have been
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2,1,3,1  DEATH3,0,2,2  DEATH 1,2,4,0  DEATH

START STATE
ALL COMPONENTS WORKING

ONE BIU
FAILED

ONE RMU
FAILED

MAJORITY OF BIUS FAILED ONE ASYMMETRIC RMU AND
ONE ASYMMETRIC BIU

MAJORITY OF RMUS FAILED

4 * FAULT 3 * FAULT

3 * FAULT 3 * FAULT 4 * FAULT 2 * FAULT

1 * RECOVERY1 * RECOVERY

Figure 11. Markov Model Example (SPIDER)

aggregated into single states according to which piece of the maximum fault assumption

has been violated first. For example, states (1, 2, 4, 0) and (1, 2, 3, 1) would both be

aggregated into state (1, 2, 4, 0).

3.4.3 Transitions

Next, the designer must specify transitions. In this model, components are conserved, so

a transition will take a component out of one local state and put it into another. There are

three types of transitions. Fault arrival transitions transform a good component into a faulty

component. Errors caused by transient faults have a finite duration, so when this duration

expires a transient faulty node reverts to a good node. Finally, an asymmetric or symmetric

node can be convicted, becoming a benign permanent faulty node. In this model, there is no

reintegration of permanent faulty nodes, so these cannot be transformed into good nodes.

The transitions in Figure 11 occur at a rate defined by the fault arrival rate and by the

number of components currently occupying a state. For example, if a fault occurs at rate

F that transforms a good BIU into a faulty BIU, and there are currently 10 good BIUs,

the Markov model transition rate will be 10*F. In later reliability models, there are some
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transitions that are independent of the number of nodes currently occupying a state. Since

the transitions are modeled with exponential rates, this assumes uncorrelated, independent

faults. The reliability models can express some limited forms of correlation (both temporal

as in burst faults, and spatial as in multiple affected components). Correlated faults will be

discussed later as well.

In Figure 11, transition rates are listed on the arrows between states. FAULT is the fault

arrival rate and RECOVERY is the transient fault expiration rate (derived from the fault

duration). The example uses constant rates; however, most of our models have multiple

fault arrival rates according to fault type. The FAULT or RECOVERY rate is multiplied by

the number of eligible components in the source state, for example, the 3*FAULT transition

from the start state for the chance of an RMU becoming faulty and the 4*FAULT transition

from the start state for the chance of a BIU becoming faulty.

3.4.4 Death States

Finally, the designer must specify the maximum fault assumption conditions, where the

guarantees may not hold. The maximum fault assumption conditions will be given in the

protocol specification and are usually derived from a formal proof, although a formal proof

is not required to perform this reliability analysis. The maximum fault assumption condi-

tions are specified as death state conditions in the ASSIST script, and are represented as

death states in the model. The SPIDER example in Figure 11 has three death state condi-

tions that map to the three parts of the SPIDER maximum fault assumption in Table 5.

The bottom of Figure 11 shows the three types of death states, labeled with the word

‘DEATH’. MFA.1 assumes that a majority of BIUs are good (the leftmost death state: 3, 0,

2, 2). MFA.3 assumes that there will not be an asymmetric faulty RMU and an asymmetric

faulty BIU at the same time (the middle death state: 2, 1, 3, 1). MFA.2 assumes that

a majority of RMUs are good (the rightmost death state: 1, 2, 4, 0). More death state

space combinations are possible - for these experiments, the combinations are aggregated
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Table 6. System Parameters and Values
Parameter Value
Bandwidth 1*106 bits/sec

Round Duration 10 ms
Frame Duration 0.1 ms

Frames/hour 3.6*107 (3600000 ms / 0.1ms)
Bits/Node 64 kilobytes

Bits, Asym. SEU 10 kilobytes
Clock Sync and TTP/C Nodes, SPIDER BIUs 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

Clock Sync, TTP/C Channels 2
SPIDER RMUs 3

by the first MFA violation. Death state aggregation can substantially reduce the state space

for larger models, without much loss of information, since the relevant information the

designer wishes to preserve is which maximum fault assumption condition is more likely

to be violated.

3.5 System Parameters and Discussion

This section covers the system parameters used, and discusses which systems would be

feasible to build. In addition to the physical fault rate parameters, some system parameters

need to be defined. System parameters include items such as bandwidth and round duration,

and the accuracy of a membership service’s diagnosis algorithm. While many combinations

of parameters are modeled, some combinations may be difficult to construct actual systems

for. In particular, diagnosis algorithms that accurately identify both permanent and transient

faults might be challenging to develop. Like the fault rate parameters, multiple system

parameter values can be tested if the designer is unsure of the parameter value in the final

system. Finally, this section explains why the solution time of some models is sensitive to

the number of nodes and the bit error rate.

Some system parameters were needed to specify the model transition rates. Table 6 lists

the representative values assumed for these system parameters. All three protocols support
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Table 7. Membership Conviction Probabilities
Probability Strategy Value(s)

Prob. of Convicting Permanent Convict All 1.0
Prob. of Convicting Permanent Convict None 0.0
Prob. of Convicting Permanent Convict Some 0.99, 0.95, 0.90
Prob. of Convicting Transient Convict All 1.0
Prob. of Convicting Transient Convict None 0.0
Prob. of Convicting Transient Convict Some 0.01, 0.05, 0.10
Prob. of Convicting Good Node
(if asymmetric present)

TTP/C Convict All,
Convict Some

1/Good Nodes

Prob. of Convicting Asymmetric TTP/C Convict All,
Convict Some

0.95

1 MBit/sec bandwidth, with plans to support 10 MBit/sec and possibly 25 MBit/sec [33],

[118]. The round duration is determined by the shortest message period required by the

system, since each node typically sends exactly once per round [118], [88]. A message

period of 10 ms is representative of many embedded networks. In TTP/C a diagnosis cycle

is completed every two rounds, or every 20 ms here. For SPIDER, the diagnosis period can

be any integer number of rounds. To keep the parameters as equal as possible, the SPIDER

diagnosis period is also set at two rounds. A frame duration of 0.1 ms would allow 100

frames of 100 bits each to be sent per second. The fault arrival rate due to SEU faults

depends on the number of bits that could be affected. This work assumes 64 kilobytes,

or 64*(210)*8 bits. This is comparable to the size of protocol controllers. For example,

the TTP-C2NF revision 1.2 chip has 40 kBytes of SRAM and 32 kBytes of ROM [4].

Sensitivity analysis is also performed for 256 kBytes. The FlexRay clock synchronization

and TTP/C protocols both use two channels. SPIDER performs best on a three channel

design, since receivers vote the three values received, although SPIDER can run with only

two channels.

A set of conviction parameters is used for the membership services for TTP/C and SPI-

DER. Table 7 lists the conviction probabilities modeled, which correspond to different
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conviction strategies and can depend on the way that a protocol is designed. A diagnosis

algorithm can attempt to remove faulty nodes from the group, according to some conviction

strategy. The diagnosis algorithm may try to distinguish between permanent and transient

faults, although perfect discrimination is not possible so there will be some misclassifica-

tion [68].

There are three conviction strategies studied (for both TTP/C and SPIDER). The standard

Convict All strategy removes a node after a single fault, the Convict None strategy removes

no nodes, and the Convict Some strategy attempts to remove permanent faulty nodes and

let transient faults expire. For the two strategies with conviction, the Convict All strategy

is modeled with a Probability of Convicting Permanent of 1 and the Convict Some strategy

uses a range of 0.99, 0.95, and 0.90. The Convict All strategy has a Probability of Con-

victing Transient of 1, and the Convict Some strategy uses the range 0.01, 0.05, and 0.10.

Both strategies have special treatment for asymmetric faults. If an asymmetric fault occurs,

the group might not be able to identify the sender. TTP/C and SPIDER differ slightly in

their treatment of asymmetric nodes. For TTP/C, the probability of asymmetric permanent

node conviction is multiplied by 0.95 for the Convict All and Convict Some strategies. In

TTP/C, good nodes may be convicted as long as an asymmetric fault is present (since there

may be good nodes in the minority clique), represented by the Probability of Convicting a

Good Node in Table 7. For SPIDER, the probability of convicting all types of permanent

nodes is limited to 0.95 in the Convict All strategy and 0.99, 0.95, and 0.90 are studied for

the Convict Some strategy. SPIDER specifically prohibits the conviction of good nodes,

with the consequence that some faulty nodes might never be convicted. (It is impossible to

guarantee both eventual faulty node conviction and no good node conviction in the presence

of asymmetric faults [102].) For SPIDER, special sink states are defined for undiagnosable

nodes, and these nodes will never be convicted. An asymmetric faulty node might never

be convicted in TTP/C as well, but the TTP/C protocol is not subject to the impossibility

restriction since TTP/C allows good node conviction. For the Convict None strategy, all
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probabilities of conviction are 0.

While different conviction probabilities are studied, it is not known at the design stage

whether it is possible to implement these misclassification rates. The reliability models only

require a probability number. At this stage, the designer does not need to have developed

a strategy that actually achieves this probability. For a protocol, a frame is the smallest

indivisible item that may be faulty. An ideal permanent fault will last for an infinite number

of frames, and an ideal transient fault will last for exactly one frame. In reality, a fault

might persist for an arbitrary number of frames. The success of the diagnosis algorithm

will depend on how well permanent faults and transient faults conform to these ideals. For

the Convict Some strategy, missing a permanent fault can be thought of as a false negative,

while convicting a transient fault can be thought of as a false positive. In many systems,

lowering the false positive rate may increase the false negative rate, and vice-versa. For the

protocols, the false positive and false negative rates will depend on how much the durations

of permanent and transient faults overlap. Also, some types of faults do not fit neatly into

the permanent/transient classification scheme. An intermittent faulty node might cause

single frame corruptions, but at a much higher fault arrival frequency. Here, intermittent

faulty nodes are treated as permanent faulty, but in an actual system this would be a design

decision. Nodes might also accumulate internal latent faults, which are activated some

time later and corrupt a frame. For errors due to latent faults, the frame corruption rate

increases with time. The goal of this research is to examine the sensitivity of the models

to the false positive and false negative rates, rather than forecasting a precise assumption

reliability number. This would help a designer choose whether to try lower the false positive

rate (where false negatives may increase), or try lower the false negative rate (where false

positives may increase).

Another issue concerns what conviction strategies could actually be implemented with-

out any proof changes. Currently, the TTP/C diagnosis algorithm proofs are integrated

with the membership service proofs. Therefore, any changes in the diagnosis service might
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require changes in the proofs. The proposed Convict None and Convict Some strategies

might require proof changes, and it is difficult to estimate the amount of work required for

a proof change. Alternatively, the reintegration algorithm could be changed instead of the

diagnosis algorithm. Since the reintegration algorithm is still being developed, this might

require less work. For SPIDER, the diagnosis algorithm proofs are largely separate from

the membership proofs, except for the correctness restriction that no good nodes may be

convicted [117]. Therefore any of the three conviction strategies should be able to be im-

plemented without proof changes, as long as the new strategy conforms to the correctness

restriction.

When the value of a parameter is uncertain, different parameter values can be modeled

to determine the sensitivity to changing the parameter. For example, radiation can induce

asymmetric single event upsets, but the amount of single event upsets that will be asym-

metric compared to benign or symmetric may be unknown. One way to address this issue

is to study different values for the percentage of faults that will be asymmetric. Parameters

that the models are sensitive to can be studied further with fault injection. For example,

an early version of the TTP/C controller was subjected to both software fault injection

and heavy ion radiation in [1]. The observed errors were categorized, with about 0.4%

classified as slightly-off-specification for the bus topology, and no slightly-off-specification

errors observed in the newer star topology [1].

Finally, there may be parameters values that would be interesting to test, but are beyond

the capabilities of the modeling tool. For this work, the number of nodes and the bit er-

ror rate needed to be limited. Keeping a reasonable state space size is important for any

modeling tool. Here, adding another node roughly doubles the state space (slightly less

since the death states are aggregated). This can roughly double the model solution time.

Because of this non-polynomial time scaling, only models with up to fourteen nodes were

tested. However, the SURE tool successfully handled models with over one hundred thou-

sand states and over two million transitions. The second concern for Markov modeling
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tools is that it is difficult to solve models where transition rates can differ by many orders of

magnitude. Typically, fault arrival rates are low (on the order of 10−6 faults/hr or so), and

fault recovery rates are high (on the order of 106 recoveries/hr or so). Models with a group

of fast transitions and a group of slow transitions are sometimes called ‘stiff’ models. The

SURE tool handles most stiff models well, and had no problems modeling the fault rate

ranges for three of the four types of faults. However, solution time increases significantly

for some models with higher bit error rates, as the bit error rate becomes a mid-range tran-

sition instead of a slow transition. Since the bit error rate is multiplied by the bandwidth (1

MBit/second) and converted to hours (3600 seconds/hour), a bit error rate of 10−11 repre-

sents a fault arrival rate of about 10−2 faults/hr. For example, some SPIDER configurations

took about ten seconds to solve at a bit error rate of 10−12, but these configurations took

over an hour to solve at a bit error rate of 10−11.

3.6 Clock Synchronization

The reliability of a protocol depends in part on how the protocol’s hybrid fault model

classifies faults. I demonstrate this by comparing the Welch and Lynch clock synchroniza-

tion algorithm to the improved strictly omissive asymmetric algorithm by Azadmanesh and

Kieckhafer [6].

The FlexRay clock synchronization algorithm is based on the formally proven algorithm

from Welch and Lynch [120], which involves an approximate agreement calculation over

a set of received clock values. In the worst case, an asymmetric (Byzantine) faulty node

will send a too-high value to one node and a too-low value to another. For a benign fault,

the frame could arrive too early or too late at all receivers. The Welch and Lynch algorithm

guarantees synchronized clocks as long as n > 3a + b for n total nodes, a asymmetric faults

and b benign faults. To separate failure due to too many asymmetric faults vs. failure

due to inadequate redundancy, the modeled Maximum Fault Assumption (MFA) checks

asymmetric and benign faults separately, as listed in Table 8. Since the modeling tools
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Table 8. Clock Sync Maximum Fault Assumptions [120], [33], [6]
Clock SyncWelchLynch MFA.1: n > 3a for n nodes and a asymmetric nodes
Clock SyncWelchLynch MFA.2: n > b for n nodes and b benign nodes
Clock SyncWelchLynch MFA.3: n > 3a + b for n nodes, a asymmetric nodes and b benign
nodes
Clock SyncOmissive MFA.1: n > α for n nodes and α strictly omissive asymmetric nodes
Clock SyncOmissive MFA.2: n > b for n nodes and b benign nodes
Clock SyncOmissive MFA.3: n > α + b for n nodes, α strictly omissive asymmetric nodes
and b benign nodes

check death conditions in order, states that satisfy MFA.1 (for example) will be grouped

together, and will not be checked further for MFA.2.

Recently, an improved bound was developed for a family of approximate agreement al-

gorithms. Azadmanesh and Kieckhafer obtained better fault tolerance for strictly omissive

asymmetric faults by enabling voting on different sized local sets [6]. The improved bound

is n > 3a + b + α, for n nodes, a asymmetric faults, b benign faults and α strictly omis-

sive asymmetric faults. For clock synchronization, all asymmetric faults caused by non-

malicious physical phenomena will be strictly omissive asymmetric, since a frame is either

valid or detectably invalid. Therefore, the maximum fault assumption reduces to n > b + α.

Three maximum fault conditions were checked in order to determine the dominant cause

of failure, listed in Table 8.

For TDMA clock synchronization, all asymmetric faults caused by non-malicious phys-

ical phenomena will be strictly omissive asymmetric, and the symmetric fault category is

equivalent to the benign fault category. In a TDMA system, a frame’s arrival time is calcu-

lated with respect to the time slot defined by the receiver’s local clock. If the frame is too

early or too late, it will be considered invalid. Asymmetric faults are possible since some

nodes may receive a valid frame within the slot window and others might not. However,

unlike an explicitly transmitted timestamp, undetected timing faults are not possible since

a frame arriving within the slot window produces valid rate and offset correction values by

definition, and a frame arriving outside the slot window is detectably invalid by definition.

76



All asymmetric faults will be strictly omissive asymmetric faults, since a frame is either

valid or detectably invalid. Also, symmetric faults are equivalent to benign faults since

there are no undetectably invalid frames. For a different fault model, undetected faults

might be possible.

A fault may be (P) Permanent or (T) Transient. Abbreviations for the source and destina-

tion local states in the transition rate tables are (G) Good, (B) Benign, (S) Symmetric, (A)

Asymmetric/Strictly Omissive Asymmetric. There are two types of components in each

of the services. In clock synchronization and membership, nodes are the only first-class

entities in the service. Nodes transmit frames over channels, which are not considered first-

class entities. Therefore, faults on the channels may be assigned back to the node sending

a frame at that point in time.

For clock synchronization and TTP/C membership, the hybrid fault model is applied to

components in three ways. A node may become faulty (state with subscript N), a channel

may become faulty (state with subscript C), or a node may appear faulty if both channels

are simultaneously faulty (a state with subscript NC). All perceived node faults due to

channel faults are transient (since if both channels are permanently faulty, the system has

failed). A node can also be convicted (CONV), or permanently removed from the group

by the diagnosis service. As two examples, PSN would be a Permanent Symmetric faulty

Node, and TANC would be a Node affected by Channel faults that appears to be Transient

Asymmetric faulty.

For clock synchronization, the system state S is given by the tuple {GN , PBN , TAN , TBN ,

ANC, BNC, CONV, GC, PAC, PBC, TAC, TBC}, where Σ (GN , PBN , TAN , TBN , ANC, BNC,

CONV) equals the total number of nodes N and Σ (GC, PAC, PBC, TAC, TBC) equals the

total number of channels C. Unfortunately, a graphical representation would be prohibitive.

Even the smallest clock synchronization models (four nodes) had 333 states and 2750 tran-

sitions. The largest clock synchronization models (fourteen nodes) had 24,783 states and

227,560 transitions. More information on model size and execution time is available in the
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Table 9. Clock Synchronization Transitions
Source Dest. Items [Guard], Main Rate

Contributor
Rate Range Tested (λ), Per Hour

GN PBN 1 Perm. HW GN*10−5

GN PBN 1 SEL GN*(10−8, 10−7, 10−6)
GN TAN 1 SEU * Asym. Bits GN*10K*8*(10−10, 10−9, 10−8)
GN TBN 1 SEU * Bits GN*64K*8*(10−10, 10−9, 10−8)
GN TBN bN/2c Lightning 4*10−4

GC PAC 1 Perm. Link (one link) GC*(10−8, 10−7, 10−6)
GC PBC 1 Perm. Link (bus/star) GC*10−6

GC TAC 1 BER * Bandwidth GC*106*3600*(10−13, 10−12, 10−11)
GC TBC 1 BER * Bandwidth GC*106*3600*(10−13, 10−12, 10−11)
GN ANC 1 [¬(∃ GC) ∧ ∃ AC],

1/Frame Dur.
3.6*107

GN BNC 1 [¬(∃ GC) ∧ ¬(∃ AC) ∧
∃ BC], 1/Frame Dur.

3.6*107

TAN GN 1 1/Round Dur. TAN*3.6*105

TBN GN 1 1/Round Dur. TBN*3.6*105

TAC GC 1 1/Frame Dur. TAC*3.6*107

TBC GC 1 1/Frame Dur. TBC*3.6*107

ANC GN 1 [ ∃ GC ], 1/Round Dur. 3.6*105

BNC GN 1 [ ∃ GC ], 1/Round Dur. 3.6*105

Results chapter.

Table 9 lists the clock synchronization model transitions. A transition moves one or

more nodes or channels from a good local state to a faulty local state, or vice-versa. Some

transitions involve a guard — a condition that must be true for the transition to be taken. For

example, for a node to transition to a faulty state due to faulty channels, all channels must

be faulty at that point in time (otherwise, at least one valid frame would be transmitted).

For most transitions, each component (node or channel) has an equal and independent

probability of being affected, so the rate is multiplied by the number of nodes or channels

in the source state. The Table 9 transitions were determined as follows (from top to bottom).

Permanent Hardware Faults. A fail-silent node will not send any frames. This

behavior is detectable by all receivers due to the TDMA schedule. Therefore, this fault is
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permanent benign.

SEL. Single Event Latchup may cause a node to transmit an improperly formatted frame

or transmit a frame at the wrong time. Since the FlexRay clock synchronization service

requires a valid frame to be both on time and correctly formatted, this fault is modeled as

permanent benign.

SEU. Single Event Upset is modeled as a transient bit upset (either detected by other

nodes or local error codes). If this occurs at the sending node, the effect would be benign.

If this occurs in the clock synchronization logic of the receiver, this might be asymmetric,

since a transient SEU might alter computation for a single frame only. (If all frames were

altered, the receiver would be benign faulty since it would not be able to stay synchro-

nized). The SEU rate is multiplied by the number of susceptible bits (here, 64 kilobytes is

modeled). The SEU would have to hit a certain portion of the integrated circuit to cause

the asymmetric fault described, so this is modeled as 10 kilobytes with sensitivity analysis

in the results.

Lightning. Lightning is modeled as affecting half of the nodes simultaneously. These

nodes are temporarily benign, recovering after the strike. In general, electromagnetic inter-

ference can have many effects, and this is a limited representation.

Permanent Link Faults. Link faults can have two effects. If a single link between a

node and the bus or a node and the star coupler fails, the channel appears to be asymmetric

faulty, since some nodes will receive the frame and others will not. If the entire bus or

the star coupler fails silent, then the channel delivers no frames and appears to be benign

faulty. A range is studied for the first case, and the second case is modeled as a permanent

hardware failure at a rate of 10−6 failures/hour.

BER. Noise on the communication channel can also have two effects when detected. If

the noise is localized near a particular receiver or group of receivers and the error detection

does not catch all frame errors, the channel will appear to be asymmetric faulty, delivering

different frames to different receivers. If the noise affects all receivers, the channel will
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appear to be benign faulty since no receivers get a valid frame. The BER is multiplied by

the bandwidth and converted to hours to get the rate per hour.

Perceived Faulty Nodes due to Faulty Channels. If there are no good channels, and at

least one asymmetric channel, then the sender will be perceived as asymmetric faulty since

some receivers may get a valid frame and others may receive none (for example, if jitter

causes the frame to be received too late at a subset of the receivers). If there are no good

channels, and no asymmetric faulty channels, no valid frame will be sent to any receiver

and the sender will appear benign faulty. Each time a frame is sent, one good node will be

affected, for a trasition rate of 1 / Frame Duration. These transitions are not multiplied by

the number of nodes in the source state since there is only one sender at a time (this also

applies to transient fault expiration).

Transient Fault Expiration. All transient faults in the model eventually expire. For

nodes, the effective fault duration is one message round, since a sender transmits once per

round. For channels, a channel is considered good if it can send a frame. Transient channel

faults (namely, bit errors) are assumed to affect a single frame, which is an appropriate

model for bit errors. The effective fault duration for a transient channel fault is one frame.

The transient expiration rates are stated as 1 / (duration in hours).

3.7 TTP/C Membership

The reliability of a group membership service depends on the diagnosis strategy chosen.

A group membership service guarantees that all correct nodes in the group reach consensus

on the members of the group within a certain period of time following a fault. The diagnosis

strategy dictates which nodes should be convicted and removed from the group (if any).

The diagnosis strategy must choose carefully, balancing the risk of too many active faulty

nodes vs. the risk of inadequate redundancy. I investigate this tradeoff through a study of

three application-level variations of the TTP/C group membership service.

The TTP/C protocol offers an integrated membership service with low overhead per
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frame. In the TTP/C membership service, each node keeps a local membership vector con-

sisting of one bit per node in the system (system size is usually in the tens of nodes). Each

sender incorporates its vector into the frames it sends (explicitly transmitted vectors are

assumed here). If the received vector does not match the local vector, the formally proven

Clique Avoidance and Implicit Acknowledgement algorithms ensure that only the major-

ity clique survives (with tiebreaker rules) and that consensus is reached within two rounds

[88], [7]. Nodes are immediately removed if suspected. If an asymmetric (Byzantine) fault

occurs, there is no guarantee that the asymmetric faulty node will be removed, since it may

or may not belong to the minority clique.

The maximum fault assumption I use extends the TTP/C single fault hypothesis slightly

with respect to benign and symmetric faults when no asymmetric faults are present. The

TTP/C group membership maximum fault assumption is that exactly one fault may occur

within two rounds [88]. There are three pieces to the maximum fault assumption (MFA)

I use, given in Table 10. Since the modeling techniques used do not explicitly support a

notion of rounds, MFA.1 states there may not be an asymmetric faulty node and another

faulty node at the same time. If there is a symmetric faulty node, all receivers increase

their ‘failed slots’ counter [118, p. 68]. A node shuts itself down if its ‘failed slots’ counter

exceeds half the number of current group members. Therefore, if only symmetric and

benign faults are present, the system is expected to operate as long as half of the group

members are good nodes (MFA.2). For benign nodes, null frames do not increase the

‘failed slots’ counter. The minimum fault tolerant configuration is four nodes with at least

three good nodes (MFA.3) [118, p. 27]. These extensions for symmetric and benign faults

have not been formally proven. However, this treatment is similar to the Thambidurai and

Park hybrid fault model [115]. I believe that a single MFA condition of no two simultaneous

faults would be pessimistic.

In my analysis, I examine three diagnosis strategies. The baseline diagnosis strategy is

having all faulty nodes convicted and removed from the group (Convict All). The second
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Table 10. TTP/C Membership Maximum Fault Assumption [118], [88]

TTP/C Membership MFA.1: If (∃ a), then a + s + b = 1 for a asymmetric, s symmetric,
and b benign nodes
TTP/C Membership MFA.2: s ≤ g for s symmetric and g good nodes
TTP/C Membership MFA.3: g ≥ 3 for g good nodes

Table 11. Membership Conviction Probabilities
Prob. of Convicting Permanent 1.0, 0.99, 0.95, 0.90
Prob. of Convicting Transient 0, 0.01, 0.05, 0.10

Prob. of Convicting Asymmetric 0.95
Prob. of Convicting Good Node [if ∃ (AN ∨ ANC)] 1/GN

diagnosis strategy is the opposite: no faulty nodes are ever convicted (Convict None). In

the third strategy, the diagnosis service attempts to convict permanent faulty nodes and to

leave transient faulty nodes in the group, with some misclassification (Convict Some). Note

that the new strategies are not formally proven – the goal is to investigate robust application

level diagnosis. For example, these could be run at the FlexRay application layer.

Alternatively, one could restate the diagnosis strategies as rapid reintegration rules. For

the Convict None strategy, nodes could immediately be allowed to join the group after

two rounds when consensus is reached. For the Convict Some strategy, the group could

use a threshold where nodes are allowed into the group immediately after consensus has

been reached, up until f faults within some time t, resulting in the node being permanently

removed from the group. Since reintegration is substantially decoupled from membership,

this approach should minimize any proof changes.

For membership, the system state S is given by the tuple {GN , PSN , PBN , TAN , TSN ,

TBN , ANC, SNC, BNC, CONV, GC, PAC, PBC, TAC, TSC}, where Σ (GN , PSN , PBN , TAN ,

TSN , TBN , ANC, SNC, BNC, CONV) equals the total number of nodes N and Σ (GC, PAC,

PBC, TAC, TSC) equals the total number of channels C. For the Convict Some strategy, the

smallest models (four nodes) had 128 states and 1121 transitions. The largest models (four-
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teen nodes) had 91,866 states and 1,104,902 transitions. Model size can vary by strategy

(for example, in the Convict None strategy, Prob. Conv. Trans., Prob. Conv. Perm., and

Prob. Conv. Good are zero so the related transitions are removed). More information on

model size and execution time is available in the Results section.

Table 11 lists the range of conviction probabilities studied, and Tables 12 and 13 list the

states and transitions for the hypothesized membership service. Only the states and transi-

tions that are different from the Clock Synchronization model are reviewed here. A node

that has been convicted enters the CONV sink state. For benign and symmetric faults, all

receivers will correctly identify the faulty source. For asymmetric faults, an identification

probability of 0.95 is assumed, and the probability of a good node being convicted if an

asymmetric fault occurs is assumed to be 1/GN . (At least one good node will be convicted,

since the symmetric category covers cases where all receivers correctly identify the fault

source.) In the hypothesized membership service, ideally all permanent faulty nodes would

be convicted, and all transient faulty nodes would not be convicted since the fault effects

persist for only that round (intermittent and longer duration faults are conservatively clas-

sified as permanent). In practice, some permanent faulty nodes will be missed and some

transient faulty nodes will be convicted, with studied probabilities shown in Table 11.

SEL, SEU, BER. For group membership, these faults are symmetric, since they may

cause undetected errors. All receivers would receive the same erroneous frame for SEL

faults and SEU faults or BER faults at or near the sender. Some SEU faults might be asym-

metric, if a transient SEU alters computation at the receiver for a single frame only. The

SEU rate is multiplied by the number of susceptible bits (here, 64 kilobytes is modeled).

The SEU would have to hit a certain portion of the integrated circuit to cause the asym-

metric fault described, so this is modeled as 10 kilobytes with sensitivity analysis in the

results.

Permanent Fault Conviction. Permanent faults, if detected, are convicted and removed

from the group. The probability of conviction depends on the diagnosis service discrimi-
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Table 12. TTP/C Membership Transitions - Continued on Next Page

Source Dest. Items [Guard], Main Rate Con-
tributor

Rate Range Tested (λ), Per Hour

GN PSN 1 SEL GN*(10−8, 10−7, 10−6)
GN PBN 1 Perm. HW GN*10−5

GN TAN 1 SEU * Asym. Bits GN*10K*8*(10−10, 10−9, 10−8)
GN TSN 1 SEU * Bits GN*64K*8*(10−10, 10−9, 10−8)
GN TBN bN/2c Lightning 4*10−4

GC PAC 1 Perm. Link (one link) GC*(10−8, 10−7, 10−6)
GC PBC 1 Perm. Link (bus/star) GC*10−6

GC TAC 1 BER * Bandwidth GC*106*3600*
(10−13, 10−12, 10−11)

GC TSC 1 BER * Bandwidth GC*106*3600*
(10−13, 10−12, 10−11)

GN ANC 1 [¬(∃GC) ∧ ∃AC],
1/Frame Dur.

3.6*107

GN SNC 1 [¬(∃GC)∧¬(∃AC)∧¬(∃BC)
∧∃SC], 1/Frame Dur.

3.6*107

GN BNC 1 [¬(∃GC) ∧ ¬(∃AC)
∧ ∃BC], 1/Frame Dur.

3.6*107

GN CONV 1 [∃AN∨∃ANC],(1/(2*Round
Dur.))*Pr.Conv.Good

1.8*105*(1/GN)

PSN CONV 1 (1/(2*Round
Dur.))*Pr.Conv.Perm.

1.8*105*(1.0, 0.99, 0.95, 0.90)

PBN CONV 1 (1/(2*Round
Dur.))*Pr.Conv.Perm.

1.8*105*(1.0, 0.99, 0.95, 0.90)

TAN CONV 1 (1/(2*Round Dur.))
*Pr.Conv.Trans.
*Pr.Conv.Asym.

1.8*105*
(0.0, 0.01, 0.05, 0.10)*0.95

TSN CONV 1 (1/(2*Round
Dur.))*Pr.Conv.Trans.

1.8*105* (0.0, 0.01, 0.05, 0.10)

TBN CONV 1 (1/(2*Round
Dur.))*Pr.Conv.Trans.

1.8*105* (0.0, 0.01, 0.05, 0.10)

TAN GN 1 (1/(2*R. Dur.))
*(1-Pr.Conv.Trans.
*Pr.Conv.Asym.)

TAN*1.8*105*
(1-((0.0, 0.01, 0.05, 0.10)*0.95))

TSN GN 1 (1/(2*Round
Dur.))*(1-Pr.Conv.Trans.)

TSN*1.8*105*
(1-(0.0, 0.01, 0.05, 0.10))

TBN GN 1 (1/(2*Round
Dur.))*(1-Pr.Conv.Trans.)

TBN*1.8*105*
(1-(0.0, 0.01, 0.05, 0.10))
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Table 13. TTP/C Membership Transitions - Continued

Source Dest. Items [Guard], Main Rate Contribu-
tor

Rate Range Tested (λ), Per
Hour

TAC GC 1 1/Frame Dur. TAC*3.6*107

TSC GC 1 1/Frame Dur. TSC*3.6*107

ANC CONV 1 (1/(2*R. Dur.))*Pr.Conv.Trans.
*Pr.Conv.Asym

1.8*105*
(0.0, 0.01, 0.05, 0.10)
*0.95

SNC CONV 1 (1/(2*Round Dur.))
*Pr.Conv.Trans.

1.8*105*
(0.0, 0.01, 0.05, 0.10)

BNC CONV 1 (1/(2*Round Dur.))
*Pr.Conv.Trans.

1.8*105*
(0.0, 0.01, 0.05, 0.10)

ANC GN 1 [∃ GC], (1/(2*Round Dur.))
*(1-Pr.Conv.Trans.
*Pr.Conv.Asym)

1.8*105*
(1-((0.0, 0.01, 0.05, 0.10)
*0.95))

SNC GN 1 [∃ GC], (1/(2*Round Dur.))
*(1-Prob.Conv.Trans.)

1.8*105*
(1-(0.0, 0.01, 0.05, 0.10))

BNC GN 1 [∃ GC], (1/(2*Round Dur.))
*(1-Prob.Conv.Trans.)

1.8*105*
(1-(0.0, 0.01, 0.05, 0.10))

nating between permanent and transient faults. The rate is multiplied by the probability of

convicting a permanent faulty node. For asymmetric faults, the conviction rate is also mul-

tiplied by the probability of correctly identifying an asymmetric faulty node. The diagnosis

algorithm takes two rounds (worst-case) to execute, so the rate per hour is (1 / (2*Round

Duration)).

Transient Expiration; Transient Conviction. Ideally, transient faulty nodes will not

be convicted and transient faulty nodes will revert to good nodes. In practice, some transient

faulty nodes will be misdiagnosed as permanent faulty, and these nodes will be convicted,

represented as the probability of convicting a transient faulty node. The rate for this set

of transitions also (1 / (2*Round Duration)) for the same reason as the permanent fault

conviction case.

Good Node Conviction. If an asymmetric fault occurs, the group will divide into two

cliques, a majority clique and a minority clique. Good nodes may be in either clique. If the
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diagnosis strategy performs conviction, members of the minority clique may be convicted.

A new transition is introduced from the GN state directly to the CONV state, that occurs

at a rate of (1 / (2*Round Duration)) with a probability of 1/GN . Other probabilities are

investigated in the sensitivity analysis. Good node conviction only occurs if an asymmetric

fault is present, so the guard is [∃ AN ∨ ∃ ANC]. This rate is not multiplied by the number

of good nodes since an asymmetric fault does not necessarily affect more nodes if the group

is larger.

Channels. In group membership, a channel may be symmetric faulty. In TTP/C, if one

channel is noisy and the other silent, the receiver counts this as a null frame (not an invalid

frame) [118]. Therefore, a symmetric faulty frame will only be received if both channels

are symmetric faulty (since an asymmetric channel dominates all faulty channels).

3.8 SPIDER Membership

The Scalable Processor Independent Design for Electromagnetic Resilience (SPIDER)

is a set of safety-critical protocols from NASA Langley Research Center [75]. The purpose

of SPIDER is to provide a virtual reliable communication bus. The two relevant portions

of SPIDER are its Interactive Consistency algorithm (which guarantees agreement among

member nodes) and the Distributed Diagnosis algorithm (which proves if a faulty node

is able to be identified by the group, and if so allows the node to be convicted and re-

moved from the group). Since faulty nodes are not required to be convicted, permanent

and transient faulty nodes can be handled differently. SPIDER uses two types of non-

interchangeable nodes. Bus Interface Units (BIUs) are connected one-to-one to an outside

processing element. Instead of passive channels, SPIDER elevates the interstage to first-

class status, called a Redundancy Management Unit (RMU). BIUs are fully connected to

all RMUs through point-to-point links and vice-versa. A SPIDER user specifies processing

elements, with the details of reliable communication handled internally by the protocols

controlling the BIUs and RMUs.
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Table 14. SPIDER Maximum Fault Assumption

SPIDER MFA.1. 2|G ∩ ERMU | > ERMU\B for all RMUs RMU, and
SPIDER MFA.2. 2|G ∩ EBIU | > EBIU\B for all BIUs BIU, and
SPIDER MFA.3. |A ∩ ERMU | = 0 for all RMUs RMU, or |A ∩ EBIU | = 0 for all BIUs BIU.

Some common mode fault phenomena are outside the ability of a group membership

service to handle, and are not modeled here. For example, a lightning strike could disrupt

frames from all RMUs since they are sent at the same time (BIU nodes send one at a time),

instantaneously violating the maximum fault assumption. These situations would need to

be handled separately. One option is different functional requirements, similar to what is

done in current lightning test standards [94]. The guarantees could be suspended for the

duration of the strike, and would hold after the strike expires (as long as enough clocks stay

synchronized). Fast restart/reintegration is another option. Also, at least three nodes of

each type are needed to perform a Byzantine fault tolerant majority vote. However, a two

RMU system may be desirable to reduce the number of links needed. Future proofs plan

to incorporate strictly omissive asymmetric faults, where receivers receive either the same

correct value or no value [6]. Only t + 1 nodes are needed to tolerate t strictly omissive

asymmetric faults [6]. Most permanent link and BER faults would be covered by this new

strictly omissive asymmetric category, an improvement on the regular asymmetric category.

The SPIDER maximum fault assumption (MFA) is stated in terms of the sets G, B, S , and

A, which denote the sets of good, benign, symmetric, and asymmetric nodes respectively

[75]. Eb and Er refer to the sets of eligible voters for BIUs and RMUs, respectively. Table

14 lists the SPIDER maximum fault assumption. Since the RMUs are first-class entities,

the hybrid fault model is applied in two ways: a BIU may become faulty or an RMU may

become faulty. For SPIDER, individual link faults are mapped either to a BIU or RMU,

and a failure of an entire channel is equivalent to the failure of an RMU. The three pieces

of the maximum fault assumption are the death state conditions in the reliability model.
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Any death state is a sink state. The reliability models use some additional information

about the duration and detection of faults. A faulty node can have either permanent (P)

or transient (T) fault duration. Permanent faults have an infinite duration or lasting effects

on system state, and transient faults have a finite duration and no subsequent effects on

system state. Intermittent faults are conservatively modeled as permanent. Nodes can be

(A)symmetric, (S)ymmetric or (B)enign faulty. Nodes that are suspected of being faulty

can be convicted (CONV) and removed from the group. In SPIDER, a convicted node is

equivalent to a permanent benign faulty node. Transient faulty nodes can be incorrectly

perceived as permanent faulty, since it is not possible to perfectly discriminate between

transient faulty nodes and permanent faulty nodes in all cases. Also in SPIDER, due to

the restriction that no good nodes are ever diagnosed as faulty, it is possible that some

faulty nodes may never be diagnosed, since it is impossible to guarantee both conditions in

the presence of asymmetric faults [75]. Permanent faulty nodes that are never detected are

called undiagnosable (U) in the models. The undiagnosable state is conservatively modeled

as a sink state.

The global state of the system S is specified by the tuple {GBIU , PABIU , PSBIU , TABIU ,

TSBIU , TBBIU , UABIU , USBIU , CONVBIU , GRMU , PARMU , PSRMU , TARMU , TSRMU , TBRMU ,

UARMU , USRMU , CONVRMU}, where Σ(GBIU , PABIU , PSBIU , TABIU , TSBIU , TBBIU , UABIU ,

USBIU , CONVBIU) equals the total number of BIUs N and Σ (GRMU , PARMU , PSRMU ,

TARMU , TSRMU , TBRMU , UARMU , USRMU , CONVRMU) equals the total number of RMUs

M. The initial state for the models is GBIU = N, GRMU = M and 0 for all other items in

the tuple. For example, one possible system configuration for a system with 4 BIUs and

2 RMUs might be two Good BIUs, one Undiagnosable Asymmetric BIU, one Transient

Benign BIU, one Good RMU, and one Convicted RMU. The total Markov or semi-Markov

state space depends on the values of N and M as well as the possible classifications, and

can be large (in the thousands of states and tens of thousands of transitions).

Ranges for fault rate parameters are given in Table 4. Listed first are the physical fault
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arrival rates, and ranges studied. It is important to note that all of the ranges studied cor-

respond to real-world expected ranges for these parameters. Table 6 lists the system pa-

rameters studied. Table 7 lists the probabilities specified for undiagnosable permanent and

misdiagnosed transient faults. The probability of an undiagnosable permanent fault is ex-

pected to be low, since there are relatively few cases where the Diagnosis Protocol cannot

determine the faulty source. The probability of misdiagnosing a transient fault could pos-

sibly be higher, since less emphasis has been placed on this area to date.

Table 15 lists the source and destination states specified in ASSIST for all the transi-

tions in the SPIDER model, the number of nodes affected simultaneously by a transition,

and the primary source of faults for fault arrival transitions. All rates are given per hour.

For example, the first transition in Table 15 transfers (1) one node from a (G)ood state to

a (P)ermanent (A)symmetric faulty state by a fault arrival rate corresponding to the Per-

manent Link Fault Rate times the number of nodes in the source state (Gx), where the x

subscript indicates that this transition applies to both BIU and RMU nodes. Transitions

that apply only to BIU nodes have a BIU subscript, and transitions that apply only to RMU

nodes have an RMU subscript. BIU and RMU nodes are not interchangeable. There are N

BIUs and M RMUs in a configuration. The transitions were determined as follows (listed

by order in Table 15):

Permanent Link Faults. A permanent link fault will affect one link between a BIU

and RMU. This will be an asymmetric fault since the source node will send good messages

to some nodes and no message to the receiver with the faulty link to the sender.

SEL. Single Event Latchup may permanently change the ability of the circuit to produce

a correct result. This is modeled as symmetric, since a corrupted value may or may not be

detected, but all receivers will receive the same value. (A node might also fail silent and be

benign faulty; this would be easier to handle).

Permanent Hardware Faults. Fail-silent nodes will not send messages to any receiver.

This case is detectable because the protocol is synchronous during normal operation (differ-
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ent rules may apply for startup/restart). The BIU rate is higher since the BIU is in the same

fault containment region as its associated processing element, so the total fault containment

region is larger.

BER. Bit errors could cause a benign transient disturbance if all receivers get a garbled

message, since error detecting codes that accompany the message catch bit errors with high

probability. For example, a transmitter with inadequate power to overcome ambient noise

might not be able to transmit a message to any receiver. Bit errors could also cause an

asymmetric disturbance, if one receiver gets a garbled message and others receive a correct

message. For example, a local noise disturbance might affect only the receivers located

nearby.

SEU. A single event upset is a transient fault that may change a stored memory value

or cause incorrect logic computations. This is modeled as symmetric, since a corrupted

value may or may not be detected, but all receivers will receive the same value. Some

SEU faults might be asymmetric, if a transient SEU alters computation at the receiver for

a single frame only. The SEU rate is multiplied by the number of susceptible bits (here, 64

kilobytes is modeled). The SEU would have to hit a certain portion of the integrated circuit

to cause the asymmetric fault described, so this is modeled as 10 kilobytes.

Lightning. Lightning causes a transient benign fault in BIUs it affects (lightning for

RMUs is outside of our fault model, as mentioned previously). In this model, lightning

simultaneously causes faults in half of all of the nodes in the system, rounding down for

odd numbers of nodes.

Permanent Conviction; Undiagnosable Permanent Faults Once an asymmetric or

symmetric permanent fault has occurred, the node will either be diagnosed and convicted or

will remain in the system indefinitely, represented in the model by a probability of convict-

ing a permanent node. (Permanent benign faulty nodes are equivalent to convicted nodes.)

Since SPIDER guarantees the correctness property, no good nodes will ever be convicted,

but this implies that there may be faulty nodes that are unable to be diagnosed. After two
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executions of the Diagnosis algorithm, a permanent fault will be either convicted or be

undiagnosable (the first period might have insufficient evidence if the fault occurs midway

through). The probability of permanent faulty nodes becoming convicted or undiagnosable

is multiplied by the number of two Diagnosis periods in an hour, (1/(2 * Diagnosis Period)).

The Convict Some strategy studies a range of parameters and the Convict All strategy uses

0.95 for the Probability of Convicting a Permanent faulty node (similar to the probability

of convicting an asymmetric node in TTP/C). This probability is zero for the Convict None

strategy since the p

Transient Conviction; Transient Expiration Once a transient fault has occurred, the

fault may expire, or the faulty node may be wrongly convicted and removed from member-

ship. This is modeled by the Probability of Convicting a Transient faulty node. Transient

asymmetric faults will be detected when the Diagnosis algorithm executes, and resolved ei-

ther in that period or in the next period, so the rate multiplier is (1/(2 * Diagnosis Period)).

For benign and symmetric faults, transient faults persist for one frame, since the local sets

of eligible voters differ only with respect to asymmetric faults.

3.9 Extensibility

Although this work focuses on a particular set of physical faults, the reliability models

and modeling techniques are not limited to this set. The reliability models can be extended

to include additional states and transitions. As with most modeling techniques, scalability

problems can occur if there are too many states or if close transition rates create many

loops. However, for many applications the fault arrival rates are much slower than the fault

expiration rates since the transient fault durations are short. I demonstrate extensibility

by representing a latent fault, as described in the DBench Dependability Benchmarking

project [25]. Latent faults are characterized by a potentially long delay between the fault

arrival and the observed component failure. For example, latent faults can occur due to

accumulated errors in registers that are not directly observable by the user [25].
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One way to represent this type of fault would be to explicitly model accumulated errors.

This is similar to the treatment of faulty channels which can cause nodes to transition to

faulty. Imagine two types of error counter states, a good register state GR and a faulty

register state FR. At initialization, there is a specified maximum number RMAX of GR

registers and there are zero FR registers. A latent fault is represented by a transition from GR

to FR at some rate λlatent. If latent faults have occurred, these faults may cause good nodes to

become faulty. Assume that after some minimum number of latent faults MINFAULT that a

good node may become permanent benign faulty. This can be modeled as a transition from

GN to PBN at some rate λactivate (or, at a rate that is a function of the number of latent errors

c*FR*λactivate for some constant c). The transition will be guarded with [FR >MINFAULT]

for some value of 0 <= MINFAULT < RMAX. If the failed component is modeled as

containing the latent faults, this transition will also reset the registers, setting GR to RMAX

and FR to zero. Other variations on this scheme could be modeled; for example, perhaps the

good node will transition to a different type of faulty node, or errors continue to accumulate

until the end of the mission.

A second way to represent this type of fault would be to use a phased mission, as de-

scribed by Butler and Johnson [14]. This technique generally applies to missions with

non-constant rates, and to missions where failures have different consequences during dif-

ferent operating stages (for example, during aircraft take-off vs. in flight) [14]. To perform

a phased mission analysis, a model is created for each phase. Phase models may have

different transitions, transition rates, and mission times. The models must have the same

states, however. At the completion of a phase, the SURE modeling tool outputs the proba-

bilities of being in each operational state and in each death state, which are used to initialize

the next phase model [14]. This sequence is repeated until the last phase model is reached.
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Table 15. SPIDER Membership Transitions
Source Dest. Nodes Main Rate Contributor Rate Range Tested (λ), Per Hour

Gx PAx 1 Perm. Link Fault Gx*(10−8, 10−710−6)
Gx PSx 1 SEL Gx*(10−8, 10−7, 10−6)

GBIU CBIU 1 Perm. HW Fault GBIU*10−5

GRMU CRMU 1 Perm. HW Fault GRMU*10−6

Gx TAx 1 BER * Bandwidth Gx*106*3600*(10−13, 10−12)
Gx TAx 1 SEU * Asym. Bits Gx*10K*8*(10−10, 10−9, 10−8)
Gx TSx 1 SEU * Bits Gx*64K*8*(10−10, 10−9, 10−8)
Gx TBx 1 BER * Bandwidth Gx*106*3600*(10−13, 10−12)

GBIU TBBIU b N/2 c Lightning 4*10−4

PAx UAx 1 (1/(2*Round Dur.))
*(1-Pr. Conv. Perm.)

PAx*1.8*105*(0.01, 0.05, 0.10)

PSx USx 1 (1/(2*Round Dur.))
*(1-Pr. Conv. Perm.)

PSx*1.8*105*(0.01, 0.05, 0.10)

PAx CONVx 1 (1/(2*Round Dur.))
*Prob. Conv. Perm.

PAx*1.8*105*(0.90, 0.95, 0.99)

PSx CONVx 1 (1/(2*Round Dur.))
*Prob. Conv. Perm.

PSx*1.8*105*(0.90, 0.95, 0.99)

TAx Gx 1 (1/(2*Round Dur.))
*(1-Pr. Conv. Trans.)

TAx*1.8*105*(0.90, 0.95, 0.99, 1.0)

TSx Gx 1 (1/Frame Dur.)
*(1-Pr. Conv. Trans.)

TSx* 3.6*107*(0.90, 0.95, 0.99, 1.0)

TBx Gx 1 (1/Frame Dur.)
*(1-Pr. Conv. Trans.)

TBx*3.6*107*(0.90, 0.95, 0.99, 1.0)

TAx CONVx 1 (1/(2*Round Dur.))
*Prob. Conv. Trans.

TAx*1.8*105*(0, 0.01, 0.05, 0.10)

TSx CONVx 1 (1/Frame Dur.)
*Prob. Conv. Trans.

TSx*3.6*107*(0, 0.01, 0.05, 0.10)

TBx CONVx 1 (1/Frame Dur.)
*Prob. Conv. Trans.

TBx*3.6*107*(0, 0.01, 0.05, 0.10)
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4 Results

What types of design decisions can be studied? The methodology should enable com-

parisons between different design choices, and enable trade-off analysis to determine the

system parameter changes that result in the highest reliability gain. This analysis is all done

at the specification level, when design changes are easier to make. Also, it is important to

use a thorough physical fault model.

One type of design decision is to determine the effects of changing the proof assump-

tions. As an example of an assumption change, I investigate the standard FlexRay clock

synchronization maximum fault assumption compared to a novel maximum fault assump-

tion from Azadmanesh and Kieckhafer which includes a strictly omissive fault type [6].

Assessing the reliability of a new maximum fault assumption has great benefit, since prov-

ing a new maximum fault assumption typically involves a significant time investment. If

a candidate assumption has been proposed but not yet proven, reliability analysis can help

the designer decide if the proof is worth the effort. If there is minimal improvement or the

reliability decreases, the designer can select a different assumption to prove. Additionally,

reliability estimation could increase the adoption rate of new assumptions and proofs that

have already been completed. Industry is reluctant to change a system if the impact is un-

known, especially if the change might be harmful. By quantifying the reliability improve-

ment (if any), good assumptions and proofs are more likely to be adopted into mainstream

use.

Another type of design problem is the construction of a robust fault tolerance strategy

appropriate for the application domain. I present case studies of the TTP/C and SPIDER

group membership fault tolerance algorithms, which try to balance the risk due to too many

active faults vs. the risk of running out of redundancy. In group membership, a perceived

faulty node may be convicted and removed from the group. However, if nodes are removed

inappropriately (for example, due to transient disturbances or misidentification), the system

becomes more fragile since a fault is more likely to cause a failure. For TTP/C, I show that
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a novel fault tolerance strategy achieves three orders of magnitude improved reliability over

the standard strategy.

Each of the protocols has a different sensitivity to the physical fault set. I examine

sensitivity to each of the physical fault categories studied, for the clock synchronization

services and group membership services of each of the three protocols. Generally, the

protocols were most sensitive to transient faults, although permanent faults had an effect on

the assumption reliability as well. I also illustrate trend lines in the model results according

the physical fault types.

In most cases, one of the fault types is the prime contributor to failure. Reliability anal-

ysis can be used to determine the dominant fault by using a separate death condition for

each of the types of faults. The reliability analysis will then determine the chance of failure

due to each death condition. This information can be used to perform trade-off analysis.

For example, adding nodes may improve the reliability if the system is failing due to inade-

quate redundancy, or it may decrease the reliability if the system is failing due to too many

active faults. I show an example of this trade-off for the TTP/C membership service fault

conviction strategy.

Another factor to consider is the misclassification rate of the fault conviction algorithm.

Even 99 percent accuracy can in some cases produce vastly different results from 100 per-

cent accuracy. If the fault conviction algorithm treats permanent faults differently from

transient faults, there will be some misclassification involved. For SPIDER, I show that

misclassification can significantly reduce the assumption reliability. Also, in some group

membership algorithms (namely TTP/C) it is possible that good nodes may be convicted if

an asymmetric fault is present. Therefore it is also important to measure the ramifications

of convicting good nodes.

First, this chapter investigates how much a simple physical fault model underestimates

assumption reliability compared to a more thorough physical fault model. Next, results

from each of the three protocols are presented. A summary of the features of each protocol
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follows, which could be helpful if a designer wishes to compare two different protocols.

The assumption reliability measurements are not directly comparable since the protocols

provide different guarantees. Finally, some limitations are reviewed, and areas for future

work are presented.

4.1 Statistical Measures

A few statistical measures are used to describe sensitivity to fault rates and system pa-

rameters. Box plots are one way to illustrate the sensitivity of a service to a particular

parameter. Box plots summarize key facts about a data set, such as the median, 25th and

75th percentiles, and maximum and minimum points. One box plot is drawn per fault type

and rate. If the box plot changes when the rate changes, then the assumption reliability

is sensitive to that rate. Analysis of Variance is used to determine which factors had the

most influence on the output of the models (the assumption reliability measurement). This

section gives an overview of these two statistical measures.

4.1.1 Box Plots

Which faults are the models most sensitive to? This question can be answered by compar-

ing some statistics of the data sorted by fault type. Each variable quantity (fault type or

system parameter) is called a primary factor. For example, in clock synchronization there

are five primary factors studied: the number of nodes, Single Event Latchup rate, Single

Event Upset rate, Bit Error Rate, and Permanent Link fault rate. The values of a factor are

called levels or treatments.

The analyst would like to know which factors or combinations of factors influence the

assumption failure rate. One way to test this is to conduct a full factorial experiment.

In a full factorial experiment, “all possible combinations of the levels of the factors are

investigated” [77]. “The effect of a factor is defined as the change in response produced by

a change in the level of the factor” [77]. A main effect “refers to the primary factors in the
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study” [77]. Interaction effects are also possible, where an interaction effect is present if

“the difference in response between the levels of one factor is not the same at all levels of

the other factors” [77]. For example, the effects of any type of fault may depend on how

many nodes are in the system. Systems with fewer nodes will be more susceptible to faults,

producing an interaction effect between the number of nodes and the fault type. Interaction

effects can also be called second order effects if the model is sensitive to a combination

of two of the primary factors, or n-order effects where n is the number of primary factors

involved.

By generating a box plot for each rate for each fault type, these box plots can be com-

pared to determine sensitivity to each fault type. Figure 12 shows a sample box plot. The

box plots were generated with SigmaPlot, which defines a box plot as follows. “Box plots

graph data as a box representing statistical values. The boundary of the box closest to zero

indicates the 25th percentile, a line within the box marks the median, and the boundary of

the box farthest from zero indicates the 75th percentile. Whiskers above and below the box

indicate the 90th and 10th percentiles” [104]. Also, all points not between the 10th and

90th percentile are shown on the plot. For example, to examine sensitivity to the Bit Error

Rate, one can compare the box plot for all configurations with BER of 10−13 to the box

plots for configurations with a BER of 10−12 and configurations with a BER of 10−11. If the

box plots look very different, then that fault type has an effect on the reliability calculation.

Box plots are used here since other common statistical measures could be misleading.

Since the assumption reliability can differ by orders of magnitude, the mean value will be

biased towards high failure rate outliers. The median and the mode are not necessarily

appropriate either as sole measures. The set of configurations is not a random sample of

what might be expected in practice. Instead, the set of configurations covers the range of

what might be expected in practice.
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Figure 12. Sample Box Plot

4.1.2 ANOVA and Factors

The analysis of variance (ANOVA) technique tests for equality of treatment effects [77].

“. . . an Analysis of Variance can be used for comparing means when there are more than

two levels of a single factor” [77]. The idea is that if a particular level or treatment of

a primary factor has no effect on the outcome, then the mean for the subset of data for

that treatment will equal the global mean for the entire population of data. The data is

segmented into a set of separate populations, where each population has a given level of

the factor being measured. For example, if analyzing the effect of the SEU rate, there will

be three populations: a population of configurations with an SEU rate of 10−10, a population

of configurations with an SEU rate of 10−9, and a population of configurations with an SEU

rate of 10−8. If a factor has an effect on the outcome, then the population means will differ

from the grand mean of the entire data set. The same applies to combinations of two or
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more factors.

Since the set of assumption failure rate measurements forms a full-factorial experiment,

the experiment is said to be balanced. In a balanced experiment, the number of observations

for each level of a factor are the same [77]. Balanced experiments are less sensitive to

deviations in the error and maximize the power of the test, in terms of the confidence

intervals that can be calculated [77].

4.2 Physical Fault Model

Part of the contribution of this thesis research is defining a physical fault model for

the aviation and automotive domains to test the protocol specifications. There is a large

amount of domain specific fault arrival data, with whole research areas devoted to each of

the four categories I define. Field data, predictive models (such as neutron flux prediction

based on altitude and latitude), and standards that are hundreds of pages long cover many

different types of physical faults and fault sources. However, there is a great need for a

comprehensive survey of this data at the right granularity. It is unreasonable to expect a

system designer to be an expert on all types of faults, even if the system designer is an

industry expert.

The state of the art in academia is limited. Most work focuses on developing new al-

gorithms and proofs, and not on developing better techniques to test existing proofs. The

thought is that any new proof that further refines the hybrid fault model will be more reli-

able, but Powell shows that this is not always the case [91]. Therefore, it is imperative that

the reliability of new algorithms be evaluated.

What should the algorithms be evaluated with? In the past, there has been some evalu-

ation with selected fault parameters. However, if evaluation is done at all, the parameters

tend to be fairly arbitrary. I introduce four main categories of physical fault sources for the

aviation and aerospace domains. Data sources include standards, field data, and predictive

models (such as neutron flux rate prediction based on altitude and latitude, for single event
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Table 16. Faults in Each Fault Model
Fault Model Version Perm HW Perm Link SEL SEU BER Lightning
Permanent HW Only Y N N N N N

Comprehensive Permanent Y Y Y N N N
Comprehensive Transient N N N Y Y Y

All Studied Y Y Y Y Y Y

effects).

This leads to the question, what is the risk of having an overly simplistic fault model?

In order to claim that the new physical fault model is a contribution, it must be shown that

simplistic fault models give optimistic reliability estimates. I show that this is the case.

In fact, the fail-silent hardware only fault model overestimates reliability by 11 orders of

magnitude compared to the fault model with all four physical fault categories. Neglecting

transient faults was the largest source of reliability overestimation.

4.2.1 SPIDER Physical Fault Model Overview

I tested the assumption reliability of the SPIDER protocol with four versions of the phys-

ical fault model, summarized in Table 16. The Permanent HW Only fault model includes

only permanent hardware faults that would result in fail-silent nodes, a commonly used

fault model. The Comprehensive Permanent fault model includes permanent hardware

faults, permanent link faults, and single event latchup faults. The Comprehensive Transient

fault model includes single event upset, bit error rate, and lightning fault sources. The All

Studied model includes all of the fault sources studied. Every system has its own unique

set of faults, and there may be relevant faults not included in the All Studied model here.

However, the All Studied model does include many types of faults expected in real-world

situations and could be reused for testing assumptions from different systems.
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4.2.2 SPIDER Permanent Fault Calculations

The failure rate of the Permanent Hardware Only fault model can be easily computed,

since each type of node (BIU and RMU) can only fail in one way. The failure rate of the

system can be conservatively approximated as the failure rate of a serial configuration of the

three parts of the Maximum Fault Assumption. This approximation is conservative since,

although the fault bounds are tight, there may be some situations where part of the MFA

has been violated but the system continues to function properly. Since permanent hardware

faults map to benign faults, MFA.3 will never be violated because two asymmetric faults

must be present to violate MFA.3. For N BIUs with only benign faults allowed, MFA.1

fails if all N BIUs become faulty:

λMFA.1 = λBIU
N

For M RMUs with only benign faults allowed, MFA.2 fails if all M RMUs become

faulty:

λMFA.2 = λRMU
M

The total assumption failure rate is then:

λtotal = λMFA.1 + λMFA.2 + 0

4.2.3 SPIDER Fault Rates and Model

Since this study was done early in my work, the SPIDER fault rates and reliability model

are slightly different from the final fault rates and reliability model used. However, the

goal of this study was to show that it is important to include a comprehensive physical fault

model. Slight changes in the fault rates or reliability model should not impede this goal.

The fault rates used here are summarized in Table 17. The reliability model included the

same states and transitions as the SPIDER model in the Methodology chapter, with two

exceptions:

1) The transitions Gx to TAx and Gx to TBx by BER * Bandwidth were by 1/2 * BER

* Bandwidth in this model. Originally, the 1/2 was included to distributed the BER
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faults evenly among the two fault states. The 1/2 was removed for future protocol

studies because it might be confusing; also, since various BERs are studied the value

of 1/2 * BER * Bandwidth would just be between two of the BER * Bandwidth

values studied.

2) The transition Gx to TAx by SEU * Asym. Bits was not included in this model,

since SEU faults were originally modeled as benign. This transition was added in

later models since SEU faults might be asymmetric.

For the other three physical fault models (besides the Permanent Hardware Only model),

many parameter combinations were studied, using the parameters and ranges from Table

17. For example, for the Comprehensive Permanent physical fault model, there were (11

BIU values) * (2 perm. link fault rates) * (3 SEL rates) * (4 undiagnosable probabili-

ties) = 264 combinations. There were 132 combinations for the Comprehensive Transient

physical fault model and 3168 combinations for the All Studied physical fault model. All

configurations were equally weighted.

For each configuration, a Markov model was created and solved with the NASA ASSIST

and SURE tools [13]. The tools output the probability that the SPIDER maximum fault

assumption (described in the Methodology chapter) will be violated. This is a conservative

approximation of the SPIDER membership service failure rate, since there are cases where

the maximum fault assumption is violated but the service’s guarantees are still provided.

However, there are also provable cases where violating the maximum fault assumption

results in the service’s guarantees not being provided.

4.2.4 Physical Fault Model Comparison Results

Transient faults are important to include in the fault model, and the commonly used fail

silent model is a poor predictor of assumption reliability. Some of the partial model reli-

ability estimates differed significantly from the All Studied model, as shown in Table 18,
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Table 17. System Parameters and Values for Early SPIDER
Parameter Value

Bits Per Node 64 Kilobytes
Message Duration 0.1 ms

Messages/hour 3.6*107 (3600000 ms / 0.1 ms)
Bandwidth 1*106 bits/sec

Diagnosis Period 10 ms
BIUs (N) 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

RMUs (M) 3
Mission Time 1 hour

Perm. HW Fault Rate 10−5 faults/hour for BIUs, 10−6 faults/hour for RMUS
BER 10−12 errors/bit

Perm. Link Fault Rate 10−8, 10−7 faults/hour
SEL 10−8, 10−7, 10−6 faults/hour
SEU 10−10, 10−9, 10−8 faults/bit*hour

Prob. Conv. Permanent 1.0, 0.99, 0.95, 0.90
Prob. Conv. Transient 0, 0.05, 0.10, 0.25

Table 18. Average Assumption Failure Rate, by Fault Model
Model Perm HW Comp Perm Comp Tran All Studied

Average Assumption
Violations/Hr.

9.2*10−17 3.8*10−12 9.0*10−6 9.0*10−6

which lists the average assumption failure rate for each fault model. The assumption re-

liability was overestimated by a factor of about 1011 with the Permanent Hardware Only

model, by a factor of about 106 for the Comprehensive Permanent model, and by sur-

prisingly little for the Comprehensive Transient model when compared to the All Studied

model (9.01*10−6 vs. 9.04*10−6). This shows that testing with a thorough physical fault

model is important, especially a physical fault model that includes transient faults.
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4.3 Clock Synchronization

Since the original Byzantine Generals paper by Lamport, Shostak and Pease [66], the

Byzantine fault model has been refined by many researchers, producing a number of hybrid

fault models. These hybrid fault models introduce additional categories of faults that are

easier to tolerate. With tighter fault bounds, these hybrid models would be expected to

improve computed reliability. However, the basic algorithm often needs to be changed in

order to take advantage of these tighter fault bounds. If the new algorithm is more complex,

new opportunities for faults may be introduced, and the new risks introduced may outweigh

the benefits of the tighter fault bounds. Powell notes this in [91]. Even if a new algorithm

is better, the algorithm might not be adopted quickly. Practitioners are reluctant to invest

time and effort to overhaul a current system if the benefit of a new system is unknown.

By testing assumption reliability, one can quantify the expected increase (or decrease)

in reliability of a service due to the new fault bounds. Showing that a new algorithm is

more reliable than the old will improve adoption rates. Likewise, if a new algorithm is less

reliable than the current algorithm, the designer will be saved from the costly mistake of

switching to the new algorithm. Since most new algorithms are geared towards a specific

types of systems (for example, there are group membership algorithms tailored to wireless

networks) it is important to measure the reliability of the algorithm with respect to the

desired domain.

This section compares the Welch and Lynch clock synchronization hybrid fault model

(which FlexRay is based on) to a new model by Azadmanesh and Kieckhafer called the

Strictly Omissive hybrid fault model. Both of these algorithms are part of a family called

Mean-Subsequence-Reduced (MSR) algorithms defined by Azadmanesh and Kieckhafer

in [6]. An MSR algorithm can be used to provide approximate agreement for a group

of observers. MSR algorithms are used for clock synchronization to guarantee an upper

bound on the error among distributed local clocks for a group of nodes. Azadmanesh and

Kieckhafer created a new algorithm that could tolerate a new class of faults called ‘strictly
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Table 19. Clock Sync Maximum Fault Assumptions [120], [33], [6]
Clock SyncWelchLynch MFA.1: n > 3a for n nodes and a asymmetric nodes
Clock SyncWelchLynch MFA.2: n > b for n nodes and b benign nodes
Clock SyncWelchLynch MFA.3: n > 3a + b for n nodes, a asymmetric nodes and b benign
nodes
Clock SyncOmissive MFA.1: n > α for n nodes and w strictly omissive asymmetric nodes
Clock SyncOmissive MFA.2: n > b for n nodes and b benign nodes
Clock SyncOmissive MFA.3: n > α + b for n nodes, w strictly omissive asymmetric nodes
and b benign nodes

omissive.’ The goal is to determine if introducing this new category will improve esti-

mated reliability, compared to the formally proven Welch and Lynch clock synchronization

algorithm [120].

Overall, the Strictly Omissive model shows significantly higher reliability than the stan-

dard Welch and Lynch clock synchronization model. The best-performing configuration for

the Strictly Omissive model outperforms the best-performing standard Welch and Lynch

configuration by approximately an order of magnitude (1.1*10−12 compared to 1.3*10−11).

The average reliability and worst-performing configuration for the Strictly Omissive model

were both better than the Welch and Lynch counterparts.

There are 891 configurations studied for both the Welch and Lynch and Strictly Omissive

hybrid fault models, from (3 SEL) * (3 SEU) * (3 BER) * (3 PermLink) * (11 Nodes). 810

of the 891 configurations are graphed here in this section. The four node configurations

are omitted from some of the analysis. Since the four node configurations could fail after

a single fault (for the Welch and Lynch hybrid fault model), the reliability of the four node

configurations will be bounded by one of the fault arrival rates. Table 19 lists the maximum

fault assumptions for the Welch and Lynch and Strictly Omissive clock synchronization

algorithms.
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4.3.1 Physical Fault Sensitivity

Which faults are the models most sensitive to? This section examines the sets of box plots

for each clock synchronization algorithm. For clock synchronization, there are five primary

factors studied: the number of nodes, Single Event Latchup rate, Single Event Upset rate,

Bit Error Rate, and Permanent Link fault rate. (The relationship between the assumption

failure rate and the number of nodes is investigated in the next section. Additional factors

are considered in the sensitivity analysis section.)

Usually, the assumption reliability is more sensitive to one or two of the types of physical

faults. Both modeled clock synchronization algorithms were most sensitive to the Bit Error

Rate and the Permanent Link fault rate. The four node configurations for FlexRay were

sensitive to different types of faults since a single fault could be a single point of failure.

Not counting the four node configurations, the primary faults determining the assumption

reliability for both clock synchronization algorithms were (in order) the BER, Permanent

Link fault rate, and the combination of Permanent Link fault rate and BER.

The main effects are illustrated in Figure 13 for FlexRay hybrid fault model and Figure

14 for the Strictly Omissive hybrid fault model. In these figures, there are separate box plots

for each level of each of the four physical fault types, given on the X axis. For example,

the first three boxes correspond to the sets of data with a Single Event latchup rate of 10−8,

10−7, and 10−6 respectively. The assumption failure rate in assumption violations/hr is

listed on the Y axis, using a log scale. The Y axis scales are the same for both Figure 13

and Figure 14, so the plots for the two clock synchronization schemes can be compared

with each other.

These box plots show that the clock synchronization models were most sensitive to the

Bit Error Rate and Permanent Link fault rate. For Bit Error Rate, both the median and

range of the box (25th through 75th percentile) change quite a bit. This is especially true

for the Welch and Lynch algorithm, where an order of magnitude increase in the BER

produces an order of magnitude increase in the minimum assumption failure rate, shown
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Figure 13. Welch and Lynch Box Plot

as the bottommost point on each box plot. For the Strictly Omissive model, while the

minimum failure rate is less affected, an order of magnitude change in the BER produces

an order of magnitude increase in the highest assumption failure rate (the topmost point on

each box plot). Both clock synchronization algorithms show about equal sensitivity to the

permanent link fault rate. The Welch and Lynch algorithm is slightly sensitive to the Single

Event Upset rate, whereas the Strictly Omissive algorithm does not appear sensitive to the

SEU rate. Neither algorithm appears sensitive to the Single Event Latchup (SEL) rate. The

figures include configurations with four nodes, which produce the high failure rate outliers

at the top of Figure 13 and Figure 14.

Since box plots only summarize main effects (effects due to a single factor), it is also

important to investigate any interaction effects (effects due to a combination of two or more

factors). Table 20 reports factors in order of their influence on the assumption failure rate

for both clock synchronization models. While the order is interesting, the magnitude of

the effect could be misleading since the assumption failure rates were scaled up in order to
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Figure 14. Strictly Omissive Box Plot

perform the analysis. The assumption failure rates were too small for the numerical anal-

ysis techniques to work properly. Scaling does preserve the order. Overall, the factors are

similar for the two clock synchronization algorithms. The main difference is that Perma-

nent Link faults have more influence for the Welch and Lynch algorithm. One interesting

observation is that for both algorithms, one of the fault types has a greater influence on the

assumption failure rate than the number of nodes does. This indicates that lowering this

fault rate might have more benefit than adding another redundant node.

4.3.2 Welch and Lynch

Figure 15 plots the assumption failure rate of the Welch and Lynch clock synchronization

algorithm vs. the number of nodes. The Y axis shows the maximum fault assumption fail-

ure rate as the number of assumption violations expected per hour, on a log scale. Overall,

adding nodes decreases the expected assumption failure rate. For the Welch and Lynch

algorithm, three nodes must be added in order to tolerate an additional asymmetric fault
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Table 20. Clock Synchronization: Factors, in Order of Influence
Welch and Lynch Strictly Omissive Asymmetric

BER BER
PermLink Nodes

PermLink*BER Nodes*BER
Nodes PermLink

Nodes*BER PermLink*BER
Nodes*PermLink Nodes*PermLink

Nodes*PermLink*BER Nodes*PermLink*BER
SEU*BER SEU*BER

SEU SEU
Nodes*SEU Nodes*SEU*PermLink

Nodes*SEU*BER Nodes*SEU*PermLink*BER
SEU*PermLink*BER SEU*PermLink*BER

SEU*PermLink SEU*PermLink
Nodes*SEU*PermLink

Nodes*SEU*PermLink*BER

(since Clock SyncWelchLynch MFA.1 states that n > 3a). Figure 15 reflects this. For example,

the assumption failure rate decreases when the number of nodes goes from 9 to 10, since

10 is greater than 3*(3 asymmetric faults) but 9 is not greater than 3*(3 asymmetric faults).

This also means that asymmetric faults are a significant contributor to assumption failure.

Otherwise, if benign faults were the dominant contributor (for example, if the benign fault

rate was very high compared to the asymmetric fault rate) then Figure 15 would show more

even improvement.

In Figure 15, the assumption failure rate clearly depends upon other factors in addition

to the number of nodes. Two of the physical faults account for most of the difference -

Bit Error Rate (BER) and Permanent Link fault rate. For the 9 combinations of BER and

Permanent Link fault rates (3 BER * 3 PermLink), Figure 16 plots the average assumption

reliability per number of nodes. For example, there were nine models studied with the

same BER, SEU and number of nodes (since the single event latchup (SEL) rate and single

event upset rate varied (SEU)). The assumption failure probabilities of these 9 models were

averaged together, and the average assumption failure probability is plotted on Figure 16.
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Figure 15. Welch and Lynch: Assumption Reliability vs. Nodes

The contour lines in Figure 15 correspond to these 9 combinations, and the error bars

in Figure 16 depict the maximum and minimum assumption failure rate of those 9 combi-

nations. In addition to increasing the number of nodes, lowering the Bit Error Rate or the

Permanent Link fault arrival rate can also significantly improve the reliability of the sys-

tem. For example, lowering the BER by an order of magnitude decreases the assumption

failure rate by about an order of magnitude.

Overall, adding nodes decreases the expected assumption failure rate. For the Welch and

Lynch algorithm, three nodes must be added in order to tolerate an additional asymmetric

fault (since Clock SyncWelchLynch MFA.1 states that n > 3a). Figure 15 reflects this. For

example, the reliability improves when the number of nodes goes from 9 to 10, since 10

is greater than 3*(3 asymmetric faults) but 9 is not greater than 3*(3 asymmetric faults).

This also means that asymmetric faults are a significant contributor to assumption failure.

Otherwise, if benign faults were the dominant contributor (for example, if the benign fault

rate was very high compared to the asymmetric fault rate) then Figure 15 would show more

even improvement.
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Figure 16. Welch and Lynch: Average Assumption Reliability
(BER/PermLink) vs. Nodes

Figure 15 and Figure 16 look fairly similar except for the four nodes configurations. This

means that knowing the number of nodes, the BER, and the Permanent Link fault rate will

give a fairly complete picture of the assumption reliability of the system. Since these three

quantities are the most important, the designer can focus on accurately estimating (and/or

reducing) these and can spend less energy on the SEL and SEU rates. For the Welch and

Lynch algorithm, note that the four node configurations Figure 16 have significantly larger

error bars than configurations with other numbers of nodes. Since the four node systems

will fail after a single fault, the dominant cause of failure will be whichever fault occurs

most often and therefore will sensitive to all of the fault arrival rates. Therefore, if a four

node configuration is used, a designer needs to be concerned about all of the physical fault

types.

4.3.3 Strictly Omissive

Figure 17 plots the assumption failure rate of the Strictly Omissive clock synchronization

algorithm vs. the number of nodes. The Y axis shows the maximum fault assumption fail-
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Figure 17. Strictly Omissive: Assumption Reliability vs. Nodes

ure rate as the number of assumption violations expected per hour, on a log scale. Again,

adding nodes generally improves the reliability. For the Strictly Omissive algorithm, im-

provement is seen after adding each single node instead of after adding three nodes. Be-

cause all physical faults studied fell under either the strictly omissive asymmetric or the

benign categories, Clock SyncOmissive MFA.1 through Clock SyncOmissiveMFA.3 state that

one additional node will tolerate one additional benign or strictly omissive asymmetric

fault.

Figure 18 shows the average assumption failure rate as a function of the Bit Error Rate

and Permanent Link fault rate. For the 9 combinations of BER and Permanent Link fault

rates (3 BER * 3 PermLink), Figure 18 plots the average assumption failure rate per num-

ber of nodes, with error bars depicting the largest and smallest number of assumption vi-

olations/hr for those configurations. Figure 18 corresponds fairly well with Figure 17. In

Figure 18, the line for a BER of 10−13 and a Permanent Link fault rate of 10−6 is particularly

interesting. After about 11 nodes, the assumption failure rate stops improving. However,

for configurations with the same BER but lower Permanent Link fault rates (the bottom-
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Figure 18. Strictly Omissive: Average Assumption Reliability
(BER/PermLink) vs. Nodes

most two lines on the graph), the assumption failure rate continues to improve. This shows

that the Permanent Link fault rate is the dominant cause of failure for the BER of 10−13

and a Permanent Link fault rate of 10−6 configurations after about 11 nodes. Therefore,

the Permanent Link fault rate must be reduced to improve assumption reliability - reducing

other fault rates will not help.

4.3.4 Welch and Lynch vs. Strictly Omissive

Overall, the Strictly Omissive Asymmetric hybrid fault model outperforms the standard

Welch and Lynch hybrid fault model, as Figure 19 illustrates. Table 21 summarizes the

number of configurations for each clock synchronization model into a number of reliabil-

ity bins, and Figure 19 displays a histogram of the data in Table 21. 342 of the Strictly

Omissive Asymmetric model configurations achieve an assumption failure rate of 10−11 or

better, as listed in Table 21. In contrast, none of the Welch and Lynch hybrid fault model

configurations achieve a failure rate equal to or lower than 10−11. Figure 19 shows that the

number of higher failure rate configurations is greater for the Welch and Lynch model. The
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Table 21. Clock Synchronization Summary
Lists the number of configurations in each assumption failure rate bin

Assumption Violations/Hr. Welch and Lynch configs Strictly Omissive configs
More than 10−7 0 0
10−7 to > 10−8 126 (14.1%) 0
10−8 to > 10−9 291 (32.7%) 90 (10.1%)
10−9 to > 10−10 282 (31.6%) 171 (19.2%)
10−10 to > 10−11 192 (21.6%) 288 (32.3%)
10−11 to > 10−12 0 342 (38.4%)
10−12 or fewer 0 0
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Figure 19. Clock Synchronization: Assumption Failure Rate Comparison

lowest assumption failure rates are 1.1*10−12 for the Strictly Omissive Asymmetric model

and 1.3*10−11 for the Welch and Lynch model, both for the 13 node configuration with

the lowest physical fault rates. The highest assumption failure rates are 9.8*10−9 for the

Strictly Omissive Asymmetric model and 8.6*10−8 for the Welch and Lynch model, both

for the four node configurations with the highest physical fault rates.

The Strictly Omissive Asymmetric model has a lower failure rate than the Welch and

Lynch model when configurations with the same physical fault rates are compared. The

Strictly Omissive model has a lower number of assumption violations/hr compared to the
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Welch and Lynch model for every configuration tested. The amount of improvement is

measured as (Welch and Lynch assumption violations/hr) / (Strictly Omissive assumption

violations/hr). Note that this will produce a number greater than 1 since all Strictly Omis-

sive configurations are better than the Welch and Lynch counterparts. The improvement is

measured this way since the absolute difference between the two strategies could be mis-

leading. For example, a 5*10−4 configuration compared to a 6*10−4 configuration would

give an absolute difference of 1*10−4. In contrast, a 5*10−9 configuration compared to a

5*10−7 configuration would give an absolute difference of 4.95*10−7. However, the second

pair of configurations shows about two orders of magnitude improvement in the reliability

— this is much more interesting to the designer.

One additional stipulation is that the absolute difference between the two configurations

must be greater than the error bound. Instead of an exact answer, the SURE tool gives a

lower bound and an upper bound. By calculating bounds instead of an exact answer, the

computation time is greatly reduced. The upper bound numbers are reported for all datasets

(to be conservative - the exact answer will not be greater than the upper bound). Usually

the bounds are within 5% of each other [13]. If the difference between the assumption

reliability of two configurations is less than the difference between the error bounds for

either of these configurations, then the assumption reliability difference is potentially not

significant. However, this does not occur for any of the pairs of clock synchronization

configurations.

Figure 20 plots the improvement of the Strictly Omissive algorithm over the Welch and

Lynch algorithm, per number of nodes. The improvement for the four node configurations

is expected, since some faults can be a single point of failure for Welch and Lynch four node

configurations but not for Strictly Omissive four node configurations. Excluding the four

node configurations, the configuration showing the most improvement under the Strictly

Omissive algorithm had 14 nodes and had a BER of 10−11 and a Permanent Link fault rate

of 10−6, the highest rates studied for these two parameters. In the previous section, the
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Figure 20. Clock Synchronization: Improvement, Strictly Omissive vs.
Welch and Lynch

BER and the Permanent Link fault rate were identified as the dominant faults contributing

to failure. This means that the Strictly Omissive algorithm does a better job of handling

faults than the Welch and Lynch algorithm.

Figure 20 uses a linear scale on the Y axis, to be consistent with later graphs of the

membership diagnosis strategy comparisons. Some of those have negative numbers which

cannot be plotted on a log scale. The number of nodes is listed on the X axis. This figure

includes all improvement measurements (i.e., there were not any measurements greater

than 1500 or less than 0).

4.3.5 Death State Analysis

The clock synchronization algorithms strive to keep a balance among the various causes

of failure. When a new hybrid fault model is introduced, the goal is to separate a hard-to-

tolerate fault type into a set of new fault types. The hard-to-tolerate fault type can never be
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completely eliminated (according to the Byzantine Generals proofs [66]), but the frequency

of this fault type can be reduced. The set of new fault types should split the original fault

type into some easier-to-tolerate fault types and a hard-to-tolerate fault type that occurs less

frequently than before. For example, the original Byzantine Generals work was in terms of

asymmetric faults only [66]. The symmetric and benign fault types were introduced later,

and covered some of the faults previously classified as asymmetric [115]. The frequency

of asymmetric faults was therefore reduced, and the service reliability was expected to

improve since the symmetric and benign cases were easier to tolerate.

The art in defining a new hybrid fault model is to create a new fault type that covers

a useful percentage of the fault space. For example, introducing a fault type that covers

asymmetric faults where exactly 3 out of the N receivers get a specific value A, 2 out of

N receivers get a specific value B and the rest get a specific value C would probably not

be very useful because this case is rare. Ideally all fault types would contribute equally to

the total maximum fault assumption failure rate. This means that the hybrid fault model

is (more or less) optimized for the physical fault profile. There would be easy-to-tolerate

faults that occur more frequently, and hard-to-tolerate faults that occur less frequently. A

new hybrid fault model should at least reduce the dominant contributor to assumption vi-

olation. For example, separating the benign fault type into two new fault types might not

help at all if asymmetric faults are the dominant cause of assumption violation.

The goal of the Strictly Omissive hybrid fault model is to introduce a new type of fault

(strictly omissive asymmetric) that will cover faults previously classified as asymmetric.

Specifically, this type covers asymmetric faults where some receivers get the same value

and others receive nothing or an obviously incorrect value (i.e. the local receiver can di-

agnose it as incorrect without input from the other nodes). As argued previously, this is

exactly what happens in clock synchronization - a value is either correct (on time) or incor-

rect (not on time).

How does this affect the failure rate due to each fault type? In addition to the total
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Table 22. Clock Synchronization Dominant Failure
Lists the number of configurations according to which condition of the maximum fault

assumption fails first
Dominant Assumption Failure Welch and Lynch configs Strictly Omissive configs

Too Many Active Faults (MFA.1) 837 (93.9%) 540 (60.6%)
Too Few Nodes (MFA.2, MFA.3) 54 (6.1%) 351 (39.4%)

MFA failure rate, the reliability modeling tools output the probability of each piece of

the MFA failing (see Table 19 for the clock synchronization maximum fault assumptions).

For example, the probability of violating MFA.1. might be high while the probability of

violating MFA.3. might be low.

Overall, the Strictly Omissive model seems to have better a fault tolerance scheme for the

physical fault rates considered. The Strictly Omissive algorithm balances out the different

pieces of the MFA, whereas for the Welch and Lynch algorithm MFA.1 is violated first

in all of the configurations except for the four node configurations. The exact number of

configurations with each dominant death state is summarized in Table 22. Note that for

Welch and Lynch all configurations had either MFA.1 or MFA.3 as the dominant cause

of failure, vs. MFA.1 and MFA.2 for the Strictly Omissive model. MFA.1 checks if the

number of asymmetric faults has exceeded the total allowed, so this category is labeled

“Too Many Active Faults” in Table 22. Both MFA.2 and MFA.3 are cases where benign

nodes play a significant role in the failure to satisfy the MFA, so these are both included in

the “Too Few Nodes” column in Table 22.

But, is the Strictly Omissive algorithm really balancing the faults well? In other words,

are the failure rates of MFA.1 and MFA.2 fairly close together? From the aggregate data

it is hard to tell, since it could be the case that the failure rate for MFA.1 is drastically

higher than the failure rate of MFA.2 for some configurations, and vice-versa for other

configurations. Even though the Strictly Omissive algorithm in Table 22 seems balanced,

it might be a lucky coincidence that the range of configurations chosen just happens to

produce about 60% of the failures due to MFA.1 and about 40% failures due to MFA.2.
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Figure 21. Welch and Lynch: Dominant Assumption Failure Scatter Plot

Figure 22 shows that this is not the case. For the Strictly Omissive algorithm, the failure

rate of MFA.1 (solid circles) and the failure rate of MFA.2 (hollow circles) are fairly close

together for most configurations. The failure rate due to MFA.3 is quite lower, but this is

expected since MFA.3 is Clock SyncOmissive MFA.3: n > α + b for n processors, α strictly

omissive asymmetric nodes and b benign nodes. Since MFA.3 is checked last, cases where

MFA.1 (n > α) and MFA. (n > b) have been violated first will not count towards MFA.3.

In contrast, Figure 21 shows that the Welch and Lynch algorithm is much more vulner-

able to asymmetric faults than benign faults. For the Welch and Lynch algorithm, only

some of the four node configurations fail due to inadequate redundancy (MFA.1), with the

rest failing due to too many active asymmetric faults (MFA.3). Having benign faults only

(MFA.2) was never the dominant assumption violated. Except for the four node configu-

rations, MFA.1 (solid circles) fails about two orders of magnitude more often than MFA.2

(hollow circles). The somewhat strange looking pattern for MFA.3 is due to the fact that

three nodes must be added to tolerate one additional asymmetric fault.

Adopting a Strictly Omissive Asymmetric model for the FlexRay protocol could improve

assumption reliability. This could be done by having the clock synchronization algorithm
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Figure 22. Strictly Omissive: Dominant Assumption Failure Scatter Plot

exclude null or detectably invalid values from the voting process. This should be straight-

forward to implement, since the rate and offset correction values are stored in a table, and

the voting process could operate on just the set of valid values in the table.

4.3.6 Sensitivity Analysis

Some system parameters needed to be specified in order to create the reliability models,

where Table 23 lists the system parameter values used for the regular models. This section

explores the sensitivity of the Welch and Lynch clock synchronization algorithm to some

of these parameters, in particular parameters that might change the impact of Single Event

Upset faults. Since the SEU rate is reported in upsets/bit, it is important to estimate how

many bits are susceptible to SEU. The size and capacity of the integrated circuit will influ-

ence the number of upsets/device-hr. Also, the chance of an SEU causing an asymmetric

fault is an important parameter, since asymmetric faults are the most difficult to tolerate.

There is some data available to guide the choice of these parameters, and best-case and

worst-case analysis can be done for the asymmetric SEU rate. Two different chip sizes

(64K and 256K) and four different percentages of bits affected by asymmetric SEUs (0,
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Table 23. System Parameters and Values
Parameter Value
Bandwidth 1*106 bits/sec

Round Duration 10 ms
Frame Duration 0.1 ms

Frames/hour 3.6*107 (3600000 ms / 0.1ms)
Bits/Node 64 kilobytes

Bits, Asym. SEU 10 kilobytes
Clock Sync and TTP/C Nodes, SPIDER BIUs 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

Clock Sync, TTP/C Channels 2
SPIDER RMUs 3

15%, 50%, and 100%) are explored here. The number of nodes is fixed at 8. There were

(3 SELs * 3 SEUs * 3 Perm. Link fault rates * 3 BERs * 8 memory combinations) =

648 configurations. For chip sizes, aviation studies usually cite the chip size in addition

to the Single Event Upset/bit rate [79]. Regarding the percentage of asymmetric faults,

some fault injection studies have subjected chips to radiation and classified the observed

errors. For example, fault injection studies for an early version of TTP/C report about

0.4% asymmetric faults observed out of all of the faults observed [1], [105]. Assumption

reliability testing is a nice complement to fault injection studies, leveraging fault injection

observations over a short amount of time to make predictions about the behavior of the

system in the long run.

When compared to the fault arrival rate parameters, the Welch and Lynch algorithm was

relatively insensitive to both the chip size (which would change the SEU fault rate) and

the percentage of asymmetric SEU faults (compared to benign SEU faults). Figure 23

shows box plots of the mean, 25th and 75th percentile (box area), 10th and 90th percentile

(whiskers) and outlier points for the data subset for each fault type value. In Figure 23,

there is practically no impact on the assumption failure rate resulting from changes to the

chip size or asymmetric SEU percentage when compared to the other influences (namely

the Bit Error Rate and the Permanent Link fault rate).
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Figure 23. Welch and Lynch: Sensitivity Analysis Box Plot

Notice that the SEU rate also does not affect the assumption failure rate much. Since the

assumption failure rate is not sensitive to the SEU rate, it makes sense that the assumption

failure rate would also not be sensitive to the chip size and asymmetric percentage that

modify this SEU rate. In fact, the assumption failure rate actually improves slightly (for

the 8 node configurations studied here) as the SEU rate increases. This could be a conse-

quence of the model, since the fault states are treated as exclusive. Therefore, more SEU

faults means that the population of good nodes shrinks, so there are fewer nodes available

to become faulty in other ways. In a real system, it would be possible for a node to expe-

rience multiple faults almost at the same time. In reality, the node would display behavior

consistent with the most harmful fault, and not the fault that occurred first.

4.3.7 Other Modeling Information

The model evaluation execution time depends on a number of factors. The main factors that

determine the execution time are the size of the model and (for SURE) the amount of model
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pruning. In SURE, the designer can specify the pruning level (using the PRUNE constant)

and the loop truncation level (using the TRUNC constant). For the pruning level, any path

with probability less than PRUNE will be removed from the model. For truncation, any

looped path that includes more than TRUNC times through the loop is removed from the

model. Pruning and loop truncation can greatly reduce the model solution time. However,

if the pruning level or loop truncation level is too high, the SURE tool will be unable to

calculate reliability bounds. The probability of the pruned paths is too great, compared

to the probability of the other non-pruned paths. In this case, the user is notified with a

“Pruning Too Severe” message which can refer to either the PRUNE or TRUNC constant.

For all clock synchronization models, a PRUNE level of 10−24 and a TRUNC level of 9 is

sufficient. In many cases a solution is possible with a lower PRUNE level, so levels from

10−20 through 10−24 are used. The solution time scales exponentially with the PRUNE level

(i.e. reducing the PRUNE level by a factor of ten halves the solution time), so the lowest

level possible is desired. The SURE tool aggregates death states according to which piece

of the maximum fault assumption is violated first. This greatly reduces the number of death

states, since there are only three death states after aggregation.

The SURE tool may be unable to converge on the reliability bounds if the fault arrival

rates become too close to the transient recovery rates. Models with a set of slower rates and

a set of faster rates are called “stiff” models, and pose a set of mathematical challenges.

Some high fault arrival rates were untestable; Bit Error Rates above 10−11 are not tested for

this reason. In general, increasing the fault arrival rates also increased the solution time .

Table 24 summarizes some of the performance statistics for the Welch and Lynch clock

synchronization service. The Strictly Omissive models were the same size, but generally

took longer to execute since the reliability level is higher on average. Therefore the Strictly

Omissive models could not be pruned as much as the Welch and Lynch models. The CPU

timer used rolled over for some of the executions so execution time is not available for

all configurations of the Strictly Omissive algorithm. While the average execution time
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Table 24. Welch and Lynch: Clock Sync Model Size and Execution Time
Nodes States Transitions Avg. Execution Time (CPU sec.)

4 333 2750 112
5 648 5465 81
6 1143 9800 103
7 1908 16565 126
8 3033 26630 128
9 4608 40865 147

10 6783 60660 583
11 9708 87485 514
12 13533 122810 590
13 18483 168760 423
14 24783 227560 435

is between 80 and 600 seconds (about one to ten minutes), there was a large amount of

variation. Most models were solved much more quickly (many in under ten seconds), with

some models taking much longer (over an hour). Models with higher BERs (10−11) overall

took the longest to solve. Also, the pruning level was not optimized per model, so shorter

times may be possible.

4.4 Membership Study

A group membership service may remove suspected faulty nodes from the group. This

process is called conviction. The conviction policy states the conditions under which a node

will be removed from the group. Choosing an apt conviction policy requires an in-depth

understanding of the types of faults that can occur in the system, and the types of recovery

actions needed to return a node to correct operation after a fault.

A successful conviction policy keeps the number of active faults within the bounds of

the system’s maximum fault assumption (MFA). Theoretical results for group membership

show that there are two general pieces to the system’s MFA — there is a limit on the

number of simultaneous active faulty components within one round, and there is a limit

on the number of rounds that may contain a Byzantine faulty component. Therefore, an
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MFA will contain restrictions of the form nodes > c1 ∗ f aultynodes + c2 and rounds >=

c3 ∗ f aultyrounds + c4 for some constants c1, c2, c3, and c4. For example, the traditional

Byzantine fault tolerant MFA is n >= 3 ∗ f aultynodes+ 1 and r >= f aultyrounds+ 1 [66],

[35]. For Byzantine fault tolerant group membership, this MFA has been shown to be a

lower bound [36]. Later work has defined a number of easier to tolerate fault classes and

additional bounds with respect to those classes. For example, a fail-silent omission fault

where no receiver receives any message provably requires fewer nodes to tolerate. The

conviction policy must balance the risk of having too many active faulty nodes vs. the risk

of removing too many nodes from the group (especially for protocols that allow conviction

of good nodes, such as TTP/C).

I divide the space of faults into permanent faults and transient faults. As used here, the

term transient fault refers to a fault which persists for a finite duration, ceases to exist after

that duration has expired and does not alter the state of the affected component beyond that

duration. For network protocols, it is convenient to think of a transient fault as something

that affects a single frame. For example, some radiation-induced bit upsets might affect

the current data value being sent, but can be corrected with error detection and correction

codes in memory before the next data value is sent. One can also model a transient fault in

terms of a number of consecutive frames affected from a single sender (for example, due to

a burst of electromagnetic interference). A permanent fault is a fault with infinite duration

or lasting effects on state. An intermittent fault could be classified either as permanent or as

a set of transients. The exact duration allowed for a transient fault will depend on the fault

identification procedure, which is outside the scope of this work. For modeling purposes,

only the misclassification rate needs to be represented.

Note that it is theoretically impossible to perfectly discriminate between transient faults

and permanent faults for asynchronous systems. There could be infinite delay between

the sending and reception of a message. Waiting for an infinite time is not an option for

practical systems, so timeouts can be used to discriminate a transient fault from a perma-
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nent fault by selecting an appropriate ∆t. Faults with duration less than ∆t are considered

transient, while others are considered permanent. However, there is no value of ∆t that is

guaranteed to separate all transient faults from all permanent faults, since transient faults

occur in actual time (which can be thought of as having a real number domain) [68].

The standard conviction policy for both the TTP/C and SPIDER is to effectively set ∆t to

zero, thereby making permanent faults and transient faults equivalent. This does not mean

that treating transient faults as permanent faults will cause the system to fail, but it does

indicate a major inefficiency. It is important to note that the maximum fault assumption

implicitly covers both permanent and transient faults, since the MFA is a statement about

the total number of currently active faults. The conviction policy, however, is in theory

free to treat permanent and transient faults differently. In practice, the flexibility of the

conviction policy depends upon the protocol proof. In TTP/C, the proof of the conviction

algorithm is integrated with the proof of the rest of the membership service. Thus any

change in the conviction algorithm would likely require changes to the proof, which could

be a large time investment. The SPIDER conviction algorithm is more flexible, but with

the restriction that no good node may be convicted (implying that there may be some undi-

agnosable faulty nodes that cannot be convicted). In general it is desirable to separate the

membership algorithm from the rest of the system as much as possible, a concern that has

also been explored (for example) in systems that guarantee Byzantine fault tolerance and

provide some security services [127].

Reintegration is an interesting related issue. An inaccurate conviction policy that con-

victs many good nodes might be acceptable if a reintegration procedure is able to reinte-

grate nodes back into the group quickly. Unfortunately, at this time there are no formally

proven reintegration strategies available for TTP/C or for SPIDER, although reintegration

strategies are being developed. Also, the risk of reintegrating a faulty node needs to be

considered. Once more progress has been made in this area, designers could include rein-

tegration in the models as a transition from a convicted state back to a good (or possibly
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faulty) state. Since the relationship between the conviction policy and reintegration strat-

egy is important, designers would want to consider the reliability of different combinations

of conviction policies and reintegration strategies.

The three conviction policies I investigate are:

• Convict All (standard): Nodes are convicted after a single fault. This is equivalent to

treating all faults as permanent.

• Convict None (no-op): No nodes are convicted. This is equivalent to treating all

faults as transient.

• Perfect/Convict Some: The system attempts to convict all permanent faulty nodes

and to let transient faults expire. There are two specified percentages of misclassifi-

cation: permanent faults misclassified as transient and transient faults misclassified

as permanent (roughly speaking, false negatives and false positives). If the protocol

allows good node conviction, there is an additional percentage specified for incor-

rectly convicting good nodes.

An interesting observation is that in many of the experiments, doing nothing (Convict

None) had superior reliability to the standard conviction policy (Convict All). This might

seem straightforward in light of data that shows transient faults outnumbering permanent

faults by a factor of a thousand. However, to this date specification efforts have largely

ignored the problem posed by transient faults. Until now, there has been no attempt to

critically examine the likelihood that the maximum fault assumption will be violated. The

thought was that by removing a faulty node from membership immediately, the system

would be ‘safer.’ My research has shown that the opposite can occur – the system may

become less reliable – especially in the absence of reintegration (with no formally proven

reintegration strategies, it is difficult to argue that reintegration is ‘safe’ at this time). For

SPIDER, since the conviction policy is flexible, future work is likely to include an im-

proved conviction policy. For TTP/C, the future is less certain, since the conviction policy
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is integrated with the membership proofs. One alternative for both protocols is to develop a

reintegration strategy that overcomes the shortcomings in the conviction policy. For exam-

ple, nodes may be voted out after a single fault but then quickly reintegrated after the group

reaches consensus on its members (at minimum, after the distributed diagnosis period in

SPIDER and after two rounds in TTP/C).

The Convict Some strategy shows improvement over the other two strategies. For TTP/C

the amount of improvement is three orders of magnitude in some cases. For SPIDER, the

amount of improvement is contingent upon the misclassification probabilities. This shows

how crucial it is to test assumption reliability at the design stage. I present results from

both the SPIDER and TTP/C group membership services. In addition to comparison of

conviction strategies, I present a sensitivity analysis for both protocols to various types of

faults.

4.5 TTP/C Membership Results

TTP/C provides a low-overhead, Byzantine fault tolerant membership service. In TTP/C

the diagnosis service and the membership service are tightly coupled to achieve this low

overhead (where overhead here is measured in extra bits per frame). In the lowest overhead

configuration, a Cyclic Redundancy Code is calculated over the frame contents and sender’s

local membership vector. The membership vector is not explicitly included in the frame.

The receiver calculates its CRC over the frame contents and its local membership vector.

Thus if the membership vectors do not match, the receiver will consider the frame to be

faulty and will remove the sender from membership. However, the membership service will

require no extra bits per frame (except possibly if the CRC length needs to be extended to

maintain detection power since the CRC is protecting more bits). The membership vector

can also be explicitly included with every frame.

The TTP/C Maximum Fault Assumption is given in Table 25. MFA.1 is slightly different

from the one given in the proofs of TTP/C’s Interactive Consistency and Clique Avoidance
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Table 25. TTP/C Membership Maximum Fault Assumption [118], [88]

Membership MFA.1: If (∃ a), then a + s + b = 1 for a asymmetric, s symmetric, and b
benign nodes
Membership MFA.2: s ≤ g for s symmetric and g good nodes
Membership MFA.3: g ≥ 3 for g good nodes

algorithm. In these proofs, if a fault occurs, and another fault occurs before the group has

reached consensus on its members, then consensus might never be reached [88]. There-

fore, MFA.1. is slightly optimistic since it only forbids two simultaneous faults, and not

two faults within two rounds. MFA.1. is tested this way since the modeling tools do not

specifically incorporate a notion of rounds.

This section examines the three conviction strategies individually, then compares them

to each other. The Convict Some strategy performed the best, followed by the Convict

None (do nothing) strategy, then the Convict All (standard) strategy. It was surprising that

the do nothing Convict None strategy outperformed the standard Convict All strategy. This

means that all of the effort invested in the membership proofs so far produced a system

with less reliable guarantees (overall). This show the importance of measuring assumption

reliability.

Once a shortcoming has been identified, assumption reliability testing can give an objec-

tive measurement of the outcome of changing the specification. For TTP/C, the amount of

improvement of the Convict Some strategy was also very interesting. The Convict Some

strategy performed up to three orders of magnitude better than the standard Convict All

strategy. Because of the way the TTP/C proofs are written, altering the conviction algo-

rithm to implement the Convict Some strategy might require changes to the proofs. One

alternative would be to use a rapid reintegration strategy for transient faulty nodes, and

a slower (if any) reintegration strategy for the permanent faulty nodes. Formally proven

reintegration algorithms have not yet been written for TTP/C (or for SPIDER).
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4.5.1 Physical Fault Sensitivity

Which faults are the models most sensitive to? This question can be answered by compar-

ing some statistics of the data sorted by fault type. For the TTP/C Convict All and Convict

None strategies, there are five primary factors studied: the number of nodes, Single Event

Latchup rate, Single Event Upset rate, Bit Error Rate, and Permanent Link fault rate. For

the Convict Some strategy, two additional factors are investigated: the probability of con-

victing permanent faulty nodes and the probability of convicting transient faulty nodes.

These probabilities can be thought of as the (1 - false negative) rate and the false positive

rate, respectively. Box plots are created for each primary factor investigated. For more

detail on box plots and the statistics involved, please see the previous discussion in the

Statistical Measures section. Sensitivity to the number of nodes is investigated in the next

section, and additional factors are considered in the sensitivity analysis.

Like for clock synchronization, the reliability of the four node TTP/C configurations is

low because a single lightning strike could cause failure. A lightning strike would be a

single point of failure for the 4 node configurations since bN/2c nodes are affected, as the

transitions are currently specified (please see the Methodology chapter for a complete list

of the transitions). A lightning strike would eliminate two of the four nodes, and three good

nodes are required at minimum.

There is one set of box plots for each strategy. Figure 24 shows the standard Convict All

strategy, Figure 25 shows the Convict None strategy, and Figure 26 shows the Convict Some

strategy. The X axis lists the different levels of each primary factor. The assumption failure

rate is listed on the Y axis in terms of assumption violations/hr using a log scale. In all

of these figures, the maximum assumption failure rate stays about the same (at about 10−3

assumption violations/hr). These maximum points are the four node configurations, which

have single point of failure in the event of a lightning strike (according to the lightning

model used). The Y axis scales are the same for all three figures, so that the figures may be

compared with each other.
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The box plots show that all three strategies were most sensitive to the Single Event Upset

rate and the Bit Error Rate. For the SEU rate, both the median assumption failure rate and

the assumption failure rate range change for all three strategies. For the BER, the median

assumption failure rate stays fairly constant, and the maximum assumption failure rate stays

the same, but the minimum assumption failure rate is affected. For each order of magnitude

increase in the BER, there is an order of magnitude increase in the minimum assumption

failure rate. All three strategies seem slightly sensitive to the permanent link fault rate and

are fairly insensitive to the Single Event Latchup rate.

The Convict All strategy is interesting since this strategy is significantly affected by

lightning and the way this fault transition was modeled (bN/2c nodes become faulty). Since

the Convict All strategy will always remove these nodes from membership, the maximum

fault assumption will be violated after two lightning strikes since that will result in all of

the nodes being removed from the system (half of the total group N the first strike, and

half the second strike). The probability of two lightning strikes as modeled is (4*10−4)2,

or 1.6*10−7. Thus the best assumption failure rate achieved was about 10−7 assumption

violations/hr, no matter what the other fault arrival rates were. Fortunately the median

assumption failure rate is close to 10−7 assumption violations/hr, meaning that most of the

configurations perform this well. Sensitivity analysis examines different lightning models.

There are two additional factors for the TTP/C Convict Some model - the permanent fault

misclassification rate and the transient fault misclassification rate. These are represented

in Figure 26 as the Probability of Convicting a Permanent faulty node and the Probability

of Convicting a Transient faulty node. Convicting a permanent faulty node can be though

of as a ‘false negative’, and convicting a transient faulty node can be though of as a ‘false

positive’. Ideally, the probability of convicting a permanent faulty node would be 100%,

since the reliability will improve if permanent faulty nodes are removed. The probability of

convicting a transient faulty node would be ideally be zero, since transient faults will expire

and the affected node will return to normal the next communication round. Removing
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Figure 24. TTP/C Convict All, Box Plot

transient faulty nodes would reduce available redundancy. However, no algorithm will be

able to perfectly distinguish between permanent and transient faults.

The misclassification rates do not change the reliability much by themselves for TTP/C,

as Figure 26 shows. This makes sense, because the effects of misclassification depend on

the fault arrival rate. For example, a high rate of misclassification with a low fault arrival

rate might produce the same reliability as a low rate of misclassification with a high fault

arrival rate.

While the main effects seem small, notable interaction effects are present. After the

effects listed previously, the Convict Some models are most sensitive to the probability

of transient node conviction, the SEU/transient conviction interaction, the nodes/transient

conviction interaction, and the SEU/nodes/transient conviction interaction. In contrast,

there was very little sensitivity to the permanent misclassification rate. This means that

‘false positives’ were more detrimental than ‘false negatives’ for the range of fault arrival

rates studied. Overall, a less aggressive fault tolerance strategy is preferred. Since all group
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Figure 25. TTP/C Convict None, Box Plot

members agree on the group size, membership could use a diagnosis strategy tailored to

the current number of nodes in the group, being more aggressive for large groups and less

aggressive for small groups.

Table 26 lists factors and combinations of factors that influenced the assumption failure

rate, from greatest influence to lowest influence. Effects due to a single factor are called

‘main effects’ and effects due to a combination of factors are called ‘interaction effects’.

While the ordering is interesting, the actual magnitude of the effect is not very useful in

this case since the assumption failure rate measurements had to be scaled up to perform

the analysis. Scaling does not affect the order, however. These factors were analyzed

without the four node configurations, since the Nodes factor would then appear to have

quite a bit more influence. Also, some factors at the bottom of the list that did not satisfy

the confidence interval requirements were omitted. All possible factor combinations were

tested except for the combination involving all of the factors, since the analysis techniques

require at least one degree of freedom for the error term.
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Figure 26. TTP/C Convict Some, Box Plot

From Table 26, the Convict All and Convict Some strategies have almost the same or-

dering of factors (except for the probability of convicting transient faulty nodes, which is

always one in the Convict All strategy). For all strategies, the SEU rate had more of an

influence on the assumption failure rate than the number of nodes. This indicates that re-

ducing the SEU rate through better quality components might improve the reliability more

than adding another redundant node. Looking at Table 26, for the Convict None strategy

the SEL rate seems to have more influence than the Permanent Link fault rate, although

neither factor has a large amount of influence. This seems a little different than Figure 25,

where the only apparent change in the box plots is the minimum for the highest Permanent

Link fault rate.

4.5.2 Convict All (Standard) Strategy

Figure 27 shows the assumption reliability of the Convict All strategy vs. the number of

nodes. The Y axis lists the number of maximum fault assumption violations per hour,
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Table 26. TTP/C Membership: Factors, in Order of Influence
Convict All Convict None Convict Some

SEU SEU SEU
Nodes Nodes Nodes

Nodes*SEU Nodes*SEU Nodes*SEU
BER SEL BER

SEU*BER SEL*SEU SEU*BER
Nodes*BER BER Nodes*BER

Nodes*SEU*BER SEU*BER Nodes*SEU*BER
PermLink PermLink Prob. Conv. T.

PermLink*BER PermLink*BER SEU*Prob. Conv. T
SEL Nodes*SEL Nodes*SEU*Prob. Conv. T

Nodes*SEL Nodes*SEL*SEU PermLink
SEL*SEU Nodes*BER PermLink*BER

Nodes*SEL*SEU Nodes*SEU*BER SEU*BER*Prob. Conv. T
Nodes*PermLink SEL*SEU*BER BER*Prob. Conv. T

Nodes*PermLink*BER SEL*BER Nodes*BER*Prob. Conv. T
SEL

Nodes*SEL

on a log scale. As Figure 27 shows, adding nodes decreases the assumption failure rate.

However, after about 11 nodes, the amount of improvement diminishes due to the effects of

lightning. There is relatively steady improvement from the 4 node configurations through

the 10 node configurations.

In Figure 27, it is apparent that other factors affect the assumption failure rate besides the

number of nodes. From the previous section, the Single Event Upset rate and the Bit Error

Rate were the two types of faults that the models were most sensitive to. There are three

SEU rates and 3 BERs, for a total of nine combinations of fault rates. Figure 28 plots the

average assumption failure rate per number of nodes for each of these nine combinations

of fault rates. There were nine models for each of the nine combinations. The average

assumption failure rate of these models was computed and graphed. Error bars at each

point show the maximum and minimum values for the nine data points that were averaged.

Figure 28 shows that the assumption reliability for the Convict All strategy is almost

entirely determined by the Single Event Upset rate and the number of nodes. There are
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Figure 27. TTP/C Convict All: Assumption Reliability vs. Nodes

three lines in 28, with the topmost line corresponding to an SEU rate of 10−8, the middle

line corresponding to an SEU rate of 10−9, and the bottom line corresponding to an SEU

rate of 10−10. Figure 27 and Figure 28 look nearly identical. The error bars on Figure 27

are barely perceptible, indicating that for each group of 9 data points with the same BER

and SEU, the mean, minimum, and maximum assumption failure rate are nearly the same.

Since the SEU is the dominant factor influencing the assumption failure rate, this shows

that the Convict All strategy might have trouble tolerating transient faults.

The Convict All strategy also appears to have problems handling burst faults, especially

transient burst faults. The assumption failure rate levels off at 1.6*10−7 due to lightning.

While the way lightning was modeled is somewhat arbitrary, burst faults definitely do exist

and will affect the system reliability. The duration of the lightning burst modeled is 5ms, or

half of a 10ms round. Many burst faults are longer than this [64]. Because TTP/C tightly

integrates agreement with fault diagnosis, losing agreement is equivalent to the entire group

being declared faulty. System restart will be required if all of the nodes consider themselves

to be faulty and cease sending frames.
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Figure 28. TTP/C Convict All: Average Assumption Reliability (SEU/BER)
vs. Nodes

One technique for handling burst faults could be to design the diagnosis round duration

with respect to the burst duration. No matter what, agreement cannot be preserved if all

of the frames in the diagnosis round are lost or corrupted. The round length is usually

determined by the shortest message period in the network, which is around 5-10ms for

many common embedded systems [116]. Unfortunately, transient bursts of 10ms are not

uncommon. For example, automotive electromagnetic testing standards include a number

of transient pulses of 10ms duration or longer [116].

Burst faults might also be handled through special detection and diagnosis strategies,

studied to some extent in the Convict Some strategy. The Convict Some strategy classifies

transient and permanent faults separately, where burst faults would be included in the tran-

sient fault class. The transient fault class could be further refined into single-frame transient

faults and multiple-frame transient faults. However, if a burst fault lasts for a number of

diagnosis rounds, the system may be better off treating this as a permanent fault. Some

provisions for long-duration burst faults are included in the protocols already. The latest

version of the TTP/C spec (1.4.3) includes a blackout detection procedure for communica-
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Figure 29. TTP/C Convict None: Assumption Reliability vs. Nodes

tion blackouts lasting equal to or longer than one TDMA round [118, p. 69].

4.5.3 Convict None (Do Nothing) Strategy

Unlike the other strategies, the Convict None strategy is somewhat sensitive to permanent

faults as well as transient faults. As shown in the Figure 25 box plot, the Convict None

strategy was sensitive to the Permanent Link Fault rate in addition to the Single Event Upset

rate and the Bit Error Rate. Since the Convict None strategy never removes nodes, these

permanent faults will remain in the system until the end of the mission. However, even

this strategy was not sensitive to the permanent Single Event Latchup faults, which were

modeled as symmetric faults for membership. This shows that fault diagnosis strategies

should concentrate on removing the permanent asymmetric faults.

Because no faulty nodes are ever removed, the relationship between the assumption fail-

ure rate and the number of nodes is interesting. The assumption failure rate actually in-

creases if more nodes are added, after about seven nodes. Figure 29 shows the assumption

reliability of the Convict None (do nothing) strategy vs. the number of nodes. The Y axis
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Figure 30. TTP/C Convict None: Average Assumption Reliability
(SEU/BER) vs. Nodes

lists the number of maximum fault assumption violations per hour, on a log scale. Again,

the four node configurations have a high assumption failure rate. But Figure 29 looks very

different from the standard Convict All strategy in Figure 27, which removes nodes from

the group after a single fault. There is a drastic decrease in the assumption failure rate be-

tween the 4 node configurations and the 5 and 6 node configurations. There is another jump

between the 5 and 6 node configurations and the 7 or more node configurations. This is in

contrast to the much more gradual decrease in the assumption failure rate for the standard

strategy.

At seven nodes, the lowest assumption failure rate is about 10−9. Since no faulty nodes

are ever removed, permanent faulty nodes accumulate in the system and degrade the relia-

bility. If the system is failing due to too many active faults, adding nodes will only increase

the chance of failure by increasing the number of faulty components in the system. The

exact tradeoff point for this particular strategy is explored further in the Death State Anal-

ysis section. This behavior is similar to the behavior described by Powell in his study of

hypothetical failure rates [91]. Here, I show that this behavior can happen with failure rates
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expected in the real world.

Figure 30 describes the relationship between the Single Event Upset rate, Bit Error Rate,

and assumption failure rate. There are three SEU rates and 3 BERs, for a total of nine

combinations of fault rates. Figure 30 plots the average assumption failure rate per number

of nodes for each of these nine combinations of fault rates. There were nine models for

each of the nine combinations. The average assumption failure rate of these models was

computed and graphed. Error bars at each point show the maximum and minimum values

for the nine data points that were averaged.

The Single Event Upset rate appears to be the biggest factor influencing the assumption

failure rate for the Convict None strategy, as Figure 30 shows. The three data sets for the

SEU rate of 10−10 have the largest error bars. The effects of permanent link faults appear to

stand out more for low SEUs. The contour lines in Figure 30 match Figure 29 fairly well.

It is useful to use the Convict None strategy results as a minimum level that new strategies

must do better than. The Convict None strategy shows a lower variance than the standard

strategy. Except for the four node configurations, the assumption failure rate was between

10−6 assumption violations/hr and 10−10 assumption violations/hr. This provides a helpful

baseline for judging any other fault tolerance strategy. In the standard Convict All strategy,

many of the configurations have an assumption failure rate of higher than 10−6, and none

of the configurations achieve a failure rate of lower than 10−8. This could be unaccept-

able for safety-critical applications. Any new fault tolerance strategy should be required

to outperform the baseline strategy in most cases. This shows the value of measuring as-

sumption reliability. Hopefully, these results will encourage adoption of a new conviction

strategy or development (and analysis) of a reintegration strategy that will make up for the

shortcomings of the standard conviction strategy.
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Figure 31. TTP/C Convict Some: Assumption Reliability vs. Nodes

4.5.4 Convict Some (Novel) Strategy

Figure 31 shows the assumption reliability of the Convict Some strategy vs. the number of

nodes. The Y axis lists the number of maximum fault assumption violations per hour, on

a log scale. The four node configurations have the highest assumption failure rate, and the

twelve through fourteen node configurations have the lowest. Like the standard Convict

All strategy, adding nodes decreases the assumption failure rate, and there is a relatively

constant level of improvement from the four node configurations through the eight or nine

node configurations.

Unlike the Convict All strategy, the Convict Some strategy does not appear to be limited

by the effects of lightning. Because lightning strikes are treated as transient faults, the group

can recover from temporarily losing half of it members for a round. Thus the Convict Some

strategy would be expected to handle transient burst faults much better than the standard

Convict All strategy.

After about eight or nine nodes in Figure 31, there appears to be some significant change
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Figure 32. TTP/C Convict Some: Average Assumption Reliability
(SEU/BER) vs. Nodes

in the factors affecting the assumption failure rate. Figure 32 shows the relationship be-

tween the Single Event Upset rate, Bit Error Rate, number of nodes, and assumption failure

rate. Figure 32 plots the mean of each set of nine configurations that have the same SEU

rate and BER. Up until about eight or nine nodes, the Single Event Upset rate appears to

be the dominant factor influencing the assumption failure rate, similar to the Convict All

strategy in Figure 28. After about nine nodes, the Bit Error Rate appears to be the dominant

factor.

Even though the Convict Some strategy is the best overall, for the highest SEU rate of

10−8 the assumption failure rate does not go much below 10−8. In these models, some

Single Event Upset faults are asymmetric. Since the TTP/C maximum fault assumption

only allows one asymmetric fault per consensus period (two TDMA rounds maximum),

it is doubtful that a different diagnosis policy could improve the assumption failure rate

much. Even if the asymmetric faulty node is convicted right away, that fault would still

count against the maximum fault assumption. Therefore, lowering the SEU rate may be an

important consideration.
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Figure 33. TTP/C Membership: Assumption Failure Rate Comparison

4.5.5 Comparison of Three TTP/C Diagnosis Strategies

Table 27 summarizes the assumption failure rate for all of the configurations for the three

diagnosis strategies studied. Figure 33 plots the percentage of configurations that fall into

each assumption failure rate bin.

Overall, the Convict Some strategy had the lowest assumption failure rate, and the stan-

dard Convict All strategy had the highest assumption failure rate, as shown in Figure 33

and Table 27. There were Convict Some configurations that achieved a three orders of

magnitude decrease in assumption failure rate compared to the other two strategies (10−10

to < 10−11 in Table 27). The 4, 5, and 6 node configurations all had high failure rates as

compared to the 7 node and above configurations. The assumption failure rates for the

Convict All and Convict Some strategies show more of a spread than the Convict None

strategy, in Figure 33. This could be due to the conviction of good nodes (which does not

occur in the Convict None strategy since no nodes are convicted), or the loss of redundancy

due to convicted misdiagnosed transient faulty nodes.

In addition to comparing the overall performance of each strategy, it is interesting to
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Table 27. TTP/C Membership Summary
Lists the number of configurations in each assumption failure rate bin

Assumption Violations/Hr. Conv. All Conv. None Conv. Some
More than 10−3 27 (3.0%) 81 (9.1%) 243 (3.1%)
10−3 to > 10−4 108 (12.1%) 0 729 (9.1%)
10−4 to > 10−5 63 (7.1%) 0 729 (9.1%)
10−5 to > 10−6 126 (14.2%) 261 (29.3%) 972 (12.1%)
10−6 to > 10−7 312 (35.0%) 408 (45.8%) 972 (12.1%)
10−7 to > 10−8 255 (28.6%) 141 (15.8%) 2328 (29.0%)
10−8 to > 10−9 0 0 1236 (15.4%)
10−9 to > 10−10 0 0 756 (9.4%)
10−10 to > 10−11 0 0 54 (0.7%)
Fewer than 10−11 0 0 0

investigate the change in the assumption failure rate for each individual configuration. For

example, the Convict Some strategy has a lower assumption failure rate than the Convict

All strategy overall, but is it better for all of the configurations, or is it better for some

configurations and worse for others?

Figure 34, Figure 35, and Figure 36, compare each pair of configurations with the same

system and fault rate parameters for each of the three strategies. For example, a configura-

tion might have 6 nodes, an SEL rate of 10−8, an SEU rate of 10−10, a Permanent Link fault

rate of 10−7, and a Bit Error Rate of 10−12. The assumption reliability for the configuration

with these parameters under (for example) the Convict Some strategy would be compared

to the assumption reliability under the Convict All strategy.

There are a few details on how the amount of ‘improvement’ is measured. To measure

improvement, first the error and the difference are computed. The assumption reliability

measurements were made with the SURE tool, which gives an upper and lower bound on

the assumption failure rate measurement. The error is defined as the upper bound minus

the lower bound. There will be two error measurements, one for each of two configura-

tions being compared. The difference is defined as the upper bound for the configuration

using Strategy One minus the upper bound for the configuration using Strategy Two. The
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two upper bounds are compared (instead of the lower bounds) to be conservative. If the

absolute value of the difference is less than either error measurement, then the amount of

improvement is defined as zero.

The difference would be misleading as an ‘improvement’ measure, since what one really

wants to measure is how many orders of magnitude the two configurations differ by. For

example, the difference between a configuration with an upper bound of 10−3 assumption

violations/hr compared to a configuration with an upper bound of 10−4 assumption viola-

tions/hr would be 9*10−4. In contrast, the difference between a configuration with an upper

bound of 10−6 assumption violations/hr and a configuration with an upper bound of 10−9

assumption violations/hr would be 9.99*10−7. Although the first case has the larger differ-

ence, the second case shows more improvement. Therefore, the improvement is defined as

(Upper bound Strategy Two)/(Upper bound Strategy One) if the upper bound for Strategy

Two is the larger number, and ( - Upper bound Strategy One)/(Upper bound Strategy Two)

if the upper bound for Strategy One is the larger number. Therefore, the improvement is

negative if Strategy Two has a lower assumption failure rate. Improvement is a unit-less

quantity since it is the ratio of two assumption failure rate measurements.

Since negative numbers cannot be plotted on a log scale, Figure 34, Figure 35, and

Figure 36 use the same linear scale for the Y axis. The number of nodes is listed on the

X axis. These figures include all improvement measurements (i.e., there were not any

measurements greater than 5000 or less than -5000).

For all pairs of configurations, the Convict Some strategy had either equal or better as-

sumption reliability than the standard Convict All strategy, as shown in Figure 34. For four

through seven nodes, there was zero improvement since all of the difference measurements

were less than the error measurements for each of the configurations. From eight nodes

on, the Convict Some strategy shows increasing improvement over the Convict All strat-

egy (up to about three orders of magnitude). This shows that a smarter diagnosis strategy

can improve assumption reliability without any negative effects, compared to the existing
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Figure 34. TTP/C: Improvement, Convict Some vs. Convict All

standard strategy.

The standard Convict All strategy was, for the most part, either about the same as or

worse than the do nothing Convict None strategy, as shown in Figure 35. Especially for

configurations with few nodes, the Convict All strategy actually decreased reliability. This

shows that configurations with few nodes require a lenient (or extremely accurate) diagno-

sis algorithm. After about eight nodes or so, the two strategies have similar performance.

For nine nodes or fewer, the Convict None strategy is best. For ten nodes and up, in some

cases the Convict All strategy was better and in other cases the Convict None strategy was

better. In other words, for ten nodes and up there are some positive points on Figure 35 and

some negative points on Figure 35, although the magnitude of the improvement is small.

The comparison between the Convict Some strategy and the Convict None strategy is

interesting. As Figure 36 shows, the Convict None strategy is better for four through eight

nodes (especially for the five node configurations). At nine nodes, the improvement was

zero for all pairs of configurations. For ten nodes and up, the Convict Some strategy is
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Figure 35. TTP/C: Improvement, Convict All vs. Convict None

Table 28. TTP/C Membership Dominant Failure
Lists the number of configurations according to which condition of the maximum fault

assumption fails first
Conv. All Conv. None Conv. Some

Active Faults (MFA.1) 0 747 (83.8%) 3159 (39.4%)
Too Few Nodes (MFA.2, MFA.3) All 144 (16.2%) 4860 (60.6%)

better. Since the Convict Some strategy could misclassify nodes, this indicates that the

penalty for mistakenly convicting transient faulty nodes can be high when there is little

spare redundancy available. Also, Figure 36 correlates with the information in the Death

State analysis section. For the Convict Some strategy, the dominant cause of assumption

failure before about eight nodes is running out of redundancy, and after about eleven nodes

the dominant cause of failure is too many active faults, with a mix for numbers of nodes in

between.
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Figure 36. TTP/C: Improvement, Convict Some vs. Convict None

4.5.6 Death State Analysis

In all cases studied, the Convict All strategy failed by running out of redundancy, as shown

in Table 28. In contrast, the Convict None strategy failed primarily due to too many active

faults. The Convict Some strategy balanced the two risks best. The models were most

sensitive to the transient faults (BER and SEU), with the Convict All and Convict Some

strategies sensitive to permanent link faults and the Convict None strategy less so. All

three strategies were insensitive to the SEL rate.

Further investigation shows that adding nodes might not improve reliability if the dom-

inant cause of failure is too many active faults. In other words, adding a node means

adding another potential faulty component. In the Convict None strategy, running out of

redundancy was the dominant cause of failure for configurations with 4 to 6 nodes, but

configurations with 9 or more nodes failed due to too many active faults. The configura-

tions with the lowest failure rates had 9 or 10 nodes — configurations with more nodes

had higher failure rates. In the Convict Some strategy, running out of redundancy was the

148



Number of Nodes

3 4 5 6 7 8 9 10 11 12 13 14 15

A
ss

um
pt

io
n 

V
io

la
tio

ns
 / 

H
r.

1e-22
1e-21
1e-20
1e-19
1e-18
1e-17
1e-16
1e-15
1e-14
1e-13
1e-12
1e-11
1e-10
1e-9
1e-8
1e-7
1e-6
1e-5
1e-4
1e-3
1e-2

MFA.1
MFA.2
MFA.3

Figure 37. TTP/C Convict All: Dominant Assumption Failure Scatter Plot

dominant cause of failure for configurations with 4 to 10 nodes, but configurations with

13 or more nodes failed due to too many active faults. The configurations with the lowest

failure rates had 13 or 14 nodes (the greatest number tested).

I hypothesize that adding nodes will eventually decrease reliability for algorithms whose

maximum fault assumption includes a fixed term. For the TTP/C MFA.1, an asymmetric

fault plus any other fault might cause the guarantees to be violated. Adding nodes will only

increase the chance that a pair of faults occurs, so if MFA.1 is the dominant assumption

violated, adding nodes is expected to decrease reliability. Many Byzantine fault tolerant

algorithms are expected to include a fixed term in their MFAs, because for a round-based

algorithm there must be at least f + 1 rounds to tolerate f Byzantine faults [35], and the

total number of rounds is usually fixed.

Usually, one piece of the maximum fault assumption is the primary cause of failure.

A successful strategy will mitigate faults that violate this piece of the maximum fault as-

sumption. The SURE tools allow each piece of the maximum fault assumption to be tested

separately. Table 25 lists the conditions tested. The conditions are tested in order, so states

that fail to satisfy MFA.1 will not be checked for MFA.2 and MFA.3, for example.
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Figure 38. TTP/C Convict None: Dominant Assumption Failure Scatter
Plot

For all of the diagnosis strategies, the assumption failure rate due to asymmetric faults

(MFA.1) stays fairly constant in the range of about 10−7 to 10−10. In the Convict None

strategy, the assumption failure rate due to MFA.1 being violated actually increases slightly

with the number of nodes, since no nodes are ever convicted. Figure 37, Figure 38, and

Figure 39 show scatter plots that depict the probability of failure for each MFA condition

compared to the number of nodes. The assumption failure rate in assumption violations/hr

is listed on the Y axis, and the number of nodes is listed on the X axis. Symmetric faults

(MFA.2) do not appear to be much of a threat by themselves. The failure rate of MFA.2 is

10−11 or below for all of the configurations of all of the strategies. (Note that MFA.1 would

count the case where there is at least one symmetric fault plus at least one asymmetric

fault.)

In Figure 37, the failure rate of MFA.3 appears to track the failure rate of lightning-

induced faults for the Convict All strategy. The failure rate of MFA.3 improves some

initially, but stops improving once it reaches about 10−7. In contrast, in Figure 38 for

the Convict None strategy, MFA.3 is the dominant cause of failure only for the four node
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Figure 39. TTP/C Convict Some: Dominant Assumption Failure Scatter
Plot

configurations and some of the five and six node configurations.

Figure 39 portrays the Convict Some strategy, where there is a trade-off between MFA.1

and MFA.3. Initially, adding nodes helps reduce the chance of failure due to not enough

redundancy (MFA.3). Eventually, however, the chance of an asymmetric fault plus another

simultaneous fault catches up (MFA.1). This confirms the suspicion from Figure 32 that

Single Event Upset faults might be a limiting factor to how low the assumption failure rate

can go.

4.5.7 Sensitivity Analysis

This section explores sensitivity to some of the system parameters assumed, and to the

ability of the diagnosis strategy to handle asymmetric faults, lightning, and to handle losing

some good nodes due to conviction. To keep the amount of work feasible, and to examine

the strategy with the biggest response to lightning, the sensitivity analysis is performed on

the Convict All strategy. Of the physical fault types, Single Event Upset faults had the

most influence on the assumption failure rate of the TTP/C diagnosis strategies. The size
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and capacity of the integrated circuit will influence the number of upsets/device-hr, since

larger circuits may have more bits that SEU faults can affect. Also, the chance of an SEU

causing an asymmetric fault is an important parameter, since asymmetric faults are the most

difficult to tolerate.

The first part of sensitivity analysis studies two different memory sizes (64K and 256K)

and four different percentages of memory affected by asymmetric SEUs (0, 15%, 50%, and

100%). Also, sensitivity analysis investigates three probabilities of convicting asymmetric

faulty nodes (1.0, 0.95, and 0.90) and three probabilities of good node conviction in the

event of an asymmetric fault (1/GN , 0.25, and 0.50). At maximum, half of the good nodes

in the group could be convicted in the event of an asymmetric fault, if the asymmetric faulty

node is in the majority clique. The SEL rate was kept constant at the highest studied (10−6).

There were (3 SEUs * 3 Perm. Link fault rates * 3 BERs * 8 memory combinations * 3

Prob. Conv. Asym * 3 Prob. Conv. Good) = 1944 configurations for membership.

The second part of sensitivity analysis examines sensitivity to lightning. In the original

model, two lightning strikes would cause the assumptions to fail for the standard Convict

All strategy, since each strike half of the group will be convicted and removed. This section

repeats the sensitivity analysis tests for the Convict All strategy, without lightning.

Figure 40 shows that the TTP/C Convict All strategy is sensitive to both the number of

bits susceptible to SEU faults and to the percentage of SEU faults that are asymmetric. The

eight boxes at the far right of Figure 40 show the eight combinations of bytes per node

and asymmetric SEU percentage. Interaction effects are expected between these two new

parameters, so a separate box plot was generated for each combination of the parameters.

This strategy appears more sensitive to the percentage of SEU faults that are asymmetric vs.

the total number of bytes in the node. Therefore integrated circuit size could increase, as

long as the percentage of SEU faults that have an asymmetric manifestation is kept small.

The Convict All strategy appears relatively insensitive to the probability of correctly con-

victing an asymmetric faulty node. This may be because the primary cause of assumption
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Figure 40. TTP/C Convict All: Sensitivity Analysis Box Plot

failure for the Convict All strategy is running out of redundancy (see the Death State Anal-

ysis section for more details). However, this also indicates that a practical fault diagnosis

algorithm performs fairly well with respect to an ideal algorithm.

The assumption failure rate is sensitive to the probability of convicting good nodes. The

chance of convicting good nodes depends on the asymmetric fault manifestation, i.e. how

many receivers are in the minority clique. In the worst case an asymmetric fault will divide

the current group in half. The probability of this occurring in practice is not known, but it

is important to point this out as a concern. This could also be a design issue — the effects

of an asymmetric fault may depend on the spatial distribution of the nodes. For example,

a weak bus driver may be able to transmit to nearby nodes but not faraway nodes. If a star

coupler is used, this could be a star coupler issue.

Without lightning, the Convict All strategy performs better, as shown in Figure 41. Fig-

ure 40 and 41 have the same Y axis scale so that the figures may be easily compared.

The best configurations have an assumption failure rate of around 10−10 assumption viola-
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Figure 41. TTP/C Convict All: Sensitivity Analysis, No Lightning, Box Plot

tions/hr instead of 10−7 assumption violations/hr. There is a large improvement for config-

urations where there are no asymmetric SEU faults (the 64K / 0% Asym. SEU box plot

and the 256K / 0% Asym. SEU box plot). However, it seems there is less improvement

for configurations that experience asymmetric SEU faults. The best of these configurations

have an assumption failure rate around 10−7 assumption violations/hr.

Without lightning, the Convict All strategy is still most sensitive to the same faults as be-

fore (the amount of asymmetric SEU faults, the SEU rate and the probability of convicting

good nodes). Also, Figure 41 shows that without lightning there is some sensitivity to the

Bit Error Rate and the Permanent Link fault rate.

4.5.8 Other Modeling Information

Since the Convict Some strategy had the largest models, a summary of execution time

information for this strategy is given here. The execution time depends on the size of the
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model and (for SURE) the amount of model pruning. In SURE, the designer can specify the

pruning level (using the PRUNE constant) and the loop truncation level (using the TRUNC

constant). For the pruning level, any path with probability less than PRUNE will be re-

moved from the model. For truncation, any looped path that includes more than TRUNC

times through the loop is removed from the model. Pruning and loop truncation can greatly

reduce the model solution time. However, if the pruning level or loop truncation level is too

high, the SURE tool will be unable to calculate reliability bounds. A pruning level of 10−16

was used for configurations with four through twelve nodes, and a pruning level of 10−17

was used for the thirteen and fourteen node configurations and for a handful of twelve node

configurations for which the 10−16 pruning level was too severe. The SURE tool aggregates

death states according to which piece of the maximum fault assumption was violated first.

This greatly reduces the number of death states, since there are only three death states after

aggregation. For a few of the models it was also necessary to prune some of the states at

the ASSIST level, which requires more manual work but can reduce the solution time for

the SURE tool and was needed for some cases where the Markov model generated by the

ASSIST tool was too large to be read by the SURE tool.

Table 29 summarizes some of the performance statistics for the TTP/C Convict Some

strategy. Solution times are given in CPU seconds. For some of the executions, the com-

puter clock rolled over, giving a negative solution time. While the exact value of clock

rollover is unknown, from the data it appears the clock rolls over at about 2400 CPU

seconds (forty minutes). These configurations were excluded from the average, and the

number of these configurations is listed in the table. While the average execution time

was about 120 seconds (two minutes), there was quite a bit of variation. Most models

were solved in under 10 seconds, but some models took over twenty minutes. Models with

higher BERs (10−11) overall took the longest to solve. Starting at thirteen nodes, the mod-

els were additionally pruned at the ASSIST stage, so that is why the number of states and

transitions decrease from the twelve node to thirteen node models. The pruning level was
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Table 29. TTP/C Convict Some Model Size and Execution Time
Nodes States Transitions Avg. Execution Time (CPU sec.) Time Rollovers

4 128 1121 5 0
5 523 4974 11 0
6 1533 15434 15 0
7 3648 38471 17 0
8 7668 83615 22 0
9 14568 163226 22 0

10 25813 295434 27 0
11 43148 502870 26 0
12 69018 816621 28 9
13 55946 662142 129 45
14 90486 1090615 123 54

not optimized per model, so shorter times may be possible.

In addition, there is a certain amount of model ‘read time’ required. The ASSIST tool

outputs the Markov model to a file and the SURE tool must read this file back in before it

can solve the model. The read time is not included in the calculations, but increases with

the number of states and transitions (and thus increases with the number of nodes). The

fourteen node configurations had a read time of about 550 seconds, or about 9 minutes.

The amount of time the ASSIST tool needed to generate the model was not recorded for

each configuration, but was generally not more than a few seconds.

4.6 SPIDER Membership Results

Table 30 lists the SPIDER maximum fault assumption. SPIDER has two types of com-

ponents, Bus Interface Units (BIUs) and Redundancy Management Units (RMUs). The

SPIDER maximum fault assumption (MFA) is stated in terms of the sets G, B, S , and A,

which denote the sets of good, benign, symmetric, and asymmetric nodes respectively [75].

EBIU and ERMU refer to the sets of eligible voters for BIUs and RMUs, respectively.

Treating the Redundancy Management Units as separate entities is one of SPIDER’s

greatest strengths. If at least three RMUs are used, the receiving Bus Interface Units can

vote the received frame values, unlike TTP/C and FlexRay nodes which will accept any cor-
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Table 30. SPIDER Maximum Fault Assumption [75]

SPIDER MFA.1. 2|G ∩ ERMU | > |ERMU\B| for all RMUs RMU, and
SPIDER MFA.2. 2|G ∩ EBIU | > |EBIU\B| for all BIUs BIU, and
SPIDER MFA.3. |A ∩ ERMU | = 0 for all RMUs RMU, or |A ∩ EBIU | = 0 for all BIUs BIU

rectly formatted frame. SPIDER guarantees Byzantine fault tolerant agreement on frame

contents, in addition to agreement on the set of members. Also, the RMUs aid in the fault

detection process, since RMUs can pass on special frames indicating that the BIU sender

failed to correctly send a frame during its time slot.

However, the results show that elevating the RMUs to first class entities changes the

assumption reliability quite a bit. There are a limited number of RMUs since installing

another RMU requires costly wiring. From the results, the assumption failure rate appears

to be dominated by the failure rate of the RMUs. Unlike TTP/C and FlexRay nodes, adding

SPIDER BIUs has almost no impact on the assumption failure rate. Also, the penalty for

misdiagnosing a permanent fault is high, even though the models are most sensitive to

transient faults. This indicates that transient faults have a greater impact if the amount of

redundancy is already compromised by the undetected permanent fault.

This section examines the three strategies individually, then compares them to each other.

The Convict None strategy performed the best overall, which was surprising. The Convict

Some strategy was second best overall, and the Convict All strategy had the poorest as-

sumption reliability overall. The models were most sensitive to transient faults, although

configurations for the Convict None strategy were also sensitive to the permanent fault

rates. The misclassification rate has a rather large effect on the assumption reliability for

the Convict Some configurations, and sensitivity analysis is done comparing those results

to a perfect classification scheme.
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4.6.1 Physical Fault Sensitivity

Which faults are the models most sensitive to? This section examines box plots for each

fault type, for each diagnosis strategy. For the SPIDER Convict All and Convict None

strategies, there are five primary factors studied: the number of nodes, Single Event Latchup

rate, Single Event Upset rate, Bit Error Rate, and Permanent Link fault rate. For the Con-

vict Some strategy, two additional factors are investigated: the probability of a convicting

a permanent faulty node, and the probability of convicting transient faulty nodes. Since

SPIDER assures that no good node will ever be convicted, it is possible that a permanently

faulty node might never be convicted if there is not enough evidence available to the group.

In other words, a node is innocent until proven faulty by the whole group - if some of the

group thinks the node is good and others think it is faulty, then in some cases the node

must be considered good. These probabilities can be thought of as the (1 - false negative)

rate and the false positive rate, respectively. Box plots are created for each primary fac-

tor investigated. For more detail on box plots and the statistics involved, please see the

previous discussion in the Statistical Measures section. Sensitivity to the number of nodes

is investigated in the next section, and additional factors are considered in the sensitivity

analysis.

There is one set of box plots for each strategy: Figure 42 shows the standard Convict

All strategy, Figure 43 shows the Convict None strategy, and Figure 44 shows the Convict

Some strategy. The X axis lists the different levels of each primary factor. The assumption

failure rate is listed on the Y axis in terms of assumption violations/hr using a log scale.

The Y axis scales are the same for all three figures, so that the figures may be compared

with each other.

The three strategies appear to have quite different assumption failure rates overall. Con-

figurations with the Convict All strategy in Figure 42 show a very high assumption failure

rate, from about 10−3 to 10−6. In contrast, the configurations for the Convict None strategy

in 43 have much lower assumption failure rates, ranging from about 10−6 to 10−9. Config-

158



Fault Type and Rate

A
ss

um
pt

io
n 

V
io

la
tio

ns
 / 

H
r.

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

SEL
1e-8  1e-7  1e-6

SEU
1e-10 1e-9  1e-8

Perm. Link
1e-8  1e-7  1e-6

BER
1e-13  1e-12  1e-11

Figure 42. SPIDER Convict All, Box Plot

urations for the Convict Some strategy seem to be mixed, with failure rates ranging from

10−4 to about 10−8. It is interesting that the Convict None strategy outperforms the Convict

All strategy by such a large amount, and appears to outperform the Convict Some strategy

in a many cases as well. This will be investigated further throughout the SPIDER analysis.

All of the diagnosis strategies seem most sensitive to the Single Event Upset rate and Bit

Error Rate. The Convict All and Convict some strategies were especially sensitive to these

two parameters, with about two orders of magnitude difference in assumption reliability

between the 10−7 and 10−6 SEU rates and between the 10−13 and 10−12 BER rates. The

assumption failure rate increase was not as pronounced for the Convict None strategy. This

suggests that the Convict All and Convict Some strategies have difficulty handling transient

faults; perhaps too many transient faulty nodes are being convicted. The Convict None

strategy was also sensitive to the Single Event Latchup rate and the Permanent Link fault

rate.

There are two additional factors for the SPIDER Convict Some model - the permanent
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Figure 43. SPIDER Convict None, Box Plot

fault misclassification rate and the transient fault misclassification rate. These are rep-

resented in Figure 26 as the Probability of Convicting a Permanent faulty node and the

Probability of Convicting a Transient faulty node. Convicting a permanent faulty node can

be though of as a ‘false negative’, and convicting a transient faulty node can be though of

as a ‘false positive’. Ideally, the probability of convicting a permanent faulty node would

be 100%, since the reliability will improve if permanent faulty nodes are removed. The

probability of convicting a transient faulty node would be ideally be zero, since transient

faults will expire and the affected node will return to normal the next communication round.

Removing transient faulty nodes would reduce available redundancy.

As Figure 44 shows, the models are sensitive to the probability of convicting a permanent

faulty node, but seem insensitive to the probability of convicting a transient faulty node

as a primary factor. There is about half an order of magnitude decrease in the assumption

failure rate for configurations with a 0.95 probability of convicting a permanent faulty node

compared to a 0.99 probability. The same is true for configurations with a 0.90 probability
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Figure 44. SPIDER Convict Some, Box Plot

compared to a 0.95 probability.

Table 31 lists factors and combinations of factors that influenced the assumption failure

rate, from greatest influence to lowest influence. Effects due to a single factor are called

‘main effects’ and effects due to a combination of factors are called ‘interaction effects’.

While the ordering is interesting, the actual magnitude of the effect is not very useful in

this case since the assumption failure rate measurements had to be scaled up to perform the

analysis. Scaling preserves the order, however. For the SPIDER studies, only two factor

interaction effects were studied, since some of the three factor interaction effects were too

small for the analysis tools to create confidence intervals for. If some of the three factor

interaction effects are too small to analyze, then all of the three factor effects are excluded

from the analysis since the statistical model becomes unbalanced if only some three factor

effects are considered.

For all three strategies, the Bit Error Rate had the largest effect on the assumption failure

rate, followed by the Single Event Upset rate for the Convict All and Convict None strate-

161



Table 31. SPIDER Membership: Factors, in Order of Influence
Convict All Convict None Convict Some

BER BER BER
SEU PermLink SEU

SEU*BER PermLink*BER Prob. Conv. Perm.
Nodes*SEU SEU BER*Prob. Conv. Perm.
Nodes*BER SEL SEU*Prob. Conv. Perm.

Nodes SEU*PermLink SEU*BER
SEL*BER Nodes*SEU

Nodes Nodes*BER
SEL*SEU

Nodes*BER
Nodes*SEL
Nodes*SEU

gies and the Permanent Link fault rate for the Convict None strategy. The Convict Some

factors are interesting. The probability of convicting a transient faulty node did not appear

to affect the assumption failure rate, even through interaction effects with the fault rates.

However, the probability of convicting a permanent faulty node had some interesting inter-

action effects with the transient fault rates (BER and SEU). One might expect interaction

effects between the probability of convicting permanent faulty nodes and the permanent

fault arrival rates (SEL and PermLink). It seems that if a permanent fault is present in the

system, then the SPIDER system becomes much more sensitive to transient faults.

The next sections discuss each of the strategies in more detail, but one interesting obser-

vation is that all of the configurations from all strategies are fairly insensitive to the number

of Bus Interface Units. A SPIDER Bus Interface Unit is similar to a node in the FlexRay

or TTP/C. This is very different from FlexRay and TTP/C, which were both sensitive to the

number of nodes. This is due to the fact that SPIDER treats its Redundancy Management

Units (similar to a star coupler) as first class entities, whereas FlexRay and TTP/C do not

treat star couplers as first class entities and instead map star coupler faults back to nodes.

As the Death State Analysis section will explore, faults in the Redundancy Management

Units are a prime contributor to assumption violations, so adding more Bus Interface Units
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Figure 45. SPIDER Convict All: Assumption Reliability vs. BIUs

may not change the assumption failure rate much.

4.6.2 Convict All (Standard) Strategy

Figure 45 plots the assumption failure rate of the Convict All strategy vs. the number of Bus

Interfaces Units (BIUs). The Y axis lists the number of maximum fault assumption viola-

tions per hour, on a log scale. The configurations appear to fall along five or so horizontal

bands, ranging from an assumption failure rate of about 5*10−4 to 10−6. This indicates

that the assumption reliability depends heavily on one or two of the fault types. From the

factors discussed in Table 31, the Single Event Upset rate and Bit Error Rate are the two

fault types of interest.

The scatter plot of all configurations in Figure 45 maps fairly well to a plot of the average

of configurations with the same Single Event Upset rate and Bit Error Rate. Figure 46 plots

the average assumption failure rate for groups of configurations with the same Single Event

Upset rate and Bit Error Rate. There are three SEU rates and two BERs, for a total of six
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Figure 46. SPIDER Convict All: Average Assumption Reliability
(SEU/BER) vs. BIUs

combinations of fault rates. There were nine models for each of the six combinations.

The average assumption failure rate of these models is computed and graphed in Figure

46. Error bars at each point show the maximum and minimum values for the nine data

points that were averaged. Since the error bars are extremely small (they hardly show on

the graph, except as a line through the center of the symbols) , this indicates that the Single

Event Upset rate and Bit Error Rate predict the assumption failure rate well. A low BER

(10−13) only appears beneficial for lower SEU rates, since configurations with an SEU rate

of 10−8 had a high assumption failure rate regardless.

4.6.3 Convict None (Do Nothing) Strategy

Unlike the other strategies, the Convict None strategy is sensitive to all of the types of

faults. As shown in the Figure 43 box plot, the Convict None strategy was sensitive to the

Permanent Link Fault rate and the Single Event Latchup rate in addition to the Single Event

Upset rate and the Bit Error Rate. On the positive side, this means that lowering any of the
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Figure 47. SPIDER Convict None: Assumption Reliability vs. BIUs

fault rates is likely to reduce the assumption failure rate some. On the downside, since there

seems to be no dominant fault type, reducing one of the fault rates might only give a small

reduction in the assumption failure rate.

The Convict None strategy appears fairly insensitive to the number of Bus Interface

Units. Figure 47 shows the assumption failure rate of the Convict None (do nothing) strat-

egy vs. the number of Bus Interface Units (BIUs). The Y axis lists the number of maximum

fault assumption violations per hour, on a log scale. The assumption failure rate appears

evenly spread between about 5*10−7 assumption violations/hr. and 10−9 assumption viola-

tions/hr.

Figure 48 plots the average assumption failure rate for groups of configurations with

the same Single Event Upset rate and Bit Error Rate. There are three SEU rates and two

BERs, for a total of six combinations of fault rates. Figure 48 plots the average assumption

failure rate per number of BIUs for each of these six combinations of fault rates. There

are nine models for each of the six combinations. The average assumption failure rate of
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Figure 48. SPIDER Convict None: Average Assumption Reliability
(SEU/BER) vs. BIUs

these models is computed and graphed. Error bars at each point show the maximum and

minimum values for the nine data points that were averaged.

Unlike the other strategies, the influence of the Permanent Link fault rate and Single

Event Latchup rate appears to be significant, in addition to the Bit Error Rate and the Single

Event Upset rate. The error bars in Figure 48 span about an order of magnitude or more.

Therefore, predicting the assumption failure rate from just the Bit Error Rate and Single

Event Upset rate will probably give an inaccurate estimate. Since Table 31 shows that the

Permanent Link fault rate was a stronger influence on the assumption failure rate than the

SEU rate, it might be beneficial to graph this strategy in terms of the BER and Permanent

Link fault rate combinations. Here, the graphs for all three strategies were plotted the same

way. The Bit Error Rate appears to have a somewhat stronger influence on the assumption

failure rate than the Single Event Upset rate for cases where the SEU rate is 10−10 or 10−9.
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Figure 49. SPIDER Convict Some: Assumption Reliability vs. BIUs

4.6.4 Convict Some (Novel) Strategy

The Convict Some strategy had the widest range of assumption failure rates, as shown in

Figure 49. Figure 49 shows the assumption failure rate of the Convict None (do nothing)

strategy vs. the number of Bus Interface Units (BIUs). The Y axis lists the number of

maximum fault assumption violations per hour, on a log scale.

Figure 50 plots the average assumption failure rate for groups of configurations with

the same Single Event Upset rate and Bit Error Rate. There are three SEU rates and two

BERs, for a total of six combinations of fault rates. Figure 50 plots the average assumption

failure rate per number of BIUs for each of these nine combinations of fault rates. Since

the Convict Some strategy also models two additional misclassification probabilities, there

were 81 models for each combination. The average assumption failure rate of these models

was computed and graphed. Error bars at each point show the maximum and minimum

values for the 81 points.

For the Convict Some strategy, the probability of convicting permanent faulty nodes

167



Number of Bus Interface Units

4 5 6 7 8 9 10 11 12 13 14

A
ve

ra
ge

A
ss

um
pt

io
n 

V
io

la
tio

ns
 / 

H
r.

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

BER 10-12, SEU 10-8
BER 10-12, SEU 10-9
BER 10-12, SEU 10-10
BER 10-13, SEU 10-8
BER 10-13, SEU 10-9
BER 10-13, SEU 10-10

Figure 50. SPIDER Convict Some: Average Assumption Reliability
(SEU/BER) vs. BIUs

might also be important in addition to the BER and SEU rates. From Table 31, the BER

and SEU rates are the two most influential factors, followed by the probability of convicting

a permanent faulty node. The error bars in Figure 50 are still fairly large, about an order of

magnitude or so. For example, configurations with the lowest assumption failure rates had

an SEU rate of 10−10, a BER of 10−13, and a 0.99 probability of convicting permanent faulty

nodes. There was about an order of magnitude difference between the configurations with

the same fault arrival rates, but a 0.90 probability of convicting permanent faulty nodes.

4.6.5 Comparison of Three SPIDER Diagnosis Strategies

Figure 51 and Table 32 compare all three strategies according to the number of configura-

tions from each strategy aggregated into assumption failure rate bins. Figure 51 and Table

32 include all of the configurations; there are no configurations with an assumption failure

rate greater than 10−3 or less than 10−9. In Figure 51, the assumption failure rate is listed

along the bottom on the X axis, and the percentage of configurations that fall within each
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Figure 51. SPIDER Membership: Assumption Failure Rate Comparison

Table 32. SPIDER Membership Summary
Lists the number of configurations in each assumption failure rate bin

Assumption Violations/Hr. Conv. All Conv. None Conv. Some
10−3 to > 10−4 297 (50.0%) 0 0
10−4 to > 10−5 99 (16.7%) 0 1188 (22.2%)
10−5 to > 10−6 155 (26.1%) 0 2079 (38.9%)
10−6 to > 10−7 43 (7.2%) 106 (17.9%) 1188 (22.2%)
10−7 to > 10−8 0 356 (59.9%) 891 (16.7%)
10−8 to > 10−9 0 132 (22.2%) 0

assumption failure rate range is listed along the Y axis. The percentage of configurations

is used since the Convict Some strategy has more total configurations, due to the additional

probabilities of misclassification.

The SPIDER strategies are interesting since, overall, the Convict None strategy is the

best performer. This is in contrast with TTP/C where the Convict Some strategy was best.

Ultimately, SPIDER may be limited by the number of Redundancy Management Units.

All configurations here had three RMUs. Unfortunately, adding an RMU is more expensive

than adding a Bus Interface Unit, because of the additional wiring that is needed. Adding an

RMU in SPIDER would be similar to adding another star coupler in TTPC or FlexRay. The
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assumption failure rate also seems to be very dependent on the probability of convicting

a permanent faulty node. Otherwise, all other parameters being equal, the Convict Some

strategy should at least have the same assumption failure rate as the Convict None strategy,

if not a lower assumption failure rate.

How do the three strategies compare per configuration? For example, the Convict None

strategy seems the best overall, but is it the best for each configuration too? Figure 52,

Figure 53, and Figure 54 compare each pair of configurations with the same system and

fault rate parameters for each of the three strategies. For example, a configuration might

have 6 nodes, a SEL rate of 10−8, an SEU rate of 10−10, a Permanent Link fault rate of

10−7, and a Bit Error Rate of 10−12. The assumption failure rate for the configuration with

these parameters under (for example) the Convict Some strategy would be compared to the

assumption failure rate under the Convict All strategy. Each of these figures use the same Y

axis and a linear Y axis scale, since negative numbers cannot be plotted on a log scale. The

number of Bus Interface Units is listed on the X axis. For SPIDER, changing the number of

Bus Interface Units does not have much effect on the improvement metric, unlike FlexRay

and TTP/C where the improvement varied according to the number of nodes.

A special calculation for ‘improvement’ was used here. To measure improvement, first

the error and the difference were computed. The assumption failure rate measurements

were made with the SURE tool, which gives an upper and lower bound on the reliability.

The error is defined as the upper bound minus the lower bound. There will be two error

measurements, one for each of two configurations being compared. The difference is de-

fined as the upper bound for the configuration using Strategy One minus the upper bound

for the configuration using Strategy Two. The two upper bounds are compared (instead of

the lower bounds) to be conservative. If the absolute value of the difference is less than

either error measurement, then the amount of improvement is defined as zero.

The difference is misleading as an ‘improvement’ measure, since what one really wants

to measure is how many orders of magnitude the two configurations differ by. Therefore,

170



Number of Bus Interface Units

4 5 6 7 8 9 10 11 12 13 14

Im
pr

ov
em

en
t R

at
io

 o
f A

ss
um

pt
io

n 
Fa

ilu
re

 R
at

es

-10000

-5000

0

5000

10000 Improvement, Convict Some vs. Convict All

Figure 52. SPIDER: Improvement, Convict Some vs. Convict All

the improvement is defined as (Upper bound Strategy Two)/(Upper bound Strategy One)

if the upper bound for Strategy Two is the larger number, and ( - Upper bound Strategy

One)/(Upper bound Strategy Two) if the upper bound for Strategy One is the larger num-

ber. Therefore, the improvement is negative if Strategy Two has a lower assumption failure

rate. Improvement is a unit-less quantity since it is the ratio of two assumption failure rate

measurements. Figures 52, 53, and 54 include all configurations (there were no improve-

ment values greater than 12,000 or less than -12,000). For all of the SPIDER configurations,

all improvement measurements were greater than the error.

The Convict Some strategy had a lower assumption failure rate than the Convict All

strategy when all pairs of configurations from both strategies were compared. Figure 52

illustrates the improvement of the Convict Some strategy over the Convict All strategy.

Since the Convict All strategy is the standard, this shows that a smart fault diagnosis strat-

egy can improve assumption reliability. The maximum amount of improvement was about

one order of magnitude (101).
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Figure 53. SPIDER: Improvement, Convict All vs. Convict None

The standard Convict All strategy had a higher assumption failure rate than the Convict

None strategy for all pairs of configurations. Figure 53 shows how the assumption fail-

ure rates of Convict All configurations compare to the assumption failure rates of Convict

None configurations. It appears that the Convict All strategy is too aggressive, and the as-

sumptions fail due to too many inappropriate convictions of transient faulty nodes. Further

investigation of the data confirms this. Figure 53 shows that some Convict All strategy

configurations are only a little worse than in the Convict None strategy, and that some are

quite a bit worse. The Convict All configurations with the worst difference had the highest

transient fault arrival rates - a Single Event Upset rate of 10−8 and a Bit Error Rate of 10−12.

The comparison between the Convict Some strategy and the Convict None strategy is

interesting. For almost all pairs of configurations, the Convict Some strategy had a higher

assumption failure rate than the Convict None strategy, shown in Figure 54. In these cases

it was better to do nothing than to try to convict faulty nodes, due to the chance of misclas-

sification. There were a few configurations where the Convict Some strategy was better
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Figure 54. SPIDER: Improvement, Convict Some vs. Convict None

Table 33. SPIDER Membership Dominant Failure
Lists the number of configurations according to which condition of the maximum fault

assumption fails first
Conv. All Conv. None Conv. Some

Not Enough RMUs (MFA.1) All 420 (70.7%) All
Not Enough BIUs (MFA.2) 0 8 (1.3%) 0

Asymmetric RMU plus Asymmetric BIU (MFA.3) 0 166 (28.0%) 0

than the Convict None strategy. These configurations had the lowest transient fault arrival

rates tested - an SEU rate of 10−10 and a BER of 10−11. This indicates that inappropriate

convictions can make the system vulnerable as the transient fault rates increase.

4.6.6 Death State Analysis

In all configurations studied, the Convict All and Convict Some strategy failed by running

out of Redundancy Management Units (RMUs), as shown in Table 33. The Convict None

strategy failed due to running out of RMUs in most cases. In some configurations with high
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Figure 55. SPIDER Convict All: Dominant Assumption Failure Scatter
Plot

fault rates, the Convict None strategy failed due to a critical pair of asymmetric faults (an

asymmetric faulty RMU plus an asymmetric faulty Bus Interface Unit). In a handful of the

four BIU configurations, the Convict None strategy failed due to running out of BIUs.

Usually, one piece of the maximum fault assumption is the primary cause of failure.

A successful strategy will mitigate faults that violate this piece of the maximum fault as-

sumption. The SURE tools allow each piece of the maximum fault assumption to be tested

separately. Table 30 lists the conditions tested. The conditions are tested in order, so states

that fail to satisfy MFA.1 will not be checked for MFA.2 and MFA.3, for example.

Figures 55, 56, and 57 portray the assumption failure rate due to each maximum fault

assumption condition for the three strategies. The Number of Bus Interface Units is listed

along the X axis, although for SPIDER changing the number of BIUs does not affect the

assumption failure rate much. The Y axis shows the assumption failure rate in assumption

violations/hr.
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Figure 56. SPIDER Convict None: Dominant Assumption Failure Scatter
Plot

For the Convict All and Convict Some strategies, MFA.1 was by far the most likely

piece of the maximum fault assumption to fail. A violation of MFA.1 occurs when there

are not enough Redundancy Management Units. For the Convict None strategy, MFA.1

and MFA.3 are about equal causes of failure. MFA.3 is violated when there is (at least) one

asymmetric Bus Interface Unit plus (at least) one asymmetric Redundancy Management

Unit. In other words, if MFA.3 is violated, the system is compromised due to too many

active faults.

The number of Bus Interface Units looks adequate for all three strategies, since the fail-

ure rate due to MFA.2 (running out of BIUs) is lower than MFA.1 and is also lower than

MFA.3 for the Convict None and Convict Some strategies. (The four BIU configurations

are an exception, where MFA.2 has a similar failure rate in some cases). It seems that if

more RMUs are added to the system, the Convict Some strategy might improve.

Convicting nodes might have some benefit with respect to MFA.3, where there is at least
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Figure 57. SPIDER Convict Some: Dominant Assumption Failure Scatter
Plot

one asymmetric faulty BIU and at least one asymmetric faulty RMU. For the Convict All

(Figure 55) and Convict Some (Figure 57) strategies, the failure rate of MFA.3 is in the

range of about 10−8 to 10−11. In the Convict None strategy (Figure 56), the failure rate of

MFA.3 is in the range of about 10−7 to 10−10. However, since MFA.3 is checked last, this

could also be due to configurations having a failed MFA.1 first.

4.6.7 Sensitivity Analysis

For SPIDER, the assumption failure rate for the Convict Some strategy was heavily depen-

dent on the probability of convicting permanent faulty nodes. Previous work I did with an

earlier SPIDER model suggested that the Convict Some strategy performed much better if

there was perfect permanent fault conviction [67]. The sensitivity analysis investigates the

current SPIDER model, with perfect permanent fault conviction. There were 1782 configu-

rations total: (11 BIU) * (3 SEL) * (3 SEU) * (3 PermLink) * (2 BER) * (3 Probabilities of
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Figure 58. SPIDER Sensitivity Analysis - Perfect Permanent Fault Con-
viction, Box Plot

convicting a transient faulty node). The probability of convicting a permanent faulty node

was set to 1.

With perfect conviction, configurations from the SPIDER Convict Some strategy have

a much lower assumption failure rate. Figure 58 illustrates the box plots for the SPIDER

Convict Some strategy with perfect conviction. The assumption failure rate ranges from

about 10−9 to 10−7, which is much lower than the range for imperfect conviction (about

10−5 to 10−8). The new assumption failure rate range is close to the assumption failure rate

range of the Convict None strategy, in Figure 43 in the Physical Fault Sensitivity section.

This shows that the penalty for misclassification is high for SPIDER.

4.7 Protocol Comparison

While different protocols are not directly comparable, it is helpful to summarize the dis-

tinctions between them. Table 34 summarizes some notable features and design choices
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Table 34. Protocol Feature Comparison
Features FlexRay TTP/C SPIDER

Clock synchronization Yes Yes Yes
Agreement on group members No Yes Yes

Agreement on data values No No Yes
Tolerates truly Byzantine faulty star coupler N/A No Yes

Good nodes never convicted N/A No Yes
Channels 2 2 3

for each of the protocols. In this table, ‘No’ means this service is not offered at the pro-

tocol level, although optional application level services might be possible. ‘N/A’ means

that this concern is not applicable based on the guarantees the service offers (i.e. clock

synchronization or membership).

All three protocols provide distributed clock synchronization. Clock synchronization is

a form of approximate agreement. The TTP/C and SPIDER protocols use formally proven

clock synchronization algorithms. FlexRay clock synchronization is based on the formally

proven Welch and Lynch clock synchronization algorithm, although the final FlexRay algo-

rithm differs somewhat from the Welch and Lynch proof. The SPIDER clock synchroniza-

tion algorithm is described and proved by Torres-Pomales, Malekpour, and Miner [117].

The TTP/C clock synchronization algorithm is described in the specification [118] and is

formally proven by Pfeifer, Schwier and von Henke in [89]. The FlexRay clock synchro-

nization algorithm is described in the FlexRay specification [33], and the Welch and Lynch

algorithm is described in [120].

Guaranteeing agreement on the actual data values is worthwhile, since even if there is

consensus on the group members, these group members may still act on different informa-

tion. Both TTP/C and SPIDER guarantee agreement on the group members, but SPIDER

additionally guarantees agreement on the data values transmitted. For example, if a sender

sends a correctly formatted f ramea to some receivers and a correctly formatted f rameb to

other receivers, there will be consensus on the group members even though the group mem-
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bers received different data values. This scenario could occur with a single fault. In TTP/C,

for example, each node has two bus drivers (one for each channel) [118]. In TTP/C, since

any correctly formatted frame may be accepted from either channel, this scenario could

occur if the sender’s bus driver on channel A sends a different (but correctly formatted)

frame than the sender’s bus driver on channel B.

Guaranteeing agreement on data values in the presence of Byzantine faults requires three

channels, however, so that the receiver can perform a majority vote of the values received.

Therefore, guaranteeing agreement on data values comes with a cost. The SPIDER topol-

ogy elevates the star couplers to first-class status, called Redundancy Management Units

(RMUs) in this protocol. Three RMUs are needed to guarantee consensus on the received

values. (The n > 3 f + 1 restriction applies to both the Bus Interface Units and Redundancy

Management Units combined - the RMUs are the second stage in the two-round SPIDER

diagnosis protocol.)

There is a related issue regarding what type of fault behavior the star coupler can exhibit

if it is not treated as a first-class entity. It is tempting to add more complexity into the star

coupler to reduce other failure modes. For example, recent work has proposed a star coupler

that can alter the timing of frames, to reduce the probability of a slightly-off-specification

timing fault from the sender [78]. Reintegration is also easier if the star coupler has certain

abilities, such as the ability to provide the current membership vector to reintegrating nodes

[78]. However, Morris and Koopman demonstrated that some restrictions must be placed

on a star coupler’s authority. For example, a star coupler cannot be permitted to store a

complete frame, because it could then it could succumb to a store-and-forward fault [78].

This issue does not apply in the same manner to clock synchronization, since frames are

valid if they arrive within the time slot. A related issue might be slightly fast or slightly slow

clocks that eventually change to the rate so much that the physical clock cannot compute at

that rate.

Since the SPIDER star couplers (RMUs) have first-class status in the membership proofs,
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SPIDER can tolerate truly Byzantine faulty RMUs. One advantage for diagnosis is that the

SPIDER RMUs can pass on diagnostic information [117]. The RMUs are permitted to alter

the frame. The cost is that the fault rates for the RMUs must be kept low. Since there are

few RMUs and it is expensive to add RMUs due to wiring costs, high RMU fault rates may

cause the system to run out of redundancy.

For good node conviction, the majority clique in TTP/C is not necessarily fault-free. An

asymmetric faulty sender will belong the majority clique if most of the receivers obtain a

correctly formatted frame. A node with a weak bus driver or faulty clock might cause this

kind of behavior (redundant clocks and bus drivers with separate power sources can help

address this problem). A malicious faulty node might take advantage of this behavior, but

malicious faulty nodes are not considered here.

Finally, adding a channel is much more expensive than adding an individual node due

to the cost of the wiring harness. This is especially true for automotive applications. In

addition to the cost of the wiring itself, adding an extra wiring harness can affect other com-

ponents in ways that require more expensive components. Extra wiring adds weight and

can increase the electromagnetic interference (which may create a need for more shielding,

which may add more weight). Weight is an important consideration for both automotive

and aviation. In automotive systems, other parts will need to be reinforced to carry the

weight, and this may impact emissions ratings. In aircraft, extra weight represents an in-

creased fuel cost per flight, which can dramatically increase operating costs for a large

number of flights. Installing wiring harnesses is difficult, and a common cause of problems

in vehicles is incorrectly connected harnesses, especially if there are many connections in-

volved. However, good wiring harness design can reduce this risk somewhat (for example,

using different shapes for connectors so mismatch is physically impossible). Connectors

are a typical point of failure, since they may come loose or crack over time.
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4.8 Usage Guidelines and Alternative Calculations

As with any methodology, there is potential for misuse. It is helpful to summarize limi-

tations of the methodology, and ways to address those limitations. First, this section sum-

marizes some usage guidelines for the methodology.

Simpler mathematical calculations can be used as a sanity check for the more complex

Markov model mathematics. The Physical Fault Model section gives an example of this,

by calculating the assumption failure rate for SPIDER in the case where just fail-silent

permanent hardware faults are present. The assumption failure rate due to lightning strikes

for the TTP/C Convict All strategy is another example where a simpler calculation has been

used to explain the results of a more complicated model. Two more examples are given

here: calculating the probability of both channels failing, and calculating the probability of

receiving two invalid frames within two rounds.

Technique best at relative comparisons. The methodology is best for making relative

comparisons, instead of generating a single reliability number. Since there can be orders

of magnitude uncertainty in the input fault rates, the modeling tools will not be able to

generate a high-precision reliability number as output. However, the technique is very

useful for comparing two different design choices to see which one is better.

Be careful when comparing two protocols. Assumption reliability measurements

from two different protocols are not directly comparable, since the guarantees might be

different. The methodology cannot tell the designer which guarantees are important; it

can only evaluate the ability of a protocol to provide the service it claims to provide. For

example, which is better, guaranteed agreement on group members with a 10−5 probability

of failure per hour or guaranteed agreement on data values with a 10−4 probability of failure

per hour? This depends on the application.

Results depend on the fault model used. As with any methodology, the output depends

on the input. If the fault profile input is not representative of the faults encountered during

operation, then the actual assumption reliability will be different. One of the advantages
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of this methodology is that a wide range of fault rates can be tested. However, the number

of reliability models increases each time a new rate parameter is tested in a full factorial

experiment setup. A designer might need to select a subset. The amount of work can be

mitigated some by sensitivity analysis, examining selected values of fault arrival rates and

system parameters before choosing a subset to use for a full factorial experiment.

Other important considerations exist. There are other important considerations in the

development of X-by-Wire systems, such as data availability and faults outside the scope of

the protocol. A group membership service typically treats all nodes as equal members. In

an embedded system, however, the processing element associated with each network node

will have a distinct function in the system. By convicting nodes, a membership service may

compromise data availability. For example, a group membership service might convict and

remove all four braking nodes (one braking node at each wheel). The maximum fault

assumption may not have been violated, but the vehicle will not be able to brake. Also,

there will always be faults outside of the ability of the protocol to handle. If the applications

using the protocol are unreliable, then the system will be unreliable.

Methodology false positives. If the methodology incorrectly identifies an area of

concern, one possible outcome is that a lot of time will be spent on a portion of the design

that does not matter. However, if no assumption reliability estimation is done, the chance of

spending time on unimportant design features is much more likely. In fact, the comparisons

between the standard Convict All membership strategies and the Convict None membership

strategies show that investing more effort into a design does not ensure a better design. The

standard Convict All membership strategy are the result of numerous proofs and much

effort targeted at reducing the risk posed by Byzantine faulty nodes. Unfortunately, for

many configurations the Convict All strategy had a higher assumption failure rate than

doing nothing (Convict None), due to inappropriate convictions. Good process is correlated

with, but does not ensure, good product. This is where a measurement methodology can

have great benefit.
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Methodology false negatives. The methodology might also miss something that would

decrease the assumption reliability, giving an overly optimistic estimate. However, the

baseline case of no evaluation provides no guidance at all. Since this methodology is

a just a piece of the system development lifecycle, implementation testing will still be

done. The methodology could be used to focus the implementation testing. The risk is

that randomly targeted implementation testing might produce a more reliable system than

targeted implementation testing, when some of the testing is targeted at a fault that does

not matter.

4.8.1 Channel Failures

One simple bound on the assumption reliability of the service is the probability of all chan-

nels permanently failing. If all channels are permanently failed, then no frames will be

transmitted. The service will surely fail in this case, and will not be able to recover until at

least one of the channels has been repaired.

Assuming independent faults (the most optimistic model), then the service failure rate

due to channel failures is easy to calculate. The physical fault rate for a bus or star cou-

pler was cited as 10−6 faults/hr in the Methodology chapter. The clock synchronization

algorithms and the TTP/C membership algorithms both use a dual-channel design. The

service failure rate due to both channels becoming permanently faulty is 10−6/hr * 10−6/hr

= 10−12/hr. A typical SPIDER design uses three Redundancy Management Units (similar to

star couplers). The probability of all three RMUs becoming permanently faulty is 10−6/hr

* 10−6/hr * 10−6/hr = 10−18/hr. This calculation assumes that the RMUs fail in such a way

that the SPIDER service is able to diagnose at least two of them as benign faulty. In other

words, the service might fail for some combinations of just two faulty RMUs, if the RMUs

fail at about the same time.
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4.8.2 Bit Error Rate Calculations

While the example above could be extended to other types of faults that affect the nodes, the

bit error rate category is a little more difficult to compute. Here, the dual-channel TTP/C

frame correctness rules are used as an example. For a receiver to notice a faulty frame, an

invalid frame must be received on both channels. Then, to violate the TTP/C maximum

fault assumption, two invalid frames must be received within two TDMA rounds. (The

reliability models use a slightly more conservative maximum fault assumption, since the

reliability modeling tools do not explicitly include the concept of a round).

This section presents equations for computing the probability that two frames will be lost

on both channels within two rounds. The probability calculations were validated through

simulation. The probability of having two faults occur in the same message will depend

on the frame size. I assume that each node transmits one frame per round, completing

an entire round in 5 ms. The system has two channels, with an independent single bit

corruption fault model. The probability of a bit being corrupted is given as a Bit Error

Rate, defined as Errors/Bits. I assume that all frames are the same size. The calculations

use the following parameters:

N: Number of nodes

BER: Bit Error Rate in errors/bits

PERM: Permanent fault arrival rate in faults/round

Framesize: Number of bits in a frame

Roundtime: Number of seconds in a round

In order for a frame in TTP/C to be considered invalid, the same frame must be invalid

on both channels [118], pg. 59. It is possible that a single node transmits its frame at

different times on the two channels, as a form of temporal redundancy. Even if the frame is

sent at different times on each channel, the calculations apply as long as a node sends only
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one frame per channel per round, as the fault model is composed of uncorrelated single

bit errors. The calculations first compute the probability of having a pair of frames, where

each frame has one or more faulty bits.

The probability that a frame has one or more faulty bits equals 1 minus the probability

of no faulty bits. Since there are Framesize bits in a frame, and each bit has a BER chance

of being faulty, this equals:

P invalid f rame : 1 − (1 − BER)Framesize

Since the two channels are independent, the chance of an invalid frame pair on both

channels is:

P invalid f rame pair : (1 − (1 − BER)Framesize)2

Consider two consecutive rounds, Round A and Round B. There are two ways to violate

the Single Fault Hypothesis; by having two or more pairs of invalid frames in Round A

(CaseAA), or one invalid frame pair in Round A and one or more pairs of invalid frames in

Round B (CaseAB). If three (or more) consecutive rounds contain pairs of invalid frames,

this is counted as a CaseAB, so the round preceding a CaseAA must contain no invalid

frame pairs. The first step is to calculate the probability of having no invalid frame pairs in

a round and the probability of having exactly one invalid frame pair in a round. Since each

node transmits once per round, there are N independent frame pairs, so the probability of

zero invalid frame pairs in a round is:

P zero invalid f rame pairs in round : (1 − P invalid f rame pair)N

If one frame pair is invalid, and the rest are valid, there are N choose 1 places in the round

that the invalid frame may be. The probability of exactly one invalid frame in a round is:

P exactly one invalid f rame pair in round:

(N!/(1! ∗ (N − 1)!)) ∗ (P invalid f rame pair) ∗ (1 − P invalid f rame pair)(N − 1)

The probability of a CaseAA occurring equals the chance of having a round with zero

invalid frame pairs followed by a round with two or more invalid frame pairs.

P CaseAA : (P zero) ∗ (1 − (P zero + P exactly one))
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The probability of a CaseAB occurring equals the chance of two consecutive rounds with

one or more invalid frame pairs. (If the first round has two or more invalid frame pairs and

qualifies as a CaseAA, this situation is counted as two Single Fault Hypothesis violations,

since a round with two invalid frame pairs might instead be a CaseAB if the prior round

had an invalid frame pair.)

P CaseAB : (1 − P zero) ∗ (1 − P zero)

To get the number of Single Fault Hypothesis violations expected per hour, we multiply

by the number of rounds in an hour:

Expected Violations : (P CaseAA + P CaseAB) ∗ (3600seconds/Roundtime)

Table 35 lists the expected number of Single Fault Hypothesis violations per hour for

some of the combinations of number of nodes, frame sizes, and BERs studied. Since the

bandwidth was kept at a constant 1 MBit/second and divided equally among all nodes,

the frame size is shorter for configurations with more nodes. These calculations are for

transient faults with a single bit duration; longer faults could possibly corrupt multiple

frames. These transient fault calculations were validated using a fault injection simulation.

Compared to the number of assumption violations expected for permanent faults, the

impact of transient faults can be significant. Two (or more) permanent faults must occur

within two rounds to violate the Single Fault Hypothesis. Nodes that have already failed

will have been removed from the group, and are no longer a detriment to reliability after

consensus on the group has been reached. The expected number of Single Fault Hypothesis

violations due to permanent faults can be computed in a similar manner. The probability of

a node failing per round is PERM. The probability of no permanent faults in a round is:

P zero perm : (1 − PERM)N

For exactly one permanent fault, there are N choose 1 nodes that may be faulty:

P exactly one perm : (N!/(1! ∗ (N − 1)!)) ∗ (1 − PERM)(N − 1) ∗ (PERM)

The calculations only include permanent node faults, and do not include permanent chan-

nel faults. CaseAA Perm, where there are two permanent faults in one round and zero in
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Table 35. Probability of Two Invalid Frames Within Two Rounds, by BER
4 Nodes 10 Nodes 20 Nodes

BER 1250 Bit Frame 500 Bit Frame 250 Bit Frame
10−10 3.9*10−21 6.6*10−22 1.8*10−22

10−9 3.9*10−17 6.5*10−18 1.7*10−18

10−8 3.9*10−13 6.5*10−14 1.7*10−14

10−7 3.9*10−9 6.5*10−10 1.7*10−10

10−6 3.9*10−5 6.5*10−6 1.7*10−6

10−5 3.8*10−1 6.5*10−2 1.7*10−2

the prior round, is:

P CaseAA Perm : (P zero perm) ∗ (1 − (P zero perm + P exactly one perm))

CaseAB Perm, where there is at least one permanent fault in Round A and in Round B,

is:

P CaseAB Perm : (1 − P zero) ∗ (1 − P zero)

The expected number of Single Fault Hypothesis Violations per hour due to permanent

faults is:

Expected Violations Perm:

(P CaseAA Perm + PCaseAB Perm) ∗ (3600seconds/Roundtime)

For a permanent fault arrival rate of 10−5 faults/hour, we would expect the number of

Single Fault Hypothesis assumption violations per hour to be approximately 3.1 * 10−15 for

4 nodes, 2.0 * 10−14 for 10 nodes, and 8.2 * 10−14 for 20 nodes. From Table 35, this number

of assumption violations per hour corresponds to a bit error rate of between 10−9 and 10−8

errors/bits. Transient faults are worthy of study, especially for domains with higher bit error

rates such as the automotive domain.

4.9 Future Work

Future work could use the information and methodology presented to test new kinds of

fault tolerance strategies and other types of faults. First, this dissertation paves the way
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for adaptive fault tolerance strategies. Now that designers can identify trade-off points, the

fault tolerance strategies can be customized to these trade-off points. Second, while one

category of burst faults is covered in the dissertation (lightning), there are other burst fault

sources that could be investigated. Finally, there are a few additional experiments that this

methodology could be used to execute.

4.9.1 Adaptive Group Membership

One exciting category of future research is the development of adaptive fault tolerance al-

gorithms. This dissertation demonstrated how to find trade-off points in the design space,

and demonstrated that trade-off points do exist for most of the protocols studied. For exam-

ple, in TTP/C, sometimes adding nodes improved the assumption reliability and sometimes

it did not, depending on what the dominant cause of assumption failure was. The same was

true with respect to different fault types. An adaptive fault tolerance algorithm could be

customized to these trade-off points, providing superior service when compared to a static

fault tolerance algorithm.

Group membership services provide a great platform for building dynamically adaptive

fault tolerance strategies (assuming the proofs are constructed to allow adaptive strategies,

such as in SPIDER). Since TTP/C and SPIDER guarantee agreement on which nodes be-

long to the active group, one could tailor the fault tolerance strategy to the current number

of group members (all good nodes in the group are guaranteed to agree on this number).

If agreement is guaranteed on the data values as well, the fault tolerance strategy could

adapt to other parameters, such as the measured fault rate for a certain fault type instead

of the average fault rate. Proactive strategies could even be implemented. For example,

if an airplane is flying into a storm and navigation data is broadcast on the network, the

fault tolerance strategy could be changed ahead of time to better tolerate lightning strikes.

The set of possible fault tolerance strategies would still to be programmed into the nodes

at design time.
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4.9.2 Burst Faults and Modeling

Electromagnetic interference includes a wide range of possible burst faults. Also, X-by-

Wire systems will involve the development of new electromechanical actuators (such as

local braking actuators at each wheel). These new components could be new sources of

electromagnetic interference. Thus, it is important for a service to be able to handle these

burst faults.

The relationship between the burst fault duration and round duration could be interesting

to investigate. The designer has some control over what the round duration should be.

Some of my early preliminary work with the TTP/C protocol suggests that there is a sharp

decrease in assumption reliability soon after burst faults exceed the round duration. The

decrease is less steep for single round duration burst faults compared to multiple round

duration burst faults. However, these observations were from very early TTP/C models,

which did not include all the features of the protocol and did not include a comprehensive

fault model test. The electromagnetic compatibility standards cited in the Related Work

chapter would provide a good source of data for a researcher interested in this topic.

Another research area could be to determine an appropriate metric for measuring system

response to burst faults. The assumption reliability metric is limited, since if a burst fault

immediately violates the maximum fault assumption, the assumption reliability will be

bound by that fault rate. A better measure might reflect the ability of the service to recover

quickly after a fault. Theoretically, as long as the clocks stay synchronized, the clock

synchronization or membership service might be able to resume operation immediately

after the burst fault is over. This would require the service to correctly identify and ignore

a burst fault. Temporal redundancy techniques that have been proposed might also help

with respect to burst faults. For example, a node in TTP/C is permitted to send its frame

in different time slots on different channels. A burst fault might only affect one of the

replicated frames.

Finally, a system designer might want to know what burst fault rate is acceptable. It
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is difficult to find data on actual burst fault rates, since the electromagnetic compatibility

standards are optimized for minimum testing time. So, the burst fault rate will be the fastest

rate that the hardware component can handle, in order to complete the testing as quickly as

possible. Modeling these rates will not accurately reflect real-world fault rates. Therefore

a designer might take the reverse approach, and try to determine the highest burst fault rate

that the service can handle.

4.9.3 Future Experiments

Any set of results always brings out new questions. There are a few direct extensions of

this methodology that seem to be good avenues for research.

It would be interesting to investigate the effects of adding more Redundancy Manage-

ment Units to SPIDER. While the cost would probably be too high for automotive, a four

RMU SPIDER might be feasible for aviation. Preliminary investigations done with earlier

SPIDER models suggest that adding more RMUs does increase assumption reliability quite

a bit. However, these investigations used a simpler form of the physical fault model and

did not model misclassified faults.

Also, it would be an interesting follow-on study to run a complete set of models for

automotive fault arrival rates. This research has identified a set of fault arrival rates for

aviation as well as automotive. There is some difficulty creating and solving models for

automotive systems, since the transient fault arrival rates are so high. However, the models

can be made smaller if some of the physical fault types are omitted (this leads to fewer

transitions and possibly a smaller state space). The aviation results can guide the choice

of which faults to omit from the analysis, since the sensitivity to each of the fault types

is known for algorithms tested with the aviation data. Fault types that the models were

insensitive to could be omitted from the automotive studies. For example, almost every

protocol/diagnosis strategy was insensitive to the Single Event Latchup rate. Since the

Single Event Latchup rate is even lower for automotive systems, it is unlikely that SEL
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faults would have any effect on the assumption reliability for automotive systems. This

fault type could be removed from the analysis.
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5 Conclusions

Ultra-reliable systems are difficult to design and even more difficult to test. New X-

by-Wire network protocols are being developed for ultra-reliable aviation and automotive

applications. The goal of an X-by-Wire protocol is to electronically provide safety-critical

functionality (such as steering or braking) with no mechanical backup. The acceptable fail-

ure rate of these functions is on the order of 10−9 failures per hour, according to guidelines

from the Federal Aviation Administration and the Motor Industry Software Reliability As-

sociation. Since exhaustive testing is infeasible at this level of reliability, designers rely on

carefully constructed specifications, where some portion of the specification often involves

a formal proof of correctness. The specifications for these protocols guarantee that certain

properties hold as long as a given maximum number of faults is not exceeded (the maxi-

mum fault assumption). If the maximum fault assumption is violated, the guarantees might

not be provided, and the system may fail.

I introduce a methodology to estimate the reliability of a service, at design time, by mea-

suring the probability that the service’s maximum fault assumption will be violated for a

realistic physical fault model. The key idea is that the probability of violating the maximum

fault assumption can be used as a (conservative) estimate of the service’s failure rate. I pro-

vide a realistic reusable physical fault model, reliability modeling templates for the three

protocols, and describe the measurement process. My methodology can accommodate un-

certainty in fault arrival rates, since order of magnitude approximations are common at the

design stage. This methodology is built around Markov modeling tools from NASA Lang-

ley Research Center, although the concepts are not limited to this particular tool suite. My

research focuses on the distributed clock synchronization and distributed group member-

ship services for three next-generation X-by-Wire protocols: FlexRay, the Time Triggered

Protocol Class C (TTP/C), and the NASA Langley Scalable Processor Independent De-

sign for Electromagnetic Resilience (SPIDER). Two of these protocols are slated for use in

production aviation and automotive systems.
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Next, I apply my methodology to these three safety-critical X-by-Wire protocols, pro-

ducing a number of interesting conclusions. First, I show that it is important to test sys-

tems with a realistic fault model that includes transient faults. In a study of the SPIDER

protocol, a simple fail-silent fault model overestimated assumption reliability by over ten

orders of magnitude. Next, I show that measurement is crucial to creating a more reliable

service. Investing more effort into a design does not ensure a more reliable service. To

emphasize this point, I show that the standard fault removal strategy for both TTP/C and

SPIDER is, overall, worse than no fault removal strategy. With assumption reliability test-

ing, the fault tolerance strategy can be improved. Finally, since improvement is possible,

the next question is which enhancement is expected to provide the most benefit. My re-

search demonstrates how to identify trade-off points in the design space. Two common

enhancements are adding more redundant components or installing higher quality compo-

nents. Will either action help? I show that the estimated reliability depends on the dominant

cause of assumption violation, which may change throughout the design space. Successful

enhancements address this dominant cause.

5.1 Methodology Contributions

• Reliability modeling process

The reliability modeling process starts with the key idea that the reliability of a ser-

vice can be estimated by testing the probability that the service’s maximum fault

assumption holds for the duration of the mission. Steps in the process include iden-

tifying design choices, defining a physical fault model, creating a Markov model

template from the protocol specification and its maximum fault assumption, then

testing and comparing the design choices with the physical fault model. This pro-

cess uses Markov modeling tools from NASA Langley Research Center, although

the methodology is not limited to this tool suite.

• Realistic, reusable physical fault model
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I define a realistic, reusable physical fault model for both the aviation and automotive

domains. I then test a wide variety of configurations using the aviation fault profile.

The physical fault model is reusable for testing other services in the same domain. By

testing a large number of combinations of fault rates, the methodology can produce

meaningful results despite uncertainty in the input parameters.

• Reliability modeling templates for the three protocols

A reliability modeling template describes the states, transitions, and death conditions

for each study. To create the template, a designer must map the physical faults onto

the fault terms used in the service’s maximum fault assumption. I give full mappings

and transition tables for each of the three protocols. A template can serve as a base-

line for others, and new types of faults (and the corresponding transitions) could be

added to these templates.

5.2 Observations

• Transient faults are important

The Physical Fault Model section illustrates how a simple permanent physical fault

model can underestimate the assumption failure rate compared to a more extensive

physical fault model that included transient faults. The permanent fault model with

fail-silent only faults underestimated the assumption failure rate by over ten orders

of magnitude compared to the extensive physical fault model, in tests of the SPIDER

membership service. The permanent fault model with two additional types of per-

manent faults still underestimated the assumption failure rate by about five orders of

magnitude compared to the extensive physical fault model.

The Physical Fault Sensitivity section, for each of the three protocols, shows that

the transient faults studied had a larger effect on the assumption failure rate estimate

than the permanent faults studied. The sensitivity to a particular fault is depicted
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using a set of box plots, with one box plot for a set of data with a given fault rate

and type. If the box plot changes as the fault rate changes, then the assumption

failure rate estimates are sensitive to this fault. The Clock Synchronization services

were both most sensitive to the (transient) Bit Error Rate. The TTP/C and SPIDER

membership services were both most sensitive to the (transient) Single Event Upset

rate. In contrast, the models were less sensitive to the Permanent Link fault rate,

and only the SPIDER Convict None strategy showed sensitivity to the (permanent)

Single Event Latchup rate.

• Unmeasured designs can lead to a less reliable service

In my dissertation, I investigate two types of design decisions. For the FlexRay pro-

tocol, I examine the clock synchronization service, based on the Welch and Lynch

clock synchronization algorithm. A new algorithm, the Strictly Omissive Asymmet-

ric algorithm, proposes a new maximum fault assumption in terms of a revised hy-

brid fault model. I compare the Welch and Lynch maximum fault assumption against

the Strictly Omissive maximum fault assumption. For the TTP/C and SPIDER, I

examine the fault removal strategies for the membership algorithms. The standard

fault removal strategy, Convict All, removes nodes after a single fault. I compare

this strategy to never removing any nodes (Convict None) and removing permanent

faulty nodes while letting transient faults expire (Convict Some).

For all three protocols, I discuss both overall and per-configuration comparisons. To

get a view of the overall assumption failure rate of a design decision, I construct a

histogram for each of the three protocols. Here, ’better’ means that the strategy had

more configurations with lower assumption failure rates. For clock synchronization,

overall, the Strictly Omissive Asymmetric algorithm was better than the Welch and

Lynch algorithm. For membership, the conclusions were surprising. Overall, for

both TTP/C and SPIDER the do-nothing Convict None strategy was better than the
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standard Convict All strategy. For TTP/C, the Convict Some strategy was better

overall than both the standard and do-nothing strategy. For SPIDER, however, the

do-nothing strategy was better overall than the Convict Some strategy. I show that

for SPIDER, this is due to misclassifications by the Convict Some strategy.

In addition to overall comparisons, I investigate the ramifications of changing the

maximum fault assumption or fault tolerance strategy for each individual configu-

ration. This is important, since a given strategy X might look better overall than

strategy Y, but strategy X might have a higher assumption failure rate than strategy

Y for certain configurations. I define an improvement metric for a pair of configura-

tions. Each pair of configurations compared has the same set of fault arrival rates; the

configurations only differ in their maximum fault assumption (for clock synchroniza-

tion) or fault tolerance strategy (for membership). For clock synchronization, all of

the Strictly Omissive Asymmetric configurations had a lower assumption failure rate

than their Welch and Lynch algorithm counterparts. For TTP/C, the amount of im-

provement depends on the number of nodes in the system. For example, the Convict

Some strategy did not show any improvement over the Convict None strategy until

about ten nodes and up. For SPIDER, the amount of improvement was independent

of the number of nodes, depending instead on the combination of fault rates and fault

diagnosis accuracy for a particular configuration.

• Trade-off points can be identified and used to choose enhancements

There are two types of common component enhancements: more redundant compo-

nents can be added, or higher quality components can be used. The Death State Anal-

ysis sections, for each of the protocols, address the question of whether or not adding

redundant nodes will help. Each protocol has a maximum fault assumption split into

three pieces, which are translated into death conditions (sink states) in the reliabil-

ity models. Typically, one piece of the maximum fault assumption is violated more
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often than the others. If the dominant assumption violation is too many asymmetric

faults, adding nodes is not expected to improve reliability. This is especially true for

the TTP/C and SPIDER membership services, since the maximum fault assumption

allows only a fixed number of asymmetric faults at a time. Adding redundant nodes

will only increase the chance of a fixed number of nodes being asymmetric faulty.

If the dominant assumption violation is not having enough good nodes (for exam-

ple, TTP/C assumes that there are at least three good nodes), then adding redundant

nodes should improve the reliability. The TTP/C Convict Some strategy is a good

example of trade-off analysis. Before about nine nodes, the assumption failure rate

due to not enough nodes is high. This assumption failure rate decreases as nodes are

added, until it drops below the assumption failure rate due to too many active faults

(which stays relatively constant for TTP/C).

If higher quality components are added, the key choice is which fault type to miti-

gate. For each protocol, the assumption failure rates of configurations are graphed

according to the two dominant types of faults. In most cases, there is a good fit.

Higher quality components that lessen the arrival rates of the dominant faults should

improve service reliability. In some cases (for example, the SPIDER Convict None

strategy), the top two faults do not describe the variability in the data well. If this is

so, higher quality components might or might not help, since it might be necessary

to reduce the rates of all fault types to improve service reliability.

• Foundation for adaptive group membership strategies

Because trade-off points can be identified, this dissertation paves the way for adap-

tive group membership strategies. A group membership strategy could adapt, at run

time, using any information that all members agree upon. For example, in TTP/C, I

identified a trade-off point at around nine nodes for the Convict Some strategy. Be-

low about nine nodes, the consequences of incorrectly convicting a node are greater

197



than the consequences of leaving in a faulty node (for the physical fault profile stud-

ied). Above about nine nodes, the situation is reversed. Since all good nodes in

TTP/C agree on the size of the group, the group members could tailor their local

fault removal scheme to the current group size.

5.3 Publications

Publications related to this dissertation:

• E. Latronico and P. Koopman. Design Time Reliability Analysis of Distributed Fault

Tolerance Algorithms. 2005 International Conference on Dependable Systems and

Networks (DSN ’05), June 2005.

• E. Latronico, P. Miner, and P. Koopman. Quantifying the Reliability of Proven SPI-

DER Group Membership Service Guarantees. 2004 International Conference on

Dependable Systems and Networks (DSN ’04), June 2004.

• E. Latronico and P. Koopman. A Period-Based Group Membership Strategy for

Nodes of TDMA Networks. Fifth IFAC International Conference on Fieldbus Sys-

tems and Their Applications (FeT ’03), July 2003.

• E. Latronico. Problems Facing Group Membership Specifications for X-by-Wire

Protocols. 2003 International Conference on Dependable Systems and Networks

(DSN ’03), Student Paper, June 2003.

Additional publications:

• E. Latronico and P. Koopman. Representing Embedded System Sequence Diagrams

As A Formal Language. Fourth International Conference on the Unified Modeling

Language (UML ’01), October 2001.

• B. Latronico, C. Martin, and P. Koopman. Analyzing Dependability of Embedded

Systems from the User Perspective. Workshop on Reliability in Embedded Systems
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(in conjunction with Symposium on Reliable Distributed Systems/SRDS-2001), Octo-

ber 2001.

• M. Paulitsch, J. Morris, B. Hall, K. Driscoll, E. Latronico, and P. Koopman. Cover-

age and the Use of Cyclic Redundancy Codes in Ultra-Dependable Systems. 2005

International Conference on Dependable Systems and Networks (DSN ’05), June

2005.
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