
M.S. Project Report

Jini on the Control Area Network (CAN): A Case Study in Portability Failure

Meredith Beveridge

Department of Electrical and Computer Engineering

Carnegie Mellon University

Phil Koopman, advisor

March 2001

Jini on the Control Area Network (CAN): A Case Study in Portability Failure

Meredith Beveridge

Carnegie Mellon University

Electrical and Computer Engineering Department

mb5@ece.cmu.edu

Abstract

The Robust Self-Configuring Embedded Systems (RoSES) project seeks to achieve graceful

degradation through field reconfiguration. To accomplish this goal, systems must automatically

reconfigure in the face of nodes failing, being replaced by inexact spares, or being upgraded. Thus, a

“plug-and-play” run-time infrastructure is needed to allow nodes to come and go. We investigated

middleware options and determined that Jini most closely matches our needs for spontaneous networking,

but upon further examination we discovered that Jini makes deep assumptions about using TCP and UDP.

This is appropriate for the Internet-enabled devices that the Jini designers envisioned, but distributed

embedded systems such as automobiles employ the real-time, reliable data transmission supplied by the

Control Area Network (CAN), rather than TCP. Jini strives for platform-independence, but it required

extensive re-engineering to use Jini on CAN. Modifying Jini to use CAN provided these insights into

designing truly platform-independent products: consider every piece of the system as changeable;

maintain appropriate abstraction; be creative imagining application domains; and work through the details

of an example for compatibility on other current platforms.

1

1. Introduction

This paper discusses how we chose Jini as a middleware for the RoSES project, the struggles

encountered in porting Jini to the Control Area Network (CAN), the message-passing strategy to

successfully get Jini functioning on CAN, and resulting heuristics for designers seeking to develop a

platform-independent product.

1.1 Description of RoSES

The goal of the Robust Self-Configuring Embedded Systems (RoSES) project is to create inherently

robust, flexible, maintainable, distributed embedded systems that allow for graceful degradation through

field reconfiguration [6]. Rather than using a static configuration designed in the factory, such a system

would automatically reconfigure to adjust for failed, upgraded, or inexact spare components (both

software and hardware). We envision a system of “smart” sensors and actuators connected to an

embedded real-time network, where every sensor acts as a “server” to any node desiring its functionality,

as shown in Figure 1.

Figure 1: RoSES Architecture

2

State Variables on Real-Time Embedded Network

SMART SENSORS

Adapter Repository Co-Scheduling & Assigment Tool

SMART ACTUATORS

CUSTOMIZATION MANAGER

Baseline
Sensor SW

Functionality

Dynamic Interface
to Object Bus

Basic S/A
Device

Local
CPU &

Memory

SW
Adapter for
High Level

Logical
Interface

SW
Compute/

Control
Functions

Baseline
Sensor SW
Functionality

Dynamic Interface
to Object Bus

Basic S/A
Device

Local
CPU &

Memory

SW
Adapter for
High Level

Logical
Interface

SW
Compute/
Control

Functions

1.2 The need for a RoSES infrastructure

RoSES requires some sort of “plug-and-play” infrastructure to facilitate the dynamically changing

configuration caused by nodes appearing and disappearing. It is undesirable to dispatch a human

administrator every time a change occurs in a system such as an automobile, so the infrastructure must

allow nodes to discover the presence or absence of other nodes at run-time.

1.3 Structure of the paper

Section 2 describes the selection of Jini as the preliminary RoSES infrastructure. Section 3 discusses

the special needs of distributed embedded systems that conflict with the current Jini implementation.

Section 4 details the problems and solutions in applying Jini to the Control Area Network. Section 5

provides the heuristics gleaned from this portability failure. Section 6 examines related work, and Section

7 concludes the work.

2. Exploring infrastructure options: how we chose Jini

Eventually, RoSES needs middleware that meets all the needs of an embedded system, such as

real-time guarantees, minimal resource usage, and no single point of failure. To determine the problems

that RoSES must address, we sought an existing off-the-shelf solution with open source and proven

experience in industry.

The two most popular, widely-accepted, and well-supported middleware technologies currently

available are the Common Object Request Broker Architecture (CORBA) developed by the Object

Management Group (OMG), and Sun Microsystems’ Jini.

2.1 CORBA

The Object Management Group (OMG) developed the Common Object Request Broker Architecture

(CORBA), a middleware of well-defined, platform-independent interfaces for connecting heterogeneous

3

systems [8]. For large, client/server systems with large amounts of memory, CORBA is an excellent

candidate. This resource-intensive paradigm does not work well with an architecture such as RoSES

where every node is a “server,” however. The nodes of an embedded system must be as small and cheap

as possible, so resources are scarce. While OMG has developed real-time, fault-tolerant, and “minimal”

(embedded) specifications for CORBA, embedded systems are not their primary target, so these efforts

are slow-moving and have low levels of support. Currently, CORBA’s real-time capabilities are

immature at best: real-time capability is currently limited to scheduling operations on the server and

adding priorities to interfaces, with no notion of system determinacy [2]. Thus, CORBA will not be

well-suited for distributed, sensor-intensive embedded systems such as automobiles for quite some time.

2.2 Jini

Sun Microsystems developed Jini to provide platform-independent, spontaneous federated networking

built on Java and Remote Method Invocation (RMI) [20]. The developers of both Jini and Java itself had

distributed, embedded systems in mind [17], which seemed promising. In a Jini community, services

autonomously discover other services as they become available or unavailable. Code can be downloaded

dynamically to allow “clients” to use the service, eliminating the need for configuration. A centralized

controlling authority is unnecessary for clients to exchange messages, eliminating a single point of

failure.

The dynamically downloadable code, or service proxies, are stored in a lookup service. Nodes must

first find the lookup service via the discovery protocol, then register their proxies with the lookup service.

To find other nodes, they perform a lookup by sending a template to the lookup service. If the lookup

service contains a proxy that matches the template, the proxy is returned to the requestor. The requestor

can then communicate directly with the matching node via the downloaded proxy. Two additional

features enhance automatic configuration: the lookup service sends out periodic announcements to

4

advertise its presence on the network, and nodes can sign up with the lookup service to be notified when

other nodes appear or disappear.

The promises of spontaneous networking, platform-independence, and design for embedded systems

suggested Jini would be a good fit for a RoSES infrastructure. Thus, we decided to see how much it

could really provide.

3. Using Jini for distributed, embedded systems

At first glance, the limitations of Jini involved only its implementation: it was written in Java and

supported only Ethernet communication.

3.1 Java on an 8-bit microprocessor??

A notable barrier for embedded systems is the size of the Java Virtual Machine (JVM). Sun’s

“embedded” virtual machine, KVM, has a footprint of only a few hundred kilobytes, but KVM does not

currently support all of the Java capabilities required by Jini [9, 14]. Progress is also being made by

groups outside of Sun, including the Jbed project [16]. We hope that the footprint of the JVM will not get

any larger while chip resources continue to improve, so in the future a full JVM may fit on an embedded

system.

Doubts about real-time capabilities still hinder Java’s use on embedded systems, however. How can

real-time scheduling be accomplished with Java’s garbage collection mechanism? Can end-to-end timing

be determined? What about efficiency and fairness? These issues are important, but at this point in the

project we were primarily concerned with achieving a working middleware, so these issues were left for

future work.

5

3.2 Original Jini implemented for Ethernet

Besides being written in Java, the original Jini implementation was written for devices communicating

over the Internet with Ethernet, using TCP and UDP. This meant we would have to modify the Jini

implementation, because real-time, safety-critical, distributed embedded systems do not use Internet

protocols, primarily because Internet protocols do not provide deterministic message delivery times to

satisfy real-time guarantees. The protocol of choice for embedded systems like automobiles is the

Control Area Network (CAN), developed by Robert Bosch GmbH [11].

3.2.1 Description of the Control Area Network

CAN is a reliable, real-time protocol that implements a multicast, data-push, publisher/subscriber

model [13]. CAN’s messages are short (data payloads are a maximum of 8 bytes; headers are 11 or 29

bits); it is distributed, so there is no centralized master or hub to be a single point of failure; and it is

flexible in size. Its real-time features include deterministic message delivery time and global priority

through the use of prioritized message IDs.

Bus arbitration is accomplished in CAN using bit dominance, a process where nodes begin to transmit

their message headers on the bus, then drop out of the “competition” when a dominant bit is detected on

the bus, indicating a message ID of higher priority being transmitted elsewhere. This means bus

arbitration does not add overhead because once the bus is “won,” the node simply continues sending its

message. Because there is no time lost to collisions on a heavily loaded network, CAN is ideal for

periodic traffic. Lastly, CAN’s reliability features are suited for typically harsh embedded environments.

3.2.2 CAN vs. Internet protocols

CAN was designed for a typical embedded system with periodic, bursty traffic, where every node

transmits at regular intervals. Ethernet, on the other hand, was designed for aperiodic, light traffic and a

low number of active transmitters. More significantly, CAN was designed to achieve tight, real-time

6

schedules, unlike Ethernet. Ethernet’s Carrier Sense Multiple Access/Collision Detection (CSMA/CD)

protocol, the “back off and retry later” approach to collision avoidance, produces an unpredictable

message delivery time undesirable for tightly-scheduled real-time systems. In fact, individual message

latency is completely unbounded; the minimum guaranteed latency is infinite. The usual solution for a

heavily loaded Ethernet network is a switched hub, but an embedded system such as an automobile

cannot afford that added weight, size, cost, cabling, and single point of failure.

TCP, the Transport Control Protocol usually employed by Ethernet and other common Internet

protocols, is also a poor fit for embedded systems. TCP uses a 20-byte header, posing a strain on

resource-constrained systems that send frequent, short messages. Its fragmentation and packet routing

schemes produce variability that conflicts with necessary real-time message delivery guarantees, and the

only notion of priority is a one-bit “Urgent” flag.

4. Porting Jini to the Control Area Network

We were not overly concerned that Jini’s original implementation was intended for Internet-enabled

devices, because the Jini inventors were striving for platform-independence. Jini inventor Bill Joy

stressed the portability of Jini when asked, “What is the problem that Jini is trying to solve?” His answer

was, “If you have two programs talking to each other, even the simplest incompatibility is really

inconvenient” [4]. Likewise, Jini’s lead architect Jim Waldo wrote that the problem with previous

middleware attempts is that they were protocol-centric, making them inflexible to protocol changes [19].

The major goal of Jini was to “raise the level of abstraction of distributed programming from the network

protocol level to the object interface level” [18]. With this encouragement from the inventors themselves,

we thought it would be simple to implement Jini on top of CAN.

7

4.1 Portability failure

When I attempted to implement Jini atop CAN, it became painfully obvious that the Jini designers did

not maintain their intended abstraction level: an examination of the Jini specification reveals features

specific to TCP and UDP have crept into the “object interface level” where they do not belong, even

according to Jini’s inventors. While the design does not prevent the use of other protocols, it does impose

unnecessary struggles in porting Jini to another network protocol. The four most glaring examples of this

design error are the TCP-only identification scheme, the message size definition, the reliance upon RMI,

and the unicast/multicast distinction.

4.1.1 TCP-specific identification

When Jini’s protocols were defined, four distinct types of messages were created for discovering and

announcing a lookup service, as shown in Figure 2.

Figure 2 - Jini’s four message definitions

As can be seen, two of the messages include fields for hostnames and port numbers. The designers

were envisioning that these messages would be packed into datagram packets and sent over UDP, and

thus would need the hostnames and port numbers for further TCP communication. The other two

8

Protocol
Version

Host
Name

TCP
Port

Service
ID

Group
Length

Group
Names...Multicast Announce

Protocol
Version

Heard
Length

TCP
Port

Heard
Names...

Group
Length

Group
Names...Multicast Request

Protocol
VersionUnicast Request

Proxy
Object

Group
Length

Group
Names...Unicast Response

messages would be sent via streams over TCP sockets, and thus no hostnames or port numbers needed to

be included within the messages.

Not every wire protocol uses alphanumeric hostnames, integer port numbers, and socket-based

communication. At the very least, this is inefficient use of message space, requiring that unused large

message fields consume precious bandwidth. Worse, wire protocols that differ significantly in their

identification schemes must devise an additional mechanism for indicating appropriate receiver and

transmitter information.

A truly platform-independent design would not include this type of network protocol detail in the

“object interface level.” The Jini designers instead could have defined some type of standard header on

every message that allowed maximum flexibility for providing whatever types of information might be

desired by the specific wire protocol on which the messages are implemented. In Java, the most generic

way of designing this would be to include an identification object with each message. Each

implementation could then design a specific subclass of this object to include the relevant fields for that

protocol, as shown in Figure 3.

Figure 3 - Generic identification objects added to Jini message design

9

Protocol
Version

Proxy
Object

Group
Length

Group
Names...Unicast Response ID

Object

Protocol
Version

Heard
Length

Heard
Names...

Group
Length

Group
Names...Multicast Request ID

Object

Protocol
Version

Service
ID

Group
Length

Group
Names...Multicast Announce ID

Object

Protocol
VersionUnicast Request ID

Object

(To maintain a uniform design, I added the “Protocol Version” field to the Unicast Response message.

This field is not included in the ID object because it is a Jini attribute; it does not influence the protocol

used to send the messages). In this way, the ID object could contain the data needed by the specific

protocol, such as priorities and sender/receiver information, and not pay the overhead of sending useless

fields only needed by TCP-like protocols.

4.1.2 Message size definition

Including generic ID objects as headers would mean that the Jini designers would have no control over

the lengths of the messages. (Jini implementors could achieve a guaranteed length by designing their ID

objects appropriately, however). This should not be a concern for the Jini designers, since their goal is

simply to define a platform-independent discovery protocol. However, the Jini designers made another

design choice based solely on their assumption of TCP: they decreed that all messages shall fit within one

UDP packet of 512 bytes. If data exceeds this size, it is fragmented and sent in multiple Jini messages.

Other protocols, with different message sizes and therefore different fragmentation needs, are forced to

send additional Jini messages unnecessarily. This is a great optimization for efficiently sending Jini

messages via UDP, but this decision should have been made by those implementing Jini on top of UDP,

not by the Jini designers themselves. This particular shortcoming is not catastrophic, but it does cause

unnecessary inefficiency and software complexity for implementations on other wire protocols.

4.1.3 RMI

Once discovery has been accomplished between Jini services and the lookup services, communication

transfers entirely to RMI. RMI is a powerful tool for distributed applications accessing methods on other

machines, but it is also implemented solely using TCP sockets. While Jini services may choose their

preferred method of communication after discovering each other, they must use RMI for all Jini

communication after discovering the lookup service: registering their proxies, discovering other services,

signing up for event notifications, receiving event notifications, and managing service and event leases.

10

Thus, some sort of platform-independent method of performing this significant portion of Jini is also

necessary. Since the initial lookup service discovery was accomplished successfully with

message-passing, including downloading the lookup service’s proxy (a serialized Java object), it seems

reasonable to continue executing Jini features with message-passing instead of switching to RMI. If

services wish to continue communication with each other using RMI, they are still free to do so; this is

outside of Jini’s scope. Perhaps additional standard, platform-independent messages should be defined to

complete the protocol, as shown in Figure 4:

Figure 4 - Additional Jini messages

11

Service Registration

Lookup Request

Lookup Match

Service Lease Renew

Service Lease Cancel

Event Lease Renew

Event Lease Cancel

Notification

Notification Ack

Notify Sign-up

Notify Sign-up Ack

ID
Object

Protocol
Version

Service
Item

Lease
Duration

Service
Template

Service
Matches

Service
ID

Service
ID

Event
ID

Event
ID

Max
Matches

Registrar
Event

Ack/Nack

Service
Template

Ack/
Nack

Lease
ID Duration

Lease
ID

Lease
ID Duration

Lease
ID

Transition Listener Handback Lease
Duration

Exception

Exception

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

In this way, all of the Jini-provided services could be accomplished independent of the wire protocol

beneath. Further communication could be continued in any manner desired by the implementors, as in

the original Jini design.

4.1.4 Unicast/Multicast distinction

The last deficiency encountered in Jini's claim of platform-independence is the definition of unicast

and multicast messages. In optimizing for TCP, Jini's current design sends a few multicast messages and

then proceeds with unicast communication. But other wire protocols might be unicast only, multicast

only, broadcast only, or any combination. For instance, CAN is a broadcast bus. Unicast can be

emulated on CAN and may still be useful in some cases, but it is wasteful. In implementing Jini on CAN,

it became apparent that unicast communication was not needed at all, since the same functionality could

be accomplished with the equivalent multicast request and response.

This overlap of “unicast request” and “multicast request” demonstrates the lack of an abstraction level

distinction in the Jini design. An “announcement,” “request,” and “response” do not change when

implemented on unicast, multicast, or broadcast networks; their function is the same regardless of the

underlying protocol. The lookup service is looking for discovery requests and does not care if they are

sent via unicast or multicast request; similarly, the discoverer does not care if the lookup service’s

response is sent via unicast or multicast, but only that it receives the response. At the “object interface

level,” a unicast/multicast distinction is irrelevant and therefore should not be specified in the Jini

message protocols. This information could be included in the above-proposed ID object if the

implementor so desired, or the implementor could simply define it to be one way or another, but the

messages themselves should only specify details pertinent to their functionality, and not the specifics of

layers underneath. This would further change the Jini message definition as shown in Figure 5.

12

Figure 5 - Generic Jini messages without unicast/multicast specified

4.1.5 Possible platform-independent design

The combination of the above changes would result in a platform-independent Jini message-passing

scheme similar to Figure 6:

Figure 6: Resulting platform-independent Jini messages

13

Protocol
Version

Proxy
Object

Group
Length

Group
Names...Response ID

Object

Protocol
Version

Heard
Length

Heard
Names...

Group
Length

Group
Names...Request ID

Object

Protocol
Version

Service
ID

Group
Length

Group
Names...Announce ID

Object

Response

Request

Announce

Service Registration

Lookup Request

Lookup Match

Service Lease Renew

Service Lease Cancel

Event Lease Renew

Event Lease Cancel

Notification

Notification Ack

Notify Sign-up

Notify Sign-up Ack

ID
Object

Protocol
Version

Service
Item

Lease
Duration

Service
Template

Service
Matches

Service
ID

Service
ID

Event
ID

Event
ID

Max
Matches

Registrar
Event

Ack/Nack

Service
Template

Ack/
Nack

Lease
ID Duration

Lease
ID

Lease
ID Duration

Lease
ID

Transition Listener Handback Lease
Duration

Exception

Exception

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

ID
Object

Protocol
Version

Service
ID

Group
Length

Group
Names…

Group
Length

Group
Names…

Group
Length

Group
Names…

Heard
Length

Heard
Names…

Proxy
Object

4.2 Workarounds

With such a truly platform-independent design, we would have been able to directly port Jini to CAN

and easily achieve a plug-and-play infrastructure for RoSES. Unfortunately, Jini was not designed this

way. Our goal was not to redesign Jini, however: we just needed a testbed to use for understanding

graceful degradation. This section describes the solutions created to get the original Jini working on top

of CAN.

6.2.1 TCP-specific identification

To address the problem of insufficient ID information for non-TCP protocols I designed an ID

generator that combined a unique node ID and constants defined for each type of Jini message into a

unique 29-bit (extended) ID. Further ID information was written in the payload data. The scheme is more

clearly explained in Figure 7.

Figure 7 - Basic ID scheme

The "prioritizer" is used to determine the priority of Jini messages over other messages on the bus

(recall that CAN arbitration is accomplished using the message ID itself). In this way, normal CAN bus

traffic can continue in the presence of Jini message traffic. This was designed to be flexible for various

situations of the system; for instance, at start-up you may want Jini messages to have high priority so the

nodes can discover and register quickly and get on with doing work, and after a sufficient time you may

want to make the subsequent Jini communication less important than the other bus traffic.

14

Prioritizer
(20 bits)

Jini
Message

ID (3 bits)

Sender’s
Node

ID (6 bits)

Message data…
(0-48 bits)

Jini
Message

Type (8 bits)

Recipient’s
Node ID
(8 bits)

CAN message ID
(29 bits)

CAN data payload
(16-64 bits)

The Jini message ID is simply a unique ID for each type of Jini message so that receivers of multicast

messages have a way of identifying the messages they're looking for. All of the messages shown above in

Figure 6 could be given separate CAN IDs, but I combined some of them to conserve CAN IDs. (This

does not prevent each message from being defined separately as shown in Figure 6; their individual

definitions are simply implemented in the following manner to conserve CAN IDs). Most messages use

either a "server request" ID or a "server response" ID, where "server request" refers to a service's request

to the lookup service (including registration, lookup, lease management, etc.), and "server response"

refers to the lookup service’s response to a service's request. (A separate set of IDs is assigned for

multicast requests, “unicast” responses, and event notifications. These messages could all be classified as

“server request” or “server response,” but they are separated for optimization purposes). These message

IDs are shown in Table 1:

Message Type ID

“Unicast” response 0

Multicast request 3

Server request 4

Server response 5

Event notification 6

Event notification response (ack/nack) 7

Table 1: Jini message IDs

The sender's node ID is included in the CAN header to ensure unique CAN IDs. In the case of

messages designed to be received by everyone, this field is simply ignored, and listeners listen to the

entire range for that type of message (i.e., [prio][msg type][0] - [prio][msg type][63]). The node IDs

could be any 6-bit numbers as long as each node had a unique number; for convenience, I used the last

byte of statically assigned, sequentially numbered IP addresses.

15

An additional byte is written in the data payload to distinguish between the many different types of

messages grouped as "server request" or "server response." At the expense of payload data, this avoids

consuming a larger set of CAN message IDs, and allows recipients to listen for just one or two message

types, rather than large ranges of messages.

Since IDs are labeled only with the sender's node ID and not the recipient's, the sender of the message

puts the intended recipient's node ID as the second byte of the data payload. The recipient can then check

to make sure the response was intended for it. This data could have been included in the message ID

instead, but I chose to conserve CAN message IDs.

6.2.2 Message size definition

Since I replaced the UDP communication with a stream that sent all data directly to the CAN message

fragmentation algorithm, I did not use the Jini-defined message fragmentation at all. Clearly, the message

size was something that Jini did not even need to define.

6.2.3 RMI

I originally attempted to implement Java "socket factories" to perform RMI communication over CAN.

The factory approach was attractive because it would define a default factory for all sockets created, so

that all code that invokes a socket would create the specialized socket defined by the factory. (In my

case, the specialized socket would convert TCP input to CAN messages, and CAN input to TCP streams).

However, these socket factories were not intended to be used to swap wire protocols; the designers only

envisioned such uses as firewalls and cryptography. I believe it may have been possible to eventually

achieve RMI over CAN using socket factories, but I abandoned this effort after weeks of re-implementing

handshaking and other TCP-socket-specific communication unnecessary for CAN.

I thus decided to attempt the message-passing approach described in Section 4.1.3, employing Java's

MarshalledObject and serialization features extensively. Several different objects implementing proxies

16

and leases used RMI calls, so I had to find them all and convert the calls to serialize data (even whole

objects) into CAN messages and then reconstitute the objects on the other end. The Jini concept of

downloading proxies for performing implementation-specific communication proved invaluable in this

solution, since the proxies encapsulated all the details of serializing/deserializing data, constructing CAN

messages, and so on. The application is oblivious to the change, still calling standard methods defined in

proxies' interfaces, as cleanly as if they were communicating via RMI behind the scenes.

This approach was very successful. Implementation took only a week.

6.2.4 Unicast/Multicast distinction

Since CAN is broadcast, the concept of "unicast discovery" is irrelevant. It could be emulated, but it

would be difficult to ensure unique CAN message IDs at all times. Instead, multicast discovery can be

used, and unicast discovery abandoned entirely. Since multicast announcements are used solely to invoke

unicast discovery from other nodes, the multicast announcement is therefore also unnecessary. This

resulted in using only two of the original four Jini messages, and multicasting the “Unicast Response”

message.

6.2.5 Result of workarounds

The result of the four solutions described above looked like Figure 8. Implementing Jini on CAN in

this way allowed us to approximate the RoSES architecture, as shown in Figure 9.

17

Figure 8: Original Jini modified to work on CAN

Figure 9: Approximated RoSES architecture

18

Original design: CAN-based implementation:
Multicast
Announce

Multicast
Request

Unicast
Request

Protocol
Version

Host
Name

TCP
Port

Service
ID

Group
Length

Group
Names...

Protocol
Version

Heard
Length

TCP
Port

Heard
Names...

Group
Length

Group
Names...

Protocol
Version

Proxy
Object

Group
Length

Group
Names...

Protocol
Version

Host
Name

TCP
Port

Service
ID

Group
Length

Group
Names...

Protocol
Version

Heard
Length

TCP
Port

Heard
Names...

Group
Length

Group
Names...

Protocol
Version

Proxy
Object

Group
Length

Group
Names...

Unicast
Response

RMI
Service Registration,
Lookup, Events, Lease
Management...

Multicast Request Protocol
Version

Heard
Length

TCP
Port

Heard
Names...

Group
Length

Group
Names...

Proxy
Object

Group
Length

Group
Names...“Unicast” Response

Computed CAN ID

Notification Message
Type

Notification Ack

Receiver
ID

Message
Type

Receiver
ID

Server Request Message
Type

Server Response

Receiver
ID

Message
Type

Receiver
ID

Registration,
lookup,
lease management,
notification sign-up

X

Message
Data…

Message
Data…

Message
Data…

Message
Data…

Jini and Control Area Network

SMART SENSORS

ProxyRepository

SMART ACTUATORS

Jini Lookup Service

Baseline
Sensor SW
Functionality

Dynamic Interface
to Object Bus

Basic S/A
Device

Local
CPU &

Memory

Jini Proxy:
High Level Logical

Interface;
Compute/Control

Functions

Baseline
Sensor SW
Functionality

Dynamic Interface
to Object Bus

Basic S/A
Device

Local
CPU &

Memory

Jini Proxy:
High Level Logical

Interface;
Compute/Control

Functions

5. Heuristics for platform-independent design

From this experience we were able to demonstrate how one would implement graceful degradation

with current technology (by using the discovery mechanism of Jini running on CAN), and determine what

problems our future work must address. In the process, I also gleaned insight into how not to design for

platform-independence. Based on my experience I propose the following list of heuristics for any

designer who seeks to achieve platform-independence.

1. Think very broadly: do not assume that any part of your imagined scenario will remain the same for

all users.

Jini lead architect Jim Waldo asserts that the most important computing component is now the network

[17]. Yet with all their focus on the importance of the network, the Jini designers forgot that the hardware

is not the only variable: TCP is not universal either!

2. Design to what your product does, independent of underlying hardware or software layers. I.e., stay

within your targeted abstraction level.

The intrusion of unicast/multicast, port numbers, hostnames, and message sizes into the “object

interface level” does not maintain a clean abstraction necessary for platform-independence. The Jini

specification should stick to what the Jini messages are accomplishing, not how they are accomplishing it.

3. Never assume your product will only be used the way you imagined it.

Jini can be used for more than connecting consumer gadgets. Apparently we are not the only ones to

think of this; a Sun employee himself suggested Jini as a solution for control systems [10]. You cannot

imagine every possible use of your system, but adhering to a good abstraction principle should help.

4. You cannot imagine everything that will be invented in the future. But if your product is to be

platform-independent, at least consider how your product would actually work on other current systems.

19

Sun employees were surprised by my struggles. Apparently, while touting platform-independence,

they had never thought through how one would swap network protocols. Not only that, but they were

completely unaware of how immensely different various wire protocols can be. CAN was invented over

a decade before they designed Jini; they just did not think to look at other protocols.

6. Related Work

6.1 Middleware research

Many middleware solutions exist, such as Salutation, which performs Jini- like discovery but supports

non-Java devices [12], and the Distributed Embedded Object Model (DEOM), designed to support

distributed embedded systems [1]. Another interesting project involving remote method invocation in

real-time on CAN is not addressing automatic reconfiguration issues, but it may be possible to extend it

for this purpose [3]. Our goal, however, was to acquire a working middleware, port it to CAN, and

identify our project’s further needs; we therefore needed a middleware with well-supported open source.

6.2 Middleware on CAN

A previous attempt to put CORBA on CAN required so many changes that the result looked very little

like CORBA [5]. Current work applying Jini to embedded systems has been focused on using the

"surrogate architecture," which uses a JVM-capable device as a gateway between the CAN devices and

the rest of the Jini community [7]. Surrogates are useful for remotely diagnosing the CAN system over

the Internet, for example, but we want our CAN nodes to form a Jini community themselves, so that each

CAN node can exploit Jini's self-configurability. The developers on the JINI-USERS mailing list, which

include some of the original Jini developers, knew of no attempts to implement Jini on any protocol

besides TCP/IP [15].

20

7. Conclusions

For the Robust Self-Configuring Embedded Systems (RoSES) project to succeed in its goal of graceful

degradation through field self-reconfiguration, an appropriate run-time infrastructure must be in place to

facilitate the "plug-and-play" functionality required for nodes to easily come and go from an ad hoc,

distributed network. The embedded, real-time network of choice for automobiles and other distributed,

safety-critical systems is the Control Area Network (CAN). CAN provides reliable, real-time, multicast,

decentralized communication, but it in itself does not have the capability of accomplishing the RoSES

"plug-n-play" goal. We investigated various middleware technologies to supply a run-time infrastructure

on top of CAN, ultimately choosing Jini.

In the process of porting Jini to CAN, we discovered that the very design of Jini itself made

assumptions about the use of TCP and UDP, including choices of packet sizes and message fields. This

did not prevent the porting of Jini to CAN, but imposed a significant source of inefficiency and messiness

in substituting wire protocols. Designers who wish to produce a platform-independent product should

maintain an appropriate abstraction level to avoid entangling details of the underlying protocols into the

product. One possible “sanity check” would be to imagine how one would use the new protocol on

diverse, currently existing systems. Designers must consider every part of the system that could be

implemented in a different way from that originally supposed, and avoid the handicap of thinking only of

a single target scenario.

8. Acknowledgments

This work was supported by the General Motors Satellite Research Laboratory at Carnegie Mellon

University, Robert Bosch GmbH, the NSF fellowship program, and the Intel IMAP fellowship program. I

would also like to acknowledge Bill Nace, Keith Thompson, Greg Frazier, Geoffrey Clements, and Mike

Bigrigg for their invaluable assistance in this work.

21

References

[1] Bacellar, L.F., and Upender, B.P. "A Dependable Distribution-Transparent Remote Method

Invocation Model for Object-Oriented Distributed Embedded Computer Systems," in Proceedings of the

First International Symposium on Object-Oriented Real-Time Distributed Computing, Kyoto, Apr. 1998,

p. 467-76.

[2] Bigrigg, M., OMG member, interview Aug. 2000.

[3] Kaiser, J., and Livani, A. “Invocation of Real-Time Objects in a CAN Bus-System,” in

Proceedings of the First International Symposium on Object-Oriented Real-Time Distributed Computing,

Kyoto, April 1998, p. 298-307.

[4] Kelly, K., and Spencer, R. “Creating One Huge Computer,” in Wired magazine, Aug. 1998.

[5] Kim, K., et al. "Integrating subscription-based and connection-oriented communications into the

embedded CORBA for the CAN bus," in Proceedings of the Sixth IEEE Real-Time Technology and

Applications Symposium, Washington, D.C., June 2000, p. 178-187.

[6] Nace, W., and Koopman, P., "A Product Family Architecture Approach to Graceful Degradation,"

in Proceedings of the International IFIP WG 10.3/10.4/10.5 Workshop on Distributed & Parallel

Embedded Systems, Paderborn, Germany, Oct 2000.

[7] Nusser, G. and Gruhler, G. "Dynamic Device Management and Access Based on Jini and CAN,"

in Proceedings of the Seventh International CAN Conference, Amsterdam, Oct. 2000.

[8] The Object Management Group (OMG). CORBA specification version 2.4, Oct. 2000.

[9] Pawlan, M., "Introduction to Consumer and Embedded Technologies," Sun Microsystems Java

Developer Connection, Aug. 2000.

22

[10] Renner, K. “Ending the Bus Wars,” in Sensors, vol.16, no.5 p. 42-50, May 1999.

[11] Robert Bosch GmbH. Control Area Network specification version 2, Sept. 1991.

[12] The Salutation Consortium. Salutation specification version 2.0c, June 1999.

[13] Schill, J, "An Overview of the CAN Protocol," in Embedded Systems Programming, Sept. 1997,

p. 46-62.

[14] Sun Microsystems. White paper: Java 2 Platform Micro Edition (J2ME) Technology for Creating

Mobile Devices, May 2000.

[15] Thompson, K., Sun employee; Frazier, G.; and Clements, G. Online correspondence with Jini

developers, July 2000 - Feb. 2001.

[16] Tryggvesson, J., et al. "JBED: Java for Real-Time Systems," in Dr. Dobb's Journal, Nov. 1999,

p. 78-86.

[17] Veneers, B., "The Jini Vision: A glimpse into the vision behind Jini technology," in JavaWorld,

Aug. 1999.

[18] Veneers, B., “Objects, the Network, and Jini: How Jini raises the level of abstraction for

distributed systems programming,” in JavaWorld, June 1999.

[19] Waldo, J. “The End of Protocols”, Sun Microsystems Java Developer Connection, June 2000.

[20] Waldo, J. "The Jini Architecture for Network-Centric Computing," in Communications of the

ACM, vol. 42, no. 7, July 1999, p. 76-82.

23

