
Problems Facing
Embedded Systems

Philip Koopman
koopman@cmu.edu - (412) 268-5225 - http://www.ices.cmu.edu/koopman

,QVWLWXWH
IRU�&RPSOH[
(QJLQHHUHG
6\VWHPV

&Electrical Computer
ENGINEERING

2

Embedded System Context
◆ Don’t think in terms of just cost or just performance --

think in terms of how much you get for:
• $1 chip (on-chip memory only) -- most of the market

• $10 chip (with one RAM/ROM combo chip) -- much of the market

• $100 chip (with DRAM + 1 boot flash chip) -- a tiny piece of the market

$SSUR[LPDWHG�IURP�((�7LPHV�
0DUFK���������

6RXUFH��7KH�,QIRUPDWLRQ�$UFKLWHFWV

�����:RUOGZLGH
0LFURFRQWUROOHU�5HYHQXH

��0LOOLRQ�8�6��

��%LW

������0
���%LW

������0

���%LW

����0

�������0�7RWDO

�����:RUOGZLGH
0LFURFRQWUROOHU�8QLWV
�0LOOLRQ�'HYLFHV�

��%LW

�����0

���%LW

���0

���%LW

�0

�����0�7RWDO

3

Different Systems Have Different Problems
◆ Near-desktop systems (set-top box; wearable computer; etc.)

• Time to market

• Cost

◆ Embedded control systems (elevators, aircraft, factories)
• Real-time determinacy (architecture) & predictability (compiler)

• Off-the-shelf RTOS (Real Time Operating System)

• Software development problems

• Cost

◆ Tiny embedded systems (rice cookers, etc.)
• Cost

• Cost

• Compilers/runtime on a $1 chip

• Cost

4

Relative Importance
#1 - Cost

• Cost + performance often matters more than performance

• (“Cost” includes issues such as power, size, weight too)

#2 - Time to Market
• (Debugability is an important factor)

#3 - Predictability/Determinacy
• It is important to pick a fast enough processor for worst case

• Is this really debugability in the performance space?

…
#943 - Instruction Level Parallelism

• Does ILP make sense on an 8051? That is still much of the market

• Most embedded systems use older CPU designs (how many MIPS do you
need in a toaster oven?)

5

Technology Buzz (Embedded Control)
◆ Windows CE vs. other RTOSs

• Remember the phrase “nobody every got fired for buying from IBM?”

• Lots of companies are thinking about this; maybe with Win CE 3.0 we’ll
see more widespread adoption

• Potentially gives opportunities for Non-Intel CPU designs

◆ Java
• Most are not really talking about this seriously (at this point)

• But there’s plenty of Hype!

◆ UML/design tools
• Design methods often matter most (SW is the problem, not HW)

◆ CORBA / DCOM
• Distributed object technology is coming

• What does the HW need to do to make it viable on low-end systems?

6

Skepticism
◆ Networked Everything In A House

• CPU is one thing; getting a cheap network connection is another

• Even a $1 wireless port connection is a lot in a $15 toaster

• Who wants to debug their house? We can’t even set VCR time now…

7

Does Java Matter?
◆ Maybe, but…

• It’s too big

• Configuration control of applets would be a nightmare for ordinary folks

• The most numerous low-end systems are still written in assembly
language

◆ The biggest problem is software development
• Language choice is a second-order effect on productivity

8

Does Reconfigurable Hardware Matter
◆ Possibly

◆ Currently a move toward flash memory instead of masked ROM
• EVEN on very large volume applications

– Frequent requirements/design changes

– Ability to perform field bug patches if recalls occur

– “Just-in-time” programming + standard parts reduces inventory costs

• So, maybe reconfigurable hardware matters in the future

◆ Is it really just another form of “software”?
• Reconfigurable hardware is about having hardware replace software

• But the other half of the equation is if you have a fast processor, software
can replace hardware (e.g., “software serial port”)

9

What Are We (Researchers) Missing?
◆ Dependability -- we can’t even put a number on it yet

• Everyday embedded applications are indirectly mission/safety-critical
– Pager outage shuts down hospital

– Incorrect GPS position can sink a ship

• Design defects (SW + HW) are becoming the biggest culprit
– Throwing redundant hardware at the problem is an obsolete approach

• But, we can’t afford to apply current critical-system components &
design techniques

– (and, those approaches don’t even work all that well anyway)

◆ Low-end systems
• The big problem is not CPU design, it is dealing with complexity on a

system level

• Deep, multi-disciplinary tradeoffs -- transistors to business process

1

New Applications/Problems
◆ Very Low Power (wearables; stand-alone devices)

• Battery operation for days, not hours

• Thermal dissipation will be limited by small surface area

◆ MEMS-based devices
• Micro-Electro-Mechanical

Systems

• In the future, “system-level
integration” includes
electro-mechanical I/O

1

Challenge Areas
◆ Increase integration levels (including Analog)

• Hardware + Software + I/O + Storage co-design -- smallest total chip cost

• Ultra-fast CPUs or programmable logic are part of the equation

• It is total system cost that matters most
– Resist the temptation to optimize the CPU and shove problems off-chip

◆ Help solve the ongoing “software crisis”
• Speed definitely helps

• But HW has bugs -- it can be part of the problem

• HW/SW combined design approaches using standard/customizable parts

◆ Biggest opportunity
• Nobody cares if their car engine controller is “Intel Inside” (yet…)

