
Software Robustness and 
Graceful Degradation in
Embedded Systems
May 8, 2000

Philip Koopman
koopman@cmu.edu
http://www.ices.cmu.edu/koopman 
(412) 268-5225

Institute
for Complex
Engineered
Systems

&Electrical Computer
ENGINEERING



Embedded System =
Computers Inside a Product



3

Outline of Talk
u A personal trajectory through 4 areas in the embedded systems 

research space

u Previous research areas (what's past is prologue)
• #1: CPU design
• #2: Hardware system synthesis

u Latest research results (Ballista project)
• #3: Software robustness testing
• Can software components be made well behaved?

u Current research direction (RoSES project)
• #4: Graceful degradation/distributed embedded systems
• Components aren’t going to be well behaved –

Is automatic reconfiguration a silver bullet?



4

What’s an Embedded System?
INTEGRATED

CIRCUIT

COMPUTER

NETWORKED
COMPUTERS

ELEVATOR AUTOMOBILE SUBMARINE

CITY
TRANSPORTATION

SYSTEM

US
HIGHWAY
SYSTEM

US NAVY
PACIFIC
FLEET

WIRED
HOUSE

INTERNET

BUSINESS / GOVERNMENT / PEOPLE



Classical, General Purpose View of Computing
u Undergrad – Juniors:

• Measured by Performance
• SPECmarks

CPU

5



Classical View of Computing (upper division)
u Undergrad – Seniors:

• Measured by: Performance, Cost
• Compilers & OS considered too

u Graduate Level:
u Advanced performance techniques
u Distributed systems   (networks, storage)

CPU

MEMORYCACHE
MEMORY

I/O

6



7

Area #1: CPU design for embedded systems
u Let’s build a CPU that’s optimized for embedded systems!

• Special-purpose instruction set
• Special-purpose hardware accelerators
• Optimized for small memory footprint
• etc., etc., etc.

u Lessons learned:
• General purpose processors are Good Enough for most things

– Competing with Intel’s technology curve is no fun at all!

• For better or worse, the desktop market drives the high end
– Some room left in ultra-high-performance consumer goods (e.g., MPEG players)

• In the real world, engineers use of-the-shelf components whenever possible

Harris Semiconductor RTX-4000



CPUA/D
CONVERSION

D/A
CONVERSION

FPGA/
ASIC MEMORYMEMORY

MICROCONTROLLER

HUMAN
INTERFACE

An Embedded Computer Designer’s View
u CPU + Storage + I/O

• Measured by: Cost, I/O connections, Memory Size, Performance

8



9

Area #2: CAD Tool for System Synthesis
u Omniview Fidelity – a design-by-composition tool

• Most Computer Aided Design (CAD) research is for synthesis, but has 
limited applicability to industry

• Fidelity assembles circuit boards by selecting cost-optimized components
• Experiment: attempt to duplicate hand-optimized design

using design-by-composition tool

u Lessons learned:
• Embedded systems need multi-technology tradeoffs

– Analog, hardware, software, mechanical, …

• Design tradeoffs for desktop computers are different than
embedded tradeoffs

Desktop Embedded
– Average operating power Standby power
– Component purchase costs Lifecycle component costs
– Similar designs are equivalent Each change requires certification
– Designed by specialists Designed by generalists



CPUSENSORS A/D
CONVERSION

D/A
CONVERSION ACTUATORS

HUMAN
INTERFACE

DIAGNOSTIC
TOOLS

AUXILIARY
SYSTEMS
(POWER,

COOLING)

FPGA/
ASIC SOFTWAREMEMORY

MICROCONTROLLER

ELECTROMECHANICAL
BACKUP & SAFETY

EXTERNAL
ENVIRONMENT

An Embedded Control System Designer’s View
u Measured by: Cost, Time-to-market, Safety, Functionality & Cost.

10



11

Area #3: Software Robustness Testing
u Research motivation:

• Low-cost reliability is essential for embedded systems
– But we really don’t know how to do that

• Component-based systems are becoming prevalent
– Anecdotally, exception handling may be a big source of problems
– Idea: to build robust systems, put together individually robust components

• Software components are probably the most important to study
– Increasingly, that’s where the complexity ends up…

u Software Dependability ≈reliability + robustness + safety + security
• Software “Reliability” ≡ operates per specification
• Software Robustness    ≡ acts reasonably in exceptional situations

u Research goal
• Find a way to quantify robustness levels



12



13

The Ballista Robustness Testing Approach
u Use fault injection techniques

• “Ballista” is an ancient siege 
weapon for hurling big projectiles 
with good accuracy

• Traditional fault injection corrupts 
code in system under test

– Usual Hypothesis: “If there were a 
defect in the OS, the system could 
crash”

Ballista
Siege

Weapon

u Ballista testing tool does API-level fault injection
• Simulates a software defect in something calling

the interface
• Does NOT inject a defect in the system under

test itself
– Ballista Hypothesis: “If there were a defect in a user 

program, the OS could crash”

APPLICATION
PROGRAMMING
INTERFACE (API)

Exceptional
Parameter
Value



14

Ballista Research Challenges
u Scalability of testing “oracle”

• How do you know if the test got the right answer?
• Usual method requires knowing expected result of each and every test
• Solution: use a “crash/hang” check instead of functional correctness check

(similar to idea to “crashme” randomized OS testing, but applicable to any API)

u Scalability of test cases
• Software testing effort is usually proportional to number of functions tested
• “Scaffolding” set-up code for tests is a large development effort
• Solution: create tests based on number of data types instead of functions

(similar to idea for Category Partitioning testing method [Ostrand & Balcer ’88], but 
without no per-test analysis required)

u OS vendors said we’d never find anything
• Conventional wisdom is only remaining bugs are obscure, timing-related
• Solution: they were wrong



15

Ballista: Scalable Test Generation
API

TESTING
OBJECTS

write(int filedes, const void *buffer, size_t nbytes)

write(FD_OPEN_READ, BUFF_NULL, SIZE_16)

TEST
VALUES

TEST CASE

FILE
DESCRIPTOR
TEST OBJECT

MEMORY
BUFFER
TEST OBJECT

SIZE
TEST
OBJECT

FD_CLOSED

FD_OPEN_WRITE
FD_DELETED
FD_NOEXIST
FD_EMPTY_FILE
FD_PAST_END
FD_BEFORE_BEG
FD_PIPE_IN
FD_PIPE_OUT
FD_PIPE_IN_BLOCK
FD_PIPE_OUT_BLOCK
FD_TERM
FD_SHM_READ
FD_SHM_RW
FD_MAXINT
FD_NEG_ONE

FD_OPEN_READ
BUF_SMALL_1
BUF_MED_PAGESIZE
BUF_LARGE_512MB
BUF_XLARGE_1GB
BUF_HUGE_2GB
BUF_MAXULONG_SIZE
BUF_64K
BUF_END_MED
BUF_FAR_PAST
BUF_ODD_ADDR
BUF_FREED
BUF_CODE
BUF_16

BUF_NEG_ONE   
BUF_NULL

SIZE_1

SIZE_PAGE
SIZE_PAGEx16
SIZE_PAGEx16plus1
SIZE_MAXINT
SIZE_MININT
SIZE_ZERO
SIZE_NEG

SIZE_16

u Ballista combines test values to generate test cases



16

CRASH Robustness Testing Result Categories

u Catastrophic
• Computer crashes/panics, requiring a reboot

e.g., GetThreadContext(GetCurrentThread(), NULL);

u Restart
• Benchmark process hangs, requiring restart

u Abort
• Benchmark process aborts (e.g., “core dump”)

u Silent
• No error code generated, when one should have been

(e.g., de-referencing null pointer produces no error)

u Hindering
• Incorrect error code generated
• Found via by-hand examinations, not automated yet



17

Results for Unix Operating Systems 

*

*

*

**

*

Normalized Failure Rate by Operating System

Normalized Failure Rate (after analysis)
0% 10% 20% 30% 40% 50%

O
pe

ra
tin

g
S

ys
te

m
T

es
te

d

SunOS 5.5

SunOS 4.13

QNX 4.24

QNX 4.22

OSF-1 4.0

OSF-1 3.2

NetBSD 

Lynx

Linux

Irix 6.2

Irix 5.3

HPUX 10.20

HPUX 9.05

FreeBSD

AIX

Abort % 
Silent % 
Restart % 

* Catastrophic



18

But What About Windows?



19

Failure Rates by Function Group



20

Robustness Beyond Operating Systems
u Some software is very robust

• HLA RTI – DoD distributed simulation backplane

u Unfortunately, commercial software components tend to be non-
robust
• Unix systems often displayed a vulnerability to crashing
• Windows CE had 28 functions that could cause a crash
• Initial results on several CORBA implementations don’t look promising
• Initial results on accelerated software aging tests look bad for both Linux and 

Windows

u How do you build a robust system from non-robust components?
• Multi-version Unix implementations won’t work (we checked)
• The market isn’t demanding more robust software (yet)
• Solution:(?) build systems that degrade gracefully when components fail



A Distributed Embedded System Designer’s View
u Highly distributed systems

• Measured by: Product family success, life-cycle cost, dependability
• Fine-grain, system-on-chip nodes form distributed systems

– Micro-Electrical/Mechanical Systems (MEMS) for I/O
– Microcontroller & network connection “for free” on same piece of silicon

S A
mC

S A S A

S A S A

Embedded
Network

MEMS
Sensor

mC

mC

mC

mC

springs

etched pit
center plate
electrostatic
comb drives

bond pad

21



22

Area #4: Graceful Degradation
u Research motivation:

• Future embedded systems will be low cost, but highly distributed
• In the common case, not all components will be working

– Degraded or failed component hardware
– Unreliable/non-robust component software

u Existing graceful degradation techniques
rely upon manual reconfiguration
• Works fine for a few processors
• Doesn’t scale to thousands of processors

u Research goals
• Achieve automatic graceful degradation for a given system architecture
• Create general principles for designing architectures that gracefully degrade



RoSES: Robust Self-configuring Embedded Systems 
u Automatic configuration management is a unifying capability

• Product families can include degradation as well as intentional 
price/performance tradeoff points

u Consider component failure as an example:
• Component fails –

triggers reconfiguration for degraded operation
• Component replaced –

reconfiguration to integrate repair part
• New component added –

reconfiguration to upgrade system

u That’s a lot to attempt all at once…
• Static configuration at first
• On-the-fly configuration as an eventual goal



24

A Simplistic Example
u Control of gasoline engine speed

• Complicated system controls fuel if valve is installed/operational
• But, baseline capability is retained in case of failure

Throttled Engine Controller

NETWORK

FUEL
VALVE

SPEED
CONTROLLER

SPEED
SENSOR

PID CONTROL
ALGORITHM

IGNITION
CONTROL

Hit-or-Miss Constant Speed 
Engine Controller

NETWORK

IGNITION
CONTROL

SPEED
SENSOR

BANG-BANG
CONTROL

ALGORITHM
Degrades to



25

Different Sensors / Different Capabilities
u Similarly, different actuators have different capabilities

• Mobile Object Adapters translate raw capability into desired interface

RELATIVE
SPEED

SENSOR

LOCAL
COMPUTATION,
ALGORITHMS,

DATA STORAGE

EXAMPLE SIMPLE SPEED SENSOR

RELATIVE
SPEED

INTERFACE
(TOO FAST/
TOO SLOW)

Mobile Object Adapter

Embedded Network

PROPORTIONAL
SPEED

SENSOR

EXAMPLE HIGH-END SPEED SENSOR with
MULTIPLE INTERFACES

RPM
INTERFACE

OVERSPEED
EMERGENCY
INTERFACE

PERCENT
MAXIMUM

INTERFACE

RELATIVE
SPEED

INTERFACE
(TOO FAST/
TOO SLOW)

LOCAL
COMPUTATION,
ALGORITHMS,

DATA STORAGE

Mobile Object Adapters

Embedded Network



26

Generic RoSES System Architecture

Object Bus (ORB Core operating across a network)

Baseline
Sensor SW
Functionality

Dynamic Interface
to Object Bus

SW
Adapter for
High Level

Logical
Interface

SW
Adapter for
High Level

Logical
Interface

…

Basic
Sensor
Device

SMART SENSORS

Lo
ca

l C
P

U
Lo

ca
l M

em
or

y

Baseline
Actuator SW
Functionality

Dynamic Interface
to Object Bus

SW
Adapter for
High Level

Logical
Interface

Adapter Repository Co-Scheduling & Assigment Tool

SW
Adapter for
High Level

Logical
Interface

…

Basic
Actuator
Device

SMART ACTUATORS

CUSTOMIZATION MANAGER

Lo
ca

l C
P

U
Lo

ca
l M

em
or

y



27

Functionality To Hardware Mapping
u One element of RoSES:

Automatic allocation of HW & SW components
• Maximize utility of functions within hardware constraints

FUNCTIONAL
REQUIREMENTS

CPUs MEMORY NETWORK

SENSORS ACTUATORS

CONTROL
ALGORITHMS

&
SOFTWARE

Dynamic
Adaption
Runtime
System



28

Near-Term Research Challenges
u Mapping functionality onto hardware

• Maximize utility of result given constrained resources

u Achieving real-time operation
• Co-schedule CPU, Memory, Network usage to meet real-time deadlines

u Achieving “plug & play” capabilities
• Is CORBA too “fat”?  (how about Jini… )
• Avoid re-inventing distributed object technology if possible!

u Testbed & demonstration
• Generic automotive testbed
• Apply techniques to multi-sensor vehicle navigation & other functions

u Plenty of long-term research challenges too, of course



29

Other Current Activities
u Chair of IFIP WG 10.4 SIG on dependability benchmarking

• How do you get measures of system dependability that work for real-world 
conditions?

• Representatives from universities, industry, government labs

u Industry-funded research efforts
• General Motors, Bosch: graceful degradation of automotive systems
• Adtranz: dependability analysis of train network protocol
• Emerson, Microsoft: software robustness of Windows
• IBM: “bulletproof Linux”
• ABB: software robustness of embedded systems



30

Teaching System Architecture (current status)
u CMU ECE 18-540: Distributed Embedded Systems

• Elevator as an example
• Includes lightweight software engineering: requirements to validation
• Material motivated via “war stories”

u Business issues
• How does a particular company make its profits?
• Non-technical constraints on solutions are a reality

u Levels of abstraction
• Top-down decomposition + Bottom-up synthesis
• Orthogonal building blocks (when you can find them)

u Multi-technology tradeoffs
u Non-functional requirements

• “ilities”, safety, cost
u Life-cycle perspective

• Requirements through disposal
• Selected real-world issues: spare parts, cross-cultural designs, ethics



31

Current Research Scope



32

Phil Koopman Meredith Beveridge
Jiantao Pan Charles Shelton
Kanaka Juvva (graduating) Sandeep Tamboli (graduating)
Bill Nace
Kobey DeVale Not shown (new additions):
Ying Shi Tridib Chakravarty
John DeVale Beth Latronico


