Software Robustness and
Graceful Degradation In
Embedded Systems

May 8, 2000

Philip Koopman
koopman@cmu.edu
http://www.ices.cmu.edu/koopman
(412) 268-5225

Carnegie

ectrical & Com
Mellon () ERGINEERNG

-

.
'l
i
.
¥
-
)
s

Embedded System
Computers Inside a Product

Outline of Talk

¢ A personal trajectory through 4 areasin the embedded systems
resear ch space

¢ Previousresearch areas (what's past is prologue)
o #1:. CPU design
o #2. Hardware system synthesis

¢ Latest research results (Ballista project)
o #3: Software robustness testing
» Can software components be made well behaved?

¢ Current research direction (ROSES project)
o #4. Graceful degradation/distributed embedded systems

» Components aren’t going to be well behaved —
|s automatic reconfiguration a silver bullet?

What'’s an Embedded System?

INTEGRATED
CIRCUIT

COMPUTER

NETWORKED
COMPUTERS

ELEViA\TOR AUTOI\l/IOBILE SUBI\/IiA\RINE HOUSE

CITY US US NAVY |
TRANSPORTATION HIGHWAY PACIFIC INTERNET

SYSTEM SYSTEM FLEET

BUSINESS / GOVERNMENT / PEOPLE

Classical, General Purpose View of Computing

¢ Undergrad —Juniors:
» Measured by Performance
o SPECmarks

Classical View of Computing (upper division)

¢ Undergrad — Seniors.
» Measured by: Performance, Cost
o Compilers & OS considered too

CACHE
MEMORY <<€4—»| MEMORY

/O

¢ GraduatelLevd:
¢ Advanced performance techniques
¢ Distributed systems (networks, storage)

Area#1: CPU design for embedded systems

¢ Let’sbuild a CPU that’soptimized for embedded systemsI
 Specia-purpose instruction set i ' e
o Special-purpose hardware accelerators
o Optimized for small memory footprint
* ¢tc,, elc,, etc.

Harris Semiconductor RTX-4000

¢ Lessonslearned:
» General purpose processors are Good Enough for most things
— Competing with Intel’ s technology curveisno fun at all!
» For better or worse, the desktop market drives the high end
— Some room |eft in ultra-high-performance consumer goods (e.g., MPEG players)

* Intherea world, engineers use of-the-shelf components whenever possible
7

An Embedded Computer Designer’sView

¢ CPU + Storage+1/0
» Measured by: Cogt, 1/0 connections, Memory Size, Performance

FPGA/
ASIC MEMORY MEMORY
MICROCONTROLLER
A/D - D/A
CONVERSION CONVERSION

HUMAN
INTERFACE

Area#2. CAD Tool for System Synthesis

¢ Omniview Fiddity —a design-by-composition tool
 Most Computer Aided Design (CAD) research is for synthesis, but has
limited applicability to industry
o Fidelity assembles circuit boards by selecting cost-optimized components
» Experiment: attempt to duplicate hand-optimized design
using design-by-composition tool

¢ L essonslearned:

» Embedded systems need multi-technology tradeoffs
— Anaog, hardware, software, mechanical, ...

» Design tradeoffs for desktop computers are different than

embedded tradeoffs
Desktop Embedded
— Average operating power Standby power
— Component purchase costs Lifecycle component costs
— Similar designs are equivalent Each change requires certification

— Designed by specialists Designed by generalists

An Embedded Control System Designer’sView

¢ Measured by: Cost, Time-to-market, Safety, Functionality & Cost.

SENSORS

FPGA/

ASIC MEMORY

MICROCONTROLLER \/

A/D) >
CONVERSION CPU
“‘
\“
HUMAN DIAGNOSTIC
INTERFACE TOOLS

SOFTWARE

D/A
CONVERSION

ACTUATORS

AUXILIARY
SYSTEMS
(POWER,

COOLING)

ELECTROMECHANICAL
‘).

BACKUP & SAFETY

EXTERNAL
ENVIRONMENT

A

10

Area #3. Software Robustness Testing

¢ Research motivation:

o Low-cost reliability isessential for embedded systems
— But we really don’t know how to do that

» Component-based systems are becoming prevalent
— Anecdotally, exception handling may be a big source of problems
— ldea: to build robust systems, put together individually robust components

» Software components are probably the most important to study
— Increasingly, that’ s where the complexity ends up...

+ Software Dependability » reliability + robustness + safety + security
o Software“ Reliability” © operates per specification
» Software Robustness © acts reasonably in exceptional situations

¢ Research goal
* Find away to quantify robustness levels

11

THIS IS A BAD PLACE TO
DISCOVER YOUR RTOS 1s
ONLY 83.3% ROBUST.

12

The Ballista Robustness Testlng Approach

¢ Usefault injection techniques

o “Badliga’ isan ancient siege
weapon for hurling big projectiles
with good accuracy

» Traditional fault injection corrupts
code in system under test
— Usual Hypothesis: “If there were a

defect in the OS, the system could
crash”

" Ballista
Sege
Weapon

Exceptional Ballista testing tool does API-level fault injection

Parameter o Simulates a software defect in something calling
Value the interface
» Does NOT inject adefect in the system under
APPLICATION test itself

— Ballista Hypothesis: “If there were adefect in a user

PROGRAMMING
program, the OS could crash”

INTERFACE (API)

13

Ballista Research Challenges

+ Scalability of testing “ oracle”
* How do you know if the test got the right answer?
» Usua method requires knowing expected result of each and every test

o Solution: use a“crash/hang” check instead of functional correctness check
(smilar to ideato “crashme”’ randomized OS testing, but applicable to any API)

& Scalability of test cases
» Software testing effort is usually proportional to number of functions tested
o “Scaffolding” set-up code for testsis alarge development effort

o Solution: create tests based on number of datatypesinstead of functions

(smilar to ideafor Category Partitioning testing method [Ostrand & Balcer ' 88], but
without no per-test analysis required)

¢ OSvendorssaid we'd never find anything
« Conventional wisdom is only remaining bugs are obscure, timing-related
o Solution: they were wrong

14

Ballista: Scalable Test Generation

const void *buffer,

APl wite(int filedes,

TESTING
OBJECTS

TEST
VALUES

TEST CASE

Size t nbytes)

FILE MEMORY SIZE
DESCRIPTOR BUFFER TEST

TEST OBJECT TEST OBJECT OBJECT
FD_CLOSED BUF_SMALL_1 SIZE_1
FD_OPEN_READ BUF_MED_PAGESIZE L SIZE_16
FD_OPEN_WRITE BUF_LARGE_512MB SIZE_PAGE

FD_DELETED
FD_NOEXIST
FD_EMPTY_FILE
FD_PAST _END
FD_BEFORE_BEG
FD_PIPE_IN
FD_PIPE_OUT
FD_PIPE_IN_BLOCK
FD_PIPE_OUT BLOCK
FD_TERM
FD_SHM_READ
FD_SHM_RW
FD_MAXINT
FD_NEG_ONE

BUF_XLARGE_1GB
BUF_HUGE_2GB
BUF_MAXULONG_SIZE
BUF_64K
BUF_END_MED
BUF_FAR_PAST
BUF_ODD_ADDR
BUF_FREED
BUF_CODE

BUF 16
BUF_NULL
BUF_NEG_ONE

SIZE_PAGEX16
SIZE_PAGEXx16plusl
SIZE_ MAXINT
SIZE_MININT

SIZE_ZERO
SIZE_NEG

4

writ e(FD OPEN READ, BUFF _NULL, SIZE 16)

+ Ballistacombinestest valuesto generatetest cases

15

CRASH Robustness Testing Result Categories

¢ Catastrophic

« Computer crashes/panics, requiring a reboot
e.gJ., GetThreadContext(GetCurrentThread(), NULL);

¢ Resart

» Benchmark process hangs, requiring restart
¢ Abort

* Benchmark process aborts (e.g., “core dump”)
¢ Sient

* No eror code generated, when one should have been
(e.g., de-referencing null pointer produces no error)

¢ Hindering
* |ncorrect error code generated
* Found via by-hand examinations, not automated yet

16

Resultsfor Unix Operating Systems

Normalized Failure Rate by Operating

System

AIX
FreeBSD
HPUX 9.05

HPUX 10.20
Irix 5.3
Irix 6.2

B Abort %
T Silent %
] Restart %
* Catastrophic

Linux

Lynx
NetBSD
OSF-1 3.2
OSF-14.0
QNX 4.22
QNX 4.24
SunOS 4.13
SunOS 5.5

Operating System Tested

|| %%

20%

30%

0% 10%

40%

50%

Normalized Failure Rate (after analysis)
BALLISTR)

But What About Windows?

Thinking of running your
critical apps on NT¢

srft there enough g

Percent Abort Failures

Failure Rates by Function Group

Percent Failures by Functional Group

100% —/

y[©O

S8

o™

, O

phgi.

gue

’ P~CCQSS
Functions
with
Catastrophic
Failures
Linux None

Windows 2000 None
Windows NT None
Windows 98 SE 7 I
Windows 98 7 I
Windows 95 8 I

Windows CGE 2.11 28I

Robustness Beyond Operating Systems

¢ Some softwareisvery robust
e HLA RTI —DoD distributed ssmulation backplane

¢ Unfortunately, commercial software componentstend to be non-
robust
* Unix systems often displayed a vulnerability to crashing
* Windows CE had 28 functions that could cause a crash
 [|nitia results on several CORBA implementations don’t look promising
 |nitial results on accelerated software aging tests look bad for both Linux and
Windows

¢ How doyou build arobust system from non-robust components?
o Multi-version Unix implementations won’t work (we checked)
* The market isn’t demanding more robust software (yet)
o Solution: (?) build systems that degrade gracefully when components fail

20

A Distributed Embedded System Designer’sView

¢ Highly distributed systems
» Measured by: Product family success, life-cycle cost, dependability

* Fine-grain, system-on-chip nodes form distributed systems
— Micro-Electrical/Mechanical Systems (MEMYS) for 1/0
— Microcontroller & network connection “for free” on same piece of silicon

'S (A ’s][A\ 'S (A

nC nC nC

MEMS

springs {4 Network

etched pit

center plate

electrostatic
comb drives

bond pad &

21

Area #4. Graceful Degradation

¢ Research motivation:
» Future embedded systems will be low cost, but highly distributed

* |nthe common case, not all components will be working
— Degraded or failed component hardware
— Unreliable/non-robust component software

¢ EXxisting graceful degradation techniques
rely upon manual reconfiguration

» Worksfinefor afew processors
» Doesn't scale to thousands of processors

¢ Research goals
» Achieve automatic graceful degradation for a given system architecture
» Create general principlesfor designing architectures that gracefully degrade

22

,;;f-_flgur ing Embedded Systems

¢ Automatic co 1 __ﬂl:atl on management Isa unifying capabr I ity

+ Produ '"famrllescantncl ude degradation as well asintentional
oe/pe formance tradeoff points

ROSES: Robust Self -CO

.e_;:\-]

¢ Conad_-er component farlureasan example:
fl Cof.ii;ponent fails—
; trlggers reconfrguratlon for degraded operatr on
. Component replaced —
 “reconfiguration to integrate repalr part

. New component added —
reconfiguration to upgrade system

o Thatt’_}sa lot to attempt all at once. ..
e Static configuration at first
« On-the-fly configuration as an eventual goal

A Simplistic Example

¢ Control of gasoline engine speed

o Complicated system controls fuel if valve isinstalled/operational
» But, baseline capability isretained in case of failure

: PID CONTROL | SPEED

IGNITION
CONTROL

Throttled Engine Controller

: BANG-BANG :

: ALGORITHM | CONTROLLER Degrades to . CONTROL

. ALGORITHM |

NETWORK
IGNITION %

CONTROL

< S
i)
S []

Jn)
L ﬂ -}L’* il

¢

SPEED
SENSOR

Hit-or-Miss Constant Speed
Engine Controller

24

Different Sensors/ Different Capabilities

¢ Similarly, different actuators have different capabilities
» Mobile Object Adapters trandate raw capability into desired interface

LOCAL

COMPUTATION [RELATIVE
aGorTHMs, | SPEED

EATA STO RAG5 \S ENSO RJ

Mobile Object Adapter

RELATIVE
SPEED
INTERFACE
(TOO FAST/
TOO SLOW)

;

Embedded Network
EXAMPLE SIMPLE SPEED SENSOR

LOCAL

COMPUTATION,
ALGORITHMS,

DATA STORAGE

Mobile Object Adapters

PROPORTIONAL)
SPEED
SENSOR

RELATIVE

SPEED PERCENT RPM
INTERFACE | MAXIMUM

(TOO FAST/ |INTERFACE INTERFACE

OVERSPEED
EMERGENCY
INTERFACE

TOO SLOW)

Embedded Network

EXAMPLE HIGH-END SPEED SENSOR with
MULTIPLE INTERFACES

Generic ROSES System Architecture

SMART SENSORS SMART ACTUATORS
_ #
> Basic > Basic
o) Sensor i Ne) Actuator
& E Device & E Device
T = . T .
i Baseline i Baseline
3 8 | Sensor SW 3 8 | Actuator SW
— | Functionality — | Functionality
SW SW SW SW
A(_japter for|---| Adapter for Ac_lapter for|- -+ | Adapter for
High Level High Level High Level High Level
Logical Logical Logical Logical
Interface Interface Interface Interface
Dynamic Interface Dynamic Interface
to Object Bus i to Object Bus =

Object Bus (ORB Core operating across a network)

CUSTOMIZATION MANAGER
Adapter Repository Co-Scheduling & Assigment Tool

Functionality To Hardware Mapping

¢ Oneédement of ROSES.
Automatic allocation of HW & SW components

o Maximize utility of functions within hardware constraints

FUNCTIONAL
REQUIREMENTS

l

CONTROL Dynamic

ALGORITHMS _ Adaption
& Runtime
SOFTWARE System

AN

CI%JS'" MEMORY NETWORK

l' ‘\
O' ‘\
U A

SENSORS ACTUATORS

27

Near-Term Research Challenges

4

4

4

4

4

M apping functionality onto hardware
o Maximize utility of result given constrained resources

Achieving real-time oper ation
» Co-schedule CPU, Memory, Network usage to meet real -time deadlines

Achieving “ plug & play” capabilities
* ISCORBA too “fat”? (how about Jini...)
* Avoid re-inventing distributed object technology if possible!

Testbed & demonstration
» Generic automotive testbed
» Apply techniques to multi-sensor vehicle navigation & other functions

Plenty of long-term resear ch challengestoo, of course

28

Other Current Activities

¢ Chair of IFIP WG 10.4 SIG on dependability benchmarking

* How do you get measures of system dependability that work for real-world
conditions?

» Representatives from universities, industry, government labs

¢ Industry-funded research efforts
» General Motors, Bosch: graceful degradation of automotive systems
« Adtranz: dependability analysis of train network protocol
* Emerson, Microsoft: software robustness of Windows
* IBM: “bulletproof Linux”
» ABB: software robustness of embedded systems

29

Teaching System Architecture (current status)

¢ CMU ECE 18-540: Distributed Embedded Systems
» Elevator asan example
» Includes lightweight software engineering: requirements to validation
o Material motivated via“ war sories’

¢ Businessissues
e How does a particular company make its profits?
* Non-technical constraints on solutions are areality
¢ Levesof abstraction
» Top-down decomposition + Bottom-up synthesis
» Orthogonal building blocks (when you can find them)
¢ Multi-technology tradeoffs
¢ Non-functional requirements
o “ilities’, safety, cost
¢ Life-cycle pergpective
* Requirements through disposal
o Selected real-world issues. spare parts, cross-cultural designs, ethics

30

Current Research Scope

INTEGRATED
CIRCUIT

"":"!::-_EE;-;_ . ;

s NETWORKED
i COMPUTERS

A

 WIRED
HOUSE

TRANSPORTATION HIGHWA PACIFIC INTERNET

SYSTEM SYSTEM FLEET

BUSINESS / GOVERNMENT / PEOPLE

-

LEVATOR AUTOMOBILE SUBMARINE

31

2
’F—"'_

dli

. NI

Phil Koopman Meredith Beveridge

Jantao Pan Charles Shelton

Kanaka Juvva (graduating) Sandeep Tamboli (graduating)
Bill Nace

Kobey DeVale Not shown (new additions):
Ying Shi Tridib Chakravarty

John DeVale Beth Latronico

32

