
Software Architectures for Software Architectures for Software Architectures for Software Architectures for
Graceful Degradation in Graceful Degradation in Graceful Degradation in Graceful Degradation in

Embedded SystemsEmbedded SystemsEmbedded SystemsEmbedded Systems
Charles Shelton Philip Koopman

Workshop on Reliability in Embedded Systems
20th Symposium on Reliable Distributed Systems

October 28, 2001

&Electrical Computer
ENGINEERING

Institute
for Complex
Engineered
Systems

Robust Self-Configuring Embedded Systems
http://www.ece.cmu.edu/roses

2

Software Architecture for Graceful Degradation
! Introduction

• Software architecture and embedded systems
• Graceful degradation
• RoSES product family architecture

! Example system: an elevator architecture
• Elevator Functionality
• System sensors/actuators
• Standard elevator architecture
• Preliminary architecture for graceful degradation

! Architectural concerns and evaluation
! Summary
! Future Questions

3

Software Architecture for Embedded Systems
! Can we develop software architectures to promote

graceful degradation in embedded systems?
! Software Architecture

• Overall structure of system
• Decompose system into components and connectors
• Provide ability to reason about system at high level
• Several architectural styles/patterns have been identified

! Embedded Systems
• Added system complexity/features is driving larger, more

complex software
• Safety-critical, dependability
• Limited hardware resources, extremely cost-sensitive
• Traditional software architectural styles may not be appropriate

4

Graceful Degradation
! Individual component failures reduce functionality; do

not cause system failure
• Method to achieve robustness, safety, dependability

! Goal: Achieve graceful degradation without explicitly
specifying all failure scenarios a priori
• How can the system’s software architecture influence graceful

degradation?

! Possible approaches
• Highly distributed
• No single point of failure
• Components are decoupled and autonomous
• Redundancy (not as effective for software)

! Case Study: Elevator System

5

RoSES Product Family Architecture
! Different component configurations provide certain levels of functionality
! Specify architecture with minimum functionality as base configuration
! Focus on architecture for valid component configurations, not reconfiguration

problems (Bill Nace’s work)

Components
Installed

N

N+1

N+2

N+3

N-1

Product Family

Standard
Product A

Standard
Product D

Standard
Product B

Standard
Product C

= Product Variant
= Add or Remove a Component

{

Components
Installed

N

N+1

N+2

N+3

N-1

Product Family

Standard
Product A

Standard
Product D

Standard
Product B

Standard
Product C

Components
Installed

N

N+1

N+2

N+3

N-1

Product Family

Standard
Product A

Standard
Product D

Standard
Product B

Standard
Product C

= Product Variant
= Add or Remove a Component

{

6

Architectural Decisions
! Explicitly specify component interfaces

• Construct all possible messages to be passed between components
• Helps determine which components need to communicate

! Partition Functionality
• Separate critical and non-critical functionality
• Make critical components as autonomous as possible

! Constrain component configurations
• Each component has minimal input/output interface
• Critical components must be present for base functionality

7

Elevator Functionality
! Must transport people between floors

• Move car slowly in shaft
• Stop at every floor
• Open doors at each floor

! Must ensure safety
• Do not crush people between doors
• Do not crush people between floor

and elevator
• Do not run car at unsafe speeds
• Do not trap people in the elevator

! Optimizations
• Only stop on requested floors
• Provide feedback to passengers
• Minimize travel time, wait time

8

Elevator System Sensors and Actuators
! Sensors

• Elevator position and speed
– AtFloor[f,d](v)
– HoistwayLimit[d](v)
– DriveSpeed(s,d)

• Door sensors
– DoorClosed[j](v)
– DoorOpen[j](v)
– DoorReversal[j](v)

• Passenger requests
– CarCall[f](v)
– HallCall[f,d](b)

! Control System State
• DesiredFloor(f,d)
• DesiredDwell(n)

! Actuators
• Elevator control

– DoorMotor[j](m)
– Drive(s,d)
– EmergencyBrake(b)

• Button lights
– CarLight[f](k)
– HallLight[f,d](k)

• Passenger feedback
– CarLantern[d](k)
– CarPositionIndicator(f)

9

Standard Elevator Control Architecture
! Hierarchical control in layers, modules interdependent
! Vulnerable to single component failures

Intelligence

Control

Servo

Drive Control Door Control
Hall Call
Control

Car Call
Control

Dispatcher Safety

Drive
Sensors/Actuators

Door
Sensors/Actuators

Emergency
Brake

Car Call
Buttons/Lights

Hall Call
Buttons/Lights

Hardware
Sensors/Actuators

Software
Component

Controls

10

Elevator Architecture: Product 1 (Base)

Drive
Control

Door
Control

Safety

DoorClosed

AtFloor

DriveSpeed

Drive

DoorOpen

AtFloor

DriveSpeed

DriveSpeed

AtFloor

DoorClosed

DoorClosed

DoorMotor

EmergencyBrake

Actuator

Sensor

Software
Component

Listens to
Controls

DoorReversal

HoistwayLimit

HoistwayLimit

11

Elevator Architecture: Product 2
! Add real-time network, buttons

AF

Dr
DO

DC

DR

DrS

DML

EBDrive
Control

Safety

Door
Control

AF

AF DrS

HWL

DC

AF DrS DCHWL

Actuator

Sensor

Software
Component

Listens to
Controls

Network

Car Call
Control

Hall Call
Control

Listens/Broadcasts

HallLightHallCallCarCall CarLight

12

Elevator Architecture: Product 3
! Add passenger feedback lights

AF

Dr
DO

DC

DR

DrS

DML

EBDrive
Control

Safety

Door
Control

AF

AF DrS

HWL

DC

AF DrS DCHWL

Actuator

Sensor

Software
Component

Listens to
Controls

Network

Car Call
Control

Hall Call
Control

Car Pos Ind
Control

Listens/Broadcasts

HallLightHallCallCarCall CarLight CarPosition
Indicator

Car Lantern
Control

CarLantern

13

Elevator Architecture: Product 4
! Add Dispatcher for optimization

AF

Dr
DO

DC

DR

DrS

DML

EBDrive
Control

Safety

Door
Control

AF

AF DrS

HWL

DC

AF DrS DCHWL

Actuator

Sensor

Software
Component

Listens to
Controls

Network

Car Call
Control

Hall Call
Control

Car Pos Ind
Control

Listens/Broadcasts

HallLightHallCallCarCall CarLight CarPosition
Indicator

Car Lantern
Control

CarLantern
Dispatcher

14

Elevator Control System
! Main controllers are autonomous

• Drive Controller
• Door Controller
• Safety

! Other controllers provide “advisory” information
• HallCall buttons
• CarCall buttons
• Dispatcher

! Main controllers follow advice when available
• Must pass internal consistency checks
• In absence of advice, perform base functionality

15

Architectural Concerns (1)
! Cost vs. Safety/Dependability

• Adding additional redundant sensors
– Necessary to ensure safety for main controllers
– Could add more for each secondary controller, but cost prohibitive

• Network
– Could be a single point of failure
– Without it need exponentially more sensors for more features
– Could add secondary network to increase dependability

Drive
Control

Door
Control

Safety

DoorClosed

AtFloor

DriveSpeed

Drive

DoorOpen

AtFloor

DriveSpeed

DriveSpeed

AtFloor

DoorClosed

DoorClosed

DoorMotor

EmergencyBrake

DoorReversal

HoistwayLimit

HoistwayLimit

16

Architectural Concerns (2)
! Abstract sensor/actuator interface for components

• Components can access sensors from physical link or network
without modifying code

• Logical interface separates software concerns from hardware
concerns

! System Configurations
• Designed into architecture to constrain configuration options
• Reconfiguration “hardwired”
• System should survive components failing in arbitrary order

17

Evaluation
! How can I evaluate my architectural design?

• Can’t build working elevator and test it
• Simulation of a distrbuted network

! Simulation framework exists from ECE 540/549 class
• Build executable system from my architecture
• Fault injection mechanisms to fail components during system

operation
• Measure performance delivering passengers for each

configuration

18

Summary
! Embedded Systems need methods to ensure safety,

dependability, robustness
• Graceful Degradation

! System’s software architecture may strongly influence
whether graceful degradation is achievable

! Design a software architecture for an elevator system
• Distributed
• Decoupling of components
• Product family structure
• Some hardware replication

! Build executable system and test it
! How well does it promote graceful degradation?

19

Future Questions
! Can we develop an architectural style specifically for

graceful degradation?
• Embedded systems have special concerns

– Cost
– Constrained resources

! Can we apply it to multiple domains?
• Elevator
• Automobile navigation system
• Drive-by-Wire

