b o Robust Self-Configuring Embedded Systems
jROSEs http://www.ece.cmu.edu/roses

Software Architectures for
Graceful Degradation In
Embedded Systems

Charles Shelton Philip Koopman

Workshop on Rdliability in Embedded Systems
20t Symposium on Reliable Distributed Systems
October 28, 2001

Carnegie Electrical & Compuit mrcompex ¥
@ vimegie (Y ERGINEERING © - BE

Softwar e Architecturefor Graceful Degradation

¢ Introduction
« Software architecture and embedded systems
o Graceful degradation
* ROSES product family architecture

¢ Example system: an elevator architecture
e Elevator Functionality
o System sensors/actuators
e Standard elevator architecture
* Preliminary architecture for graceful degradation

¢ Architectural concerns and evaluation
¢ Summary
¢ Future Questions

Software Architecture for Embedded Systems

¢ Can we develop softwar e architecturesto promote
graceful degradation in embedded systems?
¢ Software Architecture
o Overall structure of system
e Decompose system into components and connectors
* Provide ability to reason about system at high level
o Several architectural styles/patterns have been identified
¢ Embedded Systems

« Added system complexity/featuresisdriving larger, more
complex software

o Safety-critical, dependability
 Limited hardware resources, extremely cost-sensitive
» Traditional software architectural styles may not be appropriate

Graceful Degradation

¢ Individual component failuresreduce functionality; do
not cause system failure

* Method to achieve robustness, safety, dependability

¢ Goal: Achieve graceful degradation without explicitly
specifying all failure scenariosa priori
 How can the system’ s software architecture influence graceful
degradation?
¢ Possible approaches
e Highly distributed
e No single point of failure
« Components are decoupled and autonomous
» Redundancy (not as effective for software)

¢ Case Study: Elevator System

RoOSES Product Family Architecture

¢ Different component configurations provide certain levels of functionality
¢ Specify architecture with minimum functionality as base configuration

¢ Focuson architecturefor valid component configurations, not reconfiguration
problems (Bill Nace' s wor k)

Product Family

Components
Installed Standard

Product D

N+3 x
Standard
N+2 i i i Product B(A
i Standard
N+1 Product C
i) i

3 S ¢
Standard

Product A @ = Product Variant
<€» = Add or Remove a Component

Architectural Decisions

¢ Explicitly specify component interfaces
« Construct all possible messages to be passed between components
» Helps determine which components need to communicate

¢ Partition Functionality
« Separate critical and non-critical functionality
« Make critical components as autonomous as possible

¢ Constrain component configurations
e Each component has minimal input/output interface
» Critical components must be present for base functionality

Elevator Functionality

¢ Must transport people between floors
 Move car slowly in shaft
e Stop at every floor
* Open doors at each floor

¢ Must ensure safety
Do not crush people between doors
* Do not crush people between floor
and elevator
e Do not run car at unsafe speeds
e Do not trap people in the elevator

¢ Optimizations
* Only stop on requested floors
* Provide feedback to passengers
e Minimizetravel time, wait time

[)H]‘vl SHEAVE

@*—‘_—“(‘\H

—=— COUNTERWEIGHT

-a— BOTTOM SHEAVE

Elevator System Sensorsand Actuators

¢ Sensors ¢ Actuators
» Elevator position and speed « Elevator control
— AtFloor[f,d](v) — DoorMator([j](m)
— HoistwayLimit[d](v) — Drive(s,d)
— DriveSpeed(s,d) — EmergencyBrake(b)
* Door sensors « Button lights
— DoorClosed[j](v) — CarLight[f](K)
— DoorOpen[j](v) — HallLight[f,d](K)
— DoorReversalj](v) e Passenger feedback
e Passenger requests — CarLantern[d](k)
— CarCal[f](v) — CarPositionindicator(f)

_ HallCall[f,d](b)

¢ Control System State
* DesredFloor(f,d)
o DesiredDwell(n)

Standard Elevator Control Architecture

¢ Hierarchical control in layers, modulesinter dependent
¢ Vulnerableto single component failures

Dispatcher

Intelligence %

Safety

Software
Component

Hardware
Sensors/Actuators

—» Controls

Drive Control Door Control

Control /

Hall Call
Control

Car Call
Control

\

\

/

Drive Door Emergency
Sensors/Actuators Sensors/Actuators Brake

Servo

Hall Call
Buttons/Lights

Car Call
Buttons/Lights

Elevator Architecture: Product 1 (Base)

DoorClosed
DoorClosed
_ t/ DriveSpeed EmergencyBrake)¢{ Safety
Drive

Control
ey

DoorOpen DoorClosed

Door
Control
DriveSpeed

DoorReversal
Component

.éb

——

¢

Software

—» Controls
—> Listensto

10

Elevator Architecture: Product 2

N
@ %E’)EI T@ @ ’ () Safety
Door Jz

Control

Car Call Hall Call @
;ontrol Control

Component

—» Controls

— > Listens to
<—> Listens/Broadcasts

s Network
11

Elevator Architecture: Product 3

¢ Add passenger feedback lights @

N
@ %E’)EI Tk o Q ’ () Safety
Door Jz

Control

Car Call Hall Call Car Pos Ind| | Car Lantern @

Control Control Control Control
7

Component

—» Controls

—> Listensto
<—> Listens/Broadcasts

s Network
12

Elevator Architecture: Product 4

¢ Add Dispatcher for optimization

ORE AP

Drive
Control

L Q?

Door
Control

j

2RO

Safety

)

Car Call
Control

Hall Call
Control

Car Pos Ind
Control

Car Lantern
Control

Component

—» Controls

—> Listensto
<—> Listens/Broadcasts

s Network

:

Dispatcher

Elevator Control System

¢ Main controllersare autonomous
* Drive Controller
e Door Controller
o Safety
¢ Other controllersprovide “advisory” information
 HallCal buttons
o CarCall buttons
e Dispatcher
¢ Main controllersfollow advice when available

e Must passinternal consistency checks
 |n absence of advice, perform base functionality

14

Architectural Concerns (1)

¢ Cost vs. Safety/Dependability
« Adding additional redundant sensors

— Necessary to ensure safety for main controllers
— Could add more for each secondary controller, but cost prohibitive

DoorClosed @

Al

DriveSpeed

Drive
Control

e

Network

e

N

] N

(Ermergencypraie e Satety
DriveSpeed
DoorCIosed)

Comomoni

Door

DriveSpeed

Control i

DoorReversal

;

— Could be asingle point of failure
— Without it need exponentially more sensors for more features
— Could add secondary network to increase dependability

15

Architectural Concerns (2)

¢ Abstract sensor/actuator interface for components

« Components can access sensors from physical link or network
without modifying code

» Logical interface separates software concerns from hardware
concerns

¢ System Configurations
* Designed into architecture to constrain configuration options
« Reconfiguration *“hardwired”
« System should survive components failling in arbitrary order

16

Evaluation

¢ How can | evaluate my architectural design?
o Can’t build working elevator and test it
e Simulation of adistrbuted network

¢ Simulation framework exists from ECE 540/549 class

« Build executable system from my architecture

 Fault injection mechanismsto fail components during system
operation

* Measure performance delivering passengers for each
configuration

17

Summary

¢ Embedded Systems need methodsto ensure safety,
dependability, robustness

o Graceful Degradation

¢ System’s softwar e ar chitecture may strongly influence
whether graceful degradation isachievable

¢ Design a softwar e architecturefor an elevator system
 Distributed
e Decoupling of components
* Product family structure
e Some hardware replication

¢ Build executable system and test it
¢ How well does it promote graceful degradation?

18

Future Questions

¢ Can we develop an architectural style specifically for
graceful degradation?

e Embedded systems have special concerns
— Cost
— Constrained resources

¢ Can we apply it to multiple domains?
« Elevator
o Automobile navigation system
e Drive-by-Wire

19

