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ABSTRACT 
Automatic graceful degradation can be accomplished by 
reconfiguring the software elements of a distributed embedded 
system to accommodate the available hardware upon detection of 
a fault.  The reconfiguration algorithm selects software 
components from a Product Family Architecture in order to 
maximize the functionality of the system.  The mobile software 
components must then be allocated to the hardware so as to ensure 
network and processor resources are conserved.  As the allocation 
step is NP-complete, care must be taken to ensure it is attempted 
only when a good chance of success exists, otherwise the rest of 
the algorithm merely wraps polynomial time (or worse) loop 
constructs around this hard core.  Therefore, good heuristics are 
critical to success of this algorithm. 

1. INTRODUCTION† 

This paper discusses a framework or general pattern for solution 
of the system-wide configuration problem, useful for 
reconfiguration of a distributed embedded system in response to a 
system failure or upgrade.  Reconfiguration has been identified as 
a key mechanism for an automatic graceful degradation facility in 
[Nace2000].  The key insight of such reconfiguration is to, in 
response to a hardware failure, re-synthesize the system in such a 
way as to maximize system functionality.  Such synthesis assigns 
software components, called adapters, from an extensive library 
to the available hardware components.  We use the term "adapter" 
because of the way it adapts a physical interface to a logical one.  
For the purposes of this paper, it is only important that the adapter 
be a mobile software component. 

Other useful scenarios for reconfiguration include initial 
configuration, parts replacement with non-exact spares, and 
graceful upgrade. 

The system-wide customization problem, therefore, is to 
maximize the utility of a system with pre-specified hardware by 
selecting and allocating software components.  We propose a 
three step framework for solution of this problem, which is 
illustrated in Figure 1.  Step 1 is to choose features that should be 
implemented in an attempt to decide how much utility should be 
attempted.  Step 2 selects the adapters that provide data for those 
features.  Step 3 then ensures the adapters can be allocated to 
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hardware resources.  Failure of the allocation results in a re-
execution of previous steps to find different sets of adapters for 
allocation.  The allocation step (and possibly others) is NP-
complete, and thus must be attacked by finding appropriate 
heuristics.  A critical research challenge is to ensure the other 
steps are not merely wrapping several huge “while loops” around 
it.  To that end, the information returned from a failure of one step 
is used to guide subsequent searches of the previous step. 

1. Feature Selection

2. Adapter Selection

3. Adapter Allocation

Success!

Failure

Failure

Given:
-PFA Graph
-Current H/W
Specification

Output:
-Adapter to H/W Mapping

 

Figure 1: Algorithm Framework 

This problem is similar to several other important research 
questions; and, while different in some respects, may find useful 
insight in such approaches.  The hardware-software codesign field 
views system synthesis as a search for the minimal hardware that 
fulfills a fixed utility[Kalavade93].  We are attempting to find the 
maximum utility that can operate on fixed hardware.  
Reconfigurable computing uses special hardware, typically a Field 
Programmable Gate Array (FPGA), and dynamically modifies the 
operation of that hardware to increase performance.  We 
reconfigure an entire distributed system with software 
components in response to fault events in an attempt to increase 
robustness.  At some level, the system-wide customization 
problem resembles the agent based computing field, but is more 
amenable to analytic techniques.  Other similarities exist with 
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economic and operations research fields that may provide fertile 
grounds for applicable solution ideas. 

2. MOTIVATION 
Much of the reasoning behind why users and system designers 
would find graceful degradation at all useful has been expounded 
in [Nace2000].  We believe a solution to the system-wide 
customization problem to be useful as the core behind a solution 
to the graceful degradation challenge.  In short, upon component 
failure a reconfiguration manager would be executed to 
customize the system for the remaining components. 

Systems built with such a mechanism could then fulfill some of 
the very difficult reliability requirements of embedded systems.  
In addition, they would gain significant logistical benefits, such as 
freedom from legacy spares and the ability to repair systems with 
non-exact spares. 

We believe this is feasible in the distributed embedded system 
domain for several reasons:  distributed compute capability, smart 
sensors, and optimization functionality. The distributed nature of 
these systems implies that when a component fails, much of the 
rest of the system is still operational and, save for network 
failures, can still communicate.  They can still get work done, 
because they are typically microcontroller-based sensors (i.e. 
smart sensors) that have their own general compute resources.  As 
microelectromechanical system (MEMS) sensors become more 
prevalent, this trend will accelerate, as such sensors have huge 
amounts of silicon, used merely for structural reasons, upon which 
increased compute power can be constructed. Finally, 
reconfiguration is possible in the distributed embedded domain 
because such systems increasingly have a large portion of their 
functionality devoted to various optimizations.  Fundamental 
automotive drive train control has not changed drastically, for 
instance. But large numbers of electronic components have been 
added to the vehicle for performance enhancements, 
environmental controls and the increased user satisfaction 
provided by various infotainment devices.  Such optimizations 
can be shed in the case of failure in order to provide the 
computing resources necessary to fulfill the base mission of the 
system. 

3. PRIOR WORK 
A number of research efforts have studied the Adapter Allocation 
step as it applies to the allocation of computing tasks to parallel 
and multiprocessor systems, notably in [Stone77, Shen85, 
Bokhari81, Bokhari88, Chu87, Indurkhya86, Efe82, Houstis90].  
[Woodside93], for instance, developed heuristic extensions to the 
MULTIFIT bin-packing algorithm to create a static task allocator 
for embedded systems.  [Beck95] used a similar allocation step as 
part of the specification of a distributed system.  [Prakash92] 
showed the usefulness of linear programming techniques to the 
same problem – simultaneous specification and allocation – 
though the application of such techniques to problems with a large 
number of adapters appears to be computationally challenging. 
[Kwok99] benchmarks and generates comparison metrics on 15 
different task graph scheduling algorithms.  Such algorithms are 
very similar to the allocation issues of interest, though the 
desirable metric is usually a minimal critical path schedule.  We 

intend to exploit, to the maximum extent possible, the excellent 
ideas and techniques described in this research body. 

Much less research has covered the other steps of this algorithm.  
The closest research is [Beck2000] and [Reagin99], who 
constructed robotic workcell applications using the customization 
opportunities of a component-based software architecture, with 
impressive results.  Their optimization mechanism, unfortunately, 
was limited to the experience and guidance of the human design 
engineer.  Analytical Hierarchical Process (AHP) is a decision 
sciences mechanism to choose functional system alternatives, as 
illustrated in [Braglia99].  AHP relies upon an extensive number 
of pair wise comparisons, structured hierarchically, to make a 
single decision.  As such, it is similar in goals to the Step 1 
algorithm, but would require designer input to guide each of these 
multitude of pair wise comparisons, and is therefore difficult to 
automate.  For this reason, we shall develop our own mechanisms 
for Steps 1 and 2, which are described below. 

4. SOLUTION FORMULATION 
The well known data flow graph (DFG) can be used to specify the 
various configuration alternatives of the system.  Each vertex in 
such a graph represents a source (sensor), sink (actuator) or 
transformation (adapter) of data.  Edges represent the flow of 
communication through the system.  Both vertexes and edges can 
be labeled by the system engineer to specify resource 
requirements (CPU cycles, RAM, I/O channels, network 
bandwidth, etc).  Figure 2 shows a simple DFG for sensor fusion, 
low-pass filtering and Fast Fourier Transform for a hypothetical 
(and tiny) system. 
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Figure 2: An Example DFG 

This common representation of embedded systems must be 
augmented to represent the multitude of system alternatives 
available in the entire product family.  We presume the existence 
of a fine-grained Product Family Architecture (PFA) which 
provides a structured view of all possible configurations of the 
system [Jiao2000].  Such PFAs are common in large distributed 
embedded systems. 

The PFA insight allows us to construct an augmented DFG known 
as a PFA graph.  The PFA graph is a supergraph of each 
configuration's DFG.  In order to merge the individual DFGs, 
choice elements are placed between adapters to signify that any of 
the input adapters may send that type of data to any or all of the 
output adapters.  Such choice elements deliberately follow the 
semantics of a message type on a broadcast bus, such as a Control 
Area Network, as is typically found in distributed embedded 
systems.  The use of a choice element (the Part Number message) 
is illustrated in Figure 3 for a trivial process control system.  Note 
that in the absence of one of the sensors (barcode reader or 
machine vision sub-system), the other sensor can provide the part 
number to the rest of the system. 
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Figure 3: A Choice Element in an Augmented DFG 

This augmented DFG is an expressive, uncomplicated mechanism 
to specify the configuration options for a system.  It is sufficiently 
useful and yet computationally manageable enough for this 
research. 

An important insight comes from looking at the PFA graph as a 
supergraph of all possible well-formed system configurations 
(where well-formed indicates the subset of all system 
configurations wherein data flows properly from sensor to 
actuators without lack of adapters nor with extraneous adapters).  
One important part of the solution, then, is to decide upon the sub-
graph that should be placed in the system.  It then becomes easy to 
see that pruning and combinatorial algorithms will be useful 
techniques to solve this problem. 

5. SOLUTION ARCHITECTURE 
The problem is illustrated, at a fairly high level, in Figure 1.  
Inputs to the problem are the PFA graph (recall, this is the 
augmented DFG) which specifies all the system alternatives.  A 
description of the available hardware is also necessary.  The goal 
is to generate a valid configuration of adapters to the processing 
elements (PE) and message traffic to network elements (NE). 

Three major searches make up the reconfiguration algorithm: The 
first is to select a set of features, which are defined and described 
in the next section.  In the next step, a set of adapters must be 
chosen that implement those features in a well-formed 
configuration.  Finally the adapters must be allocated to the 
hardware and constraints checked to produce a valid 
configuration. 

The last step, adapter allocation, has been researched in somewhat 
different circumstances [Beck95, Woodside93, Efe82].  
Allocation is an NP-complete problem, easily mapped to the well-
known bin packing problems.  The real challenge of solving the 
system customization problem is to find creative means to keep 
the first two steps from merely being huge loop constructs around 
the third, NP-complete step. 

5.1 Step 1: Feature Selection 
Features are simply a means for the designer to express desires 
about the functionality of the overall system.  They are used to 
guide the overall optimization of the algorithm, as a maximal set 
of features is chosen for the final system configuration.  It is 
possible to express the desirability of features in many ways.  As 
mentioned above, the AHP process (and to a certain extent the 
Quality Function Deployment process which superceded it) are in 
some ways a language for expressing customer and designer goals 
for a system.  Both are rather heavyweight and not easily 

automated, however, so would make for an awkward feature 
model for this research. 

Much of the feature selection sub-algorithm will depend upon the 
feature representation model.  A general feature model that scales 
well is not the point of this research; instead, a class-based feature 
model that is sufficiently expressive to cover most complex 
distributed embedded system will be used.  In the class-based 
feature model, some interior vertexes (adapters) in the PFA graph 
are labeled as features by the system designers.  Features are also 
given a utility value – possibly infinite for critical functions.  It is 
this utility that will be optimized by the algorithm.  Groups of 
features with similar characteristics present alternatives for 
different system configurations.  Such a group is termed a class 
(not to be confused with an object oriented "class" that an 
implementation might have).  All features with the same class 
represent redundant adapters.  Only one (or perhaps a pre-
specified N) of a particular class is useful on a system.  The 
overall utility of a configuration is the sum of the utility of all the 
features of a configuration, where only the largest utility of a 
particular class would count. Features can be zero sized (in terms 
of resources required), if a designer wanted to insert a vertex to 
show the desirability of obtaining data from a particular source, 
for instance.  In addition, classes (not features) can be labeled as 
critical, thus imposing a constraint whereby any valid 
configuration must include one of the features from the critical 
class. 

This feature model is expressive enough to allow representation of 
a wide variety of systems.  There are, however, some useful 
systems that cannot be expressed and others where the expression 
is possible, but clumsy.  For instance, suppose a particular adapter 
is a “superset” adapter that actually does two things.  Should it 
have two classes?  What if it could do X or Y, not both 
simultaneously (i.e. it handles mode changes well)?  For systems 
where such issues are important, the system engineer should be 
able to replace our feature model with minimal overall effect on 
the workings of the algorithm.  However, we find our model 
general enough for the large majority of embedded systems. 

The feature selection algorithm attempts to optimize the overall 
system utility by choosing appropriate features from the different 
classes.  An obvious first start would be to choose the largest 
utility features from each class, which results in the upper bound 
on overall system utility.  Further increments will be based upon 
combinatoric algorithms.  The expected number of features of a 
system is small enough, especially when compared to the number 
of vertices in the PFA graph, that a sorted class combination 
algorithm may work well.  Further refinements of the algorithm 
will take into account feedback from failed trials to avoid the 
nasty looping problem discussed in the intro and section 5.4.  The 
collection of features chosen for implementation is the feature set, 
which is passed to the second step of the algorithm. 

5.2 Step 2: Adapter Selection 
The selection of adapters to implement those features chosen in 
step 1 is the difficult heart of the entire problem.  Lots of graph 
manipulation will be necessary to come up with the different sets 
of adapters for allocation. 

First the PFA graph should be pruned of all vertices that don’t 
contribute to calculating the feature set.  The graph will be 
traversed backwards from each feature, carefully marking vertices 
in a cycle-aware manner.  A depth-first algorithm will be 
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employed because such markings may need to be undone – either 
because the path ends in a sensor that is not operational, or the 
path would include a feature which is not an element of the 
feature set.  A similar forward traversal will also be necessary, 
marking all the vertices from features to actuators.  Most features 
will probably be quite close, if not incident to actuators, so this 
forward traversal should be quite easy.  In the case where a 
feature actually lies within a cycle, the backward traversal will 
stop after a single trip around the cycle, as it comes upon the 
previously marked feature.  Note that this pruning will include all 
paths from operational sensor to operational actuator that pass 
through features included in the feature set and no others. In no 
case will additional features be included, as that violates the 
separation of responsibilities of the different steps.  Perhaps 
feedback to the Feature Selection phase might be useful however, 
pointing out that the two features share a dependency. 

The pruned PFA graph still has plenty of redundancy, 
representing the subset of configuration space that implements the 
feature set.  The redundancy exists in the variety of sensor to 
actuator paths that flow through features in the feature set.  The 
reconfiguration manager must apply an orderly process to explore 
this space and choose candidate adapter sets, a collection of 
adapters that fulfill a single configuration.  To perform the orderly 
search, an adapter alternate graph will be constructed by 
collapsing the pruned PFA graph.  The vertices in this new graph 
represent choice points and correspond to the data elements in the 
PFA graph.  An edge is included in the graph for each path 
between the data elements, regardless of the number of adapters it 
originally passed through.  Selection of a candidate adapter set is 
then merely a search for paths through the adapter alternate graph 
that pass through the features sets.  Hopefully the state of the 
search will be easier to manage with this compressed graph. 

The resulting adapter set will be passed to the adapter allocation 
step to see if it can be fit into the hardware resources available.  
This adapter set represents a single DFG (no choice elements, so 
no flow alternates) which can then be tested for allocation on the 
available hardware in the third step. 

 

5.3 Step 3: Adapter Allocation 
The purpose of allocation is to determine if a configuration is 
allocatable and find the specific mapping of adapters to hardware 
and messages to networks.  The allocation problem is not 
uncommon, and has been studied in codesign and parallel 
processing contexts.  Most such research thrusts approach the 
problem as a bin-packing problem.  Bin packing is NP-complete, 
but decent heuristic methods exist, based on non-guided search 
and list processing. 

A thorough examination of the allocation problem in a very 
similar context [Beck95] used list-processing techniques to 
allocate tasks and specify processing element (PE) sizes.  The 
main decisions associated with an efficient list-processing 
heuristic are the manner in which item size is determined and the 
way the bin (PEs in this case) is chosen for packing each item.  
The experiments in [Beck95] showed that sizing tasks is best done 
based on a equally weighted calculation of resource (PE cycles, 
RAM, I/O channels, etc) and network bandwidth usage.  The 
determination of PE target at each allocation step should be based 
on more global knowledge – such as the nearness of neighboring 
adapters in the DFG.  By making allocation decisions in such a 

way that the adapter is allocated to the processing element that 
would minimize the bandwidth requirement (i.e. pack adapters 
that talk to each other on the same processing element so they do 
not need to use the network), overall packing quality is improved.  

5.4 Feedback From Failure 
If not handled carefully, Steps 1 and 2 merely wrap polynomial 
time (or worse) “while loops” around the NP-complete problem 
(approximated using the heuristic means described above) of Step 
3.  The intriguing part of this research attempts to find a creative 
manner to utilize feedback from the failure of one iteration to 
guide search choices.  When adapter allocation fails, the amount 
and type of resources lacking will be returned to the adapter 
selection phase.  The subsequent adapter selection search will be 
very different for a huge failure versus a small failure.  In fact, for 
small failures in adapter resources (versus network resources), a 
targeted search for alternate adapters might be fruitful.  Network 
resource failures are harder to compensate for, as any alternate 
adapter choice involves at least two different edge replacements in 
the PFA graph.   

Similarly, failures at the adapter selection step could provide 
information about the size of the closest match and the breadth of 
adapter sets that fulfilled each of the features in the feature set.  
This information would then assist the feature selection to 
determine which feature classes should be targeted for alternates.  
Gains from this second level are a bit less intuitive, but probably 
would pay bigger dividends, as they have the potential to make 
bigger search moves within the configuration space. 

Selection and use of feedback information is still very 
preliminary.  Our implementation has not yet progressed to the 
point where such decisions are necessary, though our framework 
has anticipated the communication and structuring of failure 
information from step to step. 

6. CONCLUSIONS AND FUTURE WORK 
This paper described system-wide customization, an interesting 
problem in the distributed embedded research field.  This problem 
requires the functional optimization of a distributed system 
consisting of fixed hardware resources.  Applications of the 
problem include automating graceful degradation, initial factory 
customization, graceful upgrade and parts replacement with non-
exact spares. 

In order to solve the system-wide customization problem, we have 
devised a solution framework consisting of three steps with 
feedback from a step's failure guiding further iterations of 
previous steps.  The three steps included a search for the 
maximum utility feature set, a flow graph directed search for 
adapters fulfilling the feature set, and an allocation test to map 
each adapter to hardware resources. 

Several possibilities exist for useful extensions of this work.  
Iterative and failover friendly reconfiguration managers would be 
very useful.  Additional constraint checking should also be 
integrated with the algorithm. 

An iterative reconfiguration manager would be useful to try to 
move toward a dynamic reconfiguration on embedded systems.  
Basically, the reconfiguration manager makes small moves in a 
planned manner so that the functionality of the total system 
increases (perhaps not monotonically), but the moves are small 
enough that they can possibly happen while the system is 
operational.  This is actually one step on a possible spectrum of 
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algorithmic tuning choices.  Having an algorithm that can be set to 
quickly generate valid configurations that only consist of the 
critical features would be quite useful in an emergency situation.  
On the other end of the spectrum, design tools could utilize a 
search that generates the highest quality solutions, with little 
regard for execution time. 

A failover friendly reconfiguration manager would keep in mind, 
as it determines subgraphs and allocations, that it would be nice to 
have redundant adapters for critical or the most desirable features.  
So it would include duplication of adapters where possible in the 
configuration chosen. 

Alternate algorithm construction is also possible as an interesting 
comparison.  The reconfiguration manager algorithm sketched out 
above is basically a depth first search through feature sets, adapter 
sets and adapter allocation.  Perhaps a broader search would better 
cover the configuration space.  Another intriguing approach 
would be to guide constructive solutions – basically starting out 
with the smallest configuration that is almost certain to fit (and, 
which could be mostly specified a priori to the algorithm) and 
then making small changes to attempt to build up, or construct, a 
more feature-rich solution. 

Finally, a constraint checking phase should ensure output 
configurations fulfill other requirements, such as timing and 
schedules.  It would be nice to be able to incorporate such 
knowledge in the decisions made in phase 1, 2 and 3 rather than 
waiting for the algorithm to complete its work before checking.  
How to integrate such constraints may be application dependent.  
At any rate, it is yet unclear how to fit constraint checking 
anywhere other than as a post process check. 

Overall, the algorithm framework described is an exciting and rich 
exploration of the system-wide configuration problem.  Solutions 
to this problem are critical to several useful lines of research – 
chiefly automatic graceful degradation.  The industry will be 
constructing exceedingly complex distributed embedded systems 
– by including such graceful degradation mechanisms, they will 
hopefully be reliable, trustworthy systems. 
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