
 1

A Graceful Degradation Framework for Distributed
Embedded Systems

William Nace
Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15217

wnace@cmu.edu

Philip Koopman
Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15217

koopman@cs.cmu.edu

ABSTRACT
Automatic graceful degradation can be accomplished by
reconfiguring the software elements of a distributed embedded
system to accommodate the available hardware upon detection of
a fault. The reconfiguration algorithm selects software
components from a Product Family Architecture in order to
maximize the functionality of the system. The mobile software
components must then be allocated to the hardware so as to ensure
network and processor resources are conserved. As the allocation
step is NP-complete, care must be taken to ensure it is attempted
only when a good chance of success exists, otherwise the rest of
the algorithm merely wraps polynomial time (or worse) loop
constructs around this hard core. Therefore, good heuristics are
critical to success of this algorithm.

1. INTRODUCTION†

This paper discusses a framework or general pattern for solution
of the system-wide configuration problem, useful for
reconfiguration of a distributed embedded system in response to a
system failure or upgrade. Reconfiguration has been identified as
a key mechanism for an automatic graceful degradation facility in
[Nace2000]. The key insight of such reconfiguration is to, in
response to a hardware failure, re-synthesize the system in such a
way as to maximize system functionality. Such synthesis assigns
software components, called adapters, from an extensive library
to the available hardware components. We use the term "adapter"
because of the way it adapts a physical interface to a logical one.
For the purposes of this paper, it is only important that the adapter
be a mobile software component.

Other useful scenarios for reconfiguration include initial
configuration, parts replacement with non-exact spares, and
graceful upgrade.

The system-wide customization problem, therefore, is to
maximize the utility of a system with pre-specified hardware by
selecting and allocating software components. We propose a
three step framework for solution of this problem, which is
illustrated in Figure 1. Step 1 is to choose features that should be
implemented in an attempt to decide how much utility should be
attempted. Step 2 selects the adapters that provide data for those
features. Step 3 then ensures the adapters can be allocated to

† This work supported by the US Air Force and the General

Motors Satellite Research Lab at Carnegie Mellon University

hardware resources. Failure of the allocation results in a re-
execution of previous steps to find different sets of adapters for
allocation. The allocation step (and possibly others) is NP-
complete, and thus must be attacked by finding appropriate
heuristics. A critical research challenge is to ensure the other
steps are not merely wrapping several huge “while loops” around
it. To that end, the information returned from a failure of one step
is used to guide subsequent searches of the previous step.

1. Feature Selection

2. Adapter Selection

3. Adapter Allocation

Success!

Failure

Failure

Given:
-PFA Graph
-Current H/W
Specification

Output:
-Adapter to H/W Mapping

Figure 1: Algorithm Framework

This problem is similar to several other important research
questions; and, while different in some respects, may find useful
insight in such approaches. The hardware-software codesign field
views system synthesis as a search for the minimal hardware that
fulfills a fixed utility[Kalavade93]. We are attempting to find the
maximum utility that can operate on fixed hardware.
Reconfigurable computing uses special hardware, typically a Field
Programmable Gate Array (FPGA), and dynamically modifies the
operation of that hardware to increase performance. We
reconfigure an entire distributed system with software
components in response to fault events in an attempt to increase
robustness. At some level, the system-wide customization
problem resembles the agent based computing field, but is more
amenable to analytic techniques. Other similarities exist with

 2

economic and operations research fields that may provide fertile
grounds for applicable solution ideas.

2. MOTIVATION
Much of the reasoning behind why users and system designers
would find graceful degradation at all useful has been expounded
in [Nace2000]. We believe a solution to the system-wide
customization problem to be useful as the core behind a solution
to the graceful degradation challenge. In short, upon component
failure a reconfiguration manager would be executed to
customize the system for the remaining components.

Systems built with such a mechanism could then fulfill some of
the very difficult reliability requirements of embedded systems.
In addition, they would gain significant logistical benefits, such as
freedom from legacy spares and the ability to repair systems with
non-exact spares.

We believe this is feasible in the distributed embedded system
domain for several reasons: distributed compute capability, smart
sensors, and optimization functionality. The distributed nature of
these systems implies that when a component fails, much of the
rest of the system is still operational and, save for network
failures, can still communicate. They can still get work done,
because they are typically microcontroller-based sensors (i.e.
smart sensors) that have their own general compute resources. As
microelectromechanical system (MEMS) sensors become more
prevalent, this trend will accelerate, as such sensors have huge
amounts of silicon, used merely for structural reasons, upon which
increased compute power can be constructed. Finally,
reconfiguration is possible in the distributed embedded domain
because such systems increasingly have a large portion of their
functionality devoted to various optimizations. Fundamental
automotive drive train control has not changed drastically, for
instance. But large numbers of electronic components have been
added to the vehicle for performance enhancements,
environmental controls and the increased user satisfaction
provided by various infotainment devices. Such optimizations
can be shed in the case of failure in order to provide the
computing resources necessary to fulfill the base mission of the
system.

3. PRIOR WORK
A number of research efforts have studied the Adapter Allocation
step as it applies to the allocation of computing tasks to parallel
and multiprocessor systems, notably in [Stone77, Shen85,
Bokhari81, Bokhari88, Chu87, Indurkhya86, Efe82, Houstis90].
[Woodside93], for instance, developed heuristic extensions to the
MULTIFIT bin-packing algorithm to create a static task allocator
for embedded systems. [Beck95] used a similar allocation step as
part of the specification of a distributed system. [Prakash92]
showed the usefulness of linear programming techniques to the
same problem – simultaneous specification and allocation –
though the application of such techniques to problems with a large
number of adapters appears to be computationally challenging.
[Kwok99] benchmarks and generates comparison metrics on 15
different task graph scheduling algorithms. Such algorithms are
very similar to the allocation issues of interest, though the
desirable metric is usually a minimal critical path schedule. We

intend to exploit, to the maximum extent possible, the excellent
ideas and techniques described in this research body.

Much less research has covered the other steps of this algorithm.
The closest research is [Beck2000] and [Reagin99], who
constructed robotic workcell applications using the customization
opportunities of a component-based software architecture, with
impressive results. Their optimization mechanism, unfortunately,
was limited to the experience and guidance of the human design
engineer. Analytical Hierarchical Process (AHP) is a decision
sciences mechanism to choose functional system alternatives, as
illustrated in [Braglia99]. AHP relies upon an extensive number
of pair wise comparisons, structured hierarchically, to make a
single decision. As such, it is similar in goals to the Step 1
algorithm, but would require designer input to guide each of these
multitude of pair wise comparisons, and is therefore difficult to
automate. For this reason, we shall develop our own mechanisms
for Steps 1 and 2, which are described below.

4. SOLUTION FORMULATION
The well known data flow graph (DFG) can be used to specify the
various configuration alternatives of the system. Each vertex in
such a graph represents a source (sensor), sink (actuator) or
transformation (adapter) of data. Edges represent the flow of
communication through the system. Both vertexes and edges can
be labeled by the system engineer to specify resource
requirements (CPU cycles, RAM, I/O channels, network
bandwidth, etc). Figure 2 shows a simple DFG for sensor fusion,
low-pass filtering and Fast Fourier Transform for a hypothetical
(and tiny) system.

OutFFTLPFFUSE

In

In

Figure 2: An Example DFG

This common representation of embedded systems must be
augmented to represent the multitude of system alternatives
available in the entire product family. We presume the existence
of a fine-grained Product Family Architecture (PFA) which
provides a structured view of all possible configurations of the
system [Jiao2000]. Such PFAs are common in large distributed
embedded systems.

The PFA insight allows us to construct an augmented DFG known
as a PFA graph. The PFA graph is a supergraph of each
configuration's DFG. In order to merge the individual DFGs,
choice elements are placed between adapters to signify that any of
the input adapters may send that type of data to any or all of the
output adapters. Such choice elements deliberately follow the
semantics of a message type on a broadcast bus, such as a Control
Area Network, as is typically found in distributed embedded
systems. The use of a choice element (the Part Number message)
is illustrated in Figure 3 for a trivial process control system. Note
that in the absence of one of the sensors (barcode reader or
machine vision sub-system), the other sensor can provide the part
number to the rest of the system.

 3

Figure 3: A Choice Element in an Augmented DFG

This augmented DFG is an expressive, uncomplicated mechanism
to specify the configuration options for a system. It is sufficiently
useful and yet computationally manageable enough for this
research.

An important insight comes from looking at the PFA graph as a
supergraph of all possible well-formed system configurations
(where well-formed indicates the subset of all system
configurations wherein data flows properly from sensor to
actuators without lack of adapters nor with extraneous adapters).
One important part of the solution, then, is to decide upon the sub-
graph that should be placed in the system. It then becomes easy to
see that pruning and combinatorial algorithms will be useful
techniques to solve this problem.

5. SOLUTION ARCHITECTURE
The problem is illustrated, at a fairly high level, in Figure 1.
Inputs to the problem are the PFA graph (recall, this is the
augmented DFG) which specifies all the system alternatives. A
description of the available hardware is also necessary. The goal
is to generate a valid configuration of adapters to the processing
elements (PE) and message traffic to network elements (NE).

Three major searches make up the reconfiguration algorithm: The
first is to select a set of features, which are defined and described
in the next section. In the next step, a set of adapters must be
chosen that implement those features in a well-formed
configuration. Finally the adapters must be allocated to the
hardware and constraints checked to produce a valid
configuration.

The last step, adapter allocation, has been researched in somewhat
different circumstances [Beck95, Woodside93, Efe82].
Allocation is an NP-complete problem, easily mapped to the well-
known bin packing problems. The real challenge of solving the
system customization problem is to find creative means to keep
the first two steps from merely being huge loop constructs around
the third, NP-complete step.

5.1 Step 1: Feature Selection
Features are simply a means for the designer to express desires
about the functionality of the overall system. They are used to
guide the overall optimization of the algorithm, as a maximal set
of features is chosen for the final system configuration. It is
possible to express the desirability of features in many ways. As
mentioned above, the AHP process (and to a certain extent the
Quality Function Deployment process which superceded it) are in
some ways a language for expressing customer and designer goals
for a system. Both are rather heavyweight and not easily

automated, however, so would make for an awkward feature
model for this research.

Much of the feature selection sub-algorithm will depend upon the
feature representation model. A general feature model that scales
well is not the point of this research; instead, a class-based feature
model that is sufficiently expressive to cover most complex
distributed embedded system will be used. In the class-based
feature model, some interior vertexes (adapters) in the PFA graph
are labeled as features by the system designers. Features are also
given a utility value – possibly infinite for critical functions. It is
this utility that will be optimized by the algorithm. Groups of
features with similar characteristics present alternatives for
different system configurations. Such a group is termed a class
(not to be confused with an object oriented "class" that an
implementation might have). All features with the same class
represent redundant adapters. Only one (or perhaps a pre-
specified N) of a particular class is useful on a system. The
overall utility of a configuration is the sum of the utility of all the
features of a configuration, where only the largest utility of a
particular class would count. Features can be zero sized (in terms
of resources required), if a designer wanted to insert a vertex to
show the desirability of obtaining data from a particular source,
for instance. In addition, classes (not features) can be labeled as
critical, thus imposing a constraint whereby any valid
configuration must include one of the features from the critical
class.

This feature model is expressive enough to allow representation of
a wide variety of systems. There are, however, some useful
systems that cannot be expressed and others where the expression
is possible, but clumsy. For instance, suppose a particular adapter
is a “superset” adapter that actually does two things. Should it
have two classes? What if it could do X or Y, not both
simultaneously (i.e. it handles mode changes well)? For systems
where such issues are important, the system engineer should be
able to replace our feature model with minimal overall effect on
the workings of the algorithm. However, we find our model
general enough for the large majority of embedded systems.

The feature selection algorithm attempts to optimize the overall
system utility by choosing appropriate features from the different
classes. An obvious first start would be to choose the largest
utility features from each class, which results in the upper bound
on overall system utility. Further increments will be based upon
combinatoric algorithms. The expected number of features of a
system is small enough, especially when compared to the number
of vertices in the PFA graph, that a sorted class combination
algorithm may work well. Further refinements of the algorithm
will take into account feedback from failed trials to avoid the
nasty looping problem discussed in the intro and section 5.4. The
collection of features chosen for implementation is the feature set,
which is passed to the second step of the algorithm.

5.2 Step 2: Adapter Selection
The selection of adapters to implement those features chosen in
step 1 is the difficult heart of the entire problem. Lots of graph
manipulation will be necessary to come up with the different sets
of adapters for allocation.

First the PFA graph should be pruned of all vertices that don’t
contribute to calculating the feature set. The graph will be
traversed backwards from each feature, carefully marking vertices
in a cycle-aware manner. A depth-first algorithm will be

SorterPlanner

Pattern
Recognit

ion

Decoder
Barcode
Reader

Vision
System

Part Number

Machine
Control

Rest of
System

 4

employed because such markings may need to be undone – either
because the path ends in a sensor that is not operational, or the
path would include a feature which is not an element of the
feature set. A similar forward traversal will also be necessary,
marking all the vertices from features to actuators. Most features
will probably be quite close, if not incident to actuators, so this
forward traversal should be quite easy. In the case where a
feature actually lies within a cycle, the backward traversal will
stop after a single trip around the cycle, as it comes upon the
previously marked feature. Note that this pruning will include all
paths from operational sensor to operational actuator that pass
through features included in the feature set and no others. In no
case will additional features be included, as that violates the
separation of responsibilities of the different steps. Perhaps
feedback to the Feature Selection phase might be useful however,
pointing out that the two features share a dependency.

The pruned PFA graph still has plenty of redundancy,
representing the subset of configuration space that implements the
feature set. The redundancy exists in the variety of sensor to
actuator paths that flow through features in the feature set. The
reconfiguration manager must apply an orderly process to explore
this space and choose candidate adapter sets, a collection of
adapters that fulfill a single configuration. To perform the orderly
search, an adapter alternate graph will be constructed by
collapsing the pruned PFA graph. The vertices in this new graph
represent choice points and correspond to the data elements in the
PFA graph. An edge is included in the graph for each path
between the data elements, regardless of the number of adapters it
originally passed through. Selection of a candidate adapter set is
then merely a search for paths through the adapter alternate graph
that pass through the features sets. Hopefully the state of the
search will be easier to manage with this compressed graph.

The resulting adapter set will be passed to the adapter allocation
step to see if it can be fit into the hardware resources available.
This adapter set represents a single DFG (no choice elements, so
no flow alternates) which can then be tested for allocation on the
available hardware in the third step.

5.3 Step 3: Adapter Allocation
The purpose of allocation is to determine if a configuration is
allocatable and find the specific mapping of adapters to hardware
and messages to networks. The allocation problem is not
uncommon, and has been studied in codesign and parallel
processing contexts. Most such research thrusts approach the
problem as a bin-packing problem. Bin packing is NP-complete,
but decent heuristic methods exist, based on non-guided search
and list processing.

A thorough examination of the allocation problem in a very
similar context [Beck95] used list-processing techniques to
allocate tasks and specify processing element (PE) sizes. The
main decisions associated with an efficient list-processing
heuristic are the manner in which item size is determined and the
way the bin (PEs in this case) is chosen for packing each item.
The experiments in [Beck95] showed that sizing tasks is best done
based on a equally weighted calculation of resource (PE cycles,
RAM, I/O channels, etc) and network bandwidth usage. The
determination of PE target at each allocation step should be based
on more global knowledge – such as the nearness of neighboring
adapters in the DFG. By making allocation decisions in such a

way that the adapter is allocated to the processing element that
would minimize the bandwidth requirement (i.e. pack adapters
that talk to each other on the same processing element so they do
not need to use the network), overall packing quality is improved.

5.4 Feedback From Failure
If not handled carefully, Steps 1 and 2 merely wrap polynomial
time (or worse) “while loops” around the NP-complete problem
(approximated using the heuristic means described above) of Step
3. The intriguing part of this research attempts to find a creative
manner to utilize feedback from the failure of one iteration to
guide search choices. When adapter allocation fails, the amount
and type of resources lacking will be returned to the adapter
selection phase. The subsequent adapter selection search will be
very different for a huge failure versus a small failure. In fact, for
small failures in adapter resources (versus network resources), a
targeted search for alternate adapters might be fruitful. Network
resource failures are harder to compensate for, as any alternate
adapter choice involves at least two different edge replacements in
the PFA graph.

Similarly, failures at the adapter selection step could provide
information about the size of the closest match and the breadth of
adapter sets that fulfilled each of the features in the feature set.
This information would then assist the feature selection to
determine which feature classes should be targeted for alternates.
Gains from this second level are a bit less intuitive, but probably
would pay bigger dividends, as they have the potential to make
bigger search moves within the configuration space.

Selection and use of feedback information is still very
preliminary. Our implementation has not yet progressed to the
point where such decisions are necessary, though our framework
has anticipated the communication and structuring of failure
information from step to step.

6. CONCLUSIONS AND FUTURE WORK
This paper described system-wide customization, an interesting
problem in the distributed embedded research field. This problem
requires the functional optimization of a distributed system
consisting of fixed hardware resources. Applications of the
problem include automating graceful degradation, initial factory
customization, graceful upgrade and parts replacement with non-
exact spares.

In order to solve the system-wide customization problem, we have
devised a solution framework consisting of three steps with
feedback from a step's failure guiding further iterations of
previous steps. The three steps included a search for the
maximum utility feature set, a flow graph directed search for
adapters fulfilling the feature set, and an allocation test to map
each adapter to hardware resources.

Several possibilities exist for useful extensions of this work.
Iterative and failover friendly reconfiguration managers would be
very useful. Additional constraint checking should also be
integrated with the algorithm.

An iterative reconfiguration manager would be useful to try to
move toward a dynamic reconfiguration on embedded systems.
Basically, the reconfiguration manager makes small moves in a
planned manner so that the functionality of the total system
increases (perhaps not monotonically), but the moves are small
enough that they can possibly happen while the system is
operational. This is actually one step on a possible spectrum of

 5

algorithmic tuning choices. Having an algorithm that can be set to
quickly generate valid configurations that only consist of the
critical features would be quite useful in an emergency situation.
On the other end of the spectrum, design tools could utilize a
search that generates the highest quality solutions, with little
regard for execution time.

A failover friendly reconfiguration manager would keep in mind,
as it determines subgraphs and allocations, that it would be nice to
have redundant adapters for critical or the most desirable features.
So it would include duplication of adapters where possible in the
configuration chosen.

Alternate algorithm construction is also possible as an interesting
comparison. The reconfiguration manager algorithm sketched out
above is basically a depth first search through feature sets, adapter
sets and adapter allocation. Perhaps a broader search would better
cover the configuration space. Another intriguing approach
would be to guide constructive solutions – basically starting out
with the smallest configuration that is almost certain to fit (and,
which could be mostly specified a priori to the algorithm) and
then making small changes to attempt to build up, or construct, a
more feature-rich solution.

Finally, a constraint checking phase should ensure output
configurations fulfill other requirements, such as timing and
schedules. It would be nice to be able to incorporate such
knowledge in the decisions made in phase 1, 2 and 3 rather than
waiting for the algorithm to complete its work before checking.
How to integrate such constraints may be application dependent.
At any rate, it is yet unclear how to fit constraint checking
anywhere other than as a post process check.

Overall, the algorithm framework described is an exciting and rich
exploration of the system-wide configuration problem. Solutions
to this problem are critical to several useful lines of research –
chiefly automatic graceful degradation. The industry will be
constructing exceedingly complex distributed embedded systems
– by including such graceful degradation mechanisms, they will
hopefully be reliable, trustworthy systems.

7. REFERENCES
[Beck95] J. Beck, "Automated Processor Specification and
Task Allocation Methods for Embedded Multicomputer
Systems," Ph.D. Thesis, Carnegie Mellon University.
April 1995.

[Beck2000] J. Beck, et. al., "Applying a Component-Based
Software Architecture to Robotic Workcell Applications,"
IEEE Transactions on Robotics and Automation,
16(3):207-217, June 2000.

[Bokhari81] S. Bokhari, "A Shortest Tree Algorithm for
Optimal Assignments Across Space and Time in a
Distributed Processor System," IEEE Transactions on
Software Engineering, SE-7(6): 583-9, Nov 1981.

[Bokhari88] S. Bokhari, "Partitioning Problems in Parallel
Pipelined and Distributed Computing," IEEE Transactions
on Computing, 37(1): 48-57, Jan 1988.

[Braglia99] M. Braglia and A. Petroni, "A Management-
Support Technique for the Selection of Rapid Prototyping
Technologies," Journal of Industrial Technology, 15(4): 2-
6, 1999.

[Chu87] W. Chu and L. Lan, "Task Allocation and
Precedence Relations for Distributed Real-Time Systems,"
IEEE Transactions on Computers, C-36(6): 667-679, Jun
1987.

[Efe82] K. Efe, "Heuristic Models of Task Assignment
Scheduling in Distributed Systems," Computer, 15(6): 50-
6, June 1982.

[Houstis90] C. Houstis, "Module Allocation of Real-Time
Applications to Distributed Systems," IEEE Transactions
on Software Engineering, 16(7): 699-709, Jul 1990.

[Indurkhya86] B. Indurkhya, H. Stone and L. Xi-Cheng,
"Optimal Partitioning of Randomly Generated Distributed
Programs," IEEE Transactions on Software Engineering,
SE-12(3): 483-495, Mar 1986.

[Kalavade93] A. Kalavade and E. Lee, "A Hardware-
Software Codesign Methodology for DSP Applications,"
IEEE Design and Test of Computers, (10)3:16-28,
September 1993.

[Jiao2000] J. Jiao and M. Tseng, "Fundamentals of Product
Family Architecture," Integrated Manufacturing Systems,
11(7): 469-483, 2000.

[Kwok99] Y. Kwok and I. Ahmad, "Benchmarking and
Comparison of the Task Graph Scheduling Algorithms,"
Journal of Parallel and Distributed Computing, 59(3):381-
422, December 1999.

[Nace2000] W. Nace and P. Koopman, "A Product Family
Approach to Graceful Degradation," Architecture and
Design of Distributed Embedded Systems International
Workshop on Distributed and Parallel Systems (DIPES
2000), October 2000.

[Prakash92] S. Prakash and A. Parker, "SOS: Synthesis of
Application-Specific Heterogeneous Multiprocessor
Systems," Journal of Parallel and Distributed Computing,
16(4): 338-51, Dec 1992.

[Reagin99] J. M. Reagin, et. al., "A Component-Based
Software Architecture for Robotic Workcell Applications,"
IEEE Transactions on Electronics Packaging
Manufacturing, 22(1): 85-94, Jan 1999.

[Shen85] C. Shen and W. Tsai, "A Graph Matching
Approach to Optimal Task Assignment in Distributed
Computing Systems Using a Mini-max Criterion," IEEE
Transactions on Computers, C34(3): 197-203, Mar 1985.

[Stone77] H. Stone, "Multiprocessor Scheduling with the
Aid of Network Flow Algorithms," IEEE Transactions on
Software Engineering, SE-3(1): 85-93, Jan 1977.

[Woodside93] C.M. Woodside and G. G. Monforton, "Fast
Allocation of Processes in Distributed and Parallel
Systems," IEEE Transactions on Parallel and Distributed
Systems, 4(2): 164-74, 1993.

