
Abstract

Embedded systems of today pose difficult dependability challenges.

Hardware and software requirements as well as human interface

components all contribute to or detract from the overall

dependability of a system. Assigning a ‘dependability number’ to a

system is becoming increasingly subjective due to the confluence of

these three areas. In particular it is important to go beyond

composing individual component reliability predictions, and

additionally consider factors such as ease of user workaround in

the face of a partial system failure. We suggest evaluating the

opportunity for success of a user’s mission in terms of flexibility in

selecting a series of tasks to accomplish a specified goal. With this

user perspective, we create graphs to represent user states and

tasks, and explain how some aspects of system dependability can be

assessed through standard graph analysis techniques.

1. INTRODUCTION

The notion of assessing dependability of embedded systems must

go far beyond traditional reliability measurement techniques to be

useful for everyday products. While traditional fault tolerant

computing techniques provide tools for combining component

reliability estimates to predict system reliability, real systems

contain components (such as software) for which reliability

estimation is difficult or impossible, include design defects, operate

in unanticipated environments, and in general are expected to

degrade more or less gracefully in the presence of component

failures. Thus, the notion of overall dependability is much more

relevant than any single metric such as reliability for embedded

systems, where [Laprie92] defines dependability as “the

trustworthiness of a computer system such that reliance can

justifiably be placed on the service it delivers.” (We actually go

further and include user/system interactions within the umbrella of

computer system dependability as well.)

Many embedded systems have been designed to control the user for

various purposes such as ensuring safety and directing traffic flow.

The user has a set of possible states to inhabit, and system actions

provide the user with opportunities to change states. Even though

the user plays a significant role in the operation of these types of

systems, historically, system behavior graphs have only included

the system’s components and not the user’s behavior. Our work

aims to show how analysis of the user’s behavior can provide

insight into the dependability of the system.

In particular, as a step in expanding the discussion of dependability

assessment, we would like to assess the ability of a user to interact

with a system and achieve a mission success even in the face of

partial system failures, whether they be due to component failures,

extreme environments, design errors, or other causes. This is not

exclusively a human/computer interface issue (although certainly

that is a factor), but rather an issue of the richness of functionality

available to a user to perform workarounds or alternately

accomplish goals in the presence of exceptional events or failures.

Thus we are considering things that help a user/system

combination to succeed at a mission.

While field data from operational systems is probably the most

accurate place to assess dependability, such information is costly to

collect and generally comes too late to help system designers make

tradeoffs in creating novel systems. So instead, we are searching

for simple metrics that can be applied at design time to produce a

system that is likely to be robust in terms of survival of minor

failures. The goal is to permit rapid comparison of alternate designs

and identification of likely dependability “bottlenecks” early in the

design cycle. This area of exploration is not yet mature enough for

us to aspire to create absolute dependability predictions. So instead,

we seek simple, easy to apply metrics that seem likely to be relevant

to dependability for typical embedded systems.

If examined from the user perspective, dependability can be seen as

a user successfully completing a mission, which consists of a series

of tasks. For example, a mission may be riding an elevator, which

consists of a series of tasks such as calling the elevator, boarding it,

and so on. One way to represent dependability, then, is a graph

depicting the possible user paths through the system. Dependability

in the face of partial system failures can thus be improved by adding

additional paths to desired states. (Note that in general this does not

necessarily require adding additional hardware, which would of

course otherwise tend to increase the number of components

subject to failure.) Furthermore, mission failures can be avoided by

providing multiple paths away from undesirable states, which in

many cases involves intentionally lengthening the path a user must

traverse to reach a mission failure state. This graph approach is

based on the structural characteristics of a graph of user paths rather

than component reliability estimates, and seems broad enough to

encompass multiple design disciplines beyond hardware.

Building on the idea of user missions, we have discovered a number

of reasons why it is important to consider the user’s entire path

through the system rather than just individual interactions. First,

the user carries implicit state information that affects how the
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system is used but that may not be entirely known by the system at

all times, such as a desired destination for an elevator system.

Second, there may be alternative (technical or non-technical)

workarounds that enhance global dependability. For example, if an

elevator is broken or overloaded, the user may take the stairs if only

traveling one floor, reducing system load as perceived by other

users. As a result, it is important to consider the entire set of

possible user interactions (and indeed in many systems the set of

possible interactions by concurrent users) when evaluating the

dependability of many systems in realistic operating scenarios.

2. APPROACH

The user’s interaction with the system of interest is modeled as a

directed graph in which the nodes are tasks and the arcs can be

traversed to accomplish all relevant task sequences. A mission is a

complete path from a start node to an end node through the system.

A mission success is a path that achieves a desired goal. A mission

failure is a path that does not achieve a desired goal, but instead

reaches a failure point that has negative consequences, such as

incorrect service, exceeding permissible service time, user injury,

or equipment damage. Additionally a mission failure can occur

when a user reaches a dead end within the graph, either due to a

design oversight or due to a component failure that “breaks” an arc

in the graph during usage.

Using the mission-based approach, dependability can be

maximized by maximizing the probability of mission success.

However, in the absence of accurate dependability estimates for

components, the use of simple heuristics can help in understanding

relative dependability and in identifying possible dependability

“bottlenecks” or likely mission failure modes:

• Maximize the number of independent paths from any node

to a mission success graph node. (In particular, maximize

the number of possible arc cuts/node removals that can be

tolerated while still leaving a mission success path in place.)

• Minimize the number of paths to a mission failure graph

node. (Note that arcs must be provided to account for

system component failures that lead to mission failures.)

• Maximize the number of nodes between “typical” mission

success paths and graph failure nodes. (This amounts to

requiring more steps to be executed to reach a failure than to

reach a success, giving more opportunities for the user to

recover from a problem.)

• At any particular graph node, provide an arc toward mission

success that is more likely to be taken by a user than any arcs

toward mission failure, ideally providing more arcs toward

success than toward failure.

The general principles presented above can be alternately represented

by three questions that we ask when applying our approach:

Given start and end states, how many complete, distinct paths

exist between them? All user missions for the system must be

determined in this step, whether they be of the success or failure

variety. It is in this manner that the user’s complete involvement

with the system can be determined. In other words, is the likelihood

of mission success high (suggesting high dependability), or are

there many ways to achieve a mission failure (low dependability)?

In a more elaborate form detailed probabilities could be considered

when evaluating paths, but this is in general cumbersome and

requires information that may not be available at design time.

Given a user state, what transitions exist to subsequent states?

For each node in the user mission graph, arcs out of that node are

considered. This serves an important purpose: if there are many

outward arcs that lead to mission success, then that node most likely

does not represent a dependability bottleneck. However, if there is

only a single arc out of the node to mission success, the user may

become “trapped” if a component failure occurs that disables that

arc. If most of the arcs lead to mission failure, then that node may

present a high risk of mission failure in practice.

Given two mission paths, which portions are identical? This

portion of the analysis allows the embedded designer to focus his or

her attention on the potential sources of dependability problems

within a system. Since mission successes and failures are likely to

share common sub-paths though the system, the challenge lies in

making undesirable nodes (mission failures) more difficult to reach

without compromising the correct operation of the rest of the

system (mission successes).

The general idea of this approach is to make it easy for the user to

achieve mission success. This can be done by giving multiple

chances to divert from failure toward success (long path length to

failure) and providing a rich set of possible ways to succeed

(multiple paths toward success from any node). Of course, this

approach tacitly assumes that the user will not actively strive for

failure. Nonetheless, it forms a starting point for assessment and

comparisons and provides a way to identify potential problem spots

using the familiar formalization of paths through a directed graph.

The example in Section 4 illustrates the use of this approach. In an

example embedded system, we show how the principles and

questions of this approach can help the system designer evaluate the

dependability of a system from the user’s perspective, both at the

mission and state transition level. While the example is based on

statecharts, these principles can be measured using variants of

standard graph properties such as reachability and deadlock. As a

consequence, this approach should be extensible to nearly all

formal graph formats.

3. RELATED WORK

Our work attempts to improve dependability through analyses of

user missions with two constraints - dependability of a path is

assessed relatively, not absolutely, and hardware and software

requirements as well as human interface issues must all be

represented. Three research issues emerge here. First, why is

dependability so difficult to measure absolutely? Second, what

attempts have been made to assess and improve relative

dependability? Finally, what other concepts are similar to the ‘user

mission graph’?

Measuring system-wide dependability presents many challenges.

For hardware, techniques like the Failure Mode Effects Analysis

(FMEA) take advantage of predictable numbers for hardware

failures [Villemeur92]. Unfortunately hardware rarely exists in

isolation, and software measures have proved more elusive.

Comprehensive studies have been done of software reliability
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measures [Smidts00]. However, these measures were ranked by

expert opinion since direct correlation to software failure is difficult

to prove. Software FMEA also exists, but only identifies outcomes

due to postulated faults – it does not ensure that a system will not

enter a hazardous state during operation [Goddard00]. Human

users add additional complications. Human error rates and reaction

times have been extensively studied [Dreyfuss93] and can depend

on a wide variety of factors, including level of training. Because

everyday embedded systems may be deployed in multiple

environments and have heterogeneous user populations, it is

difficult to assign a single number to the dependability on an

interface. All things considered, absolute dependability prediction

will not be a realistic goal for everyday systems for quite a while.

Much work has been done in the area of safety (one component of

dependability) involving relative techniques. The most widely

known is Fault Tree Analysis (FTA), which takes a list of hazards to

be avoided and postulates root causes [Villemeur92]. The FTA

method has been traditionally applied to hardware (for example,

[Krasich00]), but is generic enough to be used for software as well.

The goal of the FTA method is generally to ensure ‘no single point

of failure’, supplying some sort of alternative for every task the

system must accomplish. Processes have evolved for reducing

errors in software requirements [Leveson00] and human interfaces

[Degani98]. Our work is similar to the FTA approach in that the

system should provide users with alternative paths through the

system, and considers exceptional cases by attempting to maximize

the difficulty of reaching undesirable states.

There are a host of graph formats available, although most typically

do not center on the user. The most prevalent in software design is

the statechart notion, developed by Harel [Harel87] and used by the

Unified Modeling Language (UML) community. However,

statecharts are typically defined per object in the system, and most

object-oriented methodologies do not advocate defining an object

for the user. The most closely related approach is part-whole

statecharts [Pazzi00], which attempts to model the entire system

behavior, in addition to the constituent components. We aim to

leverage the analysis powers of graphical formats without requiring

numerical dependability estimates.

4. EMBEDDED SYSTEM EXAMPLE

The example elevator graph in Figure 1 is a high level depiction of

a user attempting to reach another floor in a building. Transitions

are listed in Table 1. The bulk of the example revolves around

boarding an elevator (the details of exiting have been omitted to

simplify the example). For this elevator, the door control

mechanisms and various lanterns are analyzed. Once the user

successfully boards the elevator, it is assumed he or she reaches the

desired destination. The door control and lanterns were sufficient to

illustrate our target focus on hardware and software requirements

in addition to human interface factors, so other elevator

components, such as the drive control, are omitted here for clarity.

(It is important to note that, contrary to what one might gather from

literature, elevators are decidedly non-trivial systems. We have

simplified this example to illustrate relevant points – our example is

not meant to be considered representative of a complete elevator.)

This particular example is based on the format for statecharts

originally proposed by Harel [Harel87] and adopted into the UML

standard, although the technique should be adaptable to most graph

formats. Note that transitions here all involve user volition. For

example, the user must push a button to trigger the Hallway � Wait

transition, and the user must decide to board once the doors are open

to activate the Wait � Board transition. The user can be in one of

eight possible states: Hallway, On Stairs, Wait, Board, In Elevator,

Destination, Gives Up or Injured. Hallway is the user’s start state,

and Destination, Injured and Gives Up are possible end states, as no

transitions exit these states. The user’s primary mission is to reach

the Destination state. A mission success for this example is any

complete path leading from Hallway to Destination; a mission

failure is any complete path leading from Hallway to Injured.

The following sections illustrate how to glean dependability

information from this graph. Section 4.1 illustrates paths that achieve

mission success or mission failure. Section 4.2 shows how hardware

redundancy can increase dependability. Section 4.3 provides a human

interface example. Both of these examples demonstrate the use of

multiple paths to increase dependability. Finally, Section 4.4 tackles

the problem of undesirable states. Guidelines are provided on how to

improve dependability by extending the path length and difficulty to

reach undesirable states. This section also discusses dependability

trade-offs by examining an example of a safety versus performance

conflict, a topic that typically arises during software requirements

definition. These examples show how hardware and software

requirements combined with human interface components influence

the quality and multiplicity of paths through the system.
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Arc Description Arc Description Arc Description

A
User times out

(impatient)
D

User presses

call button
G

Doors close on

user

B

User arrives at

destination

(walks)

E

User times

out (excessive

wait)

H
User boarding

time elapses

C
User times out

(frustrated)
F

Doors open /

lanterns

activate

I

Doors close,

elevator travels

to destination

Table 1 : Transitions for User Mission Graph

Hallway

Wait

Board

In Elevator

Destination

Injured

A

B

C

F

G

H

I

On Stairs Gives UpD E

Figure 1: Example User Mission Graph



4.1 Missions

The first aspect of the graph to consider is how many complete,

distinct paths exist from the start state to the end states? For this

approach, two paths A and B will be distinct if the set of states visited

in A are different from the set of states visited in B or vice-versa. (If

one set is a subset of the other, the paths are still considered distinct.)

This graph has four distinct paths. Two are mission successes -

MS1: (Hallway, Wait, Board, In Elevator, Destination) and MS2:

(Hallway, On Stairs, Destination). Two are mission failure paths -

MF1: (Hallway, Wait, Hallway, Gives Up) and MF2: (Hallway,

Wait, Board, Injured).

The embedded system must be considered in its usage context and

not as an isolated computer-centric system. In real buildings people

may well walk one flight of stairs if the elevators are overloaded,

especially if they are going down instead of up. This provides a sort

of safety valve if system operation is degraded. The fact that there

are two paths to mission success reveals an important property of

the real system, even though users may be unlikely to use the stairs.

In this case there are two mission failures, MF1 and MF2, with MF1

being the slightly more preferable scenario (at least no one is

injured!). Though this ranking is also fairly subjective, there exists

a large body of research on hazard analysis (e.g. [Gowen92]) that

could provide for more formal guidelines. Additionally, mission

failure path MF1 points out that systems that are performing

according to designed specifications can still be “broken” from a

practical perspective and therefore undependable. If an elevator is

overloaded and the person desiring to use it has to wait longer than

they expected, then the system is undependable.

As simple as this example seems, it can still provide useful information

for comparisons. For example, in a building where stairwells are only

for emergency use, it becomes clear that the elevators are then the only

path to mission success (perhaps escalators might be installed at heavy

traffic floors to improve dependability). In buildings with multiple

elevators the graph would have multiple parallel paths to mission

success based on elevator replication. Because the Wait node involves

pressing the Hall Call button, having multiple Hall Call buttons for a

group of elevators would provide multiple paths out of Wait to Board,

eliminating a potential dependability bottleneck (if there are eight

elevators but only one button to call them in the hallway, that button is

a dependability bottleneck).

4.2 State Transition Analysis

In this section of the example, we examine two states in the graph

and ask how many transitions exist to subsequent states?

Hardware redundancy considerations are examined in 4.2.1, while

human interface effects on dependability are looked at in 4.2.2.

4.2.1 The Hallway � Wait transition

Beyond brute force hardware redundancy, heterogeneous

redundancy can be used to provide alternate paths between the

Hallway and Wait states (Figure 2). Even inexpensive elevators

typically have two buttons per floor in the hallway, one for going up

and the second for down. The user’s preferable action is to push the

button in the desired direction of travel. However, the user can

summon the elevator by pushing the button in the opposite direction

as well. (Indeed, some impatient users push both!)

An interesting property of this example is that it exploits redundancy

installed for providing higher quality service to provided degraded

mode service as well. Normally the direction buttons give the elevator

a hint about the user’s intended destination, and reduce crowding in an

elevator by letting the elevator bypass floors if the current direction

does not match the desired direction of travel. But if one button is

broken the other can be used to ensure that the elevator eventually

stops to perform passenger pickup, even if it is an inefficient time to do

so. This provides a way to gracefully degrade in the face of a broken

component without having to resort to brute force redundancy

(although that could be used as well if desired and affordable).

4.2.2 The Waiting � Boarding transition

The human interface is key to providing alternative quality paths from

Wait to Board (Figure 3). Generally, users will board an elevator once

the doors are open. However, efficiency can be increased by alerting

the user when elevator arrival is imminent, and indicating the direction

of travel. Adding an up/down lantern to the elevator enhances the

system performance component of dependability by preparing users to

board and by screening out users who wish to go in the direction

opposite from the current elevator travel direction. This optimization

is helpful for concurrent users desiring opposite travel directions and

for the case where a user is discharged on a floor but is going in the

wrong direction to pick up a different user waiting at that floor.

In the case of Figure 3 the primary transition of choice is that the

user looks for an appropriate hallway lantern and enters when the

doors are open. An alternate usage is that the user ignores the

lantern (or the lantern does not illuminate) and enters solely because

on the doors are open. While this may seem to be a minor

difference, it points out that malfunctioning hall lanterns do not put

the system out of service, and provides paths that correspond to user

flexibility in boarding discussed in the preceding section.
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Figure 3: Human Interface Example
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Figure 2: Hardware Redundancy Example
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Figure 4: Impeded as an Added State



4.3 Identification of Common Sub-sequences

Here, we examine what portions of MS1 and MF2 are identical?

Graph sub-sequences that are shared between success and failure

paths are inherently risky and bear special consideration in terms of

evaluating the number and nature of diversion points. In MS1, the

user successfully boards the elevator and is delivered to his or her

destination, while in MF2 the user is injured or upset by being

crushed or even bumped by the doors while boarding the elevator.

The transition from Boarding to Injured is a prime example of

dependability trade-offs involved in designing embedded systems.

Ideally, the safest system would never allow the user to enter the

Injured state. One way to assure this is to make sure the transition

condition - Doors Close - is always false. However, the elevator

requires the doors to be closed in order to proceed to the destination

(see the transition between In Elevator and Destination). Therefore,

an elevator with doors that always remain open would have zero

dependability because it has zero utility (never moves), although it

would presumably be quite safe. In this case, altering the system

configuration can provide a useful intermediate situation between

completely safe and completely useful. Most elevators have a door

reversal sensor which serves to detect if a person occupies the door

aperture when the doors attempt to close. This provides an

additional state, Impeded, between Board and Injured (Figure 4).

The software requirements for the door control involve many safety vs.

performance considerations. First, the mission success elevator scenario

and the mission failure elevator scenario share a common path subset -

(Hallway, Wait, Board). Therefore, the difficulty of reaching Wait and

Board should not be increased, as this would degrade performance in the

mission success scenario. Therefore, the path (Board, Impeded, Injured)

should be made as unlikely to occur as possible, and the path (Impeded,

Board) should be made easy to traverse. Several ways exist to do this,

such as making sure the doors do not close too quickly (reducing the

chance of actual bodily contact), adding an additional transition from

Impeded to Hallway via a recorded voice announcing that it is too late to

board (as is commonly implemented on automated light rail vehicles),

and providing more sophisticated ways to detect a door obstruction

without making physical contact (which would show up as additional

arcs on a graph of the system rather than the user graph).

A number of design questions arise following these observations.

How long should the doors remain open? Should the doors open

fully upon a reversal, stop in place, or continue to close despite the

impeded passenger? How many times should the doors be allowed to

re-open on the same floor? These decisions are difficult to make

using the user mission graph only. Rather, the nature of the users and

environment will guide the choice selected.

5. CONCLUSIONS

We have shown how the user mission graph approach can provide a

relative assessment of dependability of embedded systems in

situations involving users who cooperate in workarounds in the face

of component failures. This approach takes into account hardware,

software requirements, and human interface contributions to

dependability. Dependability can be enhanced by seeking to

modify some formal properties of graphs, such as the number of

paths between two states, the number of transitions to neighboring

states, and the character of paths to undesirable states.

Of course these techniques cannot solve all problems of dependable

system design. In fact, they are just a starting point to expand thinking

beyond traditional computer-system-centric dependability analysis.

However, we believe that even the exercise of creating such graphs

will help designers think through and identify dependability issues and

points that bear special scrutiny with their systems. Additionally, we

hypothesize that metrics based on these heuristics will be helpful in

comparing alternate system designs with respect to some aspects of

likely dependability, or at least with respect to brittleness in the face of

partial system failure even in scenarios with flexible users.

There are many possible avenues for future work. Among them are

incorporating a more rigorous notion of ranking and/or probabilities

in the graph arcs, attaining better understanding of how to insert and

delete arcs in response to component failures, and providing more

precise formulations of algorithms suitable for use in automated tools

that start from a machine-readable execution of a system such as

statecharts entered into a UML-based design tool. Nonetheless we

think that the general ideas presented will be useful to system

designers and provide a fresh perspective on possible dependability

assessment techniques in the face of the reality that traditional

component-wise reliability numbers are both difficult to attain and

not totally representative of all important aspects of dependability.
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