
Representing Embedded
System Sequence Diagrams as

a Formal Language

Beth Latronico (beth@cmu.edu)

Philip Koopman (koopman@cmu.edu)

Carnegie Mellon University
Electrical and Computer Engineering Department

2Beth Latronico – Carnegie Mellon University – UML 2001

Overview
! Motivation and problem definition
! Embedded system example
! Generic solution
! Solution applied to example
! Additional information and conclusions

3Beth Latronico – Carnegie Mellon University – UML 2001

Motivation
! Statechart synthesis from sequence diagrams

(SDs)
! Benefits

! Enhanced traceability (specification <-> design)
! Algorithms for synthesis have been previously proposed

! What are the ramifications of specification
omissions and conflicts?
! Statecharts may contain unwanted non-

determinism
! Informal resolutions may be inadequate

! Add information: Exhaustive annotation often infeasible
! Locate non-determinism: Manual inspection affords

opportunity for error (Pairwise comparison of SDs)

4Beth Latronico – Carnegie Mellon University – UML 2001

Solution Properties
! Key observation: Missing information in SDs

may lead to unwanted non-determinism
! How can we minimize information annotation effort?
! How can we devise a consistent screening method

for non-determinism that can verify removal?
! Research contribution

! Treat SDs as a formal grammar
! Attack errors at specification level – reduce lifecycle costs

! Analyze this notation for non-determinism
! Annotate diagrams at specific locations
! Verify removal of non-determinism
! Detection could be automated!

5Beth Latronico – Carnegie Mellon University – UML 2001

Define Problem Space
! What makes a system more difficult to specify?

! Combined characteristics (typical of embedded):
! Multiple initial start states (e.g. radio on, radio off, CD in)
! Same user action invokes different response (e.g. radio

clock set)
! Timing dependencies (e.g. hold time for radio button)

! What information is typically added to SDs?
! Regardless of representation format, designers tend

to add information about:
! State – Present behavior depends on past
! Data – Behavior depends on value of a variable
! Time – Behavior depends on properties such as latency,

duration, or absolute time

6Beth Latronico – Carnegie Mellon University – UML 2001

Define Solution Space
! What will the set of SDs look like?

! Individual diagram information
! Standard Sequence Diagrams (objects and messages)
! Additional information (state, data, time) as needed
! Formal grammar analysis here

! Composition information
! Based on high-level Message Sequence Chart
! (Not in UML 1.3 standard – coming soon?)

! How is the grammar defined?
! Deterministic - one unique response set per

unique message set
! Leverage compiler theory

7Beth Latronico – Carnegie Mellon University – UML 2001

Motivational Example –
Car Radio Controller

1. The driver presses a station button.
1.A. If the driver holds the button, the station is

set.

1.B Otherwise, the radio should change stations.

Select actors, messages and objects for SD.

Note that 1.A. doesn’t tell how long the button should
be held. What are the ramifications?

Here is a (small) typical car radio controller scenario.

8Beth Latronico – Carnegie Mellon University – UML 2001

Objects and Messages
! Embedded example – Car radio controller

! Design of Radio object
! Simple example to illustrate point

! Two standard SDs – change station, station set

Radio1 : Change station Radio2 : Station set

User Button Radio

U_press B_press

change station

 Radio1

U_release
B_release

User Button Radio

U_press B_press

station set

 Radio2

9Beth Latronico – Carnegie Mellon University – UML 2001

Radio1 Radio2

Radiomain

Diagram Composition
! High-level message sequence chart (MSCs)

! (Established by the MSC community)
! Constituent diagrams (here, Radio1 and Radio2)
! Possible initial choices (indicated by triangles)
! Allowed order of execution

Initially, either Radio1 or
Radio2 can be executed.

After Radio2, either Radio1 or Radio2 can be executed.

After Radio1, either Radio1
or Radio2 can be executed.

10Beth Latronico – Carnegie Mellon University – UML 2001

Non-determinism Arises

Consider only the Radio object. A ‘B_press’ message arrives…

Two possible
statecharts for
Radio object:
(both non-
deterministic!)

User Button Radio

U_press B_press

station set

 Radio2

User Button Radio

U_press B_press

change station

 Radio1

U_release
B_release

…We need more
information.X

Y

Z

B_press

B_press

 / station set

B_release / change station

X Y
B_press

B_release / change station

 / station set

11Beth Latronico – Carnegie Mellon University – UML 2001

Too Much
Information?
! How can we
minimize the
work investment?
! Goal: Annotate
minimal information
required for
statechart synthesis

! May be additional
goals that mandate
more detail

Button RadioUser

change station

U_press
B_press

U_release
B_release

Waiting

Active

pre: Button.pushed is true
post: Button.pushed is false

Radio1

[Time of B_release - Time of
B_press < 2 seconds]

Idle

Idle

pre: Button.pushed is false
post: Button.pushed is true

pre: Button.value is not NULL
post: Station.value =
Button.value

[Time of change station - Time
of B_release < 1 second]

Button RadioUser

station set

U_press
B_press

Waiting

Radio2

[Time of B_release - Time of
B_press >= 2 seconds]

Idle

Idle

pre: Button.pushed is false
post: Button.pushed is true

pre: Button.value is not NULL,
Button.pushed is true
post: Station.value =
Button.value, Button.pushed is
false

12Beth Latronico – Carnegie Mellon University – UML 2001

Not if We
Use Formal
Grammar!
! Identify locations
to add information

!Verify that added
information is
sufficient

! For this example,
only timing
information was
needed.

Button RadioUser

change station

U_press
B_press

U_release
B_release

[Time of B_release - Time of
B_press < 2 seconds]Waiting

Active

pre: Button.pushed is true
post: Button.pushed is false

Radio1

Idle

Idle

pre: Button.pushed is false
post: Button.pushed is true

pre: Button.value is not NULL
post: Station.value =
Button.value

[Time of change station - Time
of B_release < 1 second]

Button RadioUser

station set

U_press
B_press

Waiting

Radio2

[Time of B_release - Time of
B_press >= 2 seconds]

Idle

Idle

pre: Button.pushed is false
post: Button.pushed is true

pre: Button.value is not NULL,
Button.pushed is true
post: Station.value =
Button.value, Button.pushed is
false

13Beth Latronico – Carnegie Mellon University – UML 2001

Grammar Parsing 101
(a flashback to your past…)
! Tokens and rules

! Token – meaningful unit
! Rule – determines legal strings of token symbols

! Deterministic grammars
! LL(1) – only one token needed to predict next

step (deterministic)
! LL(n) – need n lookahead (or backtrack)

! Left-factoring - factor out shared terms
! Backtracking - select a response, backtrack if incorrect

SD → message response SD | ε
message response → αααα ResponseA | αααα ResponseB

14Beth Latronico – Carnegie Mellon University – UML 2001

Formal Grammar Solution
! Token definitions:

! Message set – consecutive information supplied to an
object (eg, other objects’ messages, time, state)

! Response set – consecutive information generated by
an object (eg, outgoing messages)

! Use grammar parsing to locate specification
omissions
! Omissions often result in non-determinism
! Goal : one unique response set per unique message

set
! In formal terms, LL(1), if a message set is considered

to be one item (otherwise LL(n) where n must be
finite)

15Beth Latronico – Carnegie Mellon University – UML 2001

Generic Solution -
Sequence Diagram Grammar

! The grammar highlights non-determinism here
! Non-determinism is result of missing information, not

grammar format
! Left factoring, backtracking ineffectual

 Seq2

User Object

α

Response A

User Object

α

Response B

 Seq1

Seq1 Seq2

 Seqmain

SD → message response SD | ε
message response → αααα ResponseA | αααα ResponseB

16Beth Latronico – Carnegie Mellon University – UML 2001

Why We Can’t Left Factor
! Left factoring moves non-determinism,

doesn’t remove it

 Seq2

User Object

Response A

User Object

Response B

 Seq1

Seq1 Seq2

 SeqmainUser Object

α

 Seqfactor

Seqfactor

A’ → ResponseA | ResponseB

SD → message response SD | ε
message response → α A’

The non-determinism
is now here

17Beth Latronico – Carnegie Mellon University – UML 2001

Why We Can’t Backtrack
! Responses can’t always be undone

 Rocket2

User Rocket
Launcher

Big Red Button
Launch Rocket

User Rocket
Launcher

Big Red Button
Cancel Launch

 Rocket1

Rocket1 Rocket2

Rocketmain

Verify Trajectory Reset Countdown

SD → message response SD | ε
message response → BigRedButton LaunchRocket

VerifyTrajectory εεεε
| BigRedButton CancelLaunch

ResetCountdown εεεε

" Also, possible to have only one message type

18Beth Latronico – Carnegie Mellon University – UML 2001

The non-deterministic
car radio example…

SD → message response SD | ε
message response → B_press B_release change_station

| B_press station_set

message response → α B_release change_station
| α station_set

User Button Radio

U_press B_press

change station

 Radio1

U_release
B_release

User Button Radio

U_press B_press

station set

 Radio2

Radio1 Radio2

Radiomain

19Beth Latronico – Carnegie Mellon University – UML 2001

… becomes deterministic
with timing information.

SD → message duration response SD | ε
message duration response →

B_press (Time of B_release – Time of B_press < 2 seconds)
B_release change_station

| B_press (Current Time – Time of B_press >= 2 seconds)
station_set

message response → α B_release change_station
| β station_set

Radio1 Radio2

Radiomain

User Button Radio

U_press B_press

change station

 Radio1

U_release B_release

[Time of B_release -
Time of B_press

< 2 seconds]

User Button Radio

U_press B_press

station set

 Radio2

[Current Time -
Time of B_press >=

2 seconds]

20Beth Latronico – Carnegie Mellon University – UML 2001

Additional Examples (in paper)
! Embedded examples

! TV, power (state)
! Elevator, floor (data)

! Automated Teller Machine (ATM) system
! Apply technique to traditional transaction

processing system example
! Conclusions: Almost all unique message sets

produced a unique set of system responses
! Almost LL(1) already!
! Notable exception: First response, Display main screen,

followed the empty message set ε; only one initial
condition so this is OK

21Beth Latronico – Carnegie Mellon University – UML 2001

Conclusions (1)
! In statechart synthesis from sequence

diagrams, missing information may lead
to unwanted non-determinism
! Characteristics that exacerbate this:

! Multiple initial conditions
! Same user action evokes different response
! Timing dependency

! Common categories of additional
information:

! State, data, time

22Beth Latronico – Carnegie Mellon University – UML 2001

Conclusions (2)
! A formal grammar for sequence diagrams

can locate non-determinism
! Satisfies goals:

! Minimal information annotation
! Consistent screening method that can verify

removal

! Examples:
! Car radio – representation and analysis
! Can’t use left factoring, backtracking to eliminate

non-determinism – need additional information!

23Beth Latronico – Carnegie Mellon University – UML 2001

