Representing Embedded
System Sequence Diagrams as

3 a Formal Language

Beth Latronico (beth@cmu.edu)
Philip Koopman (koopman@cmu.edu)

Carnegie Mellon University
Electrical and Computer Engineering Department

{&} Electrical & Computer
SNGINEERING

Overview

= Motivation and problem definition

= Embedded system example

= Generic solution

= Solution applied to example

= Additional information and conclusions

Beth Latronico — Carnegie Mellon University — UML 2001 2

Motivation

= Statechart synthesis from sequence diagrams
(SDs)
= Benefits

= Enhanced traceability (specification <-> design)
= Algorithms for synthesis have been previously proposed

= What are the ramifications of specification
omissions and conflicts?

= Statecharts may contain unwanted non-
determinism

= Informal resolutions may be inadequate

= Add information: Exhaustive annotation often infeasible

= Locate non-determinism: Manual inspection affords
opportunity for error (Pairwise comparison of SDs)

Beth Latronico — Carnegie Mellon University — UML 2001 3

Solution Properties

= Key observation: Missing information in SDs
may lead to unwanted non-determinism
= How can we minimize information annotation effort?
= How can we devise a consistent screening method
for non-determinism that can verify removal?

s Research contribution

= Treat SDs as a formal grammar
« Attack errors at specification level — reduce lifecycle costs

= Analyze this notation for non-determinism
= Annotate diagrams at specific locations
= Verify removal of non-determinism
= Detection could be automated!

Beth Latronico — Carnegie Mellon University — UML 2001 4

Define Problem Space

= What makes a system more difficult to specify?

= Combined characteristics (typical of embedded):
= Multiple initial start states (e.g. radio on, radio off, CD in)

= Same user action invokes different response (e.g. radio
clock set)

« Timing dependencies (e.g. hold time for radio button)

= What information is typically added to SDs?

= Regardless of representation format, designers tend
to add information about:
« State — Present behavior depends on past
= Data — Behavior depends on value of a variable

= Time — Behavior depends on properties such as latency,
duration, or absolute time

Beth Latronico — Carnegie Mellon University — UML 2001 S

Define Solution Space

= What will the set of SDs look like?

= Individual diagram information
= Standard Sequence Diagrams (objects and messages)
= Additional information (state, data, time) as needed
=« Formal grammar analysis here
= Composition information
=« Based on high-level Message Sequence Chart
= (Not in UML 1.3 standard — coming soon?)

= How Is the grammar defined?

= Deterministic - one unigque response set per
unique message set
= Leverage compiler theory

Beth Latronico — Carnegie Mellon University — UML 2001 6

Motivational Example — =il
Car Radio Controller

Here is a (small) typical car radio controller scenario.
Select actors, messages and objects for SD.

1. Thedriver presses a station button.

1.A. If thedriver holds the button, the station 1S
Set.

1.B Otherwise, the r adio should change stations.

Note that 1.A. doesn’t tell how long the button should
be held. What are the ramifications?

Beth Latronico — Carnegie Mellon University — UML 2001 7

—. %

g

—

Objects and Messages

= Embedded example — Car radio controller

= Design of Radio object
= Simple example to illustrate point

= Two standard SDs — change station, station set

Radio, Radio,

User Button Radio User Button Radio

——U_press—»| ——U_press—»

——B_press—» ——B_press—»

—U_release—»
—B_release—»|

<«———change station <———station set

Radio, : Change station Radio, : Station set

Beth Latronico — Carnegie Mellon University — UML 2001 8

—. %

g

e

Diagram Composition

= High-level message sequence chart (MSCs)
= (Established by the MSC community)
= Constituent diagrams (here, Radiol and Radio2)
= Possible initial choices (indicated by triangles)
= Allowed order of execution

. : _ Radio__.
Initially, either Radio, or main

Radio, can be executed. "“ V V

>

After Radio,, either Radio, “‘ is Radio, | =] Radio, 4
or Radio, can be executed. 3 ‘—

After Radio,, either Radio, or Radio, can be executed.

Beth Latronico — Carnegie Mellon University — UML 2001 9

Non-determinism Arises ——=

Consider only the Radio object. A ‘B_press message arrives...

Radio, Radio,
User Button Radio User Button Radio
7U—preSSH—B_preSSH 7U_preSSH7B_preSSH
—U_release—»

—B_release—»|

<+«——station set

<«——change station

B _release / change station

B _release / change station

Two possible
StaIeChartS fOr B_press ...\We need more
Radio object: information.
(both non-
deterministic!)

[station set 10

| station set

Radio,

User Button Radio TO O M u C h

U _press 2
re: Button.pushed is false I n fo rl I I atl O n ?
post: 'Button.pushed is true_
U release Waiting) LT rgis:ezgrglgisei;):én;f of
B_release [pre: Button.pushed is true H HOW can we
post: Button.pushed is false . . .
@ive [Time of change station - Time mlnlmlze the
i fB_rel <1 nd] .
ehange station ore: utonvale sttt | WOTK investment?
post: Station.value =
@B”“"”'V&'”e = Goal: Annotate
_ minimal information
Rade, required for
User Button Radio statechart synthesis
U pres) | « May be additional
B_press pre: Button.pushed is false

" post: Button.pushed is true goaIS that mandate
@@ [Time of B_release - Time of more detall

B_press >=2 seconds]

) pre: Button.value is not NULL,
« statign set Button.pushed is true
post: Station.value =
Button.value, Button.pushed is
false 11

Idle

Radio1

User Button Radio
I
SDNC NN Idle pre: Button.pushed is false
B_press , post: Button.pushed is true
. [Time of B_release - Time of
U_release Waiting B_press < 2 seconds]
B IeleEse pre: Button.pushed is true
post: Button.pushed is false
Acti [Time of change station - Time
change|station CHvE of B_release <1 second]
pre: Button.value is not NULL
post: Station.value =
Idle)Button.value
|
Radio,
User Button Radio
U_press

station set

|

@ing

Idle

Idle
B_press<>pre: Button.pushed is false

post: Button.pushed is true

[Time of B_release - Time of
B _press >=2 seconds]

pre: Button.value is not NULL,
Button.pushed is true

post: Station.value =
Button.value, Button.pushed is
false

Not If We
Use Formal
Grammar!

= ldentify locations
to add information

=Verify that added
Information 1s
sufficient

= For this example,
only timing
Information was
needed.

12

Grammar Parsing 101 —~ .
(a flashback to your past...)

= Tokens and rules
= Token — meaningful unit
= Rule — determines legal strings of token symbols

SD — message response SD | ¢
message response —» o ResponseA | a ResponseB

= Deterministic grammars

= LL(1) — only one token needed to predict next
step (deterministic)

= LL(n) — need n lookahead (or backtrack)

« Left-factoring - factor out shared terms
« Backtracking - select a response, backtrack if incorrect

Beth Latronico — Carnegie Mellon University — UML 2001 13

Formal Grammar Solution

s Token definitions:

= Message set — consecutive information supplied to an
object (eg, other objects’ messages, time, state)

= Response set — consecutive information generated by
an object (eg, outgoing messages)
= Use grammar parsing to locate specification
omissions
= Omissions often result in non-determinism

= Goal : one unique response set per unique message
set

= In formal terms, LL(1), iIf a message set is considered
to be one item (otherwise LL(n) where n must be
finite)

Beth Latronico — Carnegie Mellon University — UML 2001 14

Generic Solution - —~ iy
Sequence Diagram Grammar

g

e

Seql Seq2 Seqmain
User Object User Object V V
z Seq, [Seq, j
o o—
+«—Response A— <+«—Response B—

SD — message response SD | ¢
message response — o ResponseA | o ResponseB

= The grammar highlights non-determinism here

= Non-determinism is result of missing information, not
grammar format

= Left factoring, backtracking ineffectual

Beth Latronico — Carnegie Mellon University — UML 2001 15

Why We Can’t Left Factor

= Left factoring moves non-determinism,
doesn’'t remove it

Seqfactor

User Object " V

o———

Seqfactor
Seql Squ ¢ é ¢

User Object User Object Seq,

<«—Response A—— <«—Response B——

The non-determinism

SD — message response SD | ¢ is now here

message response — o A’

A’ — ResponseA | ResponseB y

Why We Can’t Backtrack

= Responses can’t always be undone

RockeH

Rockeg

Rocket

User
Launcher

Rocket

User
Launcher

—Big Red Button—»
<«-Launch Rocket—
~Verify Trajectory—»

—Big Red Button—»
<—Cancel Launch—

-Reset Countdown—*>

Rocket .
main

VAR

RockeH

>
l

Rocke5

]

SD — message response SD | ¢
message response — BigRedButton LaunchRocket
VerifyTrajectory ¢
| BigRedButton CancelLaunch
ResetCountdown ¢

® Also, possible to have only one message type
Beth Latronico — Carnegie Mellon University — UML 2001

17

The non-deterministic

car radio example...

Radio, Radio,
User Button Radio User Button Radio Radio,_ ..
7U—preSSH—B_preSSH 7U_preSSHiB_preSSH o T
aalo, | aalo
— | 1 2
_felease— —B_release—» L‘ \J

<«——change station

<+«———station set

SD — message response SD | ¢
message response — B press B _release change station

| B press station_set

message response — o B _release change_ station

| o station_set

Beth Latronico — Carnegie Mellon University — UML 2001

18

... becomes deterministic
with timing information.

Radio1

User Button

Radio

——U_press—-»|

—U_release—»

<«———change station

——B_press—»
[Timejof B_release -
Time of B_press

<
—B_release—»

2 seconds]

Radio2

User Button

Radio

——U_press—»|

station set

——B_press—»

[Current Time -

Time of|B_press >=

2 seconds]

Radio_ .-
! Radio, | " Radio, .

SD — message auration response SD | ¢

message auration response —

B press (7ime of B_release — Time of B_press < 2 seconds)
B release change_station

| B _press (Current Time — Time of B_press >= 2 seconads)

station_set

message response — o B _release change_station

| B station_set

19

Additional Examples (in paper)

= Embedded examples
= TV, power (state)
= Elevator, floor (data)

= Automated Teller Machine (ATM) system

= Apply technique to traditional transaction
processing system example

= Conclusions: Almost all unigue message sets
produced a unique set of system responses
« Almost LL(1) already!

= Notable exception: First response, Display main screen,
followed the empty message set ¢; only one initial
condition so this is OK

Beth Latronico — Carnegie Mellon University — UML 2001 20

Conclusions (1)

= In statechart synthesis from sequence
diagrams, missing information may lead
to unwanted non-determinism
= Characteristics that exacerbate this:
« Multiple initial conditions

= Same user action evokes different response
= TiIming dependency

= Common categories of additional
Information:

= State, data, time

Beth Latronico — Carnegie Mellon University — UML 2001 21

Conclusions (2)

= A formal grammar for sequence diagrams
can locate non-determinism

= Satisfies goals:
= Minimal information annotation

= Consistent screening method that can verify
removal

» Examples:
« Car radio — representation and analysis

« Can’t use left factoring, backtracking to eliminate
non-determinism — need additional information!

Beth Latronico — Carnegie Mellon University — UML 2001 22

Beth Latronico — Carnegie Mellon University — UML 2001

23

