Electrical & Computer GN Engineered Systems ENGINEERING

1

Jen Morris, Phil Koopman

SOFTWARE DEFECT MASQUERADING

Institute for Complex

Motivation:

Non-Critical

Node A

Header

<u>Carnegie Mellon</u>

T ENGINEERING

- Embedded systems with a shared network
 - Mixture of critical & non-critical nodes
 - Typical design assumption: "Trust any message from a critical node"

Critical

Node C

FCS

CRC

- System defects (software, hardware) can lead to masquerading
 - Masquerading of critical nodes may compromise critical systems

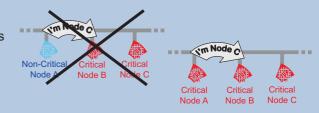
- + Effective against design defects and malicious attacks
- Expensive (bandwidth, processing, memeory, etc.)

Our Technique:

Application-Level CRC with Secret Polynomial/Seed

Protects against non-malicious masquerading by non-critical sources

Critical


Node B

Same cost as application-level CRC

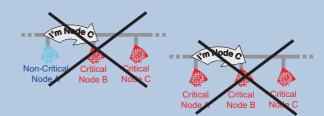
Critical

Node A

- Still vulnerable to non-malicious masquerading by critical sources
- Still vulnerable to malicious attacks

BOMBARDER

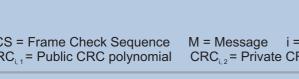
- Unique CRC polynomial CRC, • $FCS_i = CRC_i(M,S)$
- Unique CRC seed value S_i
 - $FCS_i = CRC(M,S_i)$


Asymmetric Application-Level CRCs

Protects against non-malicious masquerading by critical sources

Data

- Cost of application-level CRC plus cost of signature X
- Still vulnerable to malicious attacks


- Sending process appends signature X:
 - FCS = $CRC_{i,1}(M)$
 - $X = CRC_{12}(FCS)$
- Receiving process verifies that:
 - CRC_i (X) = FCS

FCS = Frame Check Sequence CRC₁₁ = Public CRC polynomial

M = Message i = criticality level (by message type, by node, etc.) $CRC_{i,2}$ = Private CRC polynomial (inverse of $CRC_{i,1}$)

Ongoing Research:

- Analysis of commercial safety-critical networks
 - Masquerading in event-triggered and time-triggered domains FlexRay, TTP/C, TTCAN, TCN, Embedded IP
- Application of techniques from train to automotive

