System Architectures for Graceful Degradation

Charles P. Shelton

Graceful Degradation:

Component failures reduce functionality rather than cause system failure

Research Questions

- How might system architecture contribute to achieving graceful degradation?
- Can an architectural style make graceful degradation an inherent property?
- Can we methodically generate an architecture for graceful degradation?

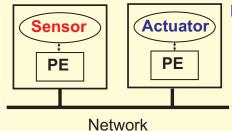
Exploratory Approach (a first step):

Examine current architectural styles and categorize their properties; for example:

Intelligent Hierarchical Control (IHC)

Functions organized into hierarchy of layers

- + Failures in one layer not propagated through system
- + Modularization
- Modeling tactical and intelligence layers is difficult
- Hierarchy can cause data flow bottlenecks


Software Functional Hierarchy:

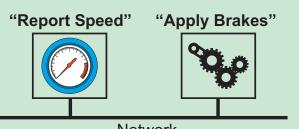
Intelligence

Tactical

Servo

[Mesarovic89]

Distributed Intelligent Control and Communications (DICC)


Distributed system control in "smart" sensors/actuators

- + Reduces single-point failures
- + Flexible allocation
- Communication intensive
- Control on network may cause real-time misses
- Harder to detect failures in distributed functions [Upender93]

Device-Specific Agents (DSA)

System decomposed into small functions strongly coupled to specific hardware devices

- + Parallelization
- + Designing for growth ("forward compatibility")
- + Strong function-to-device correlation
- Parallelizing serial functions is difficult

Network

[Koopman94]

