
H O M E | D D J.C O M | A B O U T U S | A D V E R T I S E

R E S O U R C E S
Articles
Linux Handhelds
Toolkits
L A N G U A G E S
C/C++
Java
Ada
Erlang
Forth
Small C
Eiffel
Pascal
O S
Linux
RTOS

Graceful Degradation in
Distributed Embedded
Systems
Distributed systems provide increased flexibility, but they're also more
vulnerable to failure. The goal of Carnegie Mellon's RoSES project is,
"System, heal thyself."

by William Nace and Philip Koopman

As embedded systems become more distributed they provide more
flexibility, the potential for greater functionality, and, unfortunately,
more pieces to break. But what if there were a way to turn this
proliferation of small processors into a reliability asset instead of
vulnerability? What if when one component broke, the rest of the
system kept working with minimal disruption? And what if we could do
that elegantly, rather than just by throwing money at the problem with
brute-force redundancy? We think that we can accomplish this as part
of a long-term research project on the topic of graceful degradation.

A gracefully degradable system is one in which the user does not see
errors except, perhaps, as a reduced level of system functionality —
quite a contrast to most of the systems we often see. We all have heard
horror stories of automobiles that need expensive trips to the shop at
inconvenient times to replace $1.48 parts. Or perhaps a home security
system doesn't work because a single window sensor has failed open.
We like to call these systems "disgracefully degrading." These systems
should still accomplish something useful — admittedly not at the same
performance levels. Given a choice, we'd prefer not to call a tow truck.
And the security system should still work against burglars who don't
know which window to enter.

If it were simple to build gracefully degradable systems, we wouldn't
have such ease finding examples of the disgraceful kind. But current
practice in building reliable systems is not sufficient to efficiently build
graceful degradation into any system. Rather, a few fault-tolerant
computing techniques are used: 3-way (or more) brute-force replication
redundancy, separate design of system responses for anticipated error
modes ("failover behavior"), or attempts at multi-version redundancy.
Each such approach to building reliable systems has some problems.
Redundant units involve higher deployment costs, provide functionality
that is only useful in the case of failure, and cannot help if the failure is
systemic, such as a coding bug. Building failover functionality for
anticipated failures is labor intensive — much like building the system
several different times — and still leaves the user vulnerable to
unanticipated failures. The last approach, multi-version redundancy,
employs dissimilar redundant units in the hopes a systemic failure
(design flaw, coding bug, etc.) shows up only in one of the units. This
robustness technique is far too expensive for any but the most critical

Dr. Dobb's Embedded Systems

http://www.ddjembedded.com/resources/articles/2001/0106em001/0106em001a.htm (1 of 3) [12/21/2001 8:14:33 PM]

http://www.ddjembedded.com/
http://newads.cmpnet.com/event.ng/Type=click&ProfileID=7155&RunID=36845&AdID=27988&GroupID=320&FamilyID=1&TagValues=178.3024&Redirect=http:%2F%2Fwww.ddj.com%2Fpolls%2Fpoll00005.htm
http://www.ddjembedded.com/
http://www.ddj.com/
http://www.ddjembedded.com/about/
http://www.ddj.com/ddj/adcal.htm
http://www.ddjembedded.com/resources/articles/
http://www.ddjembedded.com/resources/linux_handhelds/
http://www.ddjembedded.com/resources/toolkits/
http://www.ddjembedded.com/languages/cpp/
http://www.ddjembedded.com/languages/java/
http://www.ddjembedded.com/languages/ada/
http://www.ddjembedded.com/languages/erlang/
http://www.ddjembedded.com/languages/forth/
http://www.ddjembedded.com/languages/smallc/
http://www.ddjembedded.com/languages/eiffel/
http://www.ddjembedded.com/languages/pascal/
http://www.ddjembedded.com/os/linux/
http://www.ddjembedded.com/os/rtos/
http://newads.cmpnet.com/event.ng/Type=click&ProfileID=7020&RunID=32992&AdID=25450&GroupID=304&FamilyID=2749&TagValues=3003.3024&Redirect=http:%2F%2Fwww.sdmagazine.com
http://newads.cmpnet.com/event.ng/Type=click&ProfileID=7021&RunID=34079&AdID=26342&GroupID=308&FamilyID=2815&TagValues=1910.3024&Redirect=http:%2F%2Fwww.ddj.com%2Fstore%2Flicense.htm

systems, as you're basically building the entire system with 3 (or more)
different engineering teams.

The RoSES project (Robust Self-configuring Embedded Systems) is a
research effort at Carnegie Mellon University focused on graceful
degradation in distributed embedded systems. Graceful degradation
should not be treated as a failover design problem, but instead as an
exercise in designing a product family architecture (PFA). A PFA is a
region of a system design space populated by different, but related,
products sharing similar architectures and components. Each system
instance within a PFA yields a distinct price/performance point and
represents a different model in the product family. The concept of a
PFA is familiar to anyone who has purchased a stereo, computer or
automobile. A stereo CD component, for instance, is offered in model X
with a collection of features: single disc, integrated remote, random
play, etc. Model X+1 differs slightly — perhaps it has an added graphic
equalizer. Model X+2 has a 5-disc carousel. All the models are very
similar and were designed with the entire product line in mind. If done
properly, Model X+1 is identical in almost all parts to model X. In fact
it may be true that Model X has the graphic equalizer algorithms and
compute resources, but just doesn't have an equalizer on the front panel.
Such product line optimization has a huge impact on the profitability of
the entire line, but is typically done assuming a perfectly working
system rather than with an eye toward graceful degradation.

In any complex system, there may be a huge number of different system
instances possible. And, if a suitable way to allocate functionality can
be provided, any system in which a single component breaks can be
treated simply as a closely related system in the PFA that (using a
"fail-silent" assumption) just happens to differ in having the failed
component missing from it. Thus, PFAs can form a conceptual
framework for specifying and implementing graceful degradation
within highly distributed embedded systems.

A close look at modern embedded systems shows there are some
characteristics that make them particularly amenable to the PFA model,
which in turn allows for automatic graceful degradation. These
characteristics are: distributed functionality, smart sensors, and
processing power devoted to optimizations.

Large portions of today's embedded systems are distributed collections
of microcontrollers. Automobiles, especially the top-of-the-line models,
typically have several networks and dozens to hundreds of network
nodes. Copy machines, manufacturing machines, HVAC controls,
trains, and numerous other common systems are, to a surprising degree,
filled with one or more networks of microcontrollers. Because of this
distributed nature, they have few single points whose failure would
keep all parts of the system from operating. When a single node of a
distributed network fails, the remaining microcontrollers retain enough
resources to potentially accomplish many functions. The challenging
problem is to allocate the remaining system resources in such a way as
to achieve their full potential. As a simple example, imagine the
algorithms running on a failed processor being restarted on another
microprocessor, and thus keeping the system running. A more complex
example might be the use of an accelerometer to calculate rough
velocity should the microcontroller handling an automobile's speed
sensor fail.

RoSES relies upon the increasing trend toward smart sensors (and
actuators — I'll use the term sensor to apply to both) in embedded

Dr. Dobb's Embedded Systems

http://www.ddjembedded.com/resources/articles/2001/0106em001/0106em001a.htm (2 of 3) [12/21/2001 8:14:33 PM]

systems. In previous-generation systems, the sensors often were
dedicated to a single task, and could not be shared easily. But modern
sensors are built into or connected to their own microcontroller. The
processing capability of the microcontroller is general — it doesn't have
to operate the sensor with the originally loaded algorithm. Mobile code,
or pre-positioned (but previously inactive) algorithms, allows the sensor
to be put to alternate use. If the promise of microelectromechanical
system (MEMS) devices becomes economically viable, sensors will
have abundant processing resources. MEMS technology builds physical
devices using standard IC processes, allowing integrated
microcontrollers to be constructed on silicon otherwise used only for
structural reasons. Smart sensors will, of course, allow for more
flexibility in moving processing capabilities throughout the system and
lead to more flexible systems.

Finally, RoSES exploits the tendency for systems to have an increasing
number of functions that are not strictly required by the core mission of
the system. In fact, much of the increasing computing power in
embedded systems provides extra functionality or performance
optimization rather than basic critical functions. It is often acceptable
for optimization functions to be shed by the system as components fail,
so long as this is done in a safe and controlled manner. For example,
losing a few percent of fuel economy is often acceptable, especially
when the alternative is complete vehicle failure.

Thus, there is room in many embedded systems to implement graceful
degradation of functionality as a way to improve dependability for
non-critical (but highly desirable) functions.

next: Reconfiguration in RoSES for Graceful
Degradation

1 | 2 | 3

© 2001 CMP Media, LLC. All Rights Reserved. Privacy Policy

Dr. Dobb's Embedded Systems

http://www.ddjembedded.com/resources/articles/2001/0106em001/0106em001a.htm (3 of 3) [12/21/2001 8:14:33 PM]

http://newads.cmpnet.com/event.ng/Type=click&ProfileID=7162&RunID=36845&AdID=27988&GroupID=320&FamilyID=1&TagValues=179.3024&Redirect=http:%2F%2Fwww.ddj.com%2Fpolls%2Fpoll00005.htm
http://www.ddj.com/ddj/privacy.htm

H O M E | D D J.C O M | A B O U T U S | A D V E R T I S E

R E S O U R C E S
Articles
Linux Handhelds
Toolkits
L A N G U A G E S
C/C++
Java
Ada
Erlang
Forth
Small C
Eiffel
Pascal
O S
Linux
RTOS

Reconfiguration in RoSES for
Graceful Degradation
The RoSES project uses a PFA-based approach to obtain graceful
degradation and other significant benefits, initially on automotive
applications. The concept represents a system as a set of:

Data flow graphs representing the connectivity among sensors,
through a series of algorithms, to the actuators that affect the
physical environment. I'll go into much more detail of RoSES
data flow graphs below.

●

System features with associated utility functions that form a
lattice of acceptable systems. The lattice is a highly connected
graph where each vertex represents a particular collection of
features that could be implemented together and result in an
associated product model. By adding or removing features, you're
changing to a different product model (and thus traveling along
an edge of the lattice to another vertex). See Figure 1 (pdf) for an
example lattice.

●

System constraints such as network schedules, or task deadlines.●

Hardware resources, including "smart'' sensors, "smart'' actuators,
compute-server nodes, and one or more embedded networks such
as a CAN (Controller Area Network) bus.

●

A RoSES system is a generic runtime architecture that works by
providing an optimum configuration, which involves selecting a subset
of possible software modules, allocating them to whatever hardware
resources are available, and ensuring that the resultant system meets
real time constraints without overflowing system size or bandwidth
limits. In order to match standardized hardware and software
components to a large variety of system configurations, RoSES uses
mobile object adapters. Such adapters are flexible software interface
middleware between the basic functionality of the sensor/actuator and a
dynamic network object interface. In order to break the computational
explosion of adapters, we allow multiple adapters to be loaded on a
node to interface to logical, non-network interfaces. The role of the
adapters within the RoSES system concept is illustrated in Figure 2
(pdf).

Once a particular configuration is established, a component failure
(either hardware or software) triggers a system reconfiguration. The
RoSES reconfiguration concept is a fairly fine-grained one, involving
specific software modules/objects and potentially very small hardware
components such as single sensors or actuators. The reconfiguration
mechanism is, at its core, a search through different combinations of
mobile object adapters for the sets that can be used on currently
available hardware resources. Such combinations must be viable
(supported by hardware and involving available software), meet critical
system requirements, satisfy any system constraints, and provide
optimal utility given available resources.

Dr. Dobb's Embedded Systems

http://www.ddjembedded.com/resources/articles/2001/0106em001/0106em001b.htm (1 of 4) [12/21/2001 8:15:29 PM]

http://www.ddjembedded.com/
http://newads.cmpnet.com/event.ng/Type=click&ProfileID=7155&RunID=37684&AdID=28558&GroupID=320&FamilyID=1&TagValues=178.3024&Redirect=http:%2F%2Fwww.rsaconference.com
http://www.ddjembedded.com/
http://www.ddj.com/
http://www.ddjembedded.com/about/
http://www.ddj.com/ddj/adcal.htm
http://www.ddjembedded.com/resources/articles/
http://www.ddjembedded.com/resources/linux_handhelds/
http://www.ddjembedded.com/resources/toolkits/
http://www.ddjembedded.com/languages/cpp/
http://www.ddjembedded.com/languages/java/
http://www.ddjembedded.com/languages/ada/
http://www.ddjembedded.com/languages/erlang/
http://www.ddjembedded.com/languages/forth/
http://www.ddjembedded.com/languages/smallc/
http://www.ddjembedded.com/languages/eiffel/
http://www.ddjembedded.com/languages/pascal/
http://www.ddjembedded.com/os/linux/
http://www.ddjembedded.com/os/rtos/
http://newads.cmpnet.com/event.ng/Type=click&ProfileID=7020&RunID=32992&AdID=25450&GroupID=304&FamilyID=2749&TagValues=3003.3024&Redirect=http:%2F%2Fwww.sdmagazine.com
http://www.ddjembedded.com/resources/articles/2001/0106em001/Figure1.pdf
http://www.ddjembedded.com/resources/articles/2001/0106em001/Figure2.pdf
http://newads.cmpnet.com/event.ng/Type=click&ProfileID=7021&RunID=34975&AdID=26342&GroupID=308&FamilyID=2815&TagValues=1910.3024&Redirect=http:%2F%2Fwww.ddj.com%2Fstore%2Flicense.htm

A Few Words on Reconfiguration

In today's research literature, reconfiguration is the buzzword typically
used to describe the ability to choose the proper configurations to be
loaded into a Field Programmable Gate Array (FPGA) operating as a
co-processor. The reconfiguration we propose is a system-level
reconfiguration of the software — no particular hardware techniques are
required. We merely want to find the best possible use for all of the
hardware of the system.

At first blush, this kind of system-level reconfiguration ought to be
trivial, using current distributed system technology such as Jini or
CORBA. Jini, for example, has mechanisms to discover faults (or at
least allow time-outs when something fails), discover services (like
sensors that provide data) available in the system, and move code across
the network for execution on different nodes. While useful, these
mechanisms are — in our experience — insufficient and improperly
designed for the kind of embedded distributed systems that make up our
target systems. Firstly, getting such resource-expensive systems
implemented over an embedded network such as CAN is not trivial.
Secondly, the mechanisms are useful for fulfilling local policies, but not
for making globally optimal decisions.

As an example, consider how Jini uses proxy objects. A network node
requiring a particular type of information would ask a Jini lookup
service for an object that knows how to procure the information and, if
one were available, would receive a proxy object to help the node
communicate with the information source. But there is no way to guide
the location service in deciding among several available proxy objects.
How can you be globally optimal if you can't even tell the lookup
service if you're resource constrained and would like the small object,
rather than a super-whamodyne-does-everything object that is too big to
fit on your node? To fulfill this need, we have instituted a centralized
decision maker, called the Reconfiguration Manager.

The Reconfiguration Manager

In a system with an automatic reconfiguration mechanism, graceful
degradation becomes fairly easy to accomplish. After each error is
detected, a new configuration is installed to obtain maximal
functionality using remaining system resources, resulting in a system
that still functions, albeit with lower overall utility. Designers using
such an approach do not necessarily have to examine each combination
of faults to specify designated configurations, but rather rely upon a
generalized reconfiguration engine to deal with any combination of
faults as it actually happens. The mission of the RoSES reconfiguration
manager is to fit the most useful features onto the available hardware in
such a manner as to abide within all system constraints. From this
statement, it is easy to see some high level requirements of the
reconfiguration manager.

Available Hardware: The reconfiguration manager must somehow
know what hardware is operational. This can be accomplished either by,
upon notification of a fault, trimming the broken pieces from an a priori
system model or to build such a model from scratch by asking each
working component to describe itself.

Useful Features: The reconfiguration manager will pick the most
useful adapters to put on the system. To do so, it must have an
understanding of which are the most useful. To this end, some of the

Dr. Dobb's Embedded Systems

http://www.ddjembedded.com/resources/articles/2001/0106em001/0106em001b.htm (2 of 4) [12/21/2001 8:15:29 PM]

adapters in the system are designated as features, and tagged with a
utility (i.e. usefulness) value. The utility value can be infinite for critical
features that must be included in the system. Most adapters are not
features, as they are useful for implementing multiple features — this
concept will become clearer later in the discussion of data flow graphs.

Features are organized into classes as well. Classes are useful for
expressing the fact that the same feature could be implemented in
several ways. Precise spark timing control, for instance, would be
implemented with a particular feature with high utility value, for
instance. But an alternate means of getting rough spark control might
also be possible, and thus result in a different feature with a low utility
value. Now, it isn't all that useful to have both algorithms running (and
in fact, could cause contention problems as they both vie for control of
the hardware). So both of these features would belong to the same class,
and the reconfiguration manager would know not to include both.

The manner in which features are measured is known as the utility
model. The description in the paragraphs above is for the simplest
utility model that will get the job done. More complex models are
possible, for instance to allow synergistic interactions among features (a
collection of particular features may involve more than a simple sum of
utility values). The utility model's role is simple, though. It must allow
the designers to communicate the desirability of different components
and features to the reconfiguration manager. The reconfiguration
manager needs to have a means to compare configurations to decide
which is optimal. Using the utility model described above, the utility of
a particular configuration is the sum of the features from unique classes.

System Constraints: Only valid configurations should be considered.
A valid configuration should be schedulable (i.e. meets real-time
deadlines), consistent (e.g. consumer algorithms can properly partake of
producer data), and fulfill any system-specific constraints. An example
of a system-specific constraint is a requirement that all the brake
systems in an automobile use the same brake control algorithm.

Device Customization: Once the reconfiguration manager has chosen a
configuration; it must be deployed throughout the system. Over the low
bandwidth networks common to distributed embedded systems, process
migration is cumbersome. Rather, the deployment will transfer small
bits of state to pre-positioned executables. Or, perhaps it will bring the
system down long enough to re-flash all the ROMs.

Reconfiguration Timing

The point in time when automatic reconfiguration is executed must be
carefully managed. The cost of running a reconfiguration manager to
determine the appropriate configuration can be significant. If the last
reconfiguration was done well, there probably aren't enough slack
resources (CPU or net cycles, timing slack, etc) to actually execute a
reconfiguration step while the original system keeps running. Instead,
we envision automatic reconfiguration employed during extreme duress
or down time.

In the case of a crisis, breaking schedules to run the reconfiguration
manager makes sense in that the system would be completely broken
and have no chance of fulfilling its mission otherwise. Running the
reconfiguration step may allow the system to find a configuration where
some useful work can still be accomplished with the available
resources. More typically, execution will happen when the system is

Dr. Dobb's Embedded Systems

http://www.ddjembedded.com/resources/articles/2001/0106em001/0106em001b.htm (3 of 4) [12/21/2001 8:15:29 PM]

down for maintenance, or at a slack time in the schedule. In an elevator,
for instance, a reconfiguration step may occur during the otherwise idle
time when the elevator has the doors open for passenger loading.

Eventually reconfiguration will be done on-line in real-time, but we are
concentrating on providing reconfiguration as a quick-turn off-line
operation to make the problems tractable in the near term. For a car
example, ideally reconfiguration in response to a component failure is
done while driving, but in the near-term we will instead assume that the
car is pulled to the side of the road for a minute or so while
reconfiguration takes place automatically (perhaps by contacting an
externally available reconfiguration manager such as via an OnStar type
service).

next: Operation of the Reconfiguration
Manager

1 | 2 | 3

© 2001 CMP Media, LLC. All Rights Reserved. Privacy Policy

Dr. Dobb's Embedded Systems

http://www.ddjembedded.com/resources/articles/2001/0106em001/0106em001b.htm (4 of 4) [12/21/2001 8:15:29 PM]

http://newads.cmpnet.com/event.ng/Type=click&ProfileID=7162&RunID=37684&AdID=28558&GroupID=320&FamilyID=1&TagValues=179.3024&Redirect=http:%2F%2Fwww.rsaconference.com
http://www.ddj.com/ddj/privacy.htm

H O M E | D D J.C O M | A B O U T U S | A D V E R T I S E

R E S O U R C E S
Articles
Linux Handhelds
Toolkits
L A N G U A G E S
C/C++
Java
Ada
Erlang
Forth
Small C
Eiffel
Pascal
O S
Linux
RTOS

Operation of the Reconfiguration
Manager
The reconfiguration manager works by solving several difficult
problems simultaneously. It first has to build a data flow graph of all the
available adapters. This graph is a directed, possibly cyclic graph where
each vertex is an adapter and edges are the data flow between adapters.
Vertices are labeled with the resources necessary for the adapter to
execute — consumables such as RAM and CPU cycles as well as
constraints such as microcontroller type. Edges are labeled with the
bandwidth requirement and any other constraints. For instance, some
communication may not be allowed on the network for lack of a defined
network message type. Such edges would constrain the adapters at each
end to be located in the same microcontroller. An example data flow
graph for a fictitious navigation application is shown in Figure 3 (pdf).
Note that meshes of similar edges have been collapsed for simplicity.

By the way, this data flow graph is a bit different from data flow
compute graphs used in data-driven computations, a popular parallel
processing topic from the 60s and 70s and now part of most
industrial-strength compilers. Such computations build a graph of all the
operations the data would have to flow through to get a correct answer
for the computation, much as our data flow graphs. In embedded
systems, however, the data keeps getting generated by the sensors and
flowing through the graph. This is a result of two phenomenon of
embedded systems — cyclic state and time-triggered architectures.
Many embedded systems, often as a result of rotating machinery,
proceed in a cyclic manner, repeating computation periodically. For
example, spark plug timing calculations are accomplished every time
the camshaft in an engine rotates. Often, repetition is a result of a
time-triggered architecture, where each task is accomplished
periodically rather than, as in an event-triggered architecture, as a result
of particular events occurring. In a time-triggered architecture, for
instance, the loss of a particular message is of less consequence, as it
will be regenerated during the next computation period.

This data flow graph has a fair amount of redundancy in it. Different
sub-graphs produce the same outputs, and thus only one (at most) need
be implemented. Each configuration is a different combination of graph
vertices. We can eliminate configurations with vertices that don't
contribute to a sensor-to-actuator path. We would also like to eliminate
configurations that don't fit within the constraints of the hardware and
network. This determination is actually an NP-hard (i.e. "really, really
tough") problem known to computer theorists as "bin-packing." The
reconfiguration manager tries to find a way to pack the vertices into
bins (the microcontrollers) with fixed size (the resources of the
microcontroller).

Several of the vertices in the graph are designated as features, as
discussed earlier. Features are additionally labeled with class and utility
values (other utility models would require different values, or means of

Dr. Dobb's Embedded Systems

http://www.ddjembedded.com/resources/articles/2001/0106em001/0106em001c.htm (1 of 4) [12/21/2001 8:49:10 PM]

http://www.ddjembedded.com/
http://newads.cmpnet.com/event.ng/Type=click&ProfileID=7155&RunID=37684&AdID=28558&GroupID=320&FamilyID=1&TagValues=178.3024&Redirect=http:%2F%2Fwww.rsaconference.com
http://www.ddjembedded.com/
http://www.ddj.com/
http://www.ddjembedded.com/about/
http://www.ddj.com/ddj/adcal.htm
http://www.ddjembedded.com/resources/articles/
http://www.ddjembedded.com/resources/linux_handhelds/
http://www.ddjembedded.com/resources/toolkits/
http://www.ddjembedded.com/languages/cpp/
http://www.ddjembedded.com/languages/java/
http://www.ddjembedded.com/languages/ada/
http://www.ddjembedded.com/languages/erlang/
http://www.ddjembedded.com/languages/forth/
http://www.ddjembedded.com/languages/smallc/
http://www.ddjembedded.com/languages/eiffel/
http://www.ddjembedded.com/languages/pascal/
http://www.ddjembedded.com/os/linux/
http://www.ddjembedded.com/os/rtos/
http://newads.cmpnet.com/event.ng/Type=click&ProfileID=7020&RunID=32992&AdID=25450&GroupID=304&FamilyID=2749&TagValues=3003.3024&Redirect=http:%2F%2Fwww.sdmagazine.com
http://www.ddjembedded.com/resources/articles/2001/0106em001/Figure3.pdf
http://newads.cmpnet.com/event.ng/Type=click&ProfileID=7021&RunID=34079&AdID=26342&GroupID=308&FamilyID=2815&TagValues=1910.3024&Redirect=http:%2F%2Fwww.ddj.com%2Fstore%2Flicense.htm

computation). The utility of a particular configuration is the sum of the
features from unique classes in the configuration. Recall that some
classes of features are critical and must be included in any final
configuration.

The preliminary reconfiguration manager we are implementing works
by searching through all feature classes for the maximum utility set of
features. It then prunes the data flow graph of those adapters (vertices)
that cannot help provide data for the features chosen. Finally, it searches
through alternatives, checking each set to see if it will pack onto the
available hardware. In the case of failure, it tries different collections of
adapters or goes back and selects different sets of features. Once a
configuration is chosen, mobile code or animation of pre-stored code is
used to load the chosen adapters onto the proper hardware. We expect
to use bin-packing heuristics to do this in a matter of a few seconds for
a large system.

Reconfiguration Management Is More Than
Just Graceful Degradation

Graceful repair reintegration (and graceful upgrades): Ultimately, it
is important to gracefully reintegrate a repaired component as well as to
reconfigure in the face of a component failure. As subsystems are
repaired or replaced, the reconfiguration manager determines
configurations that can use the added resources to restore functionality.
In addition, reconfiguration allows access to configurations beyond the
original product design. If a repair is made with a replacement part that
has superior performance, reintegration of the repair part is not just a
repair, but also a system upgrade. Beyond that, it is possible that new
components (and associated abstract functionality blocks and software
modules) can be added to perform field upgrades using the same
approach as that employed for reintegrating repair components.

In fact, a key insight is that graceful degradation and upgrade via
reconfiguration are simply ways of moving down or up the lattice of
points in product family architecture. When some hardware breaks or is
inserted, it's as if a different model in the PFA had been realized. The
reconfiguration manager then can determine the best collection of
features to install on available hardware.

Reconfiguration as Logistical Support: The reconfiguration
mechanism can also be exploited to provide a potentially major
logistical benefit — parts replacement with non-exact spares. Doing so
frees maintenance personnel from the burden of carrying every
conceivable spare part. For example, they might just carry more
capable, and expensive, generalized spares instead of cost-optimized
specific repair parts. (But reduced labor costs for trips back to the shop
to pick up just the right spares could easily offset any increased
component costs.) In emergencies, sub-optimal repair parts might be
used to perform temporary partial repairs. While the military
implications for compact spares inventories and non-exact battlefield
repairs are obvious, such issues are also important for any system
involving mobile maintenance personnel or systems with few
installations served per supply depot.

In addition, a major cost of supporting legacy systems is the need to
provide legacy spares. In the U.S., vehicle OEMs are required to keep a
spare parts pipeline available until well after the average lifetime of the
vehicle, subjecting the OEM to an interesting factory utilization
challenge. The OEM must weigh the warehousing costs of spare parts

Dr. Dobb's Embedded Systems

http://www.ddjembedded.com/resources/articles/2001/0106em001/0106em001c.htm (2 of 4) [12/21/2001 8:49:10 PM]

with the need to keep a factory line hot for the parts. This mandate will
be increasingly challenging as more and more automobile subsystems
involve digital electronics — entire chip fabrication processes may need
to be kept operational far beyond their obsolescence merely to provide
spare parts designed a decade earlier.

An automatic reconfiguration mechanism may ease such logistic
nightmares. Rather than replace a part with its exact duplicate, a
non-exact spare may be employed. The reconfiguration mechanism can
then be used to find a different configuration that still provides for the
same level (or perhaps an enhanced level) of functionality. Legacy
spares may be provided by building updated sensors and actuators to
hold several different algorithms just so they can be used in older
systems.

Reconfiguration Problems

Reconfiguration is not a panacea, otherwise it would already be in
widespread use. Challenging areas, beyond just the technical issues
behind building a system this way, that need consideration include:
validation/certification, debugging/technical support, multi-vendor
coordination, and the assignment of blame (or legal liability) when
something doesn't work.

The certification issue revolves around ensuring a certification authority
(e.g., FAA or NRC) is comfortable with the reconfiguration mechanism
and the manner in which configurations are chosen and deployed.
Hopefully, once the agency is comfortable with a particular mechanism,
then recertification of future product models becomes a simple process.
If reconfiguration is deemed too great a risk, one can employ a
separation strategy where the safety-critical functionality is partitioned
away from all other features and apply reconfiguration only to the less
safety-critical parts. Such separation is common, for instance, in
vehicles where one network is employed for critical engine control or
braking, and another network is used for the less critical power
windows, door locks, and so on.

The flexibility of a reconfigurable system may cause concern among
system designers and developers who desire strict control over the
system. Determining proper system operation is difficult for even a
single configuration of a complex system. A proliferation of
configurations raises another level of complexity for the debugging
process to overcome. This debugging problem (like so many other
complexity problems) may be alleviated with adherence to a carefully
controlled architecture. In the same way that the abstraction of an
object-oriented system reduces overall complexity and assists with
interface compatibility, reconfiguration is much easier when the
adapters fit well-defined and properly abstracted logical interfaces. In
addition, the reconfiguration manager must scrupulously log all
configuration changes and make the configuration data available to the
problem resolution team.

In a multi-vendor environment, reconfiguration runs into additional
issues. Recall that reconfiguration is, at core, a process that allocates
available resources to functionality. Well, what happens when the
resources come from one vendor's unit and are used to provide
functionality for unit from a different vendor? The first vendor may
object as the cost to provide the resources makes the unit more costly
compared to any non-reconfigurable competitors. In addition, liability
for an accident in such a situation is unclear. A jury could easily find

Dr. Dobb's Embedded Systems

http://www.ddjembedded.com/resources/articles/2001/0106em001/0106em001c.htm (3 of 4) [12/21/2001 8:49:10 PM]

either of the unit vendors, the integrating vendor or the vendor
providing the reconfiguration algorithms at fault.

Conclusion

Automatic reconfiguration mechanisms have a lot of potential to
achieve graceful degradation in distributed embedded systems. A
reconfiguration mechanism optimizes the system by choosing
functionality from a product family architecture. The chosen
functionality is then carefully positioned on network nodes where
computing resources are available. We hope this idea will elegantly
provide for both graceful degradation and significant logistical benefits,
although it does present some challenging research issues as well. We
will report on our future progress at http://www.ices.cmu.edu/roses. We
are grateful for support of this research from Bosch Electronics and the
General Motors Satellite Research Laboratory at Carnegie Mellon
University.

Bill Nace is a Ph.D. candidate who enjoys watching what happens when
systems break. He has collected many such experiences in his 14 years
of service in the US Air Force.

Phil Koopman uses his many "war stories" from industry experiences to
help him teach an advanced embedded system design course at
Carnegie Mellon University.

1 | 2 | 3

© 2001 CMP Media, LLC. All Rights Reserved. Privacy Policy

Dr. Dobb's Embedded Systems

http://www.ddjembedded.com/resources/articles/2001/0106em001/0106em001c.htm (4 of 4) [12/21/2001 8:49:10 PM]

http://newads.cmpnet.com/event.ng/Type=click&ProfileID=7162&RunID=37227&AdID=26404&GroupID=320&FamilyID=2839&TagValues=179.3024&Redirect=http:%2F%2Fwww.perforce.com%2Fperforce%2Floadprog.html
http://www.ddj.com/ddj/privacy.htm

	ddjembedded.com
	Graceful Degradation Part 1
	Part 2
	Part 3

	CLHCMNPCPADDGELEDJMCCDJPMAFPAPMP:
	form1:
	x:
	f1: [GO TO...]

	GHHPGBKGAJHJAEKIKPEBFBIEDAOOBDMA:
	form1:
	x:
	f1: [GO TO...]

	JFLINDCPPBOOEBABMHGGKENFDOFMFMAKLF:
	form1:
	x:
	f1: [GO TO...]

