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Abstract: Cost and efficiency concerns can force distributed embedded systems to use a
single network for both critical and non-critical messages. Such designs must protect
against masquerading faults caused by defects in and failures of non-critical network
processes. Cyclic Redundancy Codes (CRCs) offer protection against random bit errors
caused by environmental interference and some hardware faults, but typically do not defend
against most design defects. A way to protect against such arbitrary, non-malicious faults is
to make critical messages cryptographically secure. An alternative to expensive,
full-strength cryptographic security is the use of lightweight digital signatures based on
CRC:s for critical processes. Both symmetric and asymmetric key digital signatures based
on CRCs form parts of the cost/performance tradeoff space to improve critical message
.integrity.

separate processors, separate memory, and separate

1 INTRODUCTION networks.

Distributed embedded systems often contain a mixture
of critical and non-critical software processes that need
to communicate with each other. Critical software is
“software whose failure could have an impact- on
safety, or could cause large financial or social loss”
(IEEE, 1990). Because of the high cost of failure,
techniques such as those for software quality assurance
described in TEEE Std 730-1998 (1998) are used to
assure that such software is sufficiently defect free that
it can be relied upon to be safe. However, such a
process is expensive, and generally is not applied to
non-critical system components.

Separation of critical and non-critical networked
messages (i.e., through the use of separate buses) can
double the required network costs, both in cabling-and
in network interface hardware. There is strong
financial incentive to share a single network between
critical and non-critical message traffic. But, when
such sharing occurs, it is crucial that there be assurance
that non-critical network traffic cannot disrupt critical
network traffic. This paper assumes that non-critical
network hardware is designed to be fail-safe. For
example, in railroad signaling lack of message delivery
leads to a safety shutdown, so safe operation is viable
with off-the-shelf networking hardware. But other
In a typical safety-critical transportation system, such challenges remain to implementing such systems.
as in the train or automotive industries, it is generally

assumed that critical components will work correctly,
but that non-critical components are likely to have
defects. Defects in non-critical components could, if

not isolated, compromise the ability of critical

components to function. Thus, the simplest way to
assure system safety is to isolate critical and
non-critical components to prevent defects in
non-critical components from undermining system
safety. Such separation typically involves using

A significant challenge in mixed critical and
non-critical networks is ensuring that a non-critical
process is unable to masquerade as a critical message
sender by sending a fraudulent critical message.

Masquerading is considered malicious if an internal or
external attacker intentionally represents itself as a
different entity within the system; however,
masquerading may also occur due to non-malicious
transient faults and design errors that inadvertently
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cause one node or process to send a message that is
incorrectly attributed to another node or process.

A software defect masquerade fault occurs when a
software defect causes one node or process to
masquerade as another (Morris and Koopman, 2003).
One example is a software defect that causes one

process to send a message with the header
identification field of a different process. Another
example is a software defect that causes one node to
send a message in another node’s time slot on a TDMA
network. A software defect masquerade fault is not
caused by transient anomalies such as random bit flips,
but rather is the result of design defects (e.g., the
software sends the message with the incorrect header x
instead of the correct header y). Fault tolerance
methods designed to catch random bit flips may not
sufficiently detect software defect masquerade faults.

This paper describes six successively more expensive
levels of protection that can be used to guard against
masquerade faults. Rather than limiting the analysis to
malicious faults, the gradations presented recognize
that many embedded systems have reasonable physical
security. Therefore it is useful to have design options
available that present tradeoff points between the
strength of assurance against masquerading faults and
the cost of providing that assurance.

2 FAULT MODEL

Network fault detection techniques vary from system
to system. Some rely solely on a network-provided
message Cyclic Redundancy Code (CRC) or other
message digest such as a checksum for error detection.
Some critical applications add an additional
application-generated CRC to enhance error detection.
These techniques can be effective at detecting random
bit errors within messages, but they might not detect
erroneous messages caused by software defects that
result in masquerading. This is especially true in
broadcast-oriented fieldbuses in which applications
have control over message ID fields and can send
incorrect IDs due to component defects. In the worst
case, these erroneous messages could lead to
masquerading of critical messages by non-critical
processes or by failed critical hardware nodes.

In order to determine the safeguards necessary to
ensure correct behavior of critical components over a
shared network, we must first understand the types of
failures that can occur, as well as their causes. The
strongest fault model, which includes malicious and
intentional faults, assumes that an intruder is
intentionally falsifying message traffic and has
significant analytic abilities available to apply to the
attack. Such malicious faults can only be detected by
application of rigorous cryptographic techniques.

Because a malicious attack is the most severe class of
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fault, such measures would also provide a high degree
of fault tolerance for software defect masquerade
faults. But full-strength cryptographic techniques are
cost-prohibitive in many embedded systems. In
systems for which malicious attacks are not a primary
concern, lighter-weight techniques that protect against
accidental (non-malicious) faults due to environmental
interference, hardware defects, and software defects
are highly desirable.

The simplest accidental failures come from random bit
errors during transmission. In general, these errors are
easy to detect using standard error detecting codes
such as CRCs that already exist on most networks.

Errors due to software defects or hardware faults in
transmitters are more difficult to guard against. They
can result in undetectable failures in message content
unless application-level error detection techniques are
used because faults occur before the message is
presented to the network for computation of a CRC. A
particularly dangerous type of error that could occur is
an incorrect message identifier or application-level
message source field, which would result in a
masquerading fault.

In an embedded system with both critical and
non-critical processes, masquerading faults can occur
in three different scenarios: (1) a critical process might
be sending a critical message to another critical
process; (2) a critical process might be sending a
critical message to a non-critical process; and (3) a
non-critical process might be sending a non-critical
message to a critical process. Because critical
processes are trusted to work correctly, critical
messages are assumed to have correct information, and
messages from non-critical processes are suspect.
Safety problems due to masquerading can thus occur if
anon-critical process sends one of the first two types of
messages (i.e., if a non-critical process sends a
message falsified to appear to be a critical message).
An additional situation that is sometimes of concern is
if a critical node suffers a hardware defect that causes it
to masquerade as a different critical node, resulting ina
failure of fault containment strategies (designs
typically assume not only that faults are detected in
critical nodes, but also that they are attributed to the
correct critical node).

3 PROTECTION LEVELS

Once the fault model has been defined, an appropriate
level of masquerading fault detection can be
implemented based on the needs and constraints of the
application. As with any engineering design, this
requires tradeoffs in cost, complexity and benefits.



3.1 Level 0 - Network protection only

The first, baseline, level of protection is to rely solely

on network error checking. Most networks provide
some mechanism to detect network errors. Ethernet
and the Controller Area Network (CAN), for example,
both use CRCs.

The problem with relying on the network-level data
integrity checks is that they only check for errors that
occur at the network link level. Errors due to software
defects or some hardware defects in the network
interface are not detected. In addition, these detection
techniques may not be very effective at detecting errors
caused by routers and other networking equipment on
multi-hop networks. For example, Stone and Partridge
(2000) found high failure rates for the TCP checksum,
even when combined with the Ethernet CRC.

Though relatively effective at preventing random bit

errors, Level 0 remains vulnerable to defects in.

networking hardware that cause undetected message
errors, software defects that result in masquerading by
critical and non-critical processes, and malicious
attacks. In terms of bandwidth and processing
resources, this level requires no additional cost
because it is already built into most networks.

3.2 Level I- Application CRC

The next step in assuring message integrity is to apply
an application-level CRC to the data and to include it
in the message body that is transmitted on the network.
Stone and Partridge (2000) strongly recommend using
an application-level CRC to help detéct transmission
errors missed by the network checks due to defects in
routers and other networking equipment.

It might be the case that some or all of the processes
within a system use the same application-level CRC.
If non-critical processes use the same application-level
CRC as critical processes, then the application CRC

provides no protection against masquerading by

non-critical processes.

Level 1 provides additional protection against defects
in networking hardware that cause undetected message
errors. However, it does not protect against critical
message ~sources that falsify message source
information due to faults, defects that result in
masquerading by critical and non-critical processes,
and malicious attacks.

With respect to resource costs, Level 1 requires some
additional bandwidth and processing resources, but not
many. For example, on a CAN network a 16-bit
application CRC requires two of the eight available
data bytes and an additional few instructions per data

bit of CRC. In critical systems application-level
CRC:s are not uncommon.

3.3 Level 2 - Applicabtion CRC with secret
polynomial/seed (symmetric)

The application-level CRC in Level 1 may be
converted from a simple data integrity check into a
lightweight digital signature by using different CRC
polynomials for different classes of messages. In this
scheme, there are three separate CRC polynomials
used: one for critical messages sent between critical
processes, one for non-critical messages sent by the
critical processes to non-critical processes, and one for
messages sent by the non-critical processes. It is
important to select “good” polynomials with an
appropriate Hamming Distance for the lengths of
messages being sent, of course (Siewiorek and Swarz,
1992).

The Level 2 approach is a “lightweight,” symmetric
digital signature in which the secret key is the CRC
polynomial. It is symmetric because both the sender
and receiver of a message need to know the same key,
and must use it to sign messages (by adding an
application-level CRC using a specific polynomial),
and verify signatures (by computing the
application-level CRC wusing an appropriate
polynomial based on the purported message source
and comparing it to the frame check sequence (FCS)
field of the message actually sent).

A straightforward implementation involves using a
different secret polynomial for each class of message:
CRC, for critical to critical messages; CRC, for critical
to non-critical messages; and CRC; for non-critical
message senders. (Note that the case where
non-critical processes omit an application-level CRC
is equivalent to using a null CRC for situation CRC3).

Use of three CRCs is required because this is a
symmetric system. Thus, it is possible that any process
possessing a CRC polynomial might send a message
using that polynomial due to a software defect. If
CRC, is only known to critical processes, that means it
is impossible (or at least probabilistically unlikely) that
anon-critical process can falsify a message that will be
accepted by a critical process as having come from
another critical process. In other words, CRC; is a
secret symmetric key, and only key-holders can
generate signed messages. CRC, is used to provide
assurance that critical messages are being sent either
from critical processes or non-critical processes (with
software defects) that are receivers of critical
messages. CRC; is simply an application-level CRC
for non-critical messages. It might be the case that
there is no point in distinguishing CRC, from CRC;
depending on failure mode design assumptions,
because in either case at least one non-critical process
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would have “access to the secret key CRC, for .

generating critical-process-originated messages.

With this scheme there is still a critical assymption

being made about non-critical code. However, it is a-

much narrower assumption than with the Level 1
approach, and is probably justifiable for many
situations. The assumption is that CRC; has been
selected from a pool of candidate CRCs at random, and
- is unlikely to be used by non-critical processes on a
statistical basis. (One assumes that “well known”
published CRCs are omitted from the potential
selection pool, of course.) For 24-bit or 32-bit CRCs
this assumption is probably a good one, but there is still
a finite number of “good” CRC polynomials that are
significantly fewer than all possible 24-bit or 32-bit
integers.

A solution that is even better for these purposes is to
use a “secret seed” for a given polynomial.

Conventional CRC calculations use a standardized
starting value in the CRC accumulator, typically either
0 or -1. A secret seed approach uses some different
starting, or “seed” value for computation of the
application-level CRC that varies with the class of
message. So instead of CRC;, CRC; and CRC; for the
previous discussion, the technique would involve
using the same CRC with Seed;, Seed,, or Seed;, with

each seed being a different secret number. Thus, the

seed value becomes the secret key for a digital
signature.

Thus, the FCS of a message with a level of criticality i
would be computed as follows. If CRC(M,S) takes a
message M with an initial CRC seed value S to
compute a FCS, then:

FCS; = CRC(M,S;) (1

Critical to critical process messages would be
authenticated by having critical processes use S; to
compute and -compare the FCS field. Since no
non-critical process would have knowledge of Sy, it
would be, for practical purposes, impossible for
non-critical processes to forge a correct FCS value
corresponding to a critical message. There would still
be a chance of an accidental “collision” between the
FCS values for two CRCs, but this is true of
cryptographically secure digital signatures as well, and
can be managed by increasing the size of the FCS as
required. :

Combining a secret polynomial with a secret seed is
possible as well, of course, but does not provide a
fundamentally different capability. Tt is important to
note that CRC-based digital signatures are readily
attacked by cryptanalytic methods and are not secure
against malicious attacks. However, in a
cost-constrained system it might well be reasonable to
assume that non-critical components will lack

cryptanalytic attack capabilities, -and that software
defects will not result in the equivalent of cryptanalytic
attacks on secret CRC polynomials or secret seeds.

Symmetric-key CRC lightweight digital signatures of
Level 2 provide the samie benefits as application-level
CRCs of Level 1. In addition, they provide protection
against non-malicious masquerading by non-critical
processes that results in acceptance of fraudulent
critical messages. However, Level 2 does not protect
against non-malicious masquerading of critical
message sources by other critical message sources due
to faults, and is inadequate protection against
malicious attacks. The benefit of Level 2 is that it
requires no additional processing or bandwidth to
upgrade from Level 1.

3.4 Level 3 -Application CRC with secret
polynomial/secret seed (asymmetric)

Symmetric CRC-based signatures ensure that
non-critical processes cannot send critical messages to
critical processes by accident. However, a software
defect could still cause a non-critical process to
masquerade as a critical process sending a non-critical
message. (This is true because all noncritical
processes possess the symmetric key information for
receiving such messages). Additionally, Level 2
assumes that all critical processes are defect-free,
providing no protection against masquerading by a
critical process in the event of a hardware failure or
software defect.

A further level of protection can be gained by using
asymmetric, lightweight authentication. In this
approach every process has a secret sending key and a
public receiving key. The public receiving key is
known by all processes, but only the sending process
knows the secret sending key. In such a scheme every
process retains the public receiving keys of all
processes from which it receives messages (in general,
meaning it has the public keys of all the processes).
But because each process keeps its transmission key
secret, it is impossible for one process to masquerade
as another.

Because embedded systems tend to use broadcast
messages heavily, an implementation of full
public-key encryption is impractical, so the method
proposed here is tailored to a broadcast environment.
Additionally, CRC-based authentication is used which
is of course not secure against a cryptanalytic attack.

One way to implemeént a private/public signature
scheme is the following, using secret polynomials.
This method may also be used in addition to the use of
distinct CRCs or seeds for FCS computation as
outlined in Level 2. If desired for cost and simplicity
reasons, all non-critical to non-critical messaging can
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use a.single standard polynomial, and only critical
message sources need use the private/public key
approach.

Each critical process has two CRC polynomials: CRC,
and CRC,. CRC, is a publicly known polynomial,
whereas CRC; is a secret private polynomial. Every
CRC, in the system is distinct per process. Every CRC,
is the inverse of the corresponding CRC,. Thus, the
secrecy of CRC, depends on there being no code to
compute an inverse polynomial in the system. Because

computing inverse polynomials is performed using a’

bit-reverse operation (with adjustments to account for
an implicit 1 bit within the polynomial in most
representations), the validity of the assumption of
secrecy is one that must be made in the context of a
particular system design. However, computing inverse
polynomials off-line and putting them in as constants
within the system code avoids the presence of inverse
polynomial code, and might well be a reasonable
approach for systems that cannot afford the cost of
full-strength cryptography. (The creation of stronger,
but efficient, methods for asymmetric signatures is an
open area for future research.)

A sending process S appends a signature X to a critical
message M and its FCS field (X is not included in the
FCS computation), where “|” denotes concatenation:

M |FCS|X @

where:
X = CRC,(FCS) 3

Receiving processes then verify the authenticity of the
transmission by ensuring that:

FCS = CRC(X) 4

What this is doing is “rolling back” the FCS using an
inverse CRC, CRC,, to compute a signature that, when
rolled forward through CRC,;, will yield the FCS.
Because only the sending process knows the inverse
CRC for its public CRC, no other process can forge
messages.

This method protects against software and hardware
defects that cause a process to send a message that
should not be sent (e.g., forged source field or incorrect
message identifier/type information).

This method is vulnerable to the following: malicious
attacks using cryptanalysis (even without knowledge
of the public CRC polynomial); software defects
involving CRC code that computes CRCs
“backwards” from the critical CRC computation (e.g.,
right-to-left CRC computations when the critical code
is using a left-to-right shift-and-xor computation); and

software defects in critical or non-critical software that-

compute the bit-reverse of a public polynomial and

then use that as the basis for signing a message. While
some of these defects could probably happen in real
systems, the specificity of the defects required would
seem to provide a higher degree of assurance than not
using such a technique. As stated previously, this is an
example of a simple lightweight signature technique; it
is possible that future research will yield even better
approaches to fill this niche in the design space.

If the system is originally designed at Level 1 or Level
2 with an application CRC, then there is an additional
cost to compute and transmit the signature X. In a
CAN network with a 16-bit signature X, this would be
an additional handful of instructions per CRC bit and
two bytes of the remaining six available data bytes.

3.5 Level 4: Symmetric cryptography

Levels 1 through 3 all use some form of CRC to detect
masquerading errors due to defects in the non-critical
software, and provide no credible protection against
malicious faults. The next higher level of protection
can be achieved through the use of cryptographically
secure digital signatures. Although designed primarily
for malicious attacks, such digital signatures can also
prevent defective non-critical software components
from forging critical messages.  This can be
accomplished via use of a Message Authentication
Code (MAC), which is a keyed one-way hash function.
A detailed description of MACs appears in Section
18.14 of Schneier (1996).

Symmetric digital signatures must be sufficiently long
to preclude successful malicious attacks via
cryptanalysis or brute force guessing. Additionally,
they take significant computational capability beyond
the means of many embedded systems. However, a
symmetric key approach is secure against malicious
attacks unless the attacker compromises a node
possessing a secret key. In the case that the attacker
compromised a critical code, it would be possible to
maliciously forge a message that apparently originated
in any node in the system. Malicious attacks aside, a
Level 4 approach has the same strengths and
weaknesses as a Level 2 approach in that it is a similar

general signature method, but using strong
cryptography.

3.6 Level 5: Public-key digital signatures

Level 4 protection was analogous to Level 2
protection, but used cryptographically secure

symmetric digital signatures. Level 5 is, in tumn,
generally similar to Level 3 CRC lightweight public
key signatures, - but uses cryptographically secure
signature algorithms. - Various public-key digital
signature algorithms are described in Section 20 of
Schneier (1996).
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A Level 5 approach provides protection from forgery
of message sources to the limits .of the cryptographic
strength of the digital signature' scheme used.

Moreover, if a node is compromised by malicious
attack, forgery of messages can only be accomplished
with compromised node(s) as originators, because
each node has its own distinct secret signature key.

However, public-key methods have longer signatures
and are much slower than symmetric cryptography
(Menezes et al., 1997). .

3.7 Tradeoffs

Each of these methods provides a certain level of fault
protection; however, they each have a commensurate
cost. The developers must decide what protection is
required to attain safe operation, and adjust system

design decisions on how much safety critical operation:

to delegate to computers based on budget available to
provide protection against realistic masquerading
threats. For example, a system with a fault model that
includes software defect masquerade faults but
excludes malicious attacks might chose Level 2
Level 3.

An additional burden that must be assumed when using
any masquerading detection technique is that of
cryptographic key management. Any technique
discussed assumes that only a certain set of nodes have
access to secret keys. This restricted access results in
significant complications in configuration
management, deployment, and maintenance,
especially when insider attacks are considered a
possibility. (As a trivial example, every time a
disgruntled employee leaves a company, it is advisable
to change all cryptographic keys that the employee
might have had access to if attacks by that employee
are a substantive threat.)

Figure 1 shows all of the levels, in order :of

effectiveness. In general, the stronger the protection,.

the more expensive the method. Levels 3 and 4 have a
partial ordering, because the protection of Level 3
(asymmetric secret CRC) might be more useful than
the protection afforded by Level 4 (symmetric secure
digital signature), depending on whether malicious
attacks are a part of anticipated threats. However, it is
expected that CRC-based signatures will be
substantially less expensive to implement than
. cryptographically secure digital signatures.

4 CONCLUSIONS

This paper presents six levels of fault detection
techniques that can be deployed against the possibility
of masquerading faults on shared critical/non-critical
fieldbuses. Level 0 (network-provided protection)
providés no protection beyond what is included in the

Level5

Leve|4

c Level 3

o

; \f

e

o Level 2

o _1
Level 1

Level 0

Figure 1. Masquerading fault protection levels

network protocol. For level 1 (published CRC), the
application must be modified to apply the
application-level CRC before sending messages on the
network, and after messages have been received. Once
an application-level CRC is present in the code, the
polynomial or seed value used in the calculation can be
changed to achieve Level 2 (symmetric secret
polynomial/seed) protection. A novel Level 3
(asymmetric secret polynomial/seed) approach is
proposed to provide very lightweight digital signatures
with a public key flavor that are suitable for broadcast
bus applications, but that further assume malicious
faults are not a threat. Levels 4 and 5 complete the
taxonomy and consist of using well known
cryptographically secure approaches to guard against
malicious masquerading faults.

Typical fieldbus systems today operate at Levels 0 and
1, and are not secure against masquerading faults. It
might be attractive in some applications to upgrade to a
Level 2 or Level 3 capability to improve resistance to
non-malicious software defect masquerade . faults
without having to resort to the complexity and expense
of cryptographically secure Level 4 or Level 5
approach.
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