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ABSTRACT 
Distributed embedded systems are becoming increasingly 
vulnerable to attack as they are connected to external networks. 
Unfortunately, they often have no built-in authentication 
capability. Multicast authentication mechanisms required to 
secure embedded networks must function within the unique 
constraints of these systems, making it difficult to apply 
previously proposed schemes. We propose an authentication 
approach using message authentication codes which exploits the 
time-triggered nature of many embedded systems by putting only 
a few authentication code bits in each message, and by requiring 
authentication to be confirmed by the correct reception of multiple 
messages. This approach can work for both state transition 
commands and reactive control messages, and enables a tradeoff 
among per-message authentication cost, application-level latency, 
and the probability of induced system failure. Authentication 
parameters can be tuned on a per-message basis while satisfying 
typical wired embedded network constraints. 

Categories and Subject Descriptors 
C.2.0 [Computer-Communication Networks]: Security and 
Protection 

General Terms 
Design, Reliability, Security. 

Keywords 
Distributed Embedded Systems, Networks, Security, Multicast, 
Authentication, Controller Area Network, CAN, FlexRay, Time- 
Triggered Protocol, TTP, In-vehicle, Real-time.  

1. INTRODUCTION 
Distributed embedded network protocols such as Controller Area 
Network (CAN) [3], FlexRay [1], and Time-Triggered Protocol 
(TTP) [15] are used in a wide variety of safety-critical 
applications. While these wired network protocols have been  

 

 

 

 

 

 

developed primarily for in-vehicle automotive networks, they are 
also seen in aviation, robotics, and industrial automation systems. 
Safety, reliability, performance, and cost have traditionally been 
the primary concerns in these systems. 

Wired embedded network protocols are, for the most part, not 
designed with security in mind. This is largely because in the past 
embedded networks were isolated from the Internet, and could 
only be attacked by someone having direct physical access to the 
network. But now these embedded networks are susceptible to 
attacks, just as enterprise networks are, because manufacturers are 
incorporating connectivity to the Internet or wireless networks 
[14]. If an attacker corrupts even a single node via an external 
network or other method of attack, they will gain access to the 
internal safety-critical traffic on the wired embedded network. 
Wired embedded network protocols typically do not include built-
in support for authenticating transmitters, restricting the messages 
transmitters can send, encrypting message payloads, or preventing 
denial of service (DoS) attacks. Wolf et al. [28] illustrate a variety 
of attacks on these distributed embedded network protocols, 
focusing on attacks which will disable the network. 

In this paper we focus upon providing message authentication for 
wired embedded control networks such as CAN, TTP, and 
FlexRay. Because these protocols do not incorporate 
authentication, they are vulnerable to masquerade and replay 
attacks [27]. A masquerade attack occurs when an entity sends a 
fraudulent message identifying itself as another legitimate node. 
Replay attacks occur when an old message is retransmitted and 
accepted as a fresh message. Embedded network protocols 
provide means to identify the sender node, and incorporate error 
detection techniques. However, these techniques do not prevent a 
malicious entity (or non-malicious defective software) from 
masquerading as a legitimate node or replaying messages within 
the network. Masquerade attacks can be performed by changing 
an identifier field and recalculating error checking codes, or by 
broadcasting during another node's designated time slot in a Time 
Division Multiple Access (TDMA) protocol [18]. Replay attacks 
can be performed simply by recording a message and resending it 
in a similar fashion. TTP may be less vulnerable because the 
sender identity is implicit in the time slot being used. An 
adversary may need to exert additional effort to overcome this 
characteristic.   

An attacker with physical access to an in-vehicle network and 
knowledge of message formatting and identifiers can easily send a 
spoofed message to unlock an automobile's car doors, start the 
engine, or operate other vehicle equipment. With wireless 
connectivity to a corrupted node, an attacker might activate a car's 
electronic parking brake while traveling on the highway, or shut 



off the headlights while traveling at night. Nilsson and Larson 
[19] demonstrate how such an attack can be performed on the 
CAN protocol through simulation. 

While gateways between internal and external networks might 
help improve security, it seems plausible that attackers will be 
able to circumvent or penetrate gateways and obtain the ability to 
send messages on an internal embedded network. Preventing such 
attacks requires strong authentication of nodes as an additional 
layer of protection. This presents a particular challenge in 
distributed embedded networks, because any authentication 
scheme must support multicast authentication subject to the 
constraints of: resource limited nodes, small packet sizes, 
potentially high packet loss rates, and tight real-time deadlines.  

We present an authentication method for distributed embedded 
networks which conforms to these common embedded system 
constraints. Our method allows the system designer to perform a 
tradeoff among per-message authentication cost, application level 
latency, and the probability of induced system failure. This is 
accomplished by appending truncated Message Authentication 
Codes (MACs) of only a few bits to each message. The time- 
triggered embedded applications we consider broadcast periodic 
updates of the values of system inputs and variables. This allows 
us to aggregate authentication from several messages before 
permitting an irrevocable alteration to the state of the system. 
Additionally, this approach allows us to reduce the probability of 
successful attacks on reactive control functions by making it 
difficult for attackers to forge enough messages in a short period 
of time to produce a system control failure. 

This paper first identifies the impact of embedded network 
constraints on authentication, and describes why existing 
authentication schemes do not fully satisfy these constraints. We 
then describe an authentication scheme which conforms to the 
constraints, and takes advantage of existing properties of 
embedded network protocols. Additionally, we identify two types 
of embedded network messages, each requiring differing methods 
of authentication, and analyze the security of our scheme for each. 
Lastly, we introduce the notion of an engineering tradeoff among 
per-message authentication costs, application latency, and the 
probability of induced system failure. 

2. Embedded Network Constraints 
Distributed embedded networks are composed of a number of 
Electronic Control Units (ECUs). Each ECU performs a set of 
functions in the system. These ECUs are interconnected to form a 
network, and communicate using a protocol such as CAN, 
FlexRay, or TTP. In this paper, we will consider these protocols 
as they are commonly used in time-triggered applications. These 
protocols are among the most capable of those currently in use in 
wired embedded system networks. Many other protocols are even 
less capable, but have generally similar requirements and 
constraints: 

• Multicast Communications - All messages sent on a 
distributed embedded network are inherently multicast, 
because all nodes within the embedded system need to 
coordinate their actions. Once a sender has transmitted a 
packet, all other nodes connected to the network receive the 
message. (In CAN, hardware performs message filtering at the 
receiver based on content.)  Each packet includes the sender's 
identity, but does not include explicit destination information. 

[5] provides a description of multicast authentication issues 
along with some solutions. The configuration of the network is 
usually fixed at design time, with little or no run-time 
reconfiguration. 

• Resource Limited Nodes - Processing and storage capabilities 
of nodes are often limited due to cost considerations at design 
time. For example, the S12XD series, produced by Freescale 
[2], is a family of 16-bit microcontrollers designed for use in 
general automotive body applications. These microcontrollers 
provide up to 32 kilobytes of RAM, 512 kilobytes of Flash 
memory, and four kilobytes of EEPROM, with a core 
operating frequency of 80 MHz. Flash memory is generally not 
written to except for software updates, so the EEPROM holds 
non-volatile application data. Any buffering and storage for 
authentication consume space in RAM, which is far more 
expensive and scarce than flash memory in such systems. 
Authentication mechanisms which require large amounts of 
processing power or storage in RAM may not be feasible. 
More powerful ECUs are infeasible for most nodes in the 
system, and many nodes are 8-bit ECUs with significantly 
smaller memories due to cost and power consumption 
considerations. 

• Small Packet Sizes - Packet sizes are very small in embedded 
network protocols when compared to those in enterprise 
networks. These packets have maximum data payload sizes as 
small as eight bytes in the case of CAN, with the largest 
payloads for FlexRay and TTP being 254 bytes and 236 bytes 
respectively. Due to cost, signal integrity, and network node 
synchronization concerns, data rates are limited to 1 Mbit/sec 
for CAN and 10 Mbit/sec for TTP and FlexRay. Low-cost 
embedded networks can be orders of magnitude slower than 
that. Authentication should incur minimal bandwidth 
overhead. 

• Tolerance to Packet Loss - Distributed embedded systems are 
subject to message blackouts due to environmental 
disturbances such as interference from large electric motors. 
High quality cable shielding is often impractical due to cost, 
size, and weight considerations. As such, authentication 
schemes must be tolerant to packet loss. 

• Real-Time Deadlines - In real-time safety-critical systems, 
delays are not tolerated. Processes which cannot be completed 
within specified deadlines for the system cannot be used. 
Authentication of nodes must occur within a known time 
bound, with that bound being fast enough to match the 
physical time constants of the system being controlled (often 
on the order of tens or hundreds of milliseconds). 

3. Related Work 
This section describes the related work in multicast authentication 
and previous work in authentication for embedded networks. 

3.1 Existing Multicast Authentication with 
Respect to Embedded Constraints 

The multicast nature of distributed embedded communications 
makes authentication particularly challenging. Point-to-point 
cryptographic mechanisms, such as appending a MAC [27] to a 
message using a single key shared across all nodes, do not provide 
adequate authentication. If more than two nodes hold the same 
shared key, it becomes impossible to discern which one 
transmitted the message. Any receiver of a message could 



masquerade as the sender. For this reason, multicast 
authentication requires some form of asymmetry.  

As a simple extension of the single shared key scheme to provide 
asymmetry, a sender could establish shared pair-wise keys with 
every other node. For each transmitted message, the sender would 
append a distinct MAC for each receiver to the message, 
providing strong authentication. A receiver would know that a 
message with a valid MAC could only have come from the sender, 
because those two nodes share a secret key and the receiver did 
not send the message. However, the bandwidth overhead of using 
full-size MACs makes this approach infeasible for embedded 
networks.  

Public key cryptography using digital signatures is another 
asymmetric approach. While this could provide strong source 
authentication, digital signatures have very high processing and 
bandwidth overhead. The processing overhead alone makes it 
impractical for a resource constrained node to compute digital 
signatures for each message it sends. Several schemes suggest 
amortizing the cost of the digital signature over several packets 
[17][24][29][20]. But, known approaches may not be suitable 
when sending time-triggered embedded messages due to 
bandwidth overhead or intolerance to lost packets. Additionally, 
attackers can perform a denial of service attack, forcing a node to 
consume extra resources by processing arbitrary forged signatures, 
as noted in [22].  

One-time digital signature schemes [21][10][8] allow senders to 
sign messages much faster than with traditional digital signatures 
by utilizing one-way hash functions. Unfortunately, one-time 
digital signatures can incur several kilobytes of authentication 
data per message. This makes them impractical for embedded 
networks with small packet sizes and time-triggered 
communication. 

Canetti et al. [5] suggest a scheme which appends k MACs to each 
message, computed using k different keys. The keys are 
distributed amongst receivers such that at least w receivers must 
conspire in order to forge a message as the sender. This scheme 
requires computation of k MACs, and incurs considerable 
bandwidth overhead due to the attachment of these MACs. 
Additionally, this scheme is vulnerable to collusion.  

Bergadano et al. [4] and the TESLA protocol [22] utilize time-
delayed release of keys for authentication. By releasing keys at a 
pre-specified interval after a MAC is released, receivers can 
confirm the authenticity of the data from a sender. The released 
keys are computed using one-way hash chains. Resource 
constrained nodes may not have sufficient storage required for key 
chains to authenticate periodic messages in a time-triggered 
system. µTESLA [23], a version of TESLA for resource 
constrained sensor networks, limits the number of authenticated 
senders and utilizes a base station for communications. These 
options are not available for most distributed embedded real-time 
control systems, which use peer-to-peer wired networks. Although 
a node, such as an embedded gateway, might act as a base station, 
it also introduces an undesirable single point of failure. 
Additionally, one would expect that the gateway node would be 
the one node on the network most vulnerable to compromise from 
an external attacker, because it is the one node connected to 
external networks. Compromise of the base station node would 
compromise the security of the entire system. It would be 

desirable to have a practical approach that does not depend upon a 
base station. 

3.2 Embedded Network Authentication 
While there have been many publications on multicast 
authentication, little prior work has focused upon the 
requirements for authentication methods specifically for wired 
distributed embedded networks. There have been approaches 
which apply security to resource constrained wireless sensor 
networks such as SPINS [23] and TinySec [13]. However, those 
approaches are specifically designed for use in wireless networks, 
which have significantly different constraints than wired 
networks. Secure aggregation has also been used to reduce 
security overhead in both sensor networks [12][25] and Vehicular 
Ad-Hoc Networks (VANET) [26]. Those approaches focus on 
secure aggregation of data from multiple sensors in close 
geographic proximity rather than time-triggered messages in close 
temporal proximity. 

Morris and Koopman [18] identify the potential for masquerade 
failures to be used to cause accidental or malicious failures, via 
allowing non-critical nodes to masquerade as higher criticality 
nodes. Additionally, they propose the use of several counter-
measures of varying strengths to prevent masquerading failures 
between nodes of varying criticality. Their approach assumed an 
attack was due to a non-malicious software fault or was being 
made by an unsophisticated attacker, unfamiliar with cryptology. 

Wolf et al. [28] provide an overview of the security vulnerabilities 
of various in-vehicle network protocols including Local 
Interconnect Network (LIN), Media Oriented System Transport 
(MOST), CAN, and FlexRay. These vulnerabilities primarily 
focus upon attacks which will disable the networks. Additionally, 
they state the need for confidentiality and authentication. Wolf et 
al. suggest the use of digital signatures or the asymmetric MAC 
scheme proposed by Canetti et al. [5] for authenticating sent 
packets along with gateways between individual in-vehicle 
networks. These authentication schemes may not be suitable for 
some distributed embedded networks, as discussed in Section 3.1.  

There have been several publications demonstrating attacks on the 
authenticity of messages and nodes in embedded networks. 
Nilsson and Larson [19] detail the actions which an attacker may 
take, and demonstrate masquerade attacks on CAN using 
simulation. Additionally, they discuss the possibility of viruses 
transmitted over CAN and preventative measures. Hoppe et al. 
[11] and Lang et al. [16] demonstrate a combination of 
eavesdropping and replay attacks on CAN. 

Lastly, Chávez et al. [6] propose using RC4 encryption to provide 
confidentiality on CAN buses. Chávez et al. dismiss 
authentication and non-repudiation as unnecessary in these 
networks, under the assumption that message identifiers and error 
detection provide sufficient confirmation of the sender's identity. 
Our work relaxes this assumption by assuming that sender identity 
can be forged. 

4. Criticality Based Authentication 
In order to provide multicast authentication on a per message 
basis for time-triggered communications, our approach uses 
truncated MACs. In time-triggered communications, each node 
periodically broadcasts the current state of each of its state 
variables and sensor inputs to the rest of the network. This 



information is often broadcast faster than the rate at which 
receivers must act upon this data in their control loops. This faster 
rate gives the system a degree of resilience to unexpected 
operating situations and message losses. 

In our approach, when a node sends a message, it computes a 
MAC for each distinct receiving node in the network over the 
message and the current time (or TDMA round number) using a 
pair-wise shared secret key. Each MAC is truncated down to just a 
few bits, and appended to the message. (If there is concern that 
the low bits of the MAC are not sufficiently random, all bits of the 
MAC can be hashed. For example, XORing all MAC bytes 
together would create a condensed 8-bit version of the MAC.) By 
only using a few bits, one MAC per receiver can be placed in a 
packet, as illustrated in Figure 1. The receivers verify their 
respective MACs and signal an error if the MAC does not match 
the message in the current time interval. Nodes act upon 
authenticated messages depending upon the type of message 
received. The number of bits in each truncated MAC depend on a 
variety of factors, but could be as little as one bit per MAC. 

 

Figure 1. Example packet containing 32 bits of message data 
and four 8-bit MACs, for four receivers.  

 

This allows the designers of the system to perform a tradeoff 
among the required amount of bandwidth they are willing to 
sacrifice for per-message authentication, application level latency, 
and the probability of induced system failure. This tradeoff is 
based upon the criticality level of the message and the message 
type. Criticality is related to the amount of physical change which 
can be exerted on the environment around the system, or potential 
for monetary loss or damages. 

4.1 Message Types 
We identify two types of messages in embedded networks with 
different requirements for authentication:  state-changing 
messages, and reactive control messages. 

4.1.1 State-Changing Messages 
State-changing messages cause transitions within finite state 
machines in the system design, or cause discrete, discontinuous 
output changes in actuators. If an attacker successfully executes 
an undesired state change, the system must attempt to roll back to 
an earlier correct state to undo any damages. Depending on the 
action, such a roll-back may or may not be possible. For example, 
triggering a pyrotechnic that deploys an airbag is a discontinuous 
actuator state change that cannot be rolled back automatically. 

For state-changing messages, nodes must receive a certain number 
of correctly authenticated consistent messages directing the state 
change before executing the action. The number of consecutively 
authenticated messages which must be received is proportional to 
the criticality of the message. For example, an attacker who 
managed to forge a message to turn on the four-way flashers of an 

automobile would only cause some confusion and irritation that is 
easily rolled back by turning the flashers back off. That state 
change might require only a few consecutive authenticated 
messages before the system accepted the state change commanded 
by those consecutive messages as valid. On the other hand, if an 
attacker successfully forged messages to unlock the doors and turn 
on the engine to facilitate car theft, the resulting damage could be 
greater. A receiver of those messages would wait to receive a 
larger quantity of correctly authenticated messages before 
accepting the state change as authentic.  

4.1.2 Reactive Control System Messages 
Reactive control system messages cause updates to continuous or 
ordered values in network nodes running feedback control loops. 
These loops often contain a low pass filter to actuator changes 
(implicit or explicit), such as physical inertia, which limits the 
possible impact of a single forged message. In the event of a 
single successfully forged message, this low pass filtering 
characteristic damps out the possible impact on the system. So 
long as a sufficiently small fraction of messages can be 
successfully forged, the system can either ride out disturbances or 
have time to notice an attack is taking place before significant 
damage has been done or the system has become unsafe.  

So long as there are enough MAC bits used to keep successful 
forgeries sufficiently infrequent, nodes can authenticate each 
reactive control system message individually. An attacker would 
need to correctly forge many messages within some period of time 
to produce a potentially damaging physical output from an 
actuator. As the number of messages within a short time period 
required to produce a damaging output increases, the probability 
that an attacker can forge such a series of messages in a short 
enough period of time so as to induce a system failure decreases. 
If sufficient MAC bits are not available in each message to keep 
the probability of a successful forgery sufficiently low, then 
several messages in a row might be required to have correct 
MACs before a new actuator output value is accepted as valid. 

4.2 Additional Properties 
Our scheme provides three additional beneficial properties. First, 
each transmitted packet contains all authentication information for 
that packet. This allows some amount of authentication to be 
performed for every packet received. No buffering is required by 
the sender or receiver. Second, authentication information is fully 
contained within each individual packet, so our scheme is tolerant 
to packet loss. Lastly, this scheme has ideal resistance to node 
compromise, because an attacker can only masquerade as those 
nodes from which they have extracted key material. 

4.3 Assumptions 
Our approach makes three assumptions:   

• Each sender has sufficient computational resources to compute 
one MAC per receiver per message that is sent. MACs can be 
computed relatively quickly, and the number of receivers is 
quite limited in embedded networks. 

• The number of bits in a message is greater than the number of 
receivers of a message. Embedded networks typically 
incorporate a small number of nodes, usually fewer than 32. 
This allows authenticators for each receiver in the packet, 
leaving room for the message.  



• Nodes use existing cryptographic one-way hash functions, 
such as SHA-256, and MAC functions, to implement 
authentication. We assume the underlying cryptographic 
primitives are secure. We do not rely on specific MAC or one-
way hash functions to implement our scheme. 

4.4 Attacker Model 
We consider an active attacker model [27] in which an attacker 
may modify, inject, drop, or eavesdrop upon network traffic. 
Attackers may physically access the network lines, or access the 
network through a corrupted node. Attacks through corrupted 
nodes include connections from an external network through a 
gateway, malicious insider code, physically compromised devices, 
and malicious devices physically attached to the network.  

Attackers accessing the network through corrupted nodes will 
have access to the key material in those nodes. Regardless of the 
key material possessed by the attacker, they must not be able to 
masquerade as any node they do not control to perform a 
successful attack, except with some negligible probability. 

We constrain the attacker to one forgery attempt per message, 
since receivers only accept a single message per time slot in a 
time-triggered application. 

It is likely that any single successful forgery attempt will only 
succeed in fooling a subset of receiving nodes, because each 
receiving node bases its acceptance of a message on a different 
MAC value. Whether it is possible to successively fool different 
nodes one at a time to accomplish a global malicious state change 
depends on the details of system design. In particular, doing this 
would require finding an enduring state change that can be 
accomplished with only a few successfully forged messages per 
node, and that does not revert to a non-malicious state during the 
time it takes to successfully messages to other nodes. Commonly 
used fault containment mechanisms such as group membership 
would form strong countermeasures to such divide-and-conquer 
attacks on nodes. 

Lastly, it should be noted that this scheme does not seek to protect 
against DoS attacks. Wolfe et al. [28] surveys numerous existing 
vulnerabilities in these networks to simple DoS attacks. This 
scheme presents additional opportunities for DoS attacks, such as 
intentionally sending incorrect MAC values, but in general does 
not make the DoS issue worse than it already is.  

5. Criticality Based Authentication Process 
This section describes the process which the wired embedded 
network nodes will use to provide authentication. 

5.1 Key Initialization 
A node establishes shared secret authentication keys with all other 
nodes at time of installation. This can be accomplished by having 
maintenance or factory personnel program each node with the 
respective shared secret keys when the node is installed. This 
method is not ideal, since it requires additional work by personnel 
to establish the keys, and places a large amount of trust in these 
personnel. Alternately, another approach is to provide each node 
with a public and private Diffie-Hellman [7] key pair, which has 
been digitally signed by the manufacturer's secret key. Each node 
also has the manufacturer's public key. At time of installation, the 
nodes could exchange their Diffie-Hellman public keys and 
certificates. Each pair of nodes then authenticates the certificates 

and uses the Diffie-Hellman key exchange protocol to compute a 
shared secret key for authentication.  

For a system with n nodes, this scheme will require establishing 
O(n2) keys. While this overhead is high, it is incurred only once at 
time of installation, while the system is inactive. Embedded 
networks have very stable hardware configurations, which often 
last for months or years. Thus, a one-time key distribution cost is 
a minor concern in most situations. 

Additionally, in a typical embedded system, all nodes wired to the 
network are known at design time. It is reasonable to assume a 
node will know the standard configuration and what nodes 
comprise the group it is communicating with. This is in contrast to 
enterprise networks, where network nodes are expected to change 
constantly. 

5.2 Replay Protection 
We use time synchronization to prevent replay attacks. At system 
startup, nodes perform pair-wise synchronization of clocks to 
some predefined granularity, which might be on the order of the 
time it takes to transmit a full round of all messages. A network 
wide synchronization is not necessary, because pair-wise MACs 
are used for authentication. Pair-wise synchronization can be 
accomplished through the use of a secure time synchronization 
protocol such as Secure Pair-wise Synchronization [9]. 
Experimentation in [9] demonstrates time synchronization to a 
time tick granularity on the order of microseconds. In a distributed 
embedded network, synchronization to the nearest message round 
is often adequate, which is often on the order of tens or hundreds 
of milliseconds, and might be a service built in to the 
communication protocol. 

5.3 Run-Time Authentication and Trade Offs 
In order to provide multicast authentication, each pair of nodes 
must establish a shared secret key, and securely synchronize their 
clocks. For each message which is sent, the node first computes a 
MAC for each receiver using the shared secret keys. For a receiver 
i, the sender computes MAC Mi, which is computed over the 
message m and synchronized time Ti, using shared key Ki. "||" 
denotes concatenation. 

 

Mi      ←      MACKi(m || Ti) 

 

Each MAC is truncated, and b lower order bits of each MAC are 
appended to the message. For n receivers, the data payload of the 
packet consists of:  m || [M1]b || [M2]b || ... || [Mn-1]b || [Mn]b, where 
[] denotes truncation. Using a few bits per message reduces the 
amount of message overhead so that all MACs fit within a single 
packet. As these time-triggered messages are received, the 
authentication information accumulates, granting greater 
confidence in the authenticity of the messages. Each time-
triggered message is verified independently of all other messages. 
Fooling a receiver once has minimal impact, because an injected 
failure is cleared unless the attacker continues to successfully 
forge messages. 

5.3.1 State-changing Message Verification 
For state-changing messages, a receiver waits until a predefined 
number of consecutive messages are received before executing the 
received command. For a receiver which waits for x correctly 



authenticated messages to arrive, the probability of a successful 
forgery is equal to 2-xb. The probability of a successful forgery 
drops exponentially as the number of bits b of the MAC increases, 
or the number of messages required x increases (Figure 2). The 
system designer trades increased bandwidth and latency for lower 
probability of induced system failure. Additionally, there will be a 
limit on the value of x, based upon the maximum tolerated latency 
for the message. 
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Figure 2. Probability of successful forgery for one, two, and 
eight bit MACs over ten messages. 

 

5.3.2 Reactive Control Message Verification 
For reactive control system messages, the probability of a 
successful forgery for any individual message to a particular 
receiver is only equal to 2-b. While this does not provide highly 
secure authentication for an individual message, each successfully 
forged message will only cause some increment of physical 
change produced by the receiving node. In order to produce a 
successful attack, the attacker must forge multiple packets within 
some time period. If the attacker must forge y consecutive packets 
within this time period, the probability that the attacker succeeds 
is equal to 2-yb. The probability that an attacker will be able to 
produce dangerous outputs decreases exponentially as the 
required number of correctly forged messages increases. The 
designer selects the value of b for this type of message based upon 
the amount of physical change produced per message, so that the 
product yb is sufficiently large for the probability of system failure 
to be considered acceptable. This approach supports trading 
increased bandwidth for reduced probability of system failure.  

6. Conclusions 
Distributed embedded networks are becoming increasingly 
vulnerable to masquerade and replay attacks due to increased 
connectivity, creating a need for authentication. A significant 
challenge is that solutions for multicast authentication must take 
into account the unique constraints of these systems. We present a 
method based on truncated MACs to authenticate state-changing 
and reactive control system messages, along with associated 
analysis and tradeoffs. While this method provides authentication 
which is loss tolerant, requires no message buffering, and has 
ideal resistance to node compromise, this scheme still requires 
bandwidth overhead that scales linearly with the number of 

receivers, computation of one MAC per receiver for each 
message, and a limit on the number of receivers in practical 
implementations. In the future, we intend to present results from 
attacks on real systems, provide methodologies for engineers to 
perform tradeoffs in embedded network authentication, improve 
scalability, and further reduce bandwidth and computation 
overhead to provide even more flexible authentication solutions 
for distributed embedded networks.  
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